Polymorphic Multiple-Processor
Networks

Deepak Rana

COINS TR91-70

September 1991

This work is supported by the Air Force Office of Scientific Research under contract
number F49620-86-C-0041, by the Defense Advanced Research Projects Agency under
contract numbers DACAT76-86-C-0015, DACAT76-89-C-0016, DAAL02-91-K-0047, and by
the National Science Foundation under grant number CDA-8922572.

POLYMORPHIC MULTIPLE-PROCESSOR NETWORKS

A Dissertation Presented

I >
DEEPAK RANA

Submitted to the Graduate School of the
' University of Massachusetts in partial fulfillment
r‘ of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 1991

Department of Electrical & Computer Engineering

©Copyright by Deepak Rana 1991
All Rights Reserved

3

e

3 3 |

N

POLYMORPHIC MULTIPLE-PROCESSOR NETWORKS

A Dissertation Presented
by
DEEPAK RANA

Approved as to style and content:

Ldva.

Dhiraj K. Pradhan, Chair

Dt [

Charles C. Weems, Member

Steven P. Levitan, Member

%LO@;\M

Mé/ciej J. Ciesielski, Member

o7 D,

Lewis Ev Franks, Department Head
Department of Electrical & Computer Engineering

To My Family.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Professor Charles Weems. His guidance,
suggestions, and endless editorial help were crucial to this work. I would like to thank
Professor Dhiraj Pradhan for his constant encouragement and support. Thanks to Professor
Maciek Ciesielski for his comments. I am particularly thankful to Professor Steve Levitan
for his invaluable advise during my graduate studies.

I would like to thank Professors Ed Riseman and Al Hanson for their moral and financial
support.

Thanks to the VISIONS staff, in particular Bob Heller, Janet Turnbull, and Laurie

Waskiewicz for all the help. Special thanks to Mike Rudenko; my close friend at UMass, for
his sympathetic ear and advise.

Last but not least, I would like to thank my wife Aud and my son Jay for their love and
support.

ABSTRACT

POLYMORPHIC MULTIPLE-PROCESSOR NETWORKS
September 1991

Deepak Rana, B. S., Delhi College of Engineering
M. S., Ph.D., University of Massachusetts

Directed by: Professors Dhiraj K. Pradhan and Charles C. Weems

Many existing multiple-processor architectures are designed to efficiently exploit par-
allelism in a specific narrow range, where the extremes are fine-grained data parallelism
and coarse-grained control parallelism. Most real world problems are comprised of multi-
ple tasks which vary in their range of parallelism. In order to be more effective, future
multiple-processor architectures must be “flexible” in supporting multiple forms of paral-
lelism. Machine vision in general, and intermediate-level vision in particular, is an excellent
example for demonstrating multi-modal parallelism, which is chosen as the application
domain for this thesis.

This thesis addresses issues related to communication in “flexible” multiple-processor
systems. The specific problem addressed is to determine the communication requirements
of the intermediate level (ICAP) processors of the Image Understanding Architecture (IUA),
explore the design space of potential solutions, develop a network design that meets
the requirements, demonstrate the feasibility of constructing the design, and show both
analytically and empirically that the design meets the requirements.

The approach is to first investigate the computational characteristics of the vision
tasks to be run at the ICAP level. The communication and control requirements of the
ICAP router are extracted from the computational characteristics. These requirements are
divided into logical groups, and an evolving series of network architectures is developed
that cummulatively support or address these groups. A number of custom VLSI chips are
designed, and analytical study of the networks is carried out to demonstrate the feasibility
of their construction.

The major contributions of this thesis are: (1) Crossbars and other dense networks are
viable design alternatives even for large parallel processors (2) Central control is viable for
reasonably large network sizes, which is contrary to conventional wisdom (3) It is shown that
by using a special search memory to implement part of the Clos and Benes network routing
algorithm in hardware, it is feasible to quickly reconfigure these networks so that they may
be used in fine-grained, data‘dependent communication (4) The feasibility of constructing
easily reconfigurable communication networks for “flexible” multiple-processor systems is
shown. These networks can quickly reconfigure their mpolbgies to best suit a particular
algorithm, can be controlled efficiently (in SIMD as well as MIMD mode), and can efficiently
route messages (especially with low overhead in SIMD mode) (5) During the course of this
investigation it was discovered that, flexible communication as well as shared memory
support is much more critical for supporting intermediate-level vision than providing a
variety of fixed communication patterns. This observation may also have implications
for general-purpose parallel processing, and (6) It was also discovered that supporting a
symbolic token database at the intermediate level is a more fundamental requirement than
supporting particular algorithms.

TABLE OF CONTENTS

ACKNOWLEDGMENT Sttt i ittt et et e e i v

ABST RACT e e e e e e e e e e vi

LISTOF TABLES ittt ittt et et et et e e e ee e ix

LIST OF FIGURESttt e e e e e e e e e e e et e e e X
CHAPTER

1. INTRODUCTION i ee e e e e e e e 1

1.1 Machine ViSION v v i i it e e e e et e e e e e e e e e e e 2

1.2 The Image Understanding Architecture 4

1.3 Problem statementt e e e e e 6

14 0urApproach ottt e e e e e e 8

1.5 Mgjorcontributions e 12

16 0utlne i e e e e e e e e e e e e e e e 13

2. BACKGROUND AND RELATED WORKo iiiieeeeen.. 16

2.1 Overviewof parallel processing i 16

2.1.1 Architectural Classification o 16

2.1.2 Our terminology for identifying Parallel Systems 24

2.2 Overview of interconnectionnetworks o 25

2.2.1 Static interconnection networks 26

2.2.2 Dynamic interconnectionnetworks 30

3. ARCHITECTURAL REQUIREMENTS OF INTERMEDIATE-LEVEL VISION 42

SlLlow-level ViSIon vt i it e e e e e e e 43
3.1.1 Histogram-Based Region Segmentation 4
3.1.2 Straight-line extraction by gradient orientation 48

8.1.3 Straight-line extraction by edgegrouping 50 “‘
3.1.4 Otherlow-levelalgorithms 50

32 High-level ViSIon v v v i ittt et e e e e e e 52 ‘j

3.2.1 The Schema SYSteI . « « « « « v v v o v et et e e e 52 "

3.22Knowledge Sourcest i e e .. B7 j

3.3 Intermediate-level Symbolic Representation (ISR) Database 64 -

3.3.1 Intermediate Symbolic Representation(ISR) 64 |

3.4 Architectural characteristics of the ICAP 69 7
3.4.1 As an attached processortothe CAAPP 70

3.4.2 As an attached processortothe SPA 72 j
3.4.3 Intermediate-level visiontasks 0., 73

(-«_1

3.5 Requirements of the ICAP communicationnetwork 77 |

4. GENERATION L0: CENTRALROUTINGCONTROL 78 ,,—‘
4.1 Parallel Communication SwitchI 79

4.2 JUAGEN1ICAP communicationnetwork 84 “

. l
4.2.1 ICAP communication network architecture 84

4.2.2 Network setupand re-switching 84 '_]

4.3 Largercrossbar networksottt ... 87 i}

4.3.1 Network architecturettt 87 F\

4.3.2 Network setupand re-switching 89 —
4.4 Larger non-blockingnetworks 91

4.4.1 Network architecture 92
4.4.2 Network setupand re-switching 95

™

4.5 Larger rearrangeably non-blockingnetworks 98 ~

4.5.1 Network architecture, 98 =

4.5.2 Network setupand re-switching 101 j

4.6 Analysis of PARCOS I i it e e e e e e e e e 101 "7

] 7

F

46.1Hardware Cost iiiininn.. 102
4.6.2 Pinoutrequirementsttt 107
463 Powerdissipation e 108
4.6.4 Time to set up and reconfigure thecrossbar 110
4.6.5 Latency and throughputof PARCOSI 110

4.7 Comparison of variousnetworkso, 119
471Hardwarecost e 119
472 Timetosetupandreconfigure 126
4.73 Latencyand throughput 126

4.8 Conclusions e e e e 127
481 Goalsachieved. 128
482Goalsremaining e e e 128

5. GENERATION L5: CENTRALROUTINGCONTROL 129
5.1 The IUA feedback concentrator, 130
5.1.1 The IUA Feedback Concentrator Architecture 131
5.1.2 The feedback concentrator building-block chip 134
5.1.3 The IUA feedback concentrator operation 139
514 Samplealgorithms 139
5.1.5 Second generation IUA feedback concentrator 142

5.2 Data dependent synchronous communication 145
52.1Crossbarmnetwork e 145
5.2.2 Non-blockingnetwork, 151

5.3 Data dependent asynchronous communication 158
5.3.1 Asynchronous Crossbar netWorko et 158
5.3.2 Asynchronous non-blockingnetwork 162

5.4 Multicast communicationt ittt e 164
5.4.1 Asynchronous communication0t o 165
5.4.2 Synchronous communication 167

5.5 Analysis and comparison ofnetworks 168

EE. 1 Hardware COSt . - « « « « o ¢ o« o o o « s s 5 ¢ s 6 5 a2 o s s o m oo 0 on 168

5.5.2 Time to set up and reconfigure 170

5.6 COoNCIUSIONS . « « v ¢ v v v v v e et e ettt e e e e et e s e e e e e e 172
5,61 Goale achlovetd . « &« 5 o wivis 5w 5 s e w5 oo ow w e m wow e o e 172

B8 Remaining gonls: s s s s s o mpmmn o w0 b B 0w wmoaow wo o ok 173

6. GEN'ERATION 2: DISTRIBUTED ROUTING CONTROL 174
BAPARCOSTIE. : i v i« v s o 60086 &m0 w4 a0 5 % w e s tw e w0 e g 8 0 o0 0 oo 174

6.2 Changes in the intermediatelevel 179
6.2.1 Architectural requirementso 181

622 Desipnoonstraints . . o o n s m s w.s @ s s s v m e w5 e w e e 182

6.3 IUA GEN II communication network 185
6.3.1 Some TMS320C30features oo v v et v s v v v v v oo v 186

6.3.2 Design proposed by Hughes Research Laboratories 193

A HREE LI AOBITN < + « 5 « ¢ ¢ s 55 5 5 & 5 Fw FpE A s 8 E w Y el r e w e 197
6.34Stagelldesignttt 199

6.4 TUA GEN II+ communication network 206

6.5 Larger networks o i e e e e e e e e e e e e e e e 216
6.5.1 Based on point to point topology oL 216

6.5.2 Based on multiplebuses 217

6.5.3 Hybrid sehome: 55 siwivio aies ey 0 v e w2l d0a ala b Gilay el 217

6.6 SUMMATY i e e e e e e e e e e e e e e e 217

7. RESULTS AND CONCLUSIONS e et e e 221
7.1 Summaryofresearch e e e e e e e e e e 221

7.2 Futureresearch i i e e e e e e e e e e 224
7.2.1 High performance systems. J 225

7.2.2 Application specific parallel architectures and algorithms 287

T8 CORCIBMIBNSE 55w n st ns 565 a5 5 8 bl oiile TL o bl e s 5 o S o sl o o 228
BIBLIOGRAPHY e 230

’
LIST OF TABLES
Table Page
1.1 Taxonomy of Communication Networks 11
3.1 Basic image processingoperationst 51
3.2 Characteristics and requirements of the intermediate level 76
4.1 Various networks builtoutof 8§ x 8switch 121
4.2 Various networks built outof 16 x 16 switch 122
4.3 Various networks built out of 32 x 32switch 123
4.4 Various networks built outof64 x 64switch 123
4.5 Various networks built out of 128 x 128 switch 124
4.6 Various networks built out of 256 x 256 switch 124
4.7 Various networks built out of 512 x 512switch 126
5.1 Numberofcyclesforrouting. 170
6.1 Taxonomy of Communication Networks 179
6.2 Interlock Operations 190
6.3 Best times for shared memoryoperations 216
xii

LIST OF FIGURES
Figure Page
1.1 AblockdiagramoftheIUA i .. 5
12 Road mapofthethesis 0.u.... 14
2.1 Flynn’s classification scheme i 17
2.2 PE - PE organization ofa SIMDcomputer. 20
2.3 PE-Memory organization ofa SIMD computer 21
2.4 Organization of switchedsystems 23
2.5 Some static network topologies 27
2.6 Shared bus organization e e e e e e e e 31
2.7 Crossbarnetwork i e e e e e e e 32
28 An8x80megametwork. 35
2.9 An 8 x 8DataManipulator Network 36
2.10 Centrally controlled asynchronous-network OO - { |
3.1 Organization of Region Segmentation00 enen... 45
3.2 Housescene part-ofmetwork 53
3.3 Overview of VISIONS system components 55
3.4 IUA and the VISIONS system components 56
3.5 Frame and token hierarchyinISR 66
4.1 Organization of the PARCOSIchip 80
4.2 Organization of amultiplexertree 81
4.3 Microphotograph ofthe PARCOSIchip 83
44 TUAGENIICAP CommunicationNetwork 85
4.5 Building larger crossbarnetworks 88
46 A3-StageClosmnetwork i e e e 93
47 A 3-Stage 512-input 512-output Closnetwork 94

4.8 A4-Stagemodified Closnetwork e 96
4.9 AB5-StageClosmetwork o v vt 97
410 A3-StageBenesnetwork e e 99
4.11 A 2 x 2 connector based reconfigurable network 100
4.12 One halfof the MUK tree« ¢ v o i i i i it e e e e e e e e e e e o e 103
413 Worst delay pathin PARCOST it e 111
4.14 Driver for the selectortrees e 113
4,15 Selectortreeand buffer L oo 116
4,16 Equivalent circuit foraselectortree e 117
4.17 Normalized board area vs switchsize 125
5.1 Node Some/None and Countnetwork 133
5.2 Motherboard Some/None and Count Networks 135
5.3 Global Some/None and Count Networks 136
5.4 Schematic of the Concentrator Chip 137
5.5 Microphotograph of the concentratorchip 138
5.6 Schematic of the daughterboard concentratorchip 143
5.7 Schematic of the motherboard Concentrator Chip 144
5.8 First synchronous crossbarnetwork 146
5.9 Second synchronous crossbarnetwork 148
5.10 Synchronous non-blocking network I 152
511 Havdware for findingMSS . . o « ¢ o « s s s s s s s 650 assnsaansssonsas 156
5.12 Asynchronous Crossbarnetwork 159
5.13 Asynchronous non-blocking network 163
5.1 Counter-example’ . oo ww e s wn s ¢ 6 85 5 68 6 ¥ 6 ¥ g e ¥ e E e ¥ b a B W e e 166
6.1 Block diggram of PARCOSII . vv v 6 6 o 5 o 5 ¢ 5 3 55535553835 o' s wmsases 176
6.2 Blockdiagramofonecell . . .« <« 5644 s s isiisaasossisispmannssn 117
6.3 Checkplotofonecell e e 180
6.4 Schematic of ICAP communicationnetwork 183
6.5 TMS320C30 Block DHAGTHI . .« i w6 < 5 4 s 2 6 s s a 02633 68cammessain 187
6.6 Serial channels in TMS320C30 ittt it et e e e e e 188
6.7 DMA Controller e e e 189

Xiv

~—3 ~ 3 ~—3 ~ 3 3% ~3 —13 3 ~—3 —3 ~—3 ™3

6.8 Multiple TMS320C30 sharing globalmemory 192
6.9 HRLSNODEstructure.ttt ittt 195
6.10 16-Node Dual-Hypercube 196
6.11 SNODEonamotherboard 200
6.12 Block diagram of PARCOSTITo vtoteena e, 202
6.13 SNODE forsharedmemory 0.ttt ennennn... 208
6.14 Block diagram of PARCOS III+ i i it i ittt e et e et ee e e 209
6.15 Multiple bus based scheme, 218
6.16 Hybrid scheme @ ittt e e e e e e 219
XV

CHAPTER 1

INTRODUCTION

As the fundamental limits of signal speeds in uniprocessor systems are being approached,
the search for computationally efficient multiple-processor or parallel architectures has
become increasingly important. The availability of more sophisticated and reliable hardware
in recent years has enabled many new developments in this area.

Many existing multiple-processor architectures are designed to efficiently exploit a
specific form of parallelism, where the extremes are fine-grained data parallelism and
coarse-grained control parallelism. Real-world problems often comprise multiple tasks with
varying forms of parallelism. One motivating factor of this thesis is that, in order to be more
effective, future multiple-processor architectures will have to be “flexible” in supporting
multiple forms of parallelism. Machine vision in general, and intermediate-level vision
in particular, is an excellent example for demonstrating multi-modal parallelism, which is
chosen as the application domain for this thesis.

Data communication is considered by many to be the key bottleneck to successful
exploitation of parallelism. To alleviate this bottleneck, a “good” interconnection network
for PE-PE communication or for PE-Memory communication is required. We define a
“good” communication network as one that meets the performance requirements of a given
application while also satisfying its engineering constraints. As such, a communication
network architecture is intimately tied to the overall multiple-processor architecture (such
as control, mode of operation etc.) and a measure of “goodness” can only be defined in
relation to the context of its use.

The objective of this thesis is to explore the suitability and feasibility of construction of
VLSI-based, easily reconfigurable, communication networks for “flexible” multiple-processor
systems outlined above and in specific, for intermediate-level vision as the application.

The outline of the rest of this chapter is as follows. In the next section we provide a
brief motivation of what machine vision is and why it needs parallelism at different levels,
followed by an overview of the Image Understanding Architecture, which is a particular
hardware solution for machine vision. In section 1.3 we state the problem addressed in

2

this thesis followed by an outline of our approach for solving it. Major contributions of the
research are outlined in section 1.5 followed by an outline of the rest of the chapters.

1.1 Machine vision

This section provides a brief motivation of what machine vision is, and why it needs
parallelism at different levels. More details can be found in [Hanson 86, 87; Weems 84,89,91].

Computer vision deals with extracting information about a scene by analyzing images of
that scene. It has many applications, in areas such as document processing, remote sensing,
radiology, microscopy, industrial inspection, and robot guidance. These applications, and the
challenge to process a vast amount of data using a diverse set of complex operations, have

long tantalized researchers to build a vision machine.

Machine vision is regarded as one of the most computationally intractable problems,
requiring a very broad spectrum of techniques ranging from signal processing to knowledge-
based symbolic computing in artificial intelligence. A typical scenario with video input
might require that an interpretation of a changing scene be updated as video frames arrive
at 30 frames per second. Each video frame might contain about three-quarters of a million
color-intensity pixels. Many researchers believe that it takes 1,000 to 10,000 operations
on each pixel to interpret the whole image. This would require on the order of 101° - 101!
instructions per second just to keep up with the input. Of course, based on the task, not
all operations have to be repeated on every frame, and some vision tasks may not require
such frequent updating of an interpretation. Nevertheless, the enormity of computational

requirements of a vision machine should be apparent.

One goal of machine vision is the construction of a symbolic description of the environment
depicted in an image. Such an interpretation involves not only labeling certain regions in
an image, or locating a single object in the viewed scene, but often requires the construction
of three-dimensional models of the surroundings, with associated identification in the image
of the two-dimensional projections of these models (see [Hanson 86] as one example). There
are generally three levels of computational abstractioﬁ required, with two of these levels
obvious: Processing of sensory data and processing of world knowledge. The necessity of
an intermediate level of processing has been motivated in [Boldt 87; Draper 89; Weems 91]
among others.

Because of the inherent ambiguities that are present in images of natural scenes, it
is rarely possible to construct an interpretation directly from the pixel data with classical

’ 3

image processing techniques such as contrast enhancement, and computer vision techniques
of edge detection, region segmentation, and feature extraction. Additional knowledge must
be used to reduce local ambiguities and to infer portions of objects that are missing in an
image due to effects such as occlusion or shadows. Inference via stored knowledge and the
reduction of ambiguity from low-level sensory processing are a part of what is referred to as
high-level or knowledge-based vision processing. |

The successful functioning of an interpretation system involves hypothesizing scene and
object parts from low- and intermediate-level abstractions. These hypotheses are used to
access symbolic knowledge structures (called schemas) which capture object descriptions
and contextual (relational) constraints derived from prototypical scene situations.

