Optimizations of Array Convolutions for SIMD
Architectures

Joydip Kundu
Janice E. Cuny

COINS Technical Report 91-65
Novemeber 1991

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

This work was partially supported by the Office of Naval
Research under contract N00014-89-J-1492.

Abstract

Communication overhead can easily offset performance increases
due to massive parallelism. In this paper, we introduce code opti-
mizations for SIMD architectures that reduce communication costs for
array convolutions, an important class of array manipulations. Our
techniques use a graph-based approach that is independent of the un-
derlying problem and machine architectures.

1 Introduction

Communication overhead can easily offset performance increases due to mas-
sive parallelism. The overhead is particularly significant for fine-grained,
SIMD architectures since relatively little computation is performed between
successive communications and all processes are delayed by communications.
In this paper, we introduce code optimizations for SIMD architectures that
reduce communication costs for array convolutions, an important class of
array manipulations.

Our work began as an adaptation for the Connection Machine of alge-
braic optimization techniques developed by Fisher and Highnam [5]; their
techniques are reviewed in the next section. In Section 3, we describe our
more general work which uses a graph-based approach that is independent
of the underlying problem and machine architectures. In Section 4, we give
examples of code produced by our optimizations and compare our results to
those of Fisher and Highnam. In Section 5, we discuss limitations and ex-
tensions to our work and, in Section 6, we relate our work to that of others.
In the final section, we present our conclusions.

2 Previous Work: Fisher and Highnam

Both our work and that of Fisher and Highnam develop heuristics for min-
imizing communication costs in array convolutions. We assume that such
convolutions are specified as macro instructions which describe the com-
putation at each point of the array in terms of a relative neighborhood of
values. Thus, for example, a smoothing operation common to many vision
algorithms, might be specified using relative offsets as

val = a*([.J[.Jval + [.J[.+1]val + [.+1][.lval + [.1[.-1]val
+ [.-1][.Jval + [.+1]1[.+1]val + [.+1]1[.-1]val + [.-11[.-1]val
+ [.-1][.+1]val);

and represented spatially by the mask

11171
1111
1111

Fisher and Highnam’s heuristics used macro instructions specified in
terms of the directionals L, R, U, and D (with the obvious interpretation

of left, right, up, and down respectively). Thus they would input the above
instruction as

val = a*(val + U val + D val + L val + R val + RU val + RD val
+ LD val + LU val);

Their heuristics are based on an algebra that allows them to manipulate
directional expressions in performing common subexpression elimination. For
the smoothing example, they produce the following, optimal code

t1 =val + L val + R val;
t2 = val + U t1 + D ¢1;
val = axt2;

which reduces the number of both communication and addition steps from 8
to 4.

In adapting their techniques for the Connection Machine, we attempted
to address a limitation: the reliance on a directional algebra that applied only
to grids. Their heuristics assumed that both the problem and the machine
architectures were grids and that the machine architecture was of dimension
less than or equal to that of the input. This meant that they are unable to
fully exploit the interconnectivity of an architecture such as the Connection
Machine. Our heuristics eliminate these restrictions and additionally allow
structures with nongrid topologies.

3 Owur Approach

We call the points in the mask of a macro instruction the communication
space of that instruction. The point on the left hand side of the equation is
called the destination node and those on the right hand side are called source
nodes. Thus, labeling the points in the the smoothing example above by
their relative position from the destination node, we get the communication
space

(-1,1) (0,1} (1,1)

(-1,0) (0,0) (1,0)

(-1,-1) (0-1) (1,1)

where the destination point is (0,0) and the source points are (-1,1), (0,1),"
(1,1), (-1,0), (0,0), (1,0), (-1,-1), (0,-1), and (1,-1).