The intermediate level bridges the gap between the low and high levels. The basic unit of
information at the intermediate level is a symbolic description of an image event extracted
or derived from the image data, and is referred to as a token. Examples of token classes (or
token types) are lines, regions, surfaces and, in general, any extractable sensory event that
is useful for image interpretation. One class of operations at the intermediate-level may
then involve grouping these token events into more complex structures such as rectangles,
planes, sets of parallel lines, and textured regions. Another class of operations may involve
transforming and projecting 3-D scene independent models from the high-level for 2-D
matching with the events extracted from the low-level. The third class of operations at the
intermediate-level involves the actual matching of projections of scene independent models
from the high-level with the grouped set of tokens derived from the low-level.

The algorithms used in image analysis and understanding are, in general, characterized
by potentially massive parallelism. There are several tasks that must be performed on the
raw sensory input repeatedly, to construct a symbolic description of the environment depicted
in the image. Each of these tasks has a great potential for spatial and temporal parallelism.
In general, the degree of exploitable parallelism is high but dynamically variable, based
upon the input image and the stage of processing. For example, given a sequence of frames
from a video camera, for low-level processing, spatial decomposition of each image frame
provides a natural way of generating parallel tasks (spatial parallelism), to be repeated
on each frame (temporal parallelism). Further, tasks for low-level processing form a good
mix of static and dynamic (input data dependent) algorithms. Therefore, a great deal of
parallelism can be exploited, without apriori knowledge of the input image, whereas data
dependent parallelism can be exploited only by efficient, dynamic utilization of resources.
For high-level analysis operations, parallelism may be based, to a great extent, on input
image characteristics. ‘

4

The Image Understanding Architecture (IUA) is a massively parallel, multi-level system,
representing a hardware implementation of the three levels of abstraction discussed above.
An overview of the IUA is provided next.

12 The Image Understanding Architecture

A massively parallel, multi-level system for supporting real-time image understanding
applications and research in knowledge-based computer vision, called the Image Under-
standing Architecture (IUA) [Weems 89], is currently being developed at the University of
Massachusetts at Amherst and Hughes Research Laboratories, Malibu, California. A block
diagram of the IUA is shown in figure 1.1. The IUA integrates parallel processors operating
simultaneously at three levels of computational granularity in a tightly-coupled architecture.
Each level of the IUA is a parallel processor that is different from the other two levels, in
order to best meet the processing needs at each of the corresponding levels of abstraction
in the image interpretation process. Communication between levels takes place via parallel
data and control paths. The processing elements within each level can also communicate
with each other in parallel, via a different mechanism at each level that is designed to meet
the specific computational, communication, and control needs of each level of abstraction.

The low-level, called the Content Addressable Array Parallel Processor (CAAPP), is a
512 x 512 array of bit-serial processors intended to perform low-level image processing tasks,
on the input image pixels. The CAAPP architecture is especially oriented toward associative
processing with an emphasis on fast global summary feedback mechanisms supported in
hardware. The CAAPP processing elements are linked through a four-way communication
grid that is augmented with a Coterie Network that allows certain types of long-distance
communication to take place quickly [Herbordt 90]. Currently the CAAPP operates in SIMD
mode under the control of a dedicated Array Control Unit (ACU). Studies are underway
to support Multi-SIMD processing mode where the CAAPP can be divided into disjoint
subgroups, each receiving a different instruction stream.

The intermediate-level, called the Intermediate and Communication Associative Proces-
sor (ICAP), is a collection of 4096 fast Digital Signal Processor (DSP) chips. The ICAP
is designed for retrieving, comparing, and matching tokens, computing geometric relation-
ships between tokens, and constructing new tokens that describe more abstract entities.
For example, the recognition of a house roof in an image may require the ICAP to group
together long, straight, parallel lines, and then to extract parallelograms that are candidate

3y 3 _» 3 _3 _1 __3

.64 LISP PEs
. MIMD

Symbolic Processing Array (SPA)

Global Shared Memory

. 4096 PEs

. DSP Chips

. SMIMD/
MIMD

Intermediate and Communications
Associative Processor (ICAP)

/1 1 |

CAAPP-ICAP Shared Memory

. 512x512 Array
. 1-bit PEs
. Custom VLSI

. SIMD

Content Addressable Array
Parallel Processor (CAAPP)

Figure 1.1. A block diagram of the ITUA

6

roof outlines. Should the need arise, the results of further processing in the CAAPP can
be integrated with the representation in the ICAP, because the ICAP representation is in
approximate registration with the original image events in the CAAPP. The ICAP serves as
a database for the symbolic interpretation process running on the high level. Control of the
ICAP is provided by the ACU in a synchronous-MIMD mode, and by the high-level in pure
MIMD mode. The ICAP communicates with the CAAPP through a CAAPP-ICAP shared
memory under the ACU’s control. The individual processors in the ICAP communicate with
each other through a dynamic interconnection network, that is the subject of this thesis.

At the high-level, called the Symbolic Processing Array (SPA), a set of 64 processors,
capable of executing LISP programs, support computation involving inference, hypothesis
generation and verification, analysis of uncertainty, model-based processing, and indirect
control of processing at lower levels. The SPA processors operate in an MIMD mode.
The processors communicate with each other through a large shared memory. The SPA
communicates with the ICAP through an ICAP-SPA shared memory. The ACU takes its
directions from the SPA.

Construction of a proof-of-concept prototype of 1/64th of the IUA has recently been com-
pleted by the University of Massachusetts at Amherst and Hughes Research Laboratories,
Malibu, California.

1.3 Problem statement

The problem addressed in this thesis is to determine the communication requirements of
the intermediate level processors of the Image Understanding Architecture (IUA), explore
the design space of potential solutions, develop a design that meets the requirements,
demonstrate the feasibility of constructing the design, and show both analytically and
empirically that the design meets the requirements.

Before discussing the characteristics and requirements of the intermediate level proces-
sors of the IUA, a brief note is in order. Machine vision is highly dynamic and evolutionary
in nature and the development of parallel architectures for machine vision is a nascent field.
Therefore, the following requirements are as they were understood at the start of the IUA
effort and it was known that they would evolve as the project proceeded.

The general characteristics of communication between the intermediate level processors
are:

¥ __3 _3 _3 __3

3 3 1 3 __3 __3

3 1 __1

e Varying communication load
e Varying computational granularity

e Iterative processing with massive temporal parallelism (Cycle through different algo-
rithms repeatedly, using different data sets)

e A mix of static (and known apriori), and dynamic (data-dependent) interprocessor
communication, and

e A mix of local, and non-local interprocessor communication

In addition to the above communication characteristics, the following are the control
requirements of the ICAP, which directly affect the architecture of the network:

e Centrally controlled SIMD-like processing
¢ Centrally controlled Synchronous-MIMD (SMIMD)
¢ MIMD

In other words, both central and distributed control with different granularities of control
interaction with respect to data volume.

The aforementioned ICAP modes require further explanation. The ICAP is comprised of
TMS320C30 processors. Each C30 has its own program and data. As such, the MIMD mode
of operation for the ICAP is self explanatory. Some operations, such as FFT and matrix
arithmetic, are characterized by SIMD-like fine grained computation and communication,
i.e. data is exchanged between processors after every few computations. To perform these
operations efficiently, the ICAP must operate in a tightly synchronous manner (enforced
by the central controller) and must have very low overhead interprocessor communication.
Essentially, the ICAP is being operated like a SIMD processor. If the communication patterns
are known apriori, they can be computed off-line and stored in the communication network,
thereby eliminating the cost of setting them up between computation steps. We call this
mode of ICAP operation as centrally controlled SIMD-like processing. SMIMD mode of ICAP
operation is also characterized by staged computdtion (alternating stages of computation and
communication), however, unlike SIMD-like processing, the computational granularity is
coarser. Interprocessor communication is data dependent and cannot be known apriori. But
periodically, the ICAP processors synchronize under central control, and make requests to
communicate with specific processors at the same time. This mode of operation provides some

—3

8
freedom to the ICAP without incurring the synchronization overheads of MIMD processors. m“]
Examples of these modes of ICAP operation will be provided in Chapter 3. ’
Architectural requirements of the ICAP communication network ’_l
Based on the architectural characteristics of the ICAP that are required to efficiently]
support intermediate-level vision, the architectural requirements of the ICAP communication
network are summarized as follows: j
o It should have low latency, high bandwidth, and high common access throughput, 7
especially in real-time applications
e It should have the ability to support low-overhead SIMD-like synchronous routing, ’"*1
under central control
¢ In SIMD-like routing, it should be equally efficient in supporting both regular and 7

irregular communication patterns. In other words, it should not have a bias towards
one communication pattern over others

3

o It should have the ability to support data-dependent synchronous routing under the
SMIMD mode of ICAP computation

o It should have the ability to support data-dependent asynchronous routing under the
MIMD mode of ICAP computation, and

o Most importantly, it should have the capability of rapid recon.ﬁguratlon to efficiently
support all of these requirements

—3

|

It should be noted that the above combination of requirements is greater in breadth than
those of typical multiprocessors. As pointed out earlier in this section, it was understood
that as the IUA project proceeded and the architectural requirements for machine vision =
became better known, the preceding list could be modified to best suit later IUA designs.

14 Our Approach

We follow a three-step approach for solving this problem, in which we develop an
evolving series of network architectures that cummulatively support or address specific sets
of requirements for the interconnection network.

—3 _—_3 _3

3

The following points should be noted about the network design:

e A static interconnection network is not appropriate because such a network is opti-
mal for only one form of interprocessor communication, based on the locality of its
connections.

e A fully connected network is only of theoretical interest because the number of I/O
ports required on each of the processors for an N processor system is N — 1, making
their implementation impractical even for moderate size networks.

o A packet-switched network requires the additional overhead of generating packet
headers and buffering packets. The communication granularity at the intermediate
level is often characterized by frequent, short bursts of small messages between
processors. Thus, depending upon the task, a packet-switched network could lower
the system throughput to unacceptable levels because of the relatively high overhead.
Therefore, as much as possible, the overhead of generating and decoding packet headers
should be paid only in data dependent routing.

Once a statically-connected network is ruled out, the network architecture of choice is a
switched-system or a multistage network. Further, to reduce the latency in the network in
terms of the number of links and nodes between an input-output pair, we choose moderately
large crossbar-based nodes (switching elements), instead of the popular 2 x 2 switches. To
reduce the complexity of the network hardware due to packet buffering and forwarding
circuitry and reduce its latency, we use a circuit switching scheme. In order to entirely
eliminate a bias towards any specific communication pattern, we restrict the design space
of potential solutions to networks that are capable of efficiently supporting all N¥ possible
mappings of their inputs onto their outputs. Such networks realize all N!I/O permutations in
one pass, and all N¥ /O mappings in two passes (one pass in crossbar networks). For small
networks, it is feasible to implement a crossbar switch built with modular units. However,
to implement larger networks, we shall explore strictly non-blocking, and rearrangeably
non-blocking topologies, which efficiently support the N mappings property.

We should point out that a Combining network as proposed in many architectures such as
the NYU Ultracomputer [Gottlieb 83], Connection machine [Hillis 85; Tucker 88], Non-Von
[Shaw 85], and many Pyramid-based machines, is not suitable for the ICAP. These machines
use simple, restricted communication models (Fetch and Add in Ultracomputer, Send with
different options in the Connection Machine, Some/None-like associative operations in
the Non-Von and Pyramid architectures). On the other hand, the ICAP interprocessor

10

communication model is not very regular, and the information within messages is not
sufficiently uniform to apply the same combining rule across the entire ICAP. For example,
a single message might contain addresses and constant values, or different processors may
have different information types in their messages. Therefore, we shall not consider the case
of a combining network for the ICAP in this thesis. The following are the three designs that
we do explore:

Central control, apriori communication

This design addresses the requirements of the communication network when the ICAP
is operated in centrally-controlled, SIMD-like manner, i.e. when the interprocessor commu-
nication is fixed and known apriori. This occurs in situations where various communication
patterns are used repeatedly on different data sets (temporal parallelism).

Networks of this type are built using copies of a building block custom VLSI Parallel
Communication Switch (PARCOS I) chip. In addition to an n x n crossbar, the PARCOS I
chip contains a control memory that allows the networks built with the chip to store a
large number of network configurations (patterns). With a single instruction, the network
configuration can be changed from one stored pattern to another. Any of the stored patterns
is incrementally modifiable, without interrupting processing taking place under an existing
network configuration. This scheme eliminates header generation and routing (control)
overhead for fixed, apriori communication.

Central control, data-dependent communication

This design addresses the requirements of the ICAP when interprocessor communication
is data-dependent and cannot be determined apriori, i.e. when the ICAP operates in
Synchronous-MIMD (SMIMD) or MIMD mode.

The design permits various networks to be built with simple custom hardware in addition
to the PARCOS I chips, to provide an interim solution to the problem of supporting data-
dependent interprocessor communication in the ICAP. The networks built with this design
use central routing control which, in general, is serial in nature. Therefore, this design is
not optimal, but it serves as a stepping stone to the third design.

-3 3 -3 _3 _3 __3

_

j 5 3 __3

—3 3

11

Distributed routing control, data-dependent communication

This design deals with distributed or parallel routing control in the ICAP communication
network. Interprocessor communication is data-dependent and fine-grained, and the ICAP
can be operating in either SMIMD or MIMD mode.

The networks under this design use a new custom, VLSI, building-block chip, called
PARCOS II, which implements a self-routing crossbar switch and is capable of arbitrating
between its inputs in unit time, in order to route them to their respective outputs. Using
copies of PARCOS II, various self-routing networks such as Clos, Hypercube etc. can be
built.

To place the capabilities of these designs in perspective, we use a table as shown below.

Table 1.1. Taxonomy of Communication Networks

Patterns Central control Distributed control
Computed | Synchronous | Asynchronous | Synchronous | Asynchronous
Off-line

On-line

Table 1.1 shows a taxonomy of communication networks. The entries in a row correspond
to whether a communication pattern (or the switch setting in the network) is computed off-
line or on-line. The entries in a column correspond to whether the processors communicate
synchronously or asynchronously under the respective form of control. For example, a
shared bus with a central arbiter is.a case of central control, asynchronous, on-line routing.
Batcher’s Bitonic Sorter [Batcher 68] is an example of distributed control, synchronous,
on-line routing. Off-line computation of switch settings in a Benes network, as proposed by
[Nassimi 82], is an example of central control, synchronous, off-line routing, and so on. After
each of the three design’s analyses, we will repeat this table showing which capabilities have
been achieved up to that point.

12

L5 Major contributions

The major contributions of the research are:

e It will be shown that crossbars and other dense networks are viable design alternatives,
even for large parallel processors.

o It is shown that central control is viable for reasonably large network sizes, which is
contrary to conventional wisdom.

¢ By using a special search memory to implement part of the Clos network routing
algorithm in hardware, it is shown that it is feasible to quickly reconfigure these
networks so that they may be used in fine-grained, data-dependent communication.

o The feasibility of building easily reconfigurable communication networks for “flexible”
multiple-processor systems is shown. These networks can quickly reconfiguring their
topologies to best suit a particular algorithm, can be controlled efficiently (in SIMD as
well as MIMD mode), and can efficiently route messages (especially with low overhead
in SIMD mode).

¢ During the course of this investigation, it was discovered that, flexible communication,
as well as shared memory support, is much more critical for supporting intermediate-
level vision than providing a variety of fixed communication patterns. This observation
may also have implications for general-purpose parallel processing.

¢ It was also discovered that supporting an Intermediate Symbolic Representation (ISR)
database at the ICAP level is a more fundamental requirement than supporting
particular intermediate-level vision algorithms.

The following section surveys these contributions and indicates where each is elaborated
in subsequent chapters.

3

—3 ~—3 —3 ~ 3 ~ 3 ~—3 "73 73 I "3 T3 T3 73 T3 T3 i 3 T3 3

13

1.6 Outline

A “road-map” of the thesis is shown in figure 1.2. In Chapter 2, we provide an overview
of parallel processing and interconnection networks. In Chapter 3, we discuss the char-
acteristics and architectural requirements of intermediate-level vision. We investigate the
requirements of known tasks in the VISIONS laboratory at the University of Massachusetts,
to be run on the IUA, along with predicted requirements based on representative tasks
proposed by other researchers in a more abstract form. From this, we summarize a “minimal
set” of computational requirements for the processes running on the ICAP. Finally, from
these computational requirements, we extract the architectural (communication and control)
requirements of the ICAP communication network.

In Chapter 4, we discuss the first stage design: Central routing control with apriori
communication. We describe the architecture of the PARCOS I chip in detail, and show how
this chip can be used for building various networks. In particular, we show how various sizes
of crossbar, non-blocking Clos, and rearrangeably non-blocking Benes networks can be built
with PARCOS I. PARCOS 1 is analyzed in detail with respect to its hardware requirements,
pinout requirements, power dissipation, time to set up and reconfigure, and its latency and
throughput. Then we compare the various networks that can be built with PARCOS I in
terms of their hardware cost, time to set up and reconfigure, and latency and throughput,
to show, given various constraints (for example, pinout and board area), which networks are
feasible for construction.

In Chapter 5, we discuss the second stage design: Central routing control with data-
dependent communication. This design uses a network controller, which is used for setting
up links in the network for communication between processors. In addition, the IUA feedback
concentrator mechanism (which already exists in the IUA to support other functions) can
be usefully employed in this design. We show the design for the building block chip and
the optimal architecture for this mechanism in a separate section. Then we describe four
networks that can be built using this scheme to support data-dependent routing at the ICAP
level. This design has the ability to save an established communication pattern (which
is established on-line) in the control memory of the network for later use. Even though
our network controller is serial, it can achieve network set up times comparable to many
parallel control schemes for non-blocking and rearrangeably non-blocking networks, by using
a special hardware search memory. We discuss how to support multicast communication in
these networks, followed by analysis and evaluation of the overall design.

14

Generations 1.0, 1.5, and 2.0

PARCOS |

—

Crossbar

Stage | Design

Non-blocking

Rearrangeably
non-bloc ing

Central control

Apriori communication
See Chapter 4

Crossbar

@ Stage ll Design

PARCOS II

Non-blocking

Crossbar

Other

Central control

® Data-dependent
Communication

® See Chapter5

@ Stage il Design
@ Distributed control

® Data-dependent
Communication

@ See Chapter 6 (sec. 6.1)

Generations 2.0 and 2+ (New family of router chips)

PARCOS lii

PARCOS i+

Stage | Design

No custom hardware
Distributed control
Message passing

See Chapter 6 (sec. 6.3.3)

Stage Il Design

Distributed control
Message passing

See Chapter 6 (sec. 6.3.4)

Stage Il Design
Distributed control

NUMA
Shared-memory

See Chapter 6 (sec. 6.4)

Figure 1.2. Road map of the thesis

—3

3

)

3 _3

43 _3 _3 3 j 1 3 __ 3

3

3 —3 —3 —3 "3

3

15

In Chapter 6, we discuss the third stage design: Distributed routing control with
data-dependent communication. OQur original plan was simply to extend the previous
designs to include this capability in hardware. A custom VLSI building block chip, called
PARCOS I1 is described in detail, which can be used for building larger self-routing networks.
Due to the dynamic and evolutionary nature of machine vision, during the course of this
research new intermediate-level vision requirements evolved along with different IUA
design constraints. This made it necessary to develop an entirely new network family using
a different methodology than that used for the first three stages. The new intermediate-level
vision requirements along with the new design constraints are discussed, followed by a
description of a series of networks that were designed to address these requirements.

In Chapter 7, we present our conclusions and discuss future directions for the research.

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides an overview of parallel processing and interconnection networks.
Various schemes have been proposed to classify computer architectures, but none of them
covers the entire functional model of the ICAP level of the IUA. In Section 2.1.1 we provide
an overview of the three most widely used computer architecture classification schemes.
Since none of these schemes cover the ICAP, we define our own terminology for identifying
a parallel processor such as the ICAP in Section 2.1.2. A myriad of schemes have been
proposed for interconnection networks for PE - PE communication or for PE - Memory
communication in parallel processing systems. In Section 2.2 we provide an overview of the
field of interconnection networks. We will be using a combination of more than one of these
schemes as our approach to ICAP interprocessor communication in the following chapters.

2.1 Overview of parallel processing

Parallel processing refers to simultaneous or concurrent computing activity on more
than one node of a computer system. Parallel computers are those systems that emphasize
parallel processing.

2.L1 Architectural Classification

We begin by considering three important classification schemes for parallel processing
architectures. Flynn’s classification [Flynn 66] is based on the multiplicity of instruction
schemes and data streams in a computer system. Feng’s scheme [Feng 72] is based on serial
versus parallel processing. Handler’s classification [Handler 77] is determined by the degree
of parallelism and pipelining in various subsystem levels. All three schemes distinguish a
serial computer from parallel computers, with Flynn’s scheme being the most widely used.

16

—3 3 __3

—3 3 _3

|

3 3

—3 3 _3 _31 __3

—3 3 __3

Instruction stream

Processing
Element

17

Data Stream

a) SISD computer

Processing

Element #1

B Data Stream #1

Processing

Instruction stream

Element #2

B Data Stream #2

-l

Processing

Element #N

~_ Data Stream #N

b) SIMD computer

Instruction stream #1

Processing

Element #1

Instruction stream #2

Processing

Element #2

Data Stream

Instruction stream #ti

Processing

Element #N

¢) MISD computer

Instruction stream #1

Processing

-

Instruction stream #2

Element #1

B Data Stream #1

Processing

Element #2

Data Stream #2

Instruction stream #N| processing

Element #N

M Data Stream #N

d) MIMD computer

Figure 2.1. Flynn’s classification scheme

* 18

Shown in figure 2.1, Flynn’s classification scheme treats a computing process as the
execution of a sequence of instructions on a set of data and, in general, digital computers
may be classified into four categories, according to the multiplicity of instruction and data
streams. An instruction stream is a sequence of instructions as executed by the machine; a
data stream is a sequence of data including input, partial results or temporary data, called
for by the instruction stream. Computer organizations are characterized by the multiplicity
of the hardware provided to service the instruction and data streams. The following are
Flynn’s four machine organizations. -

¢ Single instruction stream, single data stream (SISD),
¢ Single instruction stream, multiple data stream (SIMD),
o Multiple instruction stream, single data stream (MISD), and

e Multiple instruction stream, multiple data stream (MIMD).

According to Flynn’s classification, SISD is the classic serial computer. The remaining
three organizations classify parallel computers. The MISD organization is the least fre-
quently found, and perhaps the least understood. It seems that there are few cases in which
multiple operations can be performed on a single datum with any benefit in a digital system.

Parallel computers are often divided into three architectural configurations [Hwang 84].

¢ Pipeline computers and Systolic Arrays.
¢ Array processors and Associative processors.

¢ Multiprocessor systems.

Pipelining is used to exploit temporal parallelism in many computers. The concept of a
pipeline computer is similar to a manufacturing assembly line. To achieve pipelining, one
must subdivide the input task into a sequence of subtasks, each of which can be executed by
a specialized hardware stage that operates concurrently with other stages in the pipeline.
Successive tasks are streamed into the pipe and get executed in an overlapped fashion at the
subtask level. Based upon the type of processing, Handler [Handler 77] defines three classes
of pipelining: Arithmetic pipelining; Instruction pipelining; and Processor pipelining.

In arithmetic pipelining the Arithmetic Logic Unit (ALU) of a computer can be segmented
for pipeline operations in various data formats. For example, to add two normalized floating
point numbers, a pipelined floating point adder can be designed with four functional stages

3 __3

3

&)

—3 3 3 3 —3 —3 3 —3

—3 —3 3

19

[Hwang 79]. Suppose each stage has a time delay of 90nS and the interface latch has a
delay of 10nS. If the pipeline can be kept full, one result can be generated every 100nS as
compared with 360nS for a non-pipelined floating point adder. Some examples of arithmetic
pipelines are the four stage pipes used in Star-100 [Hintz 72], the eight stage pipes used in
the TI-ASC [Watson 72], the 14 stage pipeline used in the Cray-1 [Russell 78], and the 26
stage pipes in the Cyber-205 [Hwang 84).

In instruction pipelining, a stream of instructions is executed in an overlapped fashion.
This technique is also known as instruction lookahead. Normally, the process of executing
an instruction in a digital computer involves four major steps: instruction fetch (IF) from
the main memory; instruction decoding (ID) (identifying the operation to be performed);
operand fetch (OF), if needed in the execution; and then execution (EX) of the decoded
operation. In a non-pipelined computer, these four steps must be completed before the next
instruction can be issued. In an instruction pipeline, the four stages can be arranged into
a linear cascade. An instruction cycle consists of multiple pipeline cycles. The operation
of all stages is synchronized under a common clock control. For a serial computer with a
multifunction ALU, it takes four pipeline cycles to complete one instruction. In an ideal case,
if one instruction can be fed into the instruction pipeline on every cycle, an output result
can be produced from the pipeline on every cycle, thereby increasing the throughput of the
machine by a factor of four. A major impediment to instruction pipelining is branches in the
code. Many systems are substantially augmented to alleviate this problem. Most modern
high performance computer systems incorporate instruction pipelining.

Processor pipelining refers to processing of the same data stream by a cascade of
processors, each of which performs a specific task. The data stream passes through the
first processor with results stored in a memory block, which is also accessible by the second
processor. The second processor then passes the refined results to the third processor, and so
on. Systolic Arrays are considered an example of processor pipelining by many researchers.

The SIMD machine organization in Flynn’s classification corresponds to the array proces-
sor and associative processor configurations of parallel computers in Hwang’s classification.
A synchronous ensemble of multiple processing elements (PEs) under the supervision of one
control unit (CU) is called an array processor. By replication of PEs, one can achieve spatial
parallelism. The PEs are synchronized to perform the same function at the same time. A
data-routing mechanism may exist among the PEs. Scalar and control-type instructions
are directly executed in the CU. The CU broadcasts instructions in parallel to all the PEs
in the array. There are two variations to the design of PE arrays. In the first variation,
shown in figure 2.2, each PE comprises an ALU with registers and a local memory. The

—> PE# [
MEM E
— o
2
©
c
—1 PE#> |e+——F—> _5
©
Cu SE—— I g
S
1 £
MEM |ja—» 8
L
[\
o« o o W
e o o o

e o o
! PE#N |t—t—>

I

MEM |a—n

Data, Control, and I/O

Figure 2.2. PE - PE organization of a SIMD computer

20

1 __3

— 3

-3 -2 -1 _%¥ 3 3 __3a 3 '__4 _3

El

’—"—% r“"@ 3 - I _‘§ — 'g T g r '_% % f a I % = % f | L % | — % ~ ‘% l_§

21

PEs are connected by a data routing network. The interconnection pattern to be established
for specific computations is under program control from the CU. Vector instructions are
broadcast to the PEs for distributed execution over different component operands fetched
directly from the local memories. Instruction fetch from the control memory, and decoding
is done by the control unit. The PEs are passive devices without instruction decoding
capabilities. In the second variation, shown in figure 2.3, each PE comprises an ALU with

—>1 PE# [|e—] MEM |t
x
)
2
2
—= PE#2 |e—> c f(e—>»1 MEM ja—>
CcuU EE———— Z"Q
©
A o o o e e o o
® [] ® [T [] [] []
e o o =2£ e o o
wh
oo
—1 PE#N |jet—> t———»] MEM |[wa—>
Data, Control, and I/O
y —

Figure 2.3. PE-Memory organization of a SIMD computer

registers, and the local memories attached to the PEs are now replaced by parallel memory
modules, shared by all the PEs through a data alignment network. There are N PEs and
P memory modules in the second variation. The two numbers are not necessarily equal.
The data alignment network is a dynamic path switching network between the PEs and the
parallel memories. Such an alignment network is desired to allow conflict free access to the
shared memories by as many PEs as possible, and is under program control from the CU.
Some examples of array computers in the first category are the Spatial Computer [Unger
58], SOLOMON [Slotnick 62], MPP [Batcher 80], ILLIAC IV [Bouknight 72], Clip-4 [Duff
78], and DAP [Hunt 81]. Some examples of array computers in the second category are
Burroughs Scientific Processor (BSP) [Kuck 82], and the Orthogonal Computer [Shooman

60]. A good review of array processing can be found in [Zakharov 84].

Associative processors are SIMD class parallel processors. Researchers in computer
architecture have always distinguished them from the mainstream of parallel processors,
which does not seem so much due to differences in hardware organization as to differences in
applications. Indeed, many mainstream parallel processor systems are capable of operating
as associative processors with some loss of efficiency. The reason that they are not used as
such is mostly that associative processing is not the purpose for which they were designed.
Associative processors on the other hand, have most often been designed for applications that
chiefly use the associative facet of the architecture. Some examples of Associative processors
are Staran [Batcher 77], and PEPE [Berg 72]. An overview of associative processing can be
found in [Weems 84].

The fourth machine organization in Flynn’s classification is MIMD machines. Often
such systems are called multiprocessors. Multiprocessors are suitable for a broader class
of computations than are array computers, because multiprocessors are inherently more
flexible. For example, if a computation has no specific vector structure or other natural
iterative structure, then it is unlikely to be suitable for a vector or array processor, but it
may be suitable for a multiprocessor. A multiprocessor need only have potential parallelism
that can be exploited by independent instruction streams. Also, a multiprocessor can
handle local conditional branches easily due to the hutonomy of the tasks on the processors,
whereas an array processor which has only one task running at any time, must handle
these local branches serially. Therefore, in many applications, it is relatively easy to fit a
computation onto a multiprocessor system. However, to attain high-efficiency computation
in a multiprocessor system, one has to solve the problems of task synchronization and task
scheduling. Most importantly, the entire system must be controlled by a single integrated
operating system providing interactions between processors and their programs at various
levels.

There are two major subdivisions of MIMD machines: Switched-systems and (statically
connected) Networks [Hockney 85). In a Switched-system, shown in figure 2.4, a switch
unit (also called communication network) comprising of one or more stages of dynamic
switching elements is used to connect together a number of processors and memory modules.
Within Switched-systems, there are two subdivisions: Shared-memory and Distributed-
memory systems. In a Shared-memory system, a number of processors, each with its own
instruction stream, are connected via the switch unit to a number of independent memory
modules. In this way the memory is shared by all the processors through a large common
address space or common name space. A small local memory (cache) usually exists in each

3

.3

~—3 3 —3 T3 —3 ~3 —3 —3 3 3 3

—3 —3% T3 — 3 T3 T3 T3

PE - PE communication network

PE #1

MEM

PE #2
MEM

MEM #

PE#N fe¢—»

MEM

Distributed memory

MEM #2

MEM #P

PE - PE communication network

PE #1

Figure 2.4. Organization of switched systems

PE #2

Shared memory

PE #N

23

» ‘ 24
processor to alleviate the memory latency problem and to reduce memory access contention.
Such systems are also called Tightly-coupled multiprocessors [Hwang 84; Stone 80], or

Paracomputers [Schwartz 80]. Some examples of Switched-systems are the RP3 [Pfister 85],
NYU Ultracomputer [Gottlieb 83], TRAC [Sejnowski 80], and BBN Butterfly [Growther 85].

The alternative to a common global shared memory is to attach the memory directly to
the processors and produce a Distributed-memory system. In this case each memory module
is connected as local memory to a processor. The role of the switch is now to interconnect the
processors, and there are no memory modules connected directly to the switch. It should be
noted that examples of pure Shared-memory or Distributed-memory Switched-systems are
rare. Many of the large Switched-systems use both types of memory.

The second division under MIMD machines is Network-based or Statically-connected
systems. In such systems, a number of processors with their own local memory are
connected together using a fixed topology communication network. Such systems are
Distributed-memory systems in the sense that all the memory is distributed throughout the
system as local memory. The processors communicate via the interprocessor communication
network and the communication latency between two processors depends on whether they
are locally connected to each other or are connected through one or more layers of the
communication network. Such systems are also called Loosely-coupled multiprocessors
[Hwang 84; Stone 80], Ultracomputers [Schwartz 80], or Multicomputers [Seitz 85; Athas
88]. Some examples of such systems are the COSMIC CUBE ([Seitz 85], Intel Hypercube
[Rattner 85], and JPL MARK II [Tuazon 85). An overview of MIMD computing can be found
in [Hockney 85]. '

2.12 Our terminology for identifying Parallel Systems

The functional model of the ICAP covers more than one architectural class in the existing
architectural taxonomies. Also, some modes of ICAP operation are not even defined in these
taxonomies, such as synchronous-MIMD. As such, none of the following terms can be used
to define the ICAP: Array processor, Associative processor, Tightly-coupled multiprocessor
or Multiprocessor, Loosely-coupled multiprocessor or Multicomputer, etc. Therefore, in this
thesis, we will use the term Multiple-processor system to define a parallel system such as
the ICAP. We will use the term Multiple-processor systems collectively for array processors,
associative processors, multiprocessors, and multicomputers. In other words, we will use the
term multiple-processor for a parallel processor that comprises multiple PEs, a mechanism
for inter-PE communication, or communication between PEs and one or more global shared

3

Bl

—4a _a _ 12

—3 1

25

memory modules, and a mechanism for issuing instructions to the PEs from one or more
sources. We distinguish multiple-processor systems from the general class called parallel
processors by the fact that the class called multiple-processor does not include arithmetic
pipelining, attached processors such as floating point units, or overlapped instruction
execution. The multiple-processors are subsumed by parallel processor, and themselves
subsume array processors, associative processors, multiprocessors, and multicomputers, in
our architectural classification.

2.2 Overview of interconnection networks

After establishing a general overview of parallel processing, we provide an overview of
a critical area of research in parallel processing, and the research area of this thesis: Data
communication (interconnection) networks.

Until not long ago, computer system architects were primarily concerned with the
computing aspects of parallel processing; the communication aspects such as the volume
of data or messages transferred, synchronization etc., received relatively little attention.
Lately, however, there has been a growing belief that in multiple-processor systems the
communication*aspects are at least as important as the computing aspects. Some examples
of work on communication can be found in [Cvetanovic 87; Gannon 84; Gentleman 78; Levitan
87; Lint 81]. Data communication is the key to successful exploitation of parallelism. It has
been stated that “the most critical system control mechanisms in a distributed computer are
clearly those involved with interprocess and interprocessor communication” [Jensen 78].

Inlight of the above, computer architects have designed data communication or connection
networks based upon two broad approaches: Point to point or static interconnection networks
between multiple PE’s; and dynamic interconnection networks based upon time-sharing a
common link (bus) and/or multiple stages of switching elements to establish communication
paths between one or more sources and one or more destinations. The sources and the
destinations may either be processors, memories, or a combination of the two. There are
examples where a hybrid of these approaches have been used (for example, Cedar [Gajski
83; 86], NETRA [Sharma 85], and PM4 [Briggs 79]).

26

2.2.1 Static interconnection networks

In multiple-processor systems with a static interconnection topology, the PEs are con-
nected such that each is directly linked to a fixed number of PEs called its neighbors (A PE
comprising a processor and some local memory is the most popular arrangement, though
other variations in which a PE is either just a processor or a memory are possible). Many
multiple-processor architectures with a static interconnection topology have been proposed
and some have been built to solve various problems. Among these are the linear arrays [An-
nartone 87; Kung 83; Kung 80], the two or more dimensional meshes [Batcher 80; Bouknight
72; Duff 78; Holland 59; Slotnick 62; Thompson 77], the doubly twisted torus [Sequin 81],
the binary tree [Horowitz 81], the orthogonal trees [Nath 83], pyramid processors [Bode
85; Hanson 80; Rosenfeld 86; Tanimoto 83; Uhr 72, 87], the hypercube [Hays 86; Hillis 85;
Rattner 85; Seitz 85; Tuazon 85; Tucker 88], the Shuffle-Exchange [Stone 71], the Cube
Connected Cycles [Preparata 81], the De Bruijn graph [Samatham 89] and the group graphs
[Akers 89].

Routing in static interconnection networks

In multiple-processor systems with a static topology, if PE i has to send a message to
PE j, it can do so by directly sending it to j, if j is one of its neighbors. Otherwise, the
message will have to travel through one or more PEs in a path between i and j. There are
two methods of routing messages between non neighbor PEs: Non-adaptive routing, and
adaptive routing. In non-adaptive routing, PE i sends the message to one of its its neighbors
which in turn sends the message to one of its neighbors and so on, such that at each step the
message moves closer to its final destination than at the previous step. In adaptive routing,
the load (traffic) conditions on various PEs and links of the network are also taken into
consideration, such that a message may not always move closer to its destination, but an
attempt is made to minimize the average delay for all the messages in the system. Typically,
a message comprises a header, followed by an information packet and a trailer.

Both of the above schemes have their advantages and disadvantages. For example, in
a non-adaptive routing scheme, the routing protocol can be very simple such that there is
very little overhead to forward a message at an intermediary PE. Also, the routing protocol
can be completely distributed, such that any PE needs to have only local information about
its input and output links. The chief disadvantage of non-adaptive routing is its inability to

3 3

,éz ' e]

4 3 __4a4 __3

Linear Array
1'_} D e v o D_
1
C— +—_1+—]
g 1
C L F—L1+—]
2-D Mesh
-1 |
[+—1 1]
-1 1
[— 31—
Hypercube
1 3
Binary
De-Bruijn Graph
2 5 7
4 6

Figure 2.5. Some static network topologies

27

28

handle local congestion, which may result in a slowdown of the whole system. On the other
hand, adaptive routing can solve the local congestion problem in many cases. However,
the price paid in adaptive routing is the increased overhead in the forwarding protocol at
the intermediary PEs and the overhead of providing non-local information to each potential
.intermediary PE at each routing step.

A variation of these schemes is a routing mechanism proposed by Kermani and Kleinrock,
called the Virtual cut-through [Kermani 79]. In the above mentioned schemes, a message
hops as a single unit from one PE to another. Virtual cut-through is similar, with the
difference that as soon as the message header arrives at an intermediary PE, if the
appropriate outgoing link is free, then transmission of the message to the adjacent PE begins
before it is received completely at the intermediary PE. The message is buffered at the
intermediary PE, only if its output link is busy. Therefore, in a virtual cut-through scheme,
the delay due to unnecessary buffering in front of an idle link is avoided.

A variation of virtual cut-through is a scheme proposed by Dally and Seitz, called
Wormhole routing [Dally 87; Dally 86). In Wormhole routing, messages are not buffered as a
unit at an intermediary PE when its output link is blocked. Instead, a message comprises a
series of words, called flits, where each flit is of the same bit width as the physical links that
carry them. Therefore, if a header flit gets blocked at an intermediary PE, the flit behind
the header flit is buffered at the previous PE and the flit before that is buffered at the one
before that and so on until it reaches the source PE, which in turn does not push the next
flit into the message path.

Some problems with static interconnection networks

One thing should be clear from the preceding discussion of message routing in stati-
cally connected multiple-processor systems: Locality of communication is highly desirable.
The latency in message transfer will depend upon the distance (the number of links tra-
versed) between two communicating PEs. This could become a serious synchronization and
performance bottleneck in staged algorithms where computation in the PEs and the commu-
nication in the network cannot be overlapped. Further, depending on the interconnection
topology, there can be severe congestion in the network if many PEs must communicate
simultaneously with remote PEs.