On the Connection Machine, macro instructions are implemented by a
sequence of micro tnstructions. For the smoothing example, the C* compiler
produced the micro instructions

t1 = [.1[.]val;
t2 = [.+1]1[.]val;
t1 += t2;

t2 = [.-1]1[.]val;
t1 += t2;

t2 = [.J[.+1]val;
t1 += t2;

t2 = [.J[.-1]val;

t1 += t2;
t2 = [.+1][.+1]val;
t1 += t2;
t2 = [.+1]1[.-1]val;
tl += t2;
t2 = [.-1]1[.+1]val;
t1 += t2;
t2 = [.-1]1[.-1]val;
t1 += t2;

[.1[.Jval = a* t1;

which contains two different types of micro instructions, one denoting com-
munication and the other denoting local computation.

If we represent the communication instructions in this example by di-
rected edges in the communication space, we get the following graph:

(-1,1) (0,1) (1,1)

('110) (1!0)

(-1,-1) (0,-1) (1,-1)

Any directed graph that connects the communication space of a macro in-
struction such that one and only one path exists from every source node to

4

the destination node is called an instruction graph. The degree of each vertex
in such a graph represents the number of local computations to be performed
at that vertex. ,

Every sequence of micro instructions corresponds to a single instruction
graph. There may, however, be many different sequences of micro instruc-
tions — and hence different instruction graphs — for a single macro instruc-
tion. Our objective is to find an instruction graph with minimal cost, using
some distance metric, and to use that instruction graph in generating effi-
cient code. The process of finding the minimal cost graph can also be thought
of as finding the minimum spanning tree (MST) rooted at the destination
node with respect to the graph completely connecting the communication
space. For the remainder of this report, whenever we refer to MST we will
be referring to the instruction graph with the minimum cost.

In determining the cost of an instruction graph, we label each edge with
a weight according to our distance metric and then take the sum of those
weights over the graph. Our distance metric was chosen to reflect the charac-
teristics of the Connection Machine (specifically the CM-2) but other metrics
could easily be substituted without altering our basic heuristics.

For a fully configured CM-2 system, the interconnection network is a 12-
cube connecting 4096 processor chips. Each router node is connected to 12
other router nodes; specifically, router node 1 is connected to router node j if
and only if |i — j| = 2¥ = (j ® k) V 2*. In other words, routers 7 and j are
connected along dimension k if and only if 7z and j differ only in bit position
k.

In overlaying a grid on a hypercube, we use Grey-coding in which the
points of the grid are mapped to hypercube addresses in such a way that
adjacent grid points have labels that differ in exactly one bit position. Thus
adjacent grid nodes will be connected by ypercube wires. For example, the
Grey distance between two points P(21,y1,21) and Q(z2,¥2,22) in a 3 dimen-
sional grid is given by:

Grey distance = weight (|2, — z.|) + weight (|y1 — ¥2|)
+ Welght (|z1 - Zgl),
where 21,91, 21 and z,,y,, 2, are expressed in Grey code, and

weight(a) = # of bits that are 1 in the grey representation of a.

The Grey distance is our distance metric.

(-1,1) (0,1) (1,1)

(-1,-1) (0,-1) (1,-1)

Figure 1: Instruction graph for 3x3 smoothing operation.

(-1,1) (0, 1) (1,1)

('190) 0)

(-1,-1) ©.11) (1,-1)

Figure 2: Instruction graph with minimum cost for 3x3 smoothing operation.

(-1,1) (0,1) (1,1)

(-1,-1) (0,-1) (1,-1)

Figure 3: Alternative instruction graph with minimum cost for 3x3 smooth-
ing operation.

To compute the cost of an instruction graph we label each edge with
the Grey distance between its end points and take the sum of all the edge
weights. The instruction graph above has a cost of 12 as shown in Figure 1. A
minimal cost graph for the same macro instruction has a cost of 8; examples
are shown in Figures 2 and 3.