3

4

__ A3 B

29

Some schemes to improve static interconnection network routing

Many researchers have tried to alleviate the problem of non local communication in
static interconnection topologies. The basic ideas behind these improvements are taken
from the dynamic interconnection networks, which will be covered in later sections. We
discuss the case of improvements on a mesh topology, which is one of the popular static
topologies. Arguably many static topologies can be considered to have been studied to
alleviate communication problems in meshes. Some examples are the pyramid computer
[Tanimoto 83] and the mesh-of-trees [Nath 83; Leighton 84]. Other approaches have
considered providing one or more broadcast buses, or reconfigurable buses in addition to the
static mesh topology. Bokhari and Stout proposed a mesh connected computer with a global
bus [Bokhari 84; Stout 83; Stout 86], to speed up some computations. A mesh with multiple
broadcast buses is considered in [Kumar 87], where a PE in each row and column of a mesh
is connected to a row and a column bus. A polymorphic torus architecture has been proposed
[Li 87; Li 89], based on a torus which has a crossbar switch at each PE to make any arbitrary
connection between the east, west, north and south bus ports. Weems [Weems 84] and
Miller et al. [Miller 87] have both proposed mesh-connected processors with a reconfigurable
broadcast bus. A switch is inserted in the bus link between every two neighboring PEs,
that can be closed or opened by the PE at each end of the link. These switches allow the
broadcast bus to be divided into sub-buses, where each sub-bus can function as a smaller
reconfigurable broadcast bus or reconfigurable mesh. The lowest level of processors in the
Image Understanding Architecture (IUA) [Weems 89), which consists of a mesh, augmented
by the Coterie Network, that provides an additional feature of some crossover capability over
reconfigurable mesh architectures. The PEs can be clustered into arbitrary non-overlapping
coteries where each coterie has its own private bus for broadcasting. If several PEs try
to write on this bus, a logical OR of their values gets written onto the bus. Finally, the
Configurable Highly Parallel (CHiP) processor [Berman 83; Cuny 84; Hedlund 82; Snyder
82; Snyder 84], consists of a collection of PEs placed at grid points in the plane, and a switch
lattice with programmable switches interposed between the processors. The PEs have local
storage for program and data. Depending upon the chosen lattice, by closing appropriate
switches, different interconnection patterns between the PEs can be obtained. Switches can
have local memory to store interconnection patterns that can be controlled by the program
running on the machine. Thus, various interconnections between PEs are accomplished by
using different stored patterns.

2.2.2 Dynamic interconnection networks

The second broad approach to providing connection networks for multiple-processor
systems is based on time-sharing common links between one or more sources and one or
more destinations. These connection networks are often called dynamic interconnection
networks, or simply dynamic networks. Two parameters are often used to characterize
dynamic networks [Stenstrom 88)]. The first parameter is the bandwidth of the network,
which is a measure of the capacity of the network to fulfill the communication rate of its
inputs and outputs. The second is the common access throughput, meaning the maximum
number of simultaneous requests that can pass through the interconnection network at the
same time. There are three major configurations of dynamic networks: Shared bus, Crossbar
switch, and Multistage network.

Shared bus interconnection networks

Due to its simplicity, the shared bus is perhaps the most popular dynamic network. Some
examples of shared bus organization are shown in figure 2.6. A shared bus has a fixed
bandwidth, and the common access throughput for a bus is oﬂy equal to one; it can handle
only one request at a time. The shared bus can be used for either PE - PE or for PE - Memory
communication. In commercial systems, the shared bus has primarily been used in tightly

coupled or shared memory systems, for PEs to access shared memory modules.

A bus arbiter selects one of several requesting PEs to get exclusive access to the shared
bus. An obvious way to increase the bandwidth and the common access throughput is to
use several parallel, independent buses capable of handling several memory requests at the
same time.

Typically, the bus latency time (or bus cycle time) is shorter than the memory access time.
To take full advantage of the bandwidth of the bus, designers often implement a bus protocol
that allows pipelining of several memory requests. While one memory module executes a
load, another processor can send a memory request to another memory module. Examples of
shared bus multiple-processor systems are; Sequent Balance [Thakkar 88], Encore Multimax
[Schanin 86], Alliant FX/Series [Perron 86], CM* [Swan 77], SPUR [Hill 86], and Dragon
[Monier 85].

Processor
#1

Processor

Processor
#1

Processor
#2

Figure 2.6. Shared bus organization

Shared Bus

Single bus

Processor
#N

Processor
#N

31

32

Crossbar interconnection network

A second configuration of dynamic networks is a crossbar switch. A crossbar switch can
be viewed as a number of vertical and horizontal links interconnected by a switch at each
intersection. The number of vertical and horizontal links equals the number of processors
and memory modules, respectively in a shared memory multiple-processor. A crossbar

network is shown in figure 2.7.

/.
S
/l
S

o N

...—\ Q\

...—\ \

QOutputs
/\

W

S
W

"
Inputs

Figure 2.7. Crossbar network

The crossbar switch is the ultimate solution to bandwidth and the common access
throughput for high performance multiple-processor systems. It is a modular network
in that the bandwidth is proportional to the number of processors. The common access

throughput is the same as the number of processors, assuming an equal or greater number

=3

33

of memory modules.

The single most often cited disadvantage of the crossbar switch is that the number of
switches required to implement it grows as N2, given N processors and N memory modules.
Until a few years ago, some researchers even claimed “In fact, considering the current low
costs of microprocessors and memories, a crossbar would probably cost more than the rest
of the system components combined” [Patel 81]. There are numerous references to actual
implementations of relatively large crossbar switches, for example [Barber 88; Shin 88;
Rana 89-1; Rana 89-2; Cooperman 89]. With currently available technologies, it is feasible
to implement a crossbar switch on a single chip with up to a few hundred single-bit inputs
and outputs. Some examples of multiple-processor systems using a crossbar interconnection
network can be found in Cedar [Gajski 83; Gajski 86), Aquarius [Srini 85], the Las Alamos
project [Trujillo 82], and the Burroughs Scientific Processor (BSP) [Kuck 82].

Multistage Interconnection Networks

Multistage interconnection networks form the third major dynamic network configuration.
These networks comprise multiple stages of switching elements, called nodes. There are
several possible designs for the nodes. Nodes between adjacent stages are connected by
links. The two terminal stages are also connected to the input ports and the output ports of
the network. A path or connection between an input port and an output port is created by
suitably selecting an alternating sequence of nodes and links.

Circuit Switching and Packet Switching are the two most popular schemes for com-
munication in dynamic networks for multiple-processor systems. In circuit switching, a
complete path is established from an input port to an output port before any information is
transmitted. The path can be either a direct electrical connection or a direct logical path
through gates. Circuit-switched networks are characterized by both the set-up time (for
establishing the path) and the transmission time (for moving information over the path).
The transmission time is typically faster than the set-up time. Packet switching in multiple-
processor systems is a mode in which relatively small, fixed size units of information, called
packets, move from stage to stage as paths between the stages become available. They do
not require an entire path to be established prior to entering the network.

34

Classification of Multistage Networks

Even though most of the multistage interconnection networks can be used either with
circuit switching or packet switching, their performance may vary drastically with the
switching scheme. Multistage networks can be divided into two categories, one each for
packet-switched and circuit-switched schemes. In the packet switched category, multistage
networks can be divided into three broad classes [McMillen 84]: Single path networks,
multiple path networks, and permutation networks. In the circuit switched category,
Benes classified multistage networks into four classes based upon their ability to establish
connections [Benes 62; also Broomell 83; Marcus 77]: Blocking networks, rearrangeable
nonblocking networks, wide sense nonblocking networks, and strictly nonblocking networks.

First we consider the three types of packet-switched networks. The single path networks
have éxactly one path between any arbitrary input-output port pair. There are two classes
of networks in this category: Banyan class [Goke 73], and the Delta class [Patel 79; 811].
The Banyan class is extremely general and was originally presented as a “Hasse diagram of
a partial ordering in which there is only one path from any base to any apex”. A base is a
vertex having no arcs incident into it, an apex is any vertex with no arcs out from it, and
all other vertices are called intermediates. A large class of networks can be built using this
scheme, but among the more practical are the regular SW-banyans, and the CC-banyans
(In the SW-banyan structure, there are an equal number of vertices at each stage, and all

intermediate vertices have the same degree. CC is an acronym for Cylindrical Crosshatch,

since a CC-banyan can be neatly laid out as a crosshatch pattern on the surface of a cylinder).
The regular SW-banyan is equivalent to the Delta class. Examples of single path networks
that are equivalent to this class are the Bitonic Sorter [Batcher 68], Staran Flip [Batcher 76],
Omega [Lawrie 75], Extended Shuffle-Exchange [Lang 76-1], Indirect Binary N-cube [Pease
77], Generalized cube [Siegel 78, 85], Baseline/Reverse Baseline [Wu 78], Reverse exchange
[Wu 79] and the Butterfly [Pease 68]. An 8 x 8 Omega network is shown in figure 2.8.

Multiple path networks are those that have more than one possible path between any
arbitrary input-output port pair. This category includes all permutation networks and the
PM2I-type networks [Siegel 85]. However, multiple path networks are often characterized
from the point of providing a limited (usually 2) alternate paths between an input and an
output. Examples of this class are the Data Manipulator network [Feng 74], Augmented
Data Manipulator (ADM) network [Siegel 78], and the Gamma network [Parker 82]. An
8 x 8 Data Manipulator network is shown in figure 2.9.

3 3

3 3 __3

.3 3 __1

31 _ 4 _3 _3 _13

3

35

Figure 2.8. An 8 x 8 Omega network

A A N O S - A T

LRI

e
> G
> <
> >

H3TTOHLINOD TYHINID .

Figure 2.9. An 8 x 8 Data Manipulator Network

& B &

—3 ~—3 — 3% ~— 3 —3 "3 T3 T3 T3 ¥ 3 T3 T8 T8 T3 T3 T3 T3 T3

37

Permutation networks are those that can connect their inputs to their outputs in any
arbitrary way as long as no two inputs go to the same output. For an N input, N output
network, there are N! possible connection patterns. Examples of permutation networks are
Clos networks [Clos 53], Benes network [Benes 62], Waksman’s modification [Waksman 68],
the Bitonic Sorter [Batcher 68], and the cellular interconnection arrays [Kautz 68].

Now we turn to the four types of circuit switched networks. Blocking Networks: A
network is said to be blocking if it can realize only a subset of the N! permutations of the
input ports onto the output ports. For example, as a circuit switching topology, the Omega
network has limited capabilities. An 8-input 8-output Omega network comprises a total
of twelve 2 x 2 switching elements, arranged in three stages of four switches each. This
network will allow only 212 = 4096 different states for the 12 two-state elements as opposed
to the 8! = 40320 possible permutations of 8 inputs to 8 outputs that can be realized with
a permutation network. All the examples cited in the single-path network category except
Batcher’s Bitonic sorter, fall into the blocking network class.

Rearrangeable Networks: A network is said to be rearrangeable or rearrangeable
nonblocking when a desired connection between an unused input and an unused output
port may be temporarily blocked, but can be established if one or more existing connections
are rerouted or rearranged. Examples in this class are Waksman’s permutation network
[Waksman 68], the Bitonic sorter [Batcher 68], and the cellular interconnection array [Kautz
68].

Wide-sense nonblocking network: A network is said to be nonblocking in the wide sense
or wide-sense nonblocking if any desired connection between an unused input and output
port can be established immediately without interference from already existing connections,
provided that the existing connections have been inserted using some routing algorithm
peculiar to the network. If the algorithm has not been followed, some attempted connections
may be blocked. Benes networks [Benes 62-1] are an example of this class.

Strictly nonblocking networks: A network is said to be nonblocking in the strict sense or
strictly nonblocking if any desired connection between an unused input-output pair can be
established immediately without interference from any arbitrary existing connections. Clos
networks [Clos 53] are examples of this class.

38

Control and routing in multistage networks

The control of an interconnection network is as important as its implementation. It is a
complex problem, and often depends upon the overall objectives and design of the multiple-
processor system. There are two extremes of network control: Centralized or Common, and
Distributed. The routing method in an interconnection network is primarily determined
by the overall multiple-processor architecture, and its intended application. There are two
extremes to it: Synchronous and Asynchronous.

Centralized control is used extensively in telephone crossbars to set up connections for all
users. In multiple-processor systems, central control is typical in SIMD or Array processors.
Essentially, the network is used either as a PE to PE data permutation network, or a PE
to Memory data alignment network. A control processor issues an opcode to the network
control unit specifying a particular permutation (or other) configuration to be established
[Batcher 76; Feng 74; Pease 77]. An example of centralized control is the Data Manipulator
network shown in figure 2.9.

Distributed control is typical in MIMD or multiprocessors. In such networks, the
requesting input port provides the routing tag in the message header [Lang 76-1; Lawrie
75; McMillen 82; Siegel 81; Tripathi 79; Wu 78]. The intermediary nodes in each stage
determine their setting by examining the tag.

Synchronous routing is typical in SIMD or Array processors. The operation of such
machines is usually divided into alternating sequences of computation and communication.
The central control unit provides the synchronization points for all the PEs to start sending
messages simultaneously in the beginning of a communication cycle, and waits until all the
PEs have sent their messages to provide a synchronization point to begin a computation
cycle.

Asynchronous routing is typical in MIMD machines and computer networks. Asyn-
chronous routing is most often accompanied by distributed control. In this scheme, compu-
tation and communication are not interleaved. Instead, at any time an arbitrary PE can

request to communicate with any other PE or memory module irrespective of the state of the
other PEs.

Now we turn to a few examples to illustrate the preceding points.

39

Examples

Pease [Pease 77] proposed a multistage network called the indirect binary n-cube network,
which is a typical example of a centralized control, synchronous routing network. For an N
processor PE to PE network, it comprises log N stages of 2 x 2 switching elements or nodes.
By closing the switches of the ith stage in cross-connected manner and switches in all other
stages in direct-connected manner, direct paths are created from the output ports of all PEs
X to the input ports of PEs (X + 2¢)mod N. If the PEs are viewed as connected ih a virtual
binary hypercube structure, this would have the effect that the PEs are communicating
in the ith dimension of the hypercube. Pease showed how this network could be used in
computing the FFT and a wide range of other numeric problems.

Lawrie [Lawrie 75] proposed a distributed routing scheme based on the destination tags
in his Omega network, shown in figure 2.8. It should be noted that most other single path
networks with distributed routing schemes use similar methods. This network is most
suitable for asynchronous routing. No computation is required on the part of the network
users to generate the tag. The desired destination address, D, is itself the tag. Let d,_;...d1dp
be the binary representation of D. The switching elements in stage i examine bit d,_; of the
destination address. If d,_; = O the upper output is selected in the 2 x 2 node, otherwise
the lower output is selected. By successively examining appropriate bits in each stage, a
path can be created from the requesting input to the desired output. If the network is
bidirectional, it can be readily verified that this scheme also works in reverse (from output
to input).

Batcher [Batcher 68] proposed the Bitonic sorting network, which can be used as a
distributed control, synchronous routing network in multiple-processor systems. This
network comprises stages of 2-input 2-output comparison nodes. When two inputs are
presented at the inputs of the node, the smaller of the pair appears at the upper output
of the node, and the other appears at the lower output. Batcher showed that by suitably
connecting these stages, the whole network can sort any arbitrary sequence at the inputs to
appear at the outputs.

There are examples of centrally controlled asynchronous routing [Payne 86] where an
interconnection network may consist of a control matrix and a switch (or communication)
matrix. Each input and output port is connected in parallel to both matrices as shown in
figure 2.10. The two matrices may be implemented in different technologies to take specific
advantages of appropriate technologies. Here, the control matrix operates essentially as a

Input
<"1 Port#0

Input
“—"1 Port#

JI0MIIU SNOUOIYOUASE PI[[OI3U0D L[[e3ud)) *O1'Z a3

CONTROL

[

™| Ouput |,

Port #0

o
®
o
SWITCH
Input
Port #N-1 >
—da _3 _3 1 P B 1 __3 i} B

Qutput -—
- Port #1
L
Output < -
»] Port#N-1
i 3 3 3 3

oy

41

watchdog control processor for the switch matrix and continuously scans any path segment
from the PEs. As soon as a PE makes a request, the control matrix makes a suitable
connection in the switch matrix for the requesting PE to communicate with the desired PE.

In the next section, we provide an overview of the architectural characteristics and
requirements for computation and communication at the ICAP level of the IUA.

[
r

CHAPTER 3
ARCHITECTURAL REQUIREMENTS OF INTERMEDIATE-LEVEL VISION

This chapter addresses the architectural characteristics and requirements of interpro-
cessor communication at the ICAP level of the Image Understanding Architecture. We
view interprocessor communication in a multiple-processor system as an integral part of
the underlying parallel architecture that is, the communication requirements can only be
defined in the context of the requirements of the underlying architecture. The architectural
requirements are, in turn, a direct consequence of the intended application domain for which
the parallel system is being built. Therefore, to ascertain the requirements of the ICAP
communication network, we first investigate the computational characteristics of the vision
tasks to be run at the ICAP level. From these characteristics, we extract the architectural
(communication and control) requirements of the ICAP communication network.

The tasks in a parallel processing environment can be largely characterized in terms of
their data distribution and control mechanisms — interprocessor cocmmunication is often an
implied aspect of both. Therefore, while investigating the computational characteristics of
the tasks to be run at the ICAP level, we are specifically interested in the manner in which
the data is distributed amongst the processors during various stages of computation, and the
various mechanisms that are used. This will give us information about the data and control
granularities embodied in the tasks; most importantly, control and data dependencies.

We are primarily interested in the computational characteristics of the tasks to be run
at the ICAP level, but there are two problems. First, it is impossible to look at the tasks
for the ICAP in isolation, because many of the tasks are ill-defined and transcend the
processor boundaries of the CAAPP, ICAP, and SPA. Second, the IUA is primarily intended
as a vision research tool and, therefore, different researchers may choose to divide and
map the tasks differently onto different levels of the IUA. These two problems make it
necessary for us to study the computational characteristics of the intermediate-level tasks
in two stages: First, from the point of view of the well-established image interpretation
tasks that have been identified in the VISIONS [Hanson 86] laboratory at the University of
Massachusetts, and second, from the literature where other vision researchers have made
use of a wide range of techniques for image interpretation. From the general literature, we

42

)

3

3

—3 _3 _ 3

43

take a representative sample of the work being done. Additionally, because of the non-unique
mapping of intermediate-level vision tasks onto the ICAP level, it is necessary to view them
in the light of low- and high-level vision tasks.

One point should be noted before we go any further. Machine vision research is highly
dynamic and evolutionary in nature, and the development of parallel architectures for
machine vision is a nascent field. Most of the computational models and tasks that exist
for machine vision are geared towards experimentation and further research, and are not
meant to be the “final solution.” Therefore, our approach in this chapter is to integrate the
requirements of known tasks in the VISIONS lab onto the IUA, with predicted requirements
based on representative tasks proposed by other researchers in a more abstract form. This
will give us a “minimal set” of computational requirements for the processes running on the
ICAP level of the IUA. To address the problem of unforeseen computational requirements, we
will try to make the communication network more capable than what is currently sufficient.
As knowledge-based machine vision becomes better understood, and the IUA is redesigned,
the ICAP communication network can be redesigned accordingly.

The rest of this chapter is organized as follows. Section 3.1 provides an overview of some
of the low-level vision tasks defined in the VISIONS group. Next, we review some of the tasks
for high-level vision, which involves an overview of the Schema system [Draper 89]. Schemas
at the SPA level treat the low- and intermediate-level vision tasks as a set of knowledge
sources. Some of the low- and intermediate-level knowledge sources along with the schema
system are discussed in section 3.2. A discussion of some of the intermediate-level vision
tasks is provided in section 3.3. After the discussion of the intermediate-level vision tasks,
we turn to the architectural characteristics of the ICAP level of the IUA in section 3.4.
Finally, from this we extract the architectural (communication and control) requirements of
the ICAP communication network in section 3.5.