Not all minimum cost instruction graphs, however, are equally good. The
micro instruction sequence corresponding to the graph in Figure 2 is

t1 = [.+1][.]val;
t1 += val;
t2 = [.1[.+1]¢1;
t2 += val;
t1 = [.]J[.+1])val;
t1 += val;

t3 = [.-1][.]¢1;
t2 += £3;
t1 = [.J[.-1]val;
t1 += val;
t3 = [.1[.-1]+1;
t2 += £3;
t1 = [.-1][.]val;
t1 += val;
t3 = [.IJ[.+1]%1;
t2 += t3;

[.J[.lval = a*t2;

The graph in Figure 3, admits more optimization. In generating the code
for this graph, we note that the points (1,1), (1,0) and (1,-1) are equivalent,
in the sense that each of them holds the same variable (val) and each is in
the same relative position its parent ([.-1][.]). Thus after the single micro
instruction,
t1 = [+1][Jval
all three nodes have sent data to their parents. Similarly, the points (-
1,1), (-1,0) and (-1,-1) are also equivalent and all send their data to their
parents with the micro instruction
ty =[. — 1][.Jval
Exploiting this fact, we can use a single micro instruction to send data
from equivalent points to their parents and optimize the code to:

t1 = [.+1]1[.]val;
t1 += [.1[.]val;
t2 = [.-1]1[.]val;
t1 += t2;

t2 = [.][.+1]¢1;
t2 += [.J[.]1t1;
t3 = [.J[.-1]¢1;
t£2 += £3;
[.1[.lval = a*t2;

requiring 4 communication steps and 4 local additions, matching the Fisher
and Highnam optimization.

In general, we want to find a MST such that a directed edge from node 2
to node j exists if and only if

i € {K} where K is the set of nodes that are closest to node i,
and] is the node closest to the destination node Vj € {K}, and
where the distance metric used is the Grey coded distance.

Our stand-alone program implicitly builds such a minimum spanning tree,
and generates a set of micro instructions for any given macro communication
instruction.

Before presenting our heuristic, we need several definitions. Given a lo-
cation in the communication space, we define the active variables at that lo-
cation to be those variables holding the values of subexpressions still needed
in the computation. In addition, given nodes n; and n,, we define the set of
nodes similar to node n; with respect to node n, to be that set of nodes e,
such that

i. there is a node e; closer to the destination node than e,, and

i1. both n; and e, can transfer their active variables to n; and e, respectively
with the same micro instruction.

Procedure for Code Generation
The input to our algorithm is a set of nodes together with pointers to their
active variables.

1. Sort the points in the communication space in decreasing order accord-
ing to their Grey distances from the destination node.

2. Build the implicit MST as follows:

Choose the first node of the list, n, and find its closest neighbor, n,. If
there is more than one closest neighbor, choose the node n, such that
there are the greatest number of nodes similar to n, with respect to n,.
Generate an instruction to send the active variable of node n; to node
12, remove n; and all nodes similar to n; with respect to n, from the
list, and update the active variables accordingly.

Repeat until the list of unconnected nodes is empty.

10

-1,1
(-1,1) 1 (0,1)

(-1,0) (0,0)

Figure 4: Instruction graph for 2x2 summation.

4 Examples

In this section we give some examples of our optimizations. We implemented
the optimizer with the intention of validating our heuristics and thus, we
have not bothered to include other obvious optimizations that could be per-
formed with standard techniques. Thus for example, our code often contains
unnecessary register transfers near the end of instruction sequences; in our
counts of temporary variables we include in parenthesis the number needed
if we were to incorporate standard live and dead variable analysis (as in
[6]) to avoid this. In addition because neighbor to neighbor communica-
tion on the Connection Machine is faster than arbitrary communication, we
have included counts of both the number of communication instructions and
the number cube dimensions traversed by those instructions (communication
hops).

1. Optimization Example (1): 2x2 summation (Figure 4)

Input:
C.10dp = [.100p + [.10.+1)p + [.-11[.1p + [.-11[.+1]p;

Equivalent Connection Machine Code from C* Compiler:
t1 = [.1[.+1]p;

11

#
#
#
#

t2 = [.J[.1p;

t1 += t2;

t2 = [.-1]1[.1p;
t1 += t2;

t2 = [.-1][.+1]p;
t1 += £2;

[.1[.1p = t1;

of communication instructions = 4
of communication hops = 4

of local computations = 4

of temporary variables = 2

Optimized Output:

£ I

t1 = [.-1]1[.]p;
tl += p;

t2 = [.]1[.+1]¢1;
t3 = t1 + £2;

t1 = t3

[.10.1p = t1;

of communication instructions = 2
of communication hops = 2

of local computations = 4
of temporary variables = 3

(2)

- Optimization Example (2): 3x3 Symmetric Filter (Figure 5)

Input:

L.

1[.Jresult = a*x[.-1]1[.+1]p + b*[.J[.+11p + a*[.+1]1[.+1]p +
b*x[.-11[.Jp + c*x[.J[.1p + b*[.+1][.1p +
a*[.-1]1[.-1]1p + b*[.1[.-1]lp + a*[.+1]1[.-1]p;

Equivalent Connection Machine Code from C* Compiler:

t1 = [.-11[.+1]p;

12

('1v1) (0v1) (1r1)

(-1,-1) (0,-1) (1,-1)

Figure 5: Instruction graph for 3x3 symmetric filter.

13

t1 = a*ti;

t2 = [.]J[.+1]p;
t2 = b*t2;

t1 += t2;

t2 = [.+1][.+1]p;
t2 = a*t3;

t1 += t2;

t2 = [.-11[1p;
t2 = b*t2;

t1 += t2;

t2 = [.J[.1p;

£2 = c*t2;

t1 += t2;

t2 = [.+1][.1p;
t2 = b*t2;

t1 += £2;

t2 = [.-1]1[.-1lp;
t2 = a*t2;

t1 += £2;

t2 = [.]1[.-1lp;
t2 = b*t2;

t1 += £2;

t2 = [.+1][.-1]p;
t2 = a*t2;

t1 += t2;

[.1[.1result = t1;

of communication instructions
of communication hops = 12
of local computations = 18
of temporary variables = 2

H* O N R

Optimized Code:

t1 =c * p;
t2 =b * p;
t3 = a * p;

14

t4 = [.-1]1[.]1¢3;

t5 = t2 + t4;

t6 = [.+11[.1t3;

t5 += t6;

t7 = 0;

t8 = [.-11[.]1+2;

t7 += t8;

t9 = [.+1]1[.]%2;

t7 += t9;

t10 = [.1[.-1]¢5;
t7 += £10;

t11 = [.J[.+11¢5;

t7 += t11;
£12 = ¢1;
t7 += t4
t4 = t7

[.J[.Jresult = t4;

H H H®

of communication instructions
of communication hops
of local computations
of temporary variables

6

14
=12 (7)

6

In all the above examples our optimizer generates the same optimal set
of instructions as the Fisher/Highnam algebraic approach because one hop
neighbor to neighbor communications are always available on the grid and
extra cube connections are superfluous. This is not always the case as we
show in the next two examples where our optimizer generates code using fewer
communication hops than that generated by the the algebraic approach.

1. Mask A: (

Input:

Figure 6)

[.10.Jp = [.10.1p + [10.+11p + [.10.-11p + [.+11[.1p

+ [.-11[.1p + [.+11[.+1]lp +

[.+11[.-1]p + [.-11[.+1lp

+ [.-1][.-1]p + [.J[.+3]p + [.1[.-3]p;

15

13)

1
(-1,1) (1,1)

(-1,-1) (0,-1) J(1,-1)
1

(0,3)

Figure 6: Instruction graph for mask A.