3.1 Low-level vision

In a 2-D image understanding paradigm, two primary goals of low-level vision are feature
extraction, and segmentation. Sometimes the term segmentation is used loosely to cover
not only the normal definition of partitioning an image into connected, non-overlapping
sets of pixels, but also low-level line extraction algorithms. Currently three segmentation
algorithms are used in the VISIONS environment:

1. Histogram-based region segmentation.

2. Straight-line extraction by gradient orientation, and

3. Straight-line extraction by edge grouping.
These algorithms are discussed next.

3.1L1 Histogram-Based Region Segmentation

Region segmentation is used to decompose an image into non-overlapping regions, where
pixels in each region have some common property such as brightness, color, or texture.
Domain specific knowledge in the form of top-down control may be introduced to resolve
various ambiguities in the segmentation task. The region segmentation algorithm used
in the VISIONS environment is based on analysis of histogram peaks and valleys in local
subiméges and is comprised of two sub algorithms: a localized histogram-segmentation
algorithm and a region-merging algorithm [Beveridge 89]. Either can be used by itself to
produce a region segmentation, or they can be combined into a single system as in figure 3.1.

The local histogram region segmentation algorithm

There are five phases to the local histogram-segmentation algorithm:

(i) Preprocessing: Edge-Preserving Smoothing and Scaling

In the first phase, the initial image is processed via edge-preserving smoothing and
scaling. The goal in smoothing the image is to remove minor variations so that histograms
will be distinctly peaked and regions more uniform, and to do so without blurring the
boundaries of adjacent regions. This is accomplished with an edge preserving smoothing
algorithm developed by Overton and Weymouth [Overton 79]. The value of a pixel in one
iteration of smoothing becomes the weighted average of itself and its neighbors within a fixed
size mask, where the weights are decreasing functions of spatial separation and intensity
difference between pixels.

Scaling the data adjusts its dynamic range, and hence the number of buckets in the
histograms, which directly affects the histogram analysis.

] 3 __3 _ 3

3

34 3 __3

—3 ._ 3

uorjejusmdag uoLdsy Jo uonjezruesi) '1'g om3g

Full Multi-feature Segmentation System, (Taken from [Beveridge 89])
Shown for Red, Green and Blue
I?:gge Array 'l:'ocal
istogram , _
7| Segmentation ———= Intorsoctionar
Regions
Green
Image Array | Local
——»] Histogram
Segmentation
Final _
Blue Merge all region pairs Segmentation
Image Array | Local with Iocallyrmlnlmal -
—————} Histogram merge-scores
Segmentation

o>
(41}

46

(ii) Localized Sector Segmentation

In the second phase, a histogram of pixel values is formed for each subimage called a
sector. Typically, the dimensions of a sector are 16 x 16 or 32 x 32 pixels. A small overlap of
about 25% is allowed in the sectors to help correct for situations in which a sector boundary
happens to divide an area into two parts that should be a single region. If this occurs, the
cluster corresponding to the smaller part may be missed in the localized histogram.

Next, within the histogram of each sector, “significant” clusters are identified by means
of a peak-valley analysis. A cluster is defined by a histogram peak and its two neighboring
valleys. Only those clusters are chosen that satisfy three measures: Peak height, Peak to
valley ratio, and Peak distance. The peak height is simply the value of the histogram at the
peak. The peak to valley ratio is the peak height divided by the height of the higher of the
two neighboring valleys. The peak distance is the gray-level difference between two peaks.

Once the clusters and surrounding valleys have been identified, the pixels are given the
labels of the cluster to which they belong. Since each cluster may give rise to multiple regions,
a connected components algorithm is applied independently to each sector to uniquely label
individual regions.

(iii) Adding Clusters from adjoining Sectors

The third phase involves adding clusters that might have been missed in the second phase
by examining clusters in adjoining sectors. Although sector overlap reduces the problem of
losing portions of regions protruding in from an adjacent sector, there are still cases where
such regions are missed. Peaks in the central sector are matched with the labels (peaks)
associated with regions along its boundary in the four neighboring sectors. This process is
carried out iteratively (typically, twice). The peaks from the neighboring sectors that are
not within a minimum peak-distance threshold of the central sector clusters are considered
as potential candidates to be added to the central sector. Next, for the candidate peaks from
the neighbors, peaks are added which show evidence of their presence in the central sector.
A histogram is constructed from the original pixel data over the half of the central sector
closest to the adjoining boundary of the sector containing each candidate peak. A cluster
peak (i.e. a local maximum) within the minimum peak-distance threshold of the candidate
peak will serve as evidence for its presence. Otherwise, the candidate peak is replaced by
the largest local maximum within this range, and this shifted peak is added to the set of

3 _3 _3

;] 3 3 __3

r“@f“@ﬁ”‘-%’f’%'%’%'-%'.g'eiq_ffgv—-gr—“gvfgr—?r—gc—@r—gn—g

47

peaks for the central sector.

After this step, the augmented set of peaks in the central sector form the basis for a new
set of clusters. To arrive at the new set of clusters, valleys between peaks are determined
and the original peak-valley analysis for extracting clusters is applied with cluster selection
parameters changed to achieve more sensitive cluster selection.

(iv) Removal of Sector Boundaries

The fourth phase involves removing artificial sector boundaries that are created by
the algorithm. A local and global merge-score strategy is employed to remove artificial
boundaries between regions that are both locally and globally similar.

(v) Postprocessing: Small-region suppression

The fifth and final phase is a postprocessing step which removes very small fragmented
regions. Very small regions can be removed by either merging them with adjacent regions
with which they share the longest common boundary, or by merging them with adjacent
regions that are closest in gray level. :

Region merging algorithm

The second part of the region-segmentation algorithm is a region-merging algorithm.
The region-merging algorithm alleviates the problem of very small regions formed due to
textured portions of the input image. Also, if the histogram-based segmentation algorithm
is used over more than one feature, the region-merging algorithm can be applied to merge
the results of multiple segmentations.

The region-merging algorithm computes a merge-score between pairs of regions whichis a
measure of the similarity between them. A lower merge;score indicates a greater propensity
to merge. Two regions are merged if their paired merge-score is lower than any other pair
associated with either region. The region-merging algorithm is applied iteratively until all
merge-scores are higher than a threshold.

In general, many region characteristics could be used in the region-merging algorithm
to determine whether two regions should be merged. The following three characteristics

48

are used in the VISIONS environment via a weighted product of the individual measures:
(i) Similarity, (i) Size, and (iii) Connectivity.

The most commonly used characteristic in the region-merging algorithm is similarity.
Many measures can be used here such as color, texture, intensity, etc. In some domains there
may be a nominal best size for regions. Very large regions may not represent relevant image
structure, yet too many small regions may place an increased computational burden on later
interpretation process. This measure is dependent on the domain. The connectivity measure
reflects the heuristic that a pair of regions sharing a relatively large common boundary are
good candidates for merging. This measure discourages the formation of regions with small

necks connecting larger areas.

Next, we discuss the first of the two line extraction algorithms used in the VISIONS

environment.

3.L2 Straight-line extraction by gradient orientation

The abstraction of sharp, linear intensity changes into intermediate-level symbolic
tokens (lines) is an important task in image interpretation. Once representative lines
corresponding to image intensity changes are extracted, many attributes that are useful in

the later interpretation process can be derived.

One approach to extracting straight lines from intensity images and the associated edge
parameters is described in [Burns 86)]. In this approach, the intensity surface is segmented
into contiguous pixels with similar gradient orientation, called line-support regions. Using a
planar fit to these support regions, representative lines are extracted. A number of attributes
can be extracted from each line-support region, its corresponding weighted planar fit, and
the representative line.

There are three steps in this approach to extracting straight lines:

(1) Grouping pixels into line-support regions

The first phase in this step involves deriving a gradient-image by convolving the intensity
image with two different 2 x 2 masks [Burns 86]. Corresponding to each pixel in the intensity
image, there is a vector in the gradient-image that encodes the local gradient-magnitude
and the gradient-orientation.

-

i

49

In the second phase of this step, the local gradient-orientations are grouped into regions.
This is similar to segmenting the gradient-image, except that gradient-orientation (angle)
is used as the basis for grouping. The 360 degree range of gradient orientation is divided
into two sets of overlapping partitions, each with eight 45 degree intervals. The overlapping
partitions are used to avoid problems with possible fragmentation of a line-support region if
the distribution of gradient-orientation crosses a partition boundary. Thus, if one of the 45
degree partitions starts at 0 degrees, then the second partition starts at 22.5 degrees. Every
pixel of the input image is assigned one of the 8 labels for each partition on the basis of the
corresponding vector in the gradient image.

The third phase of this step is merging the two sets of labels from the second phase in
such a way that a single line in the image is associated with a single line-support region.
The region considered best for pixel association (on the basis of one of the two labels from
the two overlapping partitions) is the one that provides an interpretation of the line that is
longer. The following scheme is used to select such a region for every line. First, the lengths
of the lines are determined for each line-support region. Since each pixel is a member of
exactly two regions (one in each of the overlapping partitions), each pixel votes for the longest
interpretation of the line (i.e. the longest line-support region). Finally, the percentage of
voting pixels within each line-support region is the “support” of that region. Typically the
regions selected are those that have support greater than 50%.

(2) Interpreting the line-support region as a straight line

Once input image pixels have been grouped into line-support regions, each region
represents a potential candidate for a straight line. In order to extract a representative
straight line, a plane is fit to the intensity surface of the pixels in each line-support region.
The parameters of this plane are obtained by a weighted least-squares fit to the feature value
on the intensity surface corresponding to each line-support region. The pixels are weighted
by the local gradient magnitude so that those in rapidly changing portions of the intensity
surface dominate the fit.

Once a planar fit to the intensity surface is available, the constraint on the orientation of
the representative line is that it should be perpendicular to the gradient of the fitted plane.
Burns’ approach for locating the line along the projection of the gradient is to intersect the
fitted plane with a horizontal plane representing the average intensity of the region weighted
by local gradient magnitude.

50

(3) Attribute extraction and filtering

The line-support regions and the planar fit of the associated intensity surface provide
the basis for extracting a variety of attributes beyond the basic orientation and position
parameters. Length, width, contrast, and straightness can be calculated. Based upon
these line attributes, the large set of lines can be filtered to extract a.set with specific
characteristics such as short textured-edges, or to select a “working-set” of long lines at
different levels of intensity. -

Next, we discuss the second straight-line extraction algorithm used in the VISIONS
environment.

3.L.3 Straight-line extraction by edge grouping

Boldt [Boldt 87; Weiss 86] developed a hierarchical algorithm for grouping collinear
line segments into progressively longer segments on the basis of geometric properties of
the hypothesized group as well as the similarity of image features along both sides of the
component lines. This algorithm is mentioned here as a low-level vision algorithm because,
in a restricted form, it can be viewed as an alternative to Burns line extraction algorithm
[Burns 86]. In its general form however, this algorithm is a part of perceptual grouping
[Hanson 86] and hence, an intermediate-level vision task. This kind of grouping is also
employed in the ISR (to be discussed later). We will further discuss Boldt’s grouping scheme
in the section on perceptual organization and grouping.

3.L4 Other low-level algorithms

There are numerous additional low-level algorithms that different researchers use as
part of low-level vision. These include a wide variety of image processing, and other numeric
and non-numeric algorithms. Table 3.1 lists some important image processing operations
taken from a survey by Preston [Preston 89].

In addition, there are a number of algorithms that are used in low-level vision. Their
scope and extent would make it impossible to list all of them here, thus we list only a few.
Extensive details can be found, for example, in [Ballard 82; Hanson 78; Horn 86; Marr 82;
Rosenfeld 82].

3

)

3

3

—3 .3 __3

3 ~—T3 3 T3 T3 T3 "3 T3 —31 T3 T3 "3 —71

Table 3.1. Basic image processing operations

[Utilities Geometric
Storage allocation Scaling/rotation
Program control Rectification
Formatters Mosaicing/registration
| /O control Map projection
Test-pattern generators Gridding/masking
[Transform Arithmetic
Noise removal Point
Fourier analysis and Line (vector)
other spectral transforms
Power spectrum Matrix
Filtering Complex number
Cellular logic ~ Boolean
Measurement Decision theoretic
Histogramming Feature select (training)
Statistical Classify
Numerical and geometric || Evaluate results

o Edge-preserving smoothing.

¢ Different forms of thresholding.
o Different kinds of convolution.
¢ Hough Transform.

¢ Euclidean-Distance Transform.
e Subtracting two images.

¢ Convex Hull

¢ Voronoi diagram.

Next, we discuss high-level vision.

51

52

3.2 High-level vision

High-level vision comprises two components: Scene-independent as well as scene specific
knowledge and interpretation strategies. Scene-independent knowledge is used to create
models of the scenes and objects in the scenes. These models could either be domain
independent or specific to the domain of the scene. From these models, 2-D and 3-D
representations of the particular scene and its objects are derived. The objective of high-
level vision is to try to match these stored models and representations to the abstract
tokens stored in the Intermediate Symbolic Representation (ISR) database. The tokens in
the ISR represent abstractions of significant events extracted from the input image. This
entire process of matching first passes through the initial hypothesis generation phase, and
then multiple phases of refinement until a “reasonable” interpretation of the scene can be
generated by matching different objects in the scene to one of the internally instantiated
Semantic-networks (to be discussed in the following paragraphs) of knowledge. When
no match can be found, no reasonable interpretation of the image is possible. Different
strategies may alter the course of action. The high-level in the VISIONS environment is
embodied in the Schema system [Draper 89], which is discussed next.

'3.2.1 The Schema system

The schema system implements a knowledge-based approach to image interpretation
and is comprised of two components: Object knowledge, and Control knowledge. Object
knowledge can encompass domain independent as well as domain specific information such
as 3-D structures and models, 2-D appearances of these models, and geometric and co-
occurrence relationships between different objects and object parts. Control knowledge
encompasses information for efficient extraction and organization, strategies for matching
this information in the form of abstract tokens from the lower levels, to stored models and
their projections, and control of processing in the entire system to ensure consistency in
the evolving interpretation. The schema system incorporates control as a key part of the
knowledge base. In this subsection, we will sometimes use the term knowledge collectively
for object knowledge and control knowledge.

Knowledge in the schema system is represented by a hierarchical structure organized
as a semantic network of schema nodes. The object knowledge in the schema system is
encoded as a part-of graph for the object classes for a given domain. An example part-of

-3

3

3 __3 3

—3 ~—3% ~— 3% ~—3% —3 &8 T3 —3 3 —3a +— 3 3 r—3§ —3 —3 ~—3F —3 3 —3

53

graph for a house scene knowledge base is shown in figure 3.2. In addition to the object

: House Scene
Road Sky
House Telephone
/ Wire
Roof
Roadline
\ Wall :
Shoulder Window
Shutter
Grass ‘
Foliage
House Scene Subpart Network
(Taken from [Draper 89])

Figure 3.2. House scene part-of network

knowledge, each schema has control knowledge describing object recognition techniques in
the form of hypothesis generation and verification processes called interpretation strategies.
There could be multiple interpretation strategies associated with each schema.

In order to make the schema system computationally as well as storage efficient, the
knowledge in it is divided into long term memory (LTM) and short term memory (STM)
across the levels of hierarchy. This differentiates the system’s permanent apriori knowledge
base (which could reside in secondary storage as sleeping processes) from the representation

54

derived from the sensory data of a specific image during the interpretation process (only
those schemas that are necessary for the specific image are activated. For example, house-I
may be an instance of a two-story Victorian which is a subclass of the general class called
house). Both, the STM and the LTM are multilevel organizations of 2-D and 3-D symbolic
tokens such as points, lines, regions, surfaces and volumes, and abstract semantic tokens
of objects and scenes. A node in the STM is an instance of a node in the LTM. For each
hypothesized instance of an object class in an image, a schema instance is created. A schema
instance is a copy of the schema which could be executed as a separate process with its
own state. To gather support for the presence of a hypothesized object in a specific input
image, each schema can invoke knowledge sources at the lower levels. Knowledge sources
are the only means by which schemas interact with the lower levels, and will be discussed
shortly. The relationship of the schema system with the rest of the VISIONS environment
is illustrated in figure 3.3.

Schema Implementation

The schema system has been designed such that active schemas (in the STM) are viewed
as a set of concurrent processes with coarse-grain communication. The manner in which the
schema system, along with the rest of the VISIONS system, is expected to run on the IUA is
illustrated in figure 3.4.

Schemas are run in a decentralized control manner. The control links are indi;ectly es-
tablished as part of the schema hierarchy. This would make schema system implementation
particularly suitable on an MIMD system.

While each schema is an expert subsystem for recognizing its associated object, it often
requires knowledge about other objects in the scene. Additionally, schemas may have to
exchange information about partial interpretations to arrive at a consistent final interpre-
tation of the entire scene. The inter-schema communication cannot be determined apriori.
Replication of information to all schemas is inefficient and introduces potential problems
associated with data consistency in shared memory systems. Therefore, information sharing
is implemented using a global blackboard in the schema system. A global blackboard (logical
shared memory) allows schema instances to publish their contributions to the incrementally
developing interpretation and to access the public contributions of other schemas. A schema
can post messages to the global blackboard without knowing who will read them and like-
wise, reading a message requires no information about when the message was or will be

7 __3

B a 3 B

Long-Term
Memory
Short-Term Image Qescriptlon Schema
=y Memory / """"""""""""""""""" Knowledge Base
IE : Scene «—1 Global Blackboard ' Models of scenes
e Isn;c:bmoe“d(;ate Description and objects
w « B BEewvenesase esnesssasscestaten
.9 .Iii?.rffntatlon 2-D and 3-D
aNeansen LA L L LY} Scene’ objcc[’ mpmscntations
fé ls{'égag::: and object part \
o Lines hicrarchy Interpretation
g etc. 3D Control
g y Represcntations Strategies
n
—
S h
% Knowledge
w Sensory Processing Intermediate- : - Sources
‘(<k hossessenscannanssnsasesnsnsessss Leve' Proc_ Symb0|lc ProceSS|ng
g Segmemation Alg. casusossece cscssescnnsannns Array In';ir)%reeggggn
] Regions A e Surface Extraction R SR Y
B Lines : :
3 Motion to depth maps Information Fus1_on -— #1 Simple control
B Sterco to depth maps Perceptual grouping
g2 Model matching No direct access
1 \ Graph matching to blackboard
RS r >

gg

.64 LISP PEs
. MIMD

Symbolic Processing Array (SPA)

[}

Global Shared Memory

[

. 4096 PEs

. DSP Chips

. SMIMD/
MIMD |

intermediate and Communications
Associative Processor (ICAP)

i | [}

Yy Y Y

CAAPP-ICAP Shared Memory

sjusuodmod wa)sAs SNOISIA 993 PUe VI $'¢ S

T
. 512x512 Array
. 1-bit PEs

. Custom VLSI

{ .SIMD

Content Addressable Array
Parallel Processor (CAAPP)

—® A __» 3 _» .3 31 1 __1

Knowledge-
Base

SEMANTIC PROCESSING

Object Recognition, Conflict
Resolution, Inference,
Consistency,

Hypotheses

Hypothesis
Generation

Focus of Attention
Query,. . . .

TOKENS

INTERMEDIATE LEVEL

Grouping,
Matching,
Transformation,. . . .

f Segmentation

and Feature
Extraction

Goal directed
Low Level
Analysis

.0 1 |

IMAGE OPERATIONS

Segmentation, Feature
Extraction, Stereo, Motion,

— 3

g

posted, or who posted it.

Each schema is comprised of the following four parts: (i) Part-of graph, (ii) Internal
hypothesis, (iii) Interpretation strategies, and (iv) Local blackboard.