16

Algebraic

Optimizer Output:

t1 = UUp;

t2 = DDp;

t3 = p + Lp + Rp;

t4 = t1 + t3;

t5 = t2 + ¢3;

t6 = t3 + Ut4 + Dt5;

p = t6;
of communication instructions = 6
of communication hops = 8
of local computations = 10
#

of temporary variables = 6

Equivalent Connection Machine Code from C* Compiler:

t1
t2
t1
t2
t1
t2
t1
t1
t1
t2
t1
t2
t1
t2
t1
t2
t1
t2
t1
t2
t1

= P;

= [.J[.-1]p;
+= £2;

= [.]J[.+1]p;
+= t£2;

= [.+1]1[.1p;
+= £2;

= [.-1][.]p;
+= t£2;

= [.+1][.+1]p;
+= t2;

= [.+1]1[.-1]p;
+= t2;

= [.-1]1[.+1]p;
+= £2;

= [.-1][.-1lp;
+= 12;

= [.1[.+3]p;
+= £2;

= [.J[.-31p;
+= t2;

[.10.Imy = t1;

17

of communication instructions = 11
of communication steps = 14

of local computations = 13

of temporary variables = 2

R R R

Our Optimizer Output:

t1 = [.-1]1[.1p;

t1 += p;

t2 = [.+11[.1p;

t1 += t2;

t3 = [.1[.-3]p;

t4 = t1 + t3;

t5 = [.J[.-1]¢1;
t4 += t5;

t6 = [.]J[.+3]p;

t4 += t6;

t7 = [.1[.+1]¢1;
t4 += £7;

t1 = t4

(.10.1p = ¢1;

of communication instructions = 6
of communication hops = 6
of local computations = 8
of temporary variables = 7

H R

The optimizer based on algebraic approach misses the cube path of
distance 1 available from both the nodes (0,3) and (0,-3) to the origin.

2. Mask B (Figure 7))

Input : [.J[.Jp = [.1[.+3]p + [.+3]1[.+1]p + [.+7]1[.+31p;

Algebraic optimizer Output:

18

H # R

©03) 1 (7.3)
-
1
2 (3,1)
(0,0)

Figure 7: Instruction graph for mask B.

t1 = RRRRUUp;
t1 += p;

t2 = RRRUt1;
t2 += p;

t3 = UUUp;

t2 += £3;

P = t2;

of communication instructions = 3

of communication hops
of local computations

of temporaries =

3

10 (7 if we assume cube paths are used)
3

Equivalent Connection Machine Code from C* Compiler:

tl = p;

t2 = [.]J[.+3]p;
t1 += t£2;

t2 = [.+3][.+1]p;
t1 += £2;

t2 = [.+7][.+3]p;
t1 += t2;

19

Comparison between current C*, Algebraic and MST based Optimizations

of instr # of hops # of temps # of local comps
Examples | C* | Alg | MST | C* | Alg [MST || C* | Alg | MST || C* | Alg | MST
3x3 filter 9| 6 6 12 | 6 6 2 7 7 18 | 14 14
2x2 sum 4 2 2 4 2 2 2 2 2 4 4 4
Mask A 11| 6 6 14| 8 6 2 6 7 13 | 10 8
Mask B 3 {3 3 5| 7 3 4 | 3 3 3 3 3

Figure 8: Summary of performance of different optimization techniques

[.10.1p = t1;

of communication instructions = 3
of communication hops = 5

of local computations = 3

of temporaries = 2

£

Our Optimizer Output:
t1 = [.+7]1[.1p;
t1 += p;
t2 = [.+3][.+1]p

t3 = [.J[.+3]¢1;

t3 += t2;

P = t3;
of communication instructions = 3
of communication hops = 4

of local computations = 3
of temporaries = 3 (2)

H O R R

In this case too, the algebraic approach fails to see that there is a cube
path of distance 1 available between the nodes (7,3) and (0,3) which is
shorter than the grey distance between nodes (7,3) and (3,1).