As discussed above, the part-of graph portion of a schema encodes an expected rep-
resentation of the specific object in the scene, derived from a scene independent model.
The hierarchy of objects in a specific image are matched against a hierarchy of schema
instantiations.

Each instantiated schema develops and maintains an internal hypothesis about possible
instances of the specific object in the scene that it is designed to detect. An internal
hypothesis consists of (1) tokens (such as points, lines, regions etc.) representing image
events; (2) a set of endorsements from different knowledge sources; and (3) any other
information, such as conflicts or confidences supplied by multiple interpretation strategies.

Interpretation strategies address the question of what to do next. For example, if a
schema detects a house, it might initiate one or more schemas to search for roof, shutter,
wall, and windows etc. Each schema might initiate more than one interpretation strategy.
Each strategy in turn embodies one control link in the chain of schemas. In addition,
interpretation strategies encode knowledge about which knowledge source to apply to gather
évidence for the specific object in the scene. '

A schema instance may contain many internal hypotheses, each of which must be
available to all of its active interpretation strategies. A local blackboard provides the
mechanism for all active strategies to share evidence or conflicts about a specific object’s
presence in the image. The local blackboard is accessible to all the strategies making up a .
schema instance, but only those strategies. Local blackboard messages can be highly schema
specific and private only to the specific schema, which prevents the requirements of a large
system from imposing undesirable restrictions on its subsystems.

The schema system interfaces with the rest of the VISIONS environment through
knowledge sources. Knowledge sources are discussed in the next section.

3.2.2 Knowledge Sources

Knowledge sources are general purpose programs or processes which could vary over
a wide range in their complexity and functionality. Knowledge sources’ relationship with
the rest of the VISIONS environment is illustrated in figure 3.3. Interpretation strategies

58

associated with the active schema instances in the short term memory call one or more
knowledge sources to carry out a specific task for them. As such, the knowledge sources
provide the means for top-down control from the high level to the lower levels. In addition,
the knowledge sources provide the means for generating more abstract image descriptions
for the high level, by taking more primitive tokens from the lower levels, which comprises
the bottom-up processing of the input data.

From the point of view of the high level, various tasks at the low, and intermediate levels,
such as image segmentation algorithms, perceptual grouping algorithms etc., can be viewed
as knowledge sources. There is a qualitative difference in the manner that computation
takes place at the low and intermediate levels in the VISIONS environment and the IUA.
Accordingly, the knowledge sources are grouped into two categories; Low level knowledge
sources, and intermediate level knowledge sources, depending upon what level of processing
they are supposed to affect. When meta-knowledge issues are considered, the high level can
also be viewed as a set of KSs with distributed control.

Next we turn to the two types of KSs.

Low-level Knowledge Sources

Low-level knowledge sources primarily process the numerical pixel arrays, and form the
low-level part of the VISIONS environment. Low level KSs exploit spatial parallelism in
the input pixel arrays. In the IUA, they are most suitable for a SIMD or data parallel
implementation. The control structure in applying low level KSs is known apriori and
usually follows a single thread. Many low level KSs are initially run with their default
parameter settings. Thereafter, as the schemas detect different image contents, low level
KSs can be selectively re-run with more sensitive parameters.

Currently, the following low level KSs have been identified in the VISIONS environment
[Draper 89]. In the future, more KSs will be added to the system.

¢ Region Segmentation by Localized Histograms

e Straight-Line Extraction by Gradient Orientation
e Straight-Line Extraction by Edge Grouping

¢ Straight Bounding-Line Extraction

¢ Region Feature Extraction

_3 i

E| 3 3

3 E|

3

L.

r—§ 3 "~ 3 3 ™3 —3 3 ~—3 —3

g—

59

e Straight-Line Feature Extraction

The Region feature KS computes features of regions obtained by region segmentation,
and straight lines obtained by gradient-oriented line extraction. Computed features are
divided into five categories: Color, Texture, Shape, Size, and Location. This KS provides
the schema interpretation strategies measures such as contrast, bounding rectangle, hue,
area, aspect ratio, centroid, parameter, line density (number of lines with more than certain
length, contrast, slope etc.) of different regions. ‘

The Straight-line Feature KS computes features for a straight line such as length,
orientation etc., given the lines’ end points.

Intermediate-Level Knowledge Sources

Intermediate-level knowledge sources are part of the intermediate-level processing in the
VISIONS environment, and operate on the tokens generated by the low-level KSs, producing
more complex abstractions for the interpretation strategies at the high level. The tokens
generated by the low-level KSs are stored in the ISR. Therefore, many intermediate-level
KSs rely heavily on the ISR for their efficient implementation.

To constrain the combinatoric explosion that can result from grouping a large number
of low-level tokens according to multiple relations, the intermediate-level KSs are applied
under the control of the interpretation strategies of the schemas that invoke them. In
other words, intermediate level KSs are model driven; they are applied in response to the
models that schemas want to match with some scene objects during various stages of image
interpretation. The control structure for the intermediate level KSs follows from the models
and hypothesis instantiated by the schemas during the interpretation cycle. The invocation
and control of the intermediate level KSs should be contrasted with the low level KSs, which
are typically invoked in a rather simple bottom up manner.

Intermediate level vision is currently an active area of research in the image under-
standing community and the VISIONS group. Therefore, many new developments may take
place in the near future. Currently available intermediate level KSs are divided into five
categories by Draper et al. [Draper 89] and are discussed next.

60

(i) Feature-based classification

In this category, there are two KSs: Initial hypothesis system (IHS), and Exemplar
extension (EXEMPLAR). In the first phase of image interpretation, one or more segmentation
algorithms (low level KSs) are applied to the image, and the tokens generated by these
algorithms are stored in the ISR 1. The segmentation algorithms are knowledge-free with
respect to the environment depicted in the image, therefore their output may need further
refinement by re-applying them with modified parameters, once there is an approximate
idea as to what kind of image environment and objects are depicted in the image. The
IHS knowledge source is meant to do precisely this. The IHS is the first step in image
interpretation after tokens have been stored in the ISR, and is used in the initial bottom-up
phase of image interpretation to generate a rank-ordered set of hypotheses about one or
more objects in the scene. This work is discussed in detail in [Hanson 87-2; Lehrer 87].
The combination of IHS and EXEMPLAR is called the object hypothesis system and can be
viewed as creating “islands of reliability” from which knowledge-driven processing may be

initiated.

The way IHS works is as follows. In the early interpretation phase, when little or nothing
is known about the environment depicted in the scene, the objective is to generate one or
more reliable hypotheses for significant image events. These hypotheses will then provide
a basis for further top-down control as context and expectations are validated with further
knowledge-dependent processing. Initially, the IHS is given a set of training images. The
training images are hand-labeled following region segmentation. The feature values of the
objects corresponding with the regions in the training images are also known. From these
training images, the IHS derives feature value constraints for each region, giving the IHS
a method to correlate region feature values to the objects’ stored feature values. Next, the
image to be interpreted is supplied to the IHS together with its region segmentation. Two
tasks can be performed by the IHS: apply IHS to a specific region and it returns a rank
ordered set of objects (e.g. the IHS returns that a particular green patch could be grass,
hedge, tree, ... sky. In other words the green patch is most likely to be grass, and least likely
to be sky), or apply IHS to a specific object and it returns a rank ordered set of regions (e.g.
if the object is roof, the IHS returns a rank ordered set region.1, region.2, ...). From one of
these two outputs, attention can be focused on the most likely hypothesis to guide further
processing.

'The ISR is organized in such a way that it stores image tokens at multiple levels of abstraction in a
hierarchical manner. At the lowest level, ISR stores tokens generated by the segmentation algorithms.

61

The functioning of the EXEMPLAR knowledge source is based on the presumption that
the appearance of many objects such as grass, sky etc. will vary very little in an image
(although they may vary more between images). An EXEMPLAR knowledge source takes
an exemplar région from a specific image and returns other regions from the same image
that appear similar.

(ii) Perceptual organization and Grouping

One important component of intermediate level vision is perceptual organization and
grouping algorithms (Also called perceptual organization and grouping KSs). The objective
of these KSs is two-fold: reduce the amount of data to be handled by the high level, and
bridge the semantic gap between the low- and high-level vision components. In essence,
these KSs are used to organize the input image information in such a way that an overview
or abstraction of the image structure is available to the high level as well as quick access to
finer levels of detail in the image.

Perceptual organization and grouping algorithms operate on symbolic tokens generated
by the low-level vision algorithms (KSs). In current algorithms, the input data comprises
various line and region tokens. Various perceptual (relational and spatial) constraints are
used by these algorithms to organize the input tokens into more abstract entities. The
perceptual constraints can either be derived from the input image in a bottom up manner,
or from the knowledge base at the high-level in a top down manner. Data reduction in the
context of these algorithms comprises two parts: Filtering data, and abstraction or grouping

" of data. In data filtering, the objective is to ignore some of the information present in a set of

input tokens. The second part involves the grouping of multiple tokens to form an aggregate
which is then represented by a single token.

The grouping algorithm for regions was discussed in section 3.1.1 as part of the histogram-
based region segmentation algorithm [Beveridge 89]. Next we return to the perceptual line
grouping algorithm for straight lines that was described briefly in section 3.1.3 . A similar
theme has been used in [Reynolds 87] for perceptual grouping of rectilinear lines.

62

Hierarchical grouping of line segments

The framework for this algorithm in the VISIONS environment was developed by Boldt
and Weiss [Boldt 87; Weiss 86]. They originally used the algorithm to extract straight lines.
Since then, the algorithm has also been used in extracting curved lines [Dolan 89]. We will
refer to the grouping algorithm developed by Boldt and Weiss as the line grouping algorithm.

The basis for the line grouping algorithm is the observation that in many cases a straight
line can be viewed as a sequence of line segments such that the successive segments are
roughly collinear and similar in contrast, and the entire sequence passes a straightness test.
These criteria depend on the relative scale of the features. For example, long line segments
can be separated by a larger gap than short ones. A sequence of line segments which is not
straight at one scale can be part of a longer sequence that passes the same straightness test
at a larger scale.

The input to the line grouping algorithm is a set of edges derived from the input by any
process. For example, the edges could be derived with Burns’ algorithm. In actual practice
however, Boldt and Weiss used zero crossings in the output from applying a Laplacian
operator on the input image, as the initial edge detection operator. The rest of the line
grouping algorithm deals with grouping these edges in a multiple cycle process.

Each cycle of the line grouping algorithm consists of two steps: linking and merging or
replacement. The linking step is used to improve the efficiency of the algorithm and reduces
the burden of exhaustive search on the merging step, by searching for potential candidate
line segments. During the merging or replacement step, two or more lines are merged and
replaced by a single longer line segment based on a global straightness criterion. These two
steps are repeated alternately on longer line segments, resulting in a hierarchical grouping.

The linking step consists of searching for pairs of lines that satisfy certain geometric and
non-geometric measures that make them candidates for grouping. With suitable thresholds
(that may vary with the scale), these measures are converted into a binary relation for pairs
of lines to derive a link graph. In this graph, the vertices represent line segments at the
particular level of hierarchy or scale, and the arcs represent potential line segment pairs
that can be merged. The geometric measures used are collinearity and proximity (the two
lines must be within a certain threshold called the linking radius, the endpoints must be
close, the lines must be approximately collinear, and they must not overlap too much). The
non-geometric measure is that the line segments should have similar contrast (gradient
magnitude of the edge operator). The same linking process is repeated for each endpoint
of every line segment. The result of this step is a directed graph as mentioned above. It

‘ | . 3

3 _3 __3 _.4

Y__g ’-—ﬂ

3 _ 32 k| 2

—3 —3 ~— 3% "~ 3 3 —&a T3 TF ~F TR T3 T3 —F A —3 —18 T3 3 73

63

should be noted that, depending upon the scale during the line grouping algorithm, different
thresholds are used for these measures.

The merging or replacement process consists of searching for potential line segments in
the link graph and replacing a sequence of such segments by one longer segment. For every
vertex (line segment) in the link graph, the replacement algorithm computes all sequences
of line segments containing the vertex that are within a search radius or perceptual radius,
which bounds the length of a sequence of line segments that is tested for straightness. Each
sequence of line segments is approximated by a straight line, and if the straightest path
for the vertex (line segment) in question passes a straightness threshold, that sequence is
replaced by a straight line. The linking and replacement process is repeated at different
scales, with the linking and perceptual radii increasing by a constant factor from one scale
to the next.

At any scale, an unmerged line segment is copied to the next level of the hierarchy, until
it fails to merge too many times (four times in the original implementation).

(iii) Constraint-based Graph Matching

This KS has multiple purposes. As the name suggests, it tries to find graph isomorphisms.
For example, it can be used to match a data graph derived from an input image whose nodes
represent image tokens and whose arcs represent token attributes and relations, with a
pattern graph derived from stored object models and their attributes and relations. To be
computationally feasible, this KS must be applied under suitable constraints so that the
data graph and the pattern graph are small.

(iv) Token Relations

The Token Relations KS takes various line, region, and object tokens from the ISR and
computes a variety of relationships between them. For example, it can be used to calculate
region-line intersection, spatial relations between regions, etc.

(v) Knowledge-Directed Resegmentation

Knowledge-Directed Resegmentation is discussed in [Kohl 87]. It is also called the
Goal-Directed Intermediate-level Executive (GOLDIE). Basically, GOLDIE invokes region
segmentation and line extraction KSs with modified parameters that are more suitable for a

64

particular environment, under the control of the schema interpretation strategies. GOLDIE
can be used to apply these low level KSs either to an entire image or to a subimage.

Next, we discuss what is perhaps the most important component of the intermediate-level

vision: the intermediate token database.

3.3 Intermediate-level Symbolic Representation (ISR) Database

Intermediate level vision bridges the semantic gap between low- and high-level vision.
It comprises two major components: A database system for storing intermediate symbolic
representations of significant image events at multiple levels of abstraction, and a numeric
as well as symbolic processing engine for various intermediate-level vision algorithms. Many
aspects of the intermediate level in relationship to various knowledge sources have already

been discussed, here we focus on the database system.

3.3.1 Intermediate Symbolic Representation (ISR)

The intermediate symbolic representation (ISR) provides database support for various
intermediate-level vision algorithms. The ISR is significantly different from conventional
textual and image databases, however, we shall not provide a comparative study. Instead,
this section outlines the salient features of the ISR and its various components. Wherever
necessary, ISR features will be compared with other databases. The details of ISR can be
found in [Brolio 89; Draper 90]. Brolio et al. [Brolio 89] discuss the details of the older
version of the ISR called ISR1, whereas Draper et al. [Draper 90] discuss the details of the
most recent version of the ISR, called ISR2. ISR2 subsumes ISR1, and in our discussion, we
shall refer to ISR2 as ISR.

In comparison to many database systems where data usually resides on disk, the ISR is
an in-core database. Tokens that are used during an interpretation cycle are always kept in
the memory, primarily to increase the efficiency and speed of the ISR. However, mechanisms

are provided for explicitly storing and retrieving a particular core image of the ISR to and
from the disk.

The ISR contains two primary types of objects: Tokens and Frames. A token in the
VISIONS terminology is equivalent to a record in database systems. Each primitive token in

the ISR corresponds to an image event extracted from the low level, such as a line segment

65

or a region. Associated with each token is a set of features, which are simply different
properties or attributes of the token. For example, a line token’s features could be its length,
endpoints, orientation etc. Since each image is likely to have a number of primitive tokens
such as lines and regions, a further structuring is imposed on the ISR, which is to group
all tokens that share the same set of features. Such a group is called a tokensequence.

~ An example is the tokensequence of all the regions from a region segmentation. Grouping

tokens of the same type in a tokensequence is useful for subsequent perceptual grouping
algorithms, because these algorithms often carry out operations on a set of tokens of the
same class. Thus, a token is a class of object, of which there are many instances in a
tokensequence. Tokensequences are the fundamental information storage mechanism in the
ISR. Because of the large number of possible instances of a token type in a tokensequence
(several thousand in many cases), it is infeasible to assign a name to each instance of a token
type. Instead, all the instances are automatically assigned an index, since numbering is the
simplest automatic naming scheme. A tokensequence can be viewed as a two-dimensional
array. Each row in the array represents a token, and each column represents a property
or attribute of that token. This 2-D structuring simplifies algorithms that access tokens by
indexing, or associatively by certain feature values. Since this array can either be sorted
by one of the features or by index, indexed retrieval is trivial in only one case (indexing by
the token number, in case of ISR). Other cases, where additional computing is required, are
called “dynamic indexing”.

The second primary object type in the ISR is the frame. Frames are the building blocks
of the hierarchical structure of the ISR. A frame is a named object, each with its own set of
features. Frames are created by the user to group together different types of information
at various levels of abstraction. For example, the user might create a frame that stores the
parameters used in running the GOLDIE knowledge source for region segmentation. The
relationship between tokensequences and frames is such that every tokensequence is part of
a frame, and every frame has at most one tokensequence. Figure 3.5 shows the organization
of the ISR. At the lowest level are the tokens2. Two tokensequences are shown in the figure
corresponding to line tokens and region tokens in the Roadl image. These tokensequences
are part of the two frames: Regions and lines. Each of these frames might contain additional
features such as average size of the regions, average length of the lines etc. The Regions and
Lines frames are in turn, shown to belong to frame Roadl. Roadl is an individual image
of a general environment represented by frame Road, which might contain many individual
road images. In addition, Road might contain additional information in the form of features

2Tokens don’t necessarily have to be at the bottom level of the ISR. The user might create abstract tokens and
make them part of higher-level frames.

—~a \
House Road "FOO
F e |
fearure —Size:
Road1: — : g
Road2: fenssscescsances 5
Road1 Road2
A
B
C
Lines:
Regions:
—_
Regions Lines
Avg. Size: Avg. Length: k
; ; """""""" ST Length:
3 /3 Theta:

~ A

Tokensequence

Figure 3.5. Frame and token hierarchy in ISR

66

3

.§1 -__§ _____j . __ﬁ ___g ____.3 !_..._..ag L._,B

T3 T3 T3 T3

67

that apply to all images and thus need not be repeated. It should be apparent from this
discussion that the ISR is organized in a hierarchical manner. The ISR is however created
from its root down. At the system initialization, there is an empty frame called ROOT. From
here, the user can create a frame FOO and give ROOT a feature FOO whose value is a
pointer to the new frame. In the same way, more frames can be attached to either ROOT or
its children and so on. This mechanism calls for dynamic storage allocation as the frames
and features are created.

Features

Features are where data values are stored in the tokens and frames. There are
two different types of features, frame features, and token features. The frame feature is
straightforward; it is a single value for a particular feature name in a frame. Examples of
frame features in figure 3.5 are Avg Size in the Regions frame, Lines in the Roadl frame,
Size in Road frame etc. Referring back to the organization of a tokensequence as a 2-D
array, we find that each token feature (e.g. length) there is a value for each token in a
tokensequence. Thus a frame feature is characterized by a single value, whereas a token
feature is characterized by a sequence of values.

Two important components of features; their data types and facets are discussed next.

Feature data types

The ISR features are one of seven data types: Boolean, Integer, Real, String, Array,
Pointer, and Handle. The first four data types are self explanatory. The array data type is
supported in the ISR only as far as storage and retrieval. No predicates are allowed on the
Array data type. A Pointer points to an object. For example, the feature Lines in the frame
Road1 points to another frame called Lines. A Handle in the ISR is another form of pointer.
There are various types of Handles depending upon what they are pointing to, but for most
purposes they are identical. In géneral, pointers are used for constructing the hierarchical
structure of the ISR, and Handles are used to refer to different entities in different frames in
conjunction with operations defined with them. For example, in associative access of token
features, a range for index or feature values could be specified with a handle. The most
obvious types of handles are frame handles and token handles which refer to frames and
tokens respectively. A frame feature handle points to the value of a frame feature. The most

68

useful handle is the token feature handle, which points to a sequence of values corresponding
to a feature in a tokensequence in a frame.

All the ISR feature data types are augmented with an additional pair of values: Uncal-
culated, and Undefined. These special values are used to denote that a feature value has
not been calculated yet or is undefined for this object. For example, a feature whose value
is expensive to compute, might leave that value as Uncalculated until it is actually needed.
In some cases a feature value cannot be computed, such as the orientation of a point line, so
the value is set to Undefined.

Feature facets

In addition to a name and a value or sequence of values, every feature has five additional
facets or components: data type, documentation, if-needed, if-getting, and if-setting. Feature
data types were discussed above. Documentations are strings supplied by the user. The
last three facets are lists of demons that should be triggered when these feature values
are accessed. Demons are attached procedures or functions that are activated whenever a
value is requested, or modified, or when a value is needed that has not yet been computed.
The if-needed facet contains functions that can be used to calculate the value of the slot?
corresponding to the feature. The if-getting facet is a list of functions to be invoked whenever
a feature value is accessed. The if-setting facet is a list of functions to be invoked whenever
a feature value is changed. The if-setting facet can also be used to block the storage of a new
value. Next we discuss some important operations performed in the ISR.

Tokensequence and Associative access

One important mechanism for accessing tokens is by their values rather than by their
index. This associative access mechanism is further supplanted in the ISR with a number of
set operations (union, intersection, set-difference) over different subsets of token features to
assist the high-level strategies in operating over sets. '

A tokensubsequence (TSS) is a set of tokens, which is a subset of a tokensequence. A TSS
is a type of handle, which in conjunction with one of the facets (if-needed etc.)?, can be used

3A slot is a form of feature value where, in place of a data value, a number of procedures or functions are
stored to carry out operations and return a value whenever that slot is accessed.

“Note that if-needed is a demon.

3 3 3

for a variety of associative operations on different tokensequences.

Virtual features

Virtual features are useful, for example, in transforming lines from a rectangular
coordinate system to a polar coordinate system. With suitable handles, a set of virtual
features can be created that are computed only when desired.

Spatial queries

Often it is more useful or even necessary to group data into “buckets” according to spatial
location in order to perform efficient retrieval. Knowledge sources such as line extraction
and region segmentation make use of spatial queries.

The simplest form of static spatial indexing used in the ISR is the regular grid. A grid
is laid down over the image, and a token is stored in each cell of the grid that it touches
or intersects. This can be done by making a grid frame containing information about the
grid such as the cell size, and a set of tokens, each of which represents one cell of the grid.
The token features are TSS’s of different frames, denoting which token from each frame
intersects which cells. Variations of this grid scheme are possible.

After discussing the ISR, we next discuss the architectural characteristics and require-
ments of the ICAP level of the IUA.

3.4 Architectural characteristics of the ICAP

As a parallel processor, the ICAP tasks can be divided into the following categories:

e As an attached processor to the CAAPP
¢ As an attached processor to the SPA, and

o Intermediate-level vision tasks

70

3.4.1 As an attached processor to the CAAPP

As an attached processor to the CAAPP, the ICAP performs tasks in one of the following
categories:

¢ Exchange data or control with the CAAPP

o Share load with the CAAPP

Exchange data or control with the CAAPP

The ICAP interacts with the CAAPP to either exchange data with it, or pass control
information down. For example, the CAAPP would pass tokens, generated by the application
of one of the low-level vision algorithms of section 3.1, to the ICAP during initial bottom-
up processing. The ICAP would either pass local control information or data to the
CAAPP during later stages of image interpretation. For example, the Goal-Directed
Intermediate-level Executive (GOLDIE) knowledge source (also called Knowledge-directed
resegmentation) modifies parameters for CAAPP region and line segmentations to be more
suitable for a particular environment, under the control of the schema interpretation
strategies. In these cases, the amount of data exchanged between an ICAP PE and the
CAAPP PEs under it may vary between a single bit to hundreds of bytes. In the initial
bottom-up processing phase, the most suitable way for the ICAP to retrieve tokens from the
CAAPP is to operate in synchronous mode. Again, depending upon the operation, it might
be desirable to either operate the ICAP in a fine-grained SIMD-like mode, or in a medium
grained SMIMD mode. During later stages of image interpretation, where local conflicts or
ambiguities are resolved, it might be desirable to operate the ICAP PEs in a less centralized
manner. Depending upon the task, the ICAP could operate in SMIMD or pure MIMD mode.

To summarize, while exchanging data or control with the CAAPP, it is desirable to be
able to operate the ICAP in all of the modes outlined in Chapter 1.

71

Share load with the CAAPP

The ICAP can be used to compliment the CAAPP in low-level processing. The CAAPP
uses bit-serial processing elements with limited memory. Many low-level vision tasks use
algorithms such as Fourier transforms (FFT); for example, in texture analysis. Often,
these tasks require floating point arithmetic. The FFT is a staged (alternating computation
and communication), fine-grained, communication and computation intensive algorithm.
It requires apriori interprocessor communication, but the distance (in terms of PE index)
between the processors that exchange data varies as 2! (0 < i < Q%E., where N is the
smaller of the number of processors or the number of points in the FFT) between stages of
computation. A 1K fixed-point FFT on the CAAPP takes over 10mS. We currently do not
have a figure for a floating point FFT at the CAAPP level. However, to get an idea of the
time a floating point FFT might take at the CAAPP level, it should be noted that a floating
point operation takes on the order of 100 times as long as for a fixed point operation on a
CAAPP PE. A 1K fixed-point FFT on a single TMS320C25 takes less than 3mS. The second
generation IUA (to be discussed in Chapter 6) uses TMS320C30 floating-point DSP chips at
the ICAP level. A 1K floating-point FFT on a single TMS320C30 also takes less than 3mS.
Notice from table 3.1 that many low-level vision algorithms might use matrix arithmetic; for
example, image rotation. In many cases, because of the large dynamic range of intermediate
results, floating point arithmetic may be required.

Therefore, such operations may be off-loaded to the ICAP by the CAAPP. FFT and matrix-
based computations are fine-grained operations. They use regular, apriori interprocessor
communication, that depend on the stage of computation. A SIMD-like synchronous
mode with minimum communication setup overhead is highly desirable for the ICAP to
efficiently support these operations. Also, notice that a wide variety of numeric and graph
algorithms useful in low-level vision tasks have been demonstrated on shuffle-exchange,
various meshes, hypercube, and similar regular networks [Chu 89; Dekel 81; Kuhn 80].
Many of these networks are incompatible with one another; for example, meshes are very
inefficient in emulating shuffle-exchange type networks [Snyder 82]. Therefore, merely
adding a capability for SIMD-like synchronous operation to the ICAP is not sufficient.
Its communication network must be efficient in supporting a wide variety of (sometimes
incompatible) communication patterns.

In addition to complimenting the CAAPP in floating-point operations, the ICAP can also
be used to share computational load with the CAAPP in various low-level vision algorithms.
For example, in the region segmentation algorithm of section 3.1.1, the ICAP could be

72

used in the second part of the region merging algorithm, where computation as well as
communication is often non-uniform and dependent on the regions extracted in the first
part. A SMIMD mode with limited autonomy or an MIMD mode with full autonomy for the
ICAP are desirable in this case. Similarly, Boldt’s algorithm in section 3.1.3 involves data
dependent and non-uniform communication in the linking and merging steps (it depends on
the graph structure formed in the linking step of the previous phase). A SMIMD or MIMD
mode of operation of the ICAP is desirable to support operations in this algorithm.

To summarize, while sharing load with the CAAPP, it is desirable to be able to operate
the ICAP in all of the modes outlined in Chapter 1.

3.4.2 As an attached processor to the SPA

As an attached processor to the SPA, the ICAP performs tasks in one of the following
categories:

¢ Exchange data or control with the SPA, and

o Share load with the SPA

Exchange data or control with the SPA

The SPA interacts with the ICAP to either exchange data with it or pass control
information or queries down. For example, the ICAP would pass abstract tokens generated
at the intermediate level either as a result of grouping processes or as response to specific
requests from the high level. The SPA would pass control information for knowledge-directed
processing and grouping operations, and queries in terms of grouping and matchings in the
ISR tokens. The amount of data exchanged between an SPA and the ICAP PEs under it
may vary between a few bytes to thousands of bytes. In the initial bottom-up processing
phase, the most suitable way for the ICAP to pass abstract tokens to the SPA is to operate
in a SMIMD mode with limited autonomy. During the later stages of image interpretation,
where the ICAP responds to queries from the individual PEs of the SPA, it is desirable
to operate the ICAP in an MIMD mode such that multiple simultaneous requests may be
satisfied. The interprocessor communication at the ICAP level in these cases, in general, is
data dependent and irregular.

3 3 __3

73

To summarize, while exchanging data or control with the SPA, it is desirable to be
able to operate the ICAP in SMIMD and MIMD mode with low latency interprocessor

communication.

Share load with the SPA

The SPA is a collection of symbolic processors, that are not geared towards “number
crunching.” As pointed out earlier, one task of high-level vision is to construct 3-D models
from domain independent knowledge and generate scene-specific 2-D projections of these
models. These projections involve polynomial evaluation as well as floating point matrix
computations. Notice that polynomial evaluation can be performed using FFT techniques
[Sedgewick 88]. To generate these projections efficiently, the SPA might offload these
computations onto the ICAP.

As in the case of sharing load with the CAAPP, while performing these operations, a
SIMD-like or a SMIMD mode with low communication setup overhead is most suitable for
the ICAP.

3.4.3 Intermediate-level vision tasks

In the knowledge-based image understanding paradigm in the VISIONS group, the ICAP
level roughly maps to the intermediate level of vision. Projections (2-D) of the instantiated
models at the high level meet here with the extracted image events from the low level.
Often, the image events (tokens) from the low level must be further grouped together or
organized before they can be matched with the models from the high level. Similarly, models
at the high level may have to be transformed before they can be matched with the events
derived from the scene. Intermediate-level vision tasks for the ICAP can be divided into the
following categories:

¢ Grouping
e Model transformation

¢ Matching, and

- o Distributed server for the SPA

74

Central to all ICAP operations is the symbolic token database, ISR, where the operands
are stored.

Grouping

Once the initial tokens are generated by the CAAPP, the ICAP uses them in organizing
the lowest level frames of the ISR. In many cases, the ICAP may even be involved with the
CAAPP in generating the lowest level tokens; for example, in region segmentation and in
Boldt’s algorithm. The initial organization of the ISR can be carried out in a synchronous
manner under central control. The interprocessor communication can be either apriori or
data dependent. The lowest level ISR tokens are edges, regions, flow vectors, etc., where
individual items are small in size, but there can be a very large number of them in a frame.
As such, a SIMD-like and a SMIMD mode of operation with low communication overhead
are desirable for the ICAP.

The next step after initial organization of the ISR, is to apply various perceptual
organization and grouping algorithms to the primitive tokens, to generate more abstract
tokens or collections for matching. The groups of tokens may be organized in the form
of various data structures, such as lists, trees, or graphs. One example of grouping is in
Boldt’s algorithm, where collinear line segments may be grouped across the entire image
to extract longer lines that are partially occluded. The line segments are organized as a
graph structure in this algorithm. Another example of grouping is in the feature-based
classification knowledge sources of section 3.2.2. The basic idea is to group the tokens with
respect to a multitude of common properties such as color, texture, label etc. Thereafter,
based on some feature value or an example token (e.g. a region in the EXEMPLAR KS in
section 3.2.2), it is possible to classify other events in the image as having that property or
appearing similar. This type of operation is performed in generating the initial hypothesis
about the scene and its objects, and in servicing queries from the high level in the later
stages of knowledge directed interpretation. The algorithms used for these tasks are similar
to graph traversal and graph automorphism algorithms.

To perform grouping operations effectively, the ICAP must provide efficient means for the
access and organization of tokens. Since tokens might be grouped across an entire image, and
their density varies, the ICAP must support non-uniform communication and computation.
To be able to support this kind of computation, the ICAP must provide semi-autonomous
(SMIMD) as well as fully autonomous (MIMD) modes of operation with low communication

3 3

3 __3 _3 _31 __3 _23

3 __13

_1

T3 T3 T3 T 3

—3 ~— 31 ~— 3 — 3 ~— 3 T3 T3 i — 3 T3 T3 T3 T8 —3 3

overhead.

Model transformation

This task was partially discussed in section 3.4.2. Part of model transformation takes
place at the SPA level. Further, because of the ambiguities and missing data in the input
image, it may be necessary to instantiate a large number of models for one scene. We stated
earlier that certain model transformations based on FFT techniques and matrix arithmetic
are best suited for SIMD-like synchronous processing at the ICAP. When a large number of
models are involved for a single scene, it might be desirable to initially operate the ICAP in
MIMD mode where each PE handles a subset of the models, and subsequently operate in a
loosely synchronized mode to combine the results of all transformations and matchings.

Matching

Matching is a crucial part of intermediate-level vision. The basic idea here is to try
to match instantiated models from the high level with the tokens generated by grouping
tasks. In general, the token structures derived from the image will have both missing pieces
and extra components in comparison with the instantiated models from the high level. In
addition, the structures derived from the image may provide more than one alternative
for each element, or even an associated level of uncertainty that must be considered in
the matching process. For these reasons, rather than forming an isomorphism, matching
is usually treated as an optimization problem. Depending upon the representation of the
instantiated models and the image events, the matching may be graph-based or matrix-based
(as in linear programming).

Computation and communication in matching is fine-grained in nature. Since the image
tokens may be spread across an entire image, the communication is data dependent and
non-uniform in general.

Distributed server for the SPA

In order to verify existing hypotheses, establish new ones, or resolve conflicts during -

76

the later stages of image interpretation, the schema system at the high level may request
additional knowledge-directed processing at the lower levels. Since the schema system
operates in a shared memory MIMD mode, the requests from the high level are non-
deterministic in time. In response to the requests from the high level, the ICAP basically
performs operations in one of the classes outlined so far. To serve potentially multiple
requests simultaneously from the high level, it is desirable to operate the ICAP as a
distributed server, or in an MIMD mode. It should be noted, however, that in response
to a query from the high level, the entire ICAP or some portion of it may have to carry
out complex computations on a group of tokens associated with multiple ICAP processors.
Therefore, as a follow up to the query from the high level, all or some of the ICAP may have
to operate in synchronous manner (SIMD-like or SMIMD).

Weems et al. [Weems 91] have carried out a study of architectural requirements of image
understanding with respect to parallel processing. To further add to the requirements of the
ICAP level, we reproduce table 3.2 from the cited paper.

Table 3.2. Characteristics and requirements of the intermediate level

Computation Communication
Medium grained Medium messages
16-bit integer arithmetic Global broadcast
32-bit integer arithmetic Subsat broadcast
32-bit floating point arithmetic || Global summary
Symbolic processing Down to low level
Record processing Local neighbors
Compare/matching Over lists
Graph processing Over graphs
Geometry Collection (grouping)
Matrix arithmetic Dense routing
L Up to high level |
[Control requirements Data types and structures ||
Medium grained 8-bit bytes
Related threads 16- and 32-bit integers
Independent threads 32-bit floating point
Associative select Records and arrays
Synchronous Linear lists
Asynchronous Linked lists
Central control Trees
Distributed control Graphs
High level control Symbolic formulas

E|

3 __3

3

3 3 3 _3 __3

3

71

Having discussed the characteristics and requirements of the ICAP level, we discuss the
architectural requirements of the ICAP communication network-to support them.

3.5 Requirements of the ICAP communicatidn network

Based on the architectural characteristics and requirements of the ICAP level to efficiently
support intermediate-level vision, we summarize the architectural requirements of the ICAP
communication network as follows.

o It should have low latency, high bandwidth, and high common access throughput,
especially in real-time applications

e It should have the ability to support low-overhead SIMD-like synchronous routing,
under central control

¢ In SIMD-like routing, it should be equally efficient in supporting both regular and
irregular communication patterns. In other words, it should not have a bias towards
one communication pattern over others

o It should have the ability to support data-dependent synchronous routing under the
SMIMD mode of ICAP computation

¢ It should have the ability to support data-dependent asynchronous routing under the
MIMD mode of ICAP computation, and

¢ Most importantly, it should have a capability for rapid reconfiguration to efficiently
support all of the above requirements

Recall that these requirements were also discussed in the first chapter. In the next
chapter, we discuss the first stage of our solution for providing a “good” communication
network for the ICAP.

CHAPTER 4

GENERATION L0: CENTRAL ROUTING CONTROL

In this chapter we address the requirements of a multiple-processor network when the
target parallel processor is used in a SIMD mode (or SIMD-like, as in the case of the
ICAP) or in a synchronous MIMD (SMIMD) mode. As discussed in Chapter 2, there is an
obvious problem with a SIMD or a SMIMD multiple-processor system with a fixed static
interconnection network in that it is optimal for only one interprocessor communication
pattern. On the other hand, when dynamic interconnection networks are superimposed on
static networks, a penalty is paid for non-local communication in the setup and the routing
control of the superimposed dynamic network. Examples of such mechanisms can be found
in the Connection Machine [Hillis 85], the MasPar [Grondalski 87; MasPar 90], and the
CAAPP level of the IUA [Weems 89; Herbordt 90].

We alleviate this problem in stages. In this chapter we address the requirements
of a multiple-processor network when the interprocessor communication patterns in the
target parallel processor are fixed and known apriori. Examples of tasks that use fixed
interprocessor communication patterns are the Fast Fourier Transform (FFT), convolution,
template matching, matrix algebra, some sorting algorithms, some search algorithms, and
many scientific problems dealing with partial differential equations and finite element
analysis. Tasks of these kinds often have unique optimal communication patterns. For
example an FFT data flow graph is incompatible with a 2-D mesh. If the target multiple-
processor system is connected in a 2-D mesh topology, each data exchange stage of the
FFT graph may require §(+/N) steps instead of (1) if the parallel system was connected
in a butterfly topology. Similarly a bit reversal permutation is incompatible with a shuffie-
exchange network [Stone 87, pp 313].

To alleviate the problem of latency due to mismatch between the communication pattern
of a task graph and the network of the system in the restricted context when all of the
communication patterns are fixed and known apriori, we describe the construction of three
classes of dynamic connection networks. The three classes are crossbar, strictly non-blocking,
and rearrangeably non-blocking networks. All three classes can efficiently support the NV
mappings property defined in Chapter 1.

78

—3

3

=

79

To reduce the latency in the network in terms of the number of links and nodes
between an input-output pair, we choose moderately large crossbar-based nodes (switching
elements) instead of the 2 x 2 switches often used for constructing these networks. In the
next subsection, we describe the architecture of a crossbar-based node called the PArallel
COmmunication Switch I (PARCOS I). In subsequent subsections we describe how PARCOS
I can be used for the construction of networks in the three classes, and then provide an
analysis and evaluation of the design.

4.1 Parallel Communication Switch I

In this section we describe the architecture of a VLSI chip that was designed as the
building block for the ICAP communication network in the first generation IUA. The design
concepts used in the VLSI chip, which we call PARCOS I, form the basis for construction of
the three classes of networks to be discussed later in this chapter. It should be noted that
even though the following discussion pertains to a PARCOS I chip of a specific size, the basic
concepts can be used to build PARCOS I chips of different sizes. Various limitations to the
design will be discussed in a later section.

The PARCOS I chip organization is shown in figure 4.1. The chip consists of a
communication matrix of 32 bit-serial inputs and 32 bit-serial outputs, a control memory, a
set of registers and associated read/write circuitry.