20

5 Caveats

As discussed above, our original goal was to explain the theory behind our op-

timization and show that a practical peephole optimizer can be built around

that theory. Thus there were a number of issues that we did not address.
We did not address the issue of global optimization. Consider the code

Input:

[.J[.1gx = bx(y*x[.+1]1[.+1]p + x*[.J[.+1]p - y*[.-11[.+1]p)
+ ax(yx[.+1][.Jp + x*[.1[.1Jp - y*[.-11[.]Jp)
+ bx(y*x[.+1]1[.-1]p + x*x[.1[.-1]p - y*[.-11[.-11p);

Our optimizer produced the following micro instructions (having the instruc-
tion graph of 3, but interpreting it as four different instruction graphs due
to the higher precedence associated with the parentheses)

t1 = x * p;

t2 =y * p;

t3 = [.-1][.]t2;
t1 -= t3;

ta = [.+1][.]1+2;
t1 += t4;

t3 = ¢1

t4 = x * p;

ts =y * p;

t6 = [.-11[.]t5;
t4 -= t6;

t7 = [.+1]1[.]t5;
t4 += t7;

t6 = t4

t7 = x * p;

t4 += t7;

t6 = t4

t7 = x * p;

t8 =y * p;

t9 = [.-1]1[.]1¢8;
t7 -= t9;

t10 = [.+1][.]¢8;

21

t7 += £10;

t9 = t7
t10 = a * t6;

t11 = b * £9;

t12 = 0;

t13 = [.]1[.-1]t11;
t12 += t13;

t14 = [.]J[.+1]¢10;
t12 += t14;

t15 = t10;

t12 += t15;
[.1[.1gx = t12;

of communication instructions = 8
of communication hops = 8

of local computations = 26

of temporary variables = 15

If, however, we had used standard live and dead variable analysis we could
have generated the code

t1 = x*p;

t2 = y*p;

t3 = [.-1][.]1¢2;
t1 -= £3;

t4 = [.+1]1[.]1t2;
t1 += t4;

t3 = a*ti;

t4 = b*ti;

t5 = [.J[.+1]t4;
t3 += t5;

t5 = [.1[.-1]t4;
t3 += t5;
[.10.1gx = ¢3;

of communication instructions = 4
of communication hops = 4

22

of local computations = 9
of temporary variables = 5

(with the instruction graph of Figure 3). The failure of the optimizer is due

to the fact that our compiler considers expressions within parenthesis to be

of higher precedence than the ones outside. If there are multiple expressions

delimited by parentheses, they are treated as separate macro instructions.
Other limitations of our stand-alone optimizer are

e The scanner handles only integer literals.

¢ A variable name can only contain uppercase or lowercase letters. Nu-
merals are not allowed.

¢ Only one local computation is allowed. That is, we can have expressions
like a*[. +2][. +4]p and a x (bx[. +2][. + 4]p) but not a*bx[.+2][. +4]p

All of these limitations could be removed quite easily but that work is beyond
the scope of this paper.

6 Comparisons to Other Work

The move from low level programming languages to higher level languages
supporting array operations will require the development of efficient mech-
anisms for data distribution and alignment. Much of the existing work
[3, 9, 10, 12, 14] has been concerned with reducing the need for data move-
ment by considering patterns of reference in initial allocation decisions. Qur
work seeks to minimize data motion given these original allocations.

Other authors addressing similar issues of post-allocation data movement
include Albert and Knobe, et. al[3, 9] and Gilbert [7]. Albert and Knobe et.
al. briefly mention two types of common subexpression elimination (cse) for
reducing communication: standard cse and a new generalized cse. The later
of these is very much like the work by Fisher and Highnam. The former relies
on existing techniques but, it should be noted, does not necessarily improve
performance in our domain. In an example from their paper!, consider an
implementation of the macro instruction

1Example adapted from [3], page 55.

23

val = [][. + 1Jval + [][. = 1Jval + [. — 1][.Jval + [. + 1][.Jval

where each process sums the values from its four immediate neighbors. Many
pairs of values get summed together at more than one location: the values
in locations [3][7] and [4][6], for example, are summed together in computing
the value for [4][7) and again in computing the value for [3][6]. The authors
suggest computing their sum once at [3][6] and sending the result of that
computation to [4][7]. This reduces the number of necessary communication
steps from 4 to 3 but does not necessarily reduce the number of communica-
tion hops. On the CM, the diagonal transmission (from [3][6] to [4][7]) might
well require more time than the two direct hops it replaces.

Gilbert [7) also presents an algorithm to minimize code motion subsequent
to array allocation. His algorithm is considerably more complex than ours
but it allows an additional degree of freedom in the solution: intermediate
results can be calculated at nodes not in the original communication space
of the instruction.

Finally, related work has been done on optimizing the performance of
array convolutions for programs in which more than one array point is al-
located to a process [4, 13]. Our techniques could be used in conjunction
with these optimizations but as the number of points allocated to processes
increases the effectiveness of our optimizations will decrease.

7 Conclusions

In our effort to adapt the directional algebraic approach to the Connection
Machine architecture, we have developed a new graph-theoretic approach to
optimization which is more general. Our approach has eliminated the depen-
dence on the problem architecture: if the architecture of the problem or the
machine changes, we need only change the distance metric. In the examples
shown above, where the extra CM connections are not needed, our optimizer
produces the same optimized code as the directional algebraic technique;
where the extra cube paths can be exploited, our optimizer produces better
code.

24

References

(1] Programming in C/Paris, The Connection Machine Manual. Thinking
Machines Corporation, Cambridge, Massachusetts, 1989.

[2] Programming in C* The Connection Machine Manual. Thinking Ma-
chines Corporation, Cambridge, Massachusetts, 1990.

[3] Eugene Albert, Kathleen Knobe, Joan D. Lucas, and Guy L. Steele
Jr., “Compiling Fortran 8x Array Features for the Connection Machine
Computer System,” Proceedings ACM/SIGPLAN Symposium on Paral-
lel Programming: Ezperience with Applications, pp. 42-56 (1988).

[4] Mark Bromley, Steven Heller, Tim McNerney, and Guy teele Jr, “For-
tran at Ten Gigaflops: The Connection Machine Convolution Com-
piler,” SIGPLAN Notices, 26(6), pp. 145-156 (June 1991).

[5] A.L. Fisher and P. T. Highnam. “Communication and code optimization

in SIMD programs,” International Conference on Parallel Processing,
1989, pp. 84-88.

[6) C. N. Fisher and R. J. Leblanc. Crafting a compiler. The Ben-
jamin/Cummings Publishing Company, Inc.

[7] John R. Gilbert and Robert Schreiber, “Optimal Expression Evaluation
for Data Parallel Architectures,” JPDC 13, pp. 58-64 (1991).

[8] W. D. Hillis, The Connection Machine, MIT Press, Cambridge, Mas-
sachusetts, 1985.

[9] Kathleen Knobe, Joan D. Lucas, and Guy L. Steele Jr., “Massively
Parallel Data Optimization”, Proceedings 1988 Second Symposium on
the Frontiers of Massively Parallel Computations, pp.551-558 (1988).

[10] Kathleen Knobe, Joan D. Lucas, and Guy L. Steele Jr., “Data Op-

timization: Allocation of Arrays to Reduce Communication on SIMD
Machines”, JPDC 8(2), pp. 102-118 (1990).

[11] Kathleen Knobe and Venkataraman Natarajan, “Data Optimization:
Minimizing Residual Interprocessor Data Motion on SIMD Machines,”

25

Proceedings Frontiers '90: The Third Symposium on the Frontiers of
Massively Parallel Computation, pp. 416-423 (October 1991).

[12] J. Li, and M. Chen, “Index Domain Alignment: Minimizing Cost of
Crossreferencing between Distributed Arrays,” Proceedings Frontiers
'90: The Third Symposium on the Frontiers of Massively Parallel Com-
putation, pp. 424-433 (October 1991).

[13] Jacek Myczkowski and Guy Steele. “Seismic Modeling at 14 Gigaflops
on the Connection Machine,” Supercomputing 91.

[14] J. F. Prins, “A Framework for Efficient Execution of Array-Based Lan-
guages on SIMD Computers,” Proceedings Frontiers ’90: The Third
Symposium on the Frontiers of Massively Parallel Computation, pp. 462-
470 (October 1991).

26