The communication matrix of PARCOS I consists of 32 tree-structured multiplexers, each
of which is a 1 of 32 multiplexer. All 32 input lines are connected in parallel to each of the 32
multiplexers. With this architecture, multiple outputs can be connected to the same input,
providing broadcast mode capability. Figure 4.2 illustrates one multiplexer tree. It will be
noted that there are two multiplexer trees, one made out of n-channel MOSFETs and the
other made out of p-channel MOSFETS, with their outputs connected together. By properly
sizing the two types of MOSFETS, we achieved near equal delays for both low-to-high and
high-to-low transitions at the output. For any multiplexer, path selection at any level of the
tree is done with a single bit of a control word. The true value of the control word bit is used
to select a path in the n-channel multiplexer tree, and its compliment value is used for the
p-channel multiplexer tree. Thus, 5 control bits are required to select 1 of 32 inputs for each
multiplexer, or 32 x 5 = 160 bits for configuring the entire communication matrix.

The PARCOS I control memory consists of 32 control words, where each control word
contains the 32 bytes of 5 bits required for one configuration. The on-chip control memory

80

—=1{ Input 32 X 32 Communication Matrix Output
Control Pattern Register
~ Control Word 0
HEEEEEEEEEEREEEEEEEEEEN
Control Word 1
I rrrrI1rrrrrr1rrrrrr+r1re+e+ereerf
Control Word 2
o
B
82
Qg
2
32 Cohnekctidn Pattérn Caéhe
.-
Control Word 31
)b [4 [f 4 Y [Y y
|
o
el.
Reg. Column Decoder and Driver

LT

(6) (5

Figure 4.1. Organization of the PARCOS I chip

=

3 3 3 3 _ 3

N 3 3

& 3 __7

— 3

—3 —3 —3 —3 —3 —3 —3 —3 —3 "3 —3 —F I —3 —3 —3 —3 —F 3

D1

DO

D1
DO

81

[]
° ° o
° . °
° * ¢ .
o g Al
o <
-'r I L |5
N - LI A
4L LI v
NS o)
L LI °
o [] o
° o ®
]| el
° ° —
° YR _I_.'.ﬂ-'i'-"_
>—tln [T T
N "=rh=J_
V- =2

co CO C1 c1 C2 C2 c3 C3 C4 C4

Figure 4.2. Organization of a multiplexer tree

82

is therefore constructed so that PARCOS I can hold up to 32 of the most frequently used
connection patterns for larger networks built out of this chip. The control memory is called
the Connection Pattern Cache (CPC), because it is analogous to storing the most frequently
used pages in a memory system cache.

The connectivity information for the communication matrix is stored serially into the
control words. To write connectivity information in a control word of the CPC, first a row
number is set in the Row Select Register (RSR). RSR is mapped into the chip’s memory
address space, allowing the address bus in 'PARCOS I to select the register as a memory
location. In PARCOS I, the RSR is mapped to address 32. When data is written to address
location 32, the binary value on the data lines determines the row number selected in the
RSR. Once a row number is selected in the RSR, 32 5-bit bytes are written into addresses 0
- 31. The memory location’s address is the output port number and its contents determine
which input port it is connected to. If only a subset of links need to be modified, this can be
done by selectively writing only into locations corresponding to those links.

Reswitching the configuration of the communication matrix from one stored connection
pattern in a control word to another requires a single write instruction, where the address of
a new control word is placed in the RSR, and the control word’s contents are loaded into the
Control Pattern Register (CPR), activating a new connection pattern in the communication
matrix. Notice that the CPR allows a control word to,be modified in the CPC without
disturbing an existing configuration in the communication matrix. In many cases this
feature allows the time to write a new connection pattern from the central controller into
the CPC to be hidden while the processors are working on an algorithm.

PARCOS I is implemented on a single 84 pin, 50000 transistor VLSI chip. It is a full
custom design, built out of a 2 micron, P-Well, double metal, CMOS technology available
through the MOSIS fabrication service. Each CPC memory bit is a 6 transistor static RAM
cell. The RAM cell provides both the true and the complement value of its contents on
the two bit lines, eliminating the need for separate circuitry to generate the complement
value for the multiplexer tree. The memory cycle time has been measured to be 100nS.
The worst case delay in broadcast mode from one input to 32 outputs is less than 50nS. A
microphotograph of the chip is shown in figure 4.3.

83

5

o0
iy

e r——
_—

ot

i

B

-
Py s s

SR A

BTG i

Ey 45 L AT , :
SHN AN A DA RN AN A TR TR R :
SEAAA P WA a A A A A AR A A A A AT A AT A4

AR ENFERERRFFRRENERRRRCR N RRRREREE

P N L S P R A AL PR L

Figure 4.3. Microphotograph of the PARCOS I chip

v

84

4.2 TUA GEN1ICAP communication network

In this section we describe how to build larger crossbar networks with PARCOS I chips.
This is the first of the three classes of dynamic connection networks that we will explore
in this chapter. In this section we describe the architecture of a 64 x 64 crossbar network
built with 32 x 32 PARCOS I chips. The 64 x 64 network is used as the ICAP interprocessor
communication network in the first generation IUA called JUA GEN 1.

4.2.1 ICAP communication network architecture

The ICAP level of the IUA GEN 1 is a parallel processor, built with 64 fast digital signal
processing (DSP) chips (Texas Instruments TMS320C25). Each DSP chip has one serial
input port and one serial output port, each of which is capable of a 5M-bit/sec data rate.
These serial ports provide the basis for interprocessor communication within the ICAP level
of the IUA GEN I and as such they form the set of data sources and sinks that are linked by
the network described here.

The 64-input, 64-output connection network for the IUA GEN I uses 2 stages of 32 x 32
PARCOS I chips. The PARCOS I chips are connected to make a 64 x 64 crossbar switch
with broadcast capability as shown in figure 4.4. The second column of PARCOS I chips is
essentially used as a set of 2-input 1-output multiplexers. This connection structure provides
a simple addressing scheme for setting up a connection pattern. The PARCOS I chip is

capable of broadcasting, allowing the connection network to realize any of the possible NV

mappings of its input ports onto its output ports in a single pass. All of the processors can
send and receive data on their links at the same time. These links can be changed at any
time by the IUA’s central controller called the Array Control Unit (ACU).

4.2.2 Network setup and re-switching

The on-chip control memory in the PARCOS I chips permits storage of up to 32 of the
most frequently used input-output connection patterns for the whole network. The method
for programming a new pattern in the JUA GEN I ICAP connection network is as follows.
In the network of figure 4.4, two 5-bit bytes are used to specify which input an output is
connected to. The first (most significant) byte selects an input to two of the PARCOS I chips

—3 3 _3

—3 __3

—3 3 __3

3 T3 3 T3 383 3 T3

29
30
31

32
33

34

61
62
63

85

\

\
/X
/

\

\\ »
/X
[

Column 1
(0] 0
1 1
2 2
0
31 31
0 0
1 1
2 2
1
31 31
0 0
1 1]
2 2
2
31 31 |
0 0
1 1]
2 2
3
31 31

Column 2

0 0 0

1 11

2

0 15 15

0 0 16
— 1] 17
—12

1 15 31

0 0 p—32

1 1

5 33
_1 2 15 47
—131 31—

0 0 48
N 1 49
—J2

3 15| 63
L
31 31—

Figure 4.4. IUA GEN 1 ICAP Communication Network

86

in the first column. In the second column, the second byte selects one of the two resulting
outputs from the first column. The RSRs of all 8 chips are mapped to the same memory
address such that writing a row number at this address selects the same row in the control
memory of all of the chips. As an example, suppose that it is desired to connect input 30
to output 33. In base two this mapping would be (011110) — (100001). The instruction
issued by the ACU to the connection network board looks like:

Instruction | Input | Output
Code Address | Address

The two most significant bits of the output address are used by hardware to select one of
the PARCOS I chips in Column 2 (chip #2 is selected in this case). The 4 least significant
bits of the output address are used to select the proper output in the selected PARCOS I chip
_ in Column 2. As mentioned earlier, the PARCOS I chips in the second column are used as a
set of 2-input 1-output multiplexers. In any of the 4 chips in the second column, an output
X is connected to only one of the two inputs: (2 * X) or (2 * X + 1) which is determined by
the most significant bit of the input address. Output 0001 is connected to input 0010 in chip
#2 in Column 2 in this example. Notice that this selection can be done by simple hardware.
Also, the most significant bit of the input address (0 in this case) is used to select one of
the two PARCOS I chip pairs 0-1 or 2-3 in Column ! (PARCOS I chip pair 0-1 is selected
in the example). The 5 least significant bits of the output address select the output port
in the chosen PARCOS I chip pair, whereas the 5 least significant bits of the input address
select the desired input to the PARCOS I chip pair in the first column. All of the address
and data values can be derived and written into the proper crossbars by the hardware with
a single instruction from the ACU. Thus, in one instruction time the ACU can set up a
connection from one output of the connection network to a desired input. Filling a control
word (Storing a complete connection pattern) requires that 64 connections be specified, each
with a separate write instruction from the ACU. Another word can be selected for writing by
loading a new row number into the RSR and repeating the above operation. If only a subset
of a connection pattern in the CPC needs to be changed, the ACU can selectively change just
those links to be modified. Selective rewriting is faster than rewriting the whole pattern
and is advantageous in cases where, as an algorithm progresses, the communication pattern
changes incrementally. Since all of the row-select registers are mapped to the same address,

a new connection pattern stored in the CPC can be activated with just one instruction from
the ACU.

’ 87

4.3 Larger crossbar networks

In this section we describe how to build a crossbar network of arbitrary size out of a
smaller PARCOS I chip and how to program it.

4.3.1 Network architecture

Instead of restricting the PARCOS I chip to a fixed size, we assume that it implements
an n x n crossbhar function. The way to build larger N x N crossbar network is outlined in
figure 4.5. The N x N crossbar comprises two logical stages. For N = m X n, the first logical
stage comprises an m x m matrix of PARCOS chips. Groups of » inputs are fed in parallel
to m PARCOS chips in every row. In the second logical stage of the bigger crossbar, one
output from every PARCOS chip in a column is fed to a m-input 1-output MUX made out of
PARCOS chips. Therefore there are N m-input 1-output multiplexers in the second logical
stage.

The first logical stage of the N x N crossbar requires m x m = m? PARCOS chips. The
number of chips required in the second logical stage and the whole crossbar are calculated
as follows. We assume for the sake of simplifying notation that N, n, and m are all powers
of 2.

¢ For 1 < m < n, each PARCOS chip can be used as n/m m-input 1-output multiplexers.
Thus the total number of PARCOS chips required in the second stage is N/n/m =
N x m/n = m2. The total number of PARCOS chips required for the entire crossbar
then is 2 x m2.

e For n < m < n?, each MUX in the second logical stage will be constructed as a two
physical stage MUX. The first physical stage of every MUX (closer to the inputs) will
require m/n PARCOS chips. The second physical stage of every MUX (closer to the
outputs) will implement m/n-input 1-output MUX. The total number of PARCOS chips
required for the entire crossbar will be

(m2+ Nxm/n+ N/n/m/n) =2«m?+m?/n= (2+ 1) (mz)

n

o For n? < m < n3, the total number of PARCOS chips required for the entire crossbar is

88

£ € £ €

abejs jeaho) 1414

E

I-N O} U-N

'

0

I-uolo

1 J | B |

™| |-N| ©® e e |[UN

R

I-N U-N

abe)s jeaiho] puodas

-w e o0 0| C |

° ° o

o Suwnjoo w o o
pUE SMOJ W

° ° °

' ! !

: -w e o o (A 8

IR

I

|

L-U

{

0

|

0

Figure 4.5. Building larger crossbar networks

89

1 1
2 2 27,2 _ 24+ = (m?
2+xm®+ m*/n+m°/n —(2+n+n2) (m)
¢ In general for n* < m < n*t1, the total number of PARCOS chips required is

1 1 1 n* -1
2 .= Il R 2 2(_® =+
m (2+n+n2+"'+nz)_2xm +m (n’(n—l))

It should be noted that in the first logical stage, groups of n inputs are fed in parallel to
m PARCOS chips. For very large m, the loading on the input signals may be excessive. This
problem can be addressed by suitably buffering the input signals.

For various values of n and m, the number of PARCOS chips and the board area required
to implement larger crossbars are compared with other networks in a following section.

4.3.2 Network setup and re-switching

The method for programming a connection pattern in these networks is similar to the
64 x 64 network described earlier.

A connection pattern can be broken into two parts: The first logical stage, and the second
logical stage. The method for deriving address and data for the first logical stage is the same
for any size network, whereas a slightly different scheme is employed for the second logical
stage, depending on the network size.

The scheme for deriving address and data for the first logical stage is as follows. Refer to
the block diagram in figure 4.5.

o For brevity, let us assume that N, n, and m are all powers of 2, such that

N=2® = log(N)=2=2
n=2 = log(n)=y
m=2* = log(m)=2z2
z=y+=z

¢ The z most significant bits of the input address select one of the m rows.
o The y least significant bits of the input address are used as data in the selected row.

o The y least significant bits of the output address are used as the address in the selected

TOwW.

90

The scheme for deriving the address and data for the second logical stage is as follows.

Forl<m<n

The second logical stage of the crossbar comprises one physical stage. Each PARCOS
chip can be used as n/m m-input 1-output multiplexers. There are m? PARCOS chips in this
stage.

e The 2z most significant bits of the output address are used by hardware to select one
of the m? PARCOS chips.

e The remaining z — 2z least significant bits of the output address are used to select the
proper output (address) in the selected PARCOS chip in the second logical stage.

o In any of the m? chips in this stage, an output X is connected to one of the following m
inputs:
mxXmxX+1m+X+2,.....miX+m-1
This is determined by the z most significant bits of the input address. This selection
can be done by simple hardware.

Forn < m < n?

The second logical stage of the crossbar comprises two physical stages. The first physical
stage (closer to the inputs) implements N x m n-input l-output multiplexers. For every
output, m PARCOS chips are required in this stage. The second physical stage (closer
to the outputs) implements N m/n-input 1-output multiplexers. Each PARCOS chip can
implement N/m/n = n?/m m/n-input 1-output multiplexers.

o The 2z — y most significant bits of the output address are used by hardware to select
one of the m2/n chips in the second physical stage.

e The next 2y — z (n/m m/n-input MUX per chip) most significant bits of the output
address are used to select the proper output (i.e. address) in the selected PARCOS chip
in the second physical stage.

o In any of the m2/n chips in the second physical stage, an output X is connected to one
of the m/n inputs
miaxX,mnxX+1mnxX+2,...mnaxX+mn-1

3 3 _ 3 3

E|

—3 _ 3 _13

3

—3 3 3

T3 T3 a2 3@ — 3 '3

a4 —3 ~— 3 T3 "3

—a —3 " 3

91

which is determined by the z — y most significant bits of the input address. This can be
done by simple hardware.

o The first physical stage is organized as N groups of m PARCOS chips each. The z bits
of the output address are used to select one of these groups. Notice that each PARCOS
chip in this stage is used as an n-input 1-output MUX. Therefore output is taken from
port #0 in all of these chips (i.e. address 0 is chosen for writing in the chips).

¢ If the input address is
I=14, 13, 2..92n1--.tny1inin-1...81%0
then J = i9q_1%9,_2....in is used as data in the selected group (i.e. input #J is connected
to output #0).

This scheme can be extended to even bigger crossbars. However, it should be noted
that such designs are impractical. For example, if n = 32 and m = 32 x 32 = 1024, a
32K -input 32K -output crossbar will require 2,129,920 32 x 32 PARCOS I chips. PARCOS
I chip has an area of 1.2 x 1.2 = 1.44 sq. inch. Thus the total board area required will be
(2,129,920 x 1.44)/(36 x 36) = 2,366.6 sq yards. About 14,200 12" x 18" (rough size of a
VME board) PCBs will be required to build this network.

4.4 Larger non-blocking networks

A crossbar is an ideal network for interprocessor communication in multiple-processor
systems. But, as pointed out in the preceding section, there is a practical limit to the
size of crossbar network that can be built from smaller crossbars. In order to build larger
connection networks that can efficiently support the N mappings property, it is necessary
to explore designs that use less hardware than a crossbar.

The most often cited disadvantage of a crossbar network is that it requires 8(N 2) switches.
From our experience in constructing building block chips for larger communication networks,
we contend that the greatest impediment to building larger networks is the number of chips,
boards, and pinout requirement on the chips and the boards rather than the number of
transistors required in building them. For example, the 32 x 32 size of PARCOS I was
limited by the maximum number of pins on the available package rather than the number
of transistors in it. This issue will be discussed more in a following section. For now, it is
sufficient to state that minimizing the number of transistors is not the criteria chosen for
building larger networks in this thesis. In addition to the N¥ mappings property, we are

92

interested in the following requirements for the larger network: (1) Minimize the number
of switching stages between an input and an output, (2) The design should be modular so
that it can be built from a minimum of different chip types, and (3) It must be possible to
quickly establish an input-output connection pattern. These three criteria further help us
in choosing a network in this and the next section.

In the non-blocking network category, there are only two fundamental explicitly known
constructions as proposed by Clos [Clos 53] and by Cantor [Cantor 71]. Cantor’s work was
guided by minimizing the number of switches in the network. Further extension was carried
out by Pippenger [Pippenger 78]. An optimal non-explicit (i.e. merely indicating a proof of
its existence but unable to provide a method of constructing it) construction of a non-blocking
network was provided by Bassalygo and Pinsker [Bassalygo 73]. An overview of these issues
can be found in [Thurber 78, Thurber79]. When we apply our criteria of minimizing the
number of switching stages between an input and an output in addition to modular design,
the Clos network is the design of choice. For an equal number of inputs and outputs, a Clos
network can be built from multiple copies of a single building block chip. In fact, if we use the
same building block chip (i.e. a small crossbar) to construct a Cantor network, the resulting
topology will be identical to the Clos network. Before we describe the network, an additional
note is in order. Within the framework of this chapter, all interprocessor communication
patterns in the target parallel processor are fixed, known apriori, and employ central routing
control. Thus, we don’t really need a non-blocking network. A rearrangeably non-blocking
(or permutation) network will suffice. However in the chapter dealing with data dependent
asynchronous routing, a strictly non-blocking network is required for ideal performance.
Thus for the sake of completeness, we include non-blocking networks in this chapter.

4.4.1 Network architecture

A 3-stage N-input N-output Clos network is shown in figure 4.6. We denote the network
by N(n,m,r). The first stage in the network comprises r switches that implement a n x m
crossbar function. The second stage comprises m switches that implement an = x r crossbar
function. Finally the third stage comprises switches implementing an m x n crossbar
function. Clos [Clos 53] showed that for m > 2n — 1 the network is non-blocking in the strict
sense. If we let m = 2n, then by using modular m x m switches, one can build a 3-stage Clos
network with up to (m/2 x m) = m?/2 inputs and outputs. For example, by using 96 copies
of a PARCOS I chip with m = 32, one can build a 512-input 512-output network as shown in
figure 4.7. It should be noted that in the input stage, 16 of the 32 inpufs to PARCOS I are

|

-4 1 3 '3 __13

- éi

93

- ! /
I°'N -— v —.E,lll\'- ,_..E p-:_ll i-N

-
Fl.— X } —. 4
1t ' 2 2 }) f——
-—]o 0 0 ofe—
® o
° 4
@ ® °)
5
° ° ° -
=
&)
Uz «—— v w - —.:_AI j-ueg &
3 (] ..nw
o
X 1 Mn.u
}
10— L +U]
= o B T
B 0 m
m
-4 -——j |-u L-w e
] 44
. 0 0
0 L [y SPU—— }
|} ——; 1 0 o0
0-=—"10 Ql/ \
[} '
€ ADVIS - : L39V1S
¢ 3DVIS

E . E . E . E . B E . E . E ., E E E . E_ | E E E . E . E . E . E_.

94

e
G —]st €) g SH—— LIS
' 2
0 0 8
— ' } W— B
96¥ —o 0 0 0 g6¥ o
A
2]
2
® ® ® &)
FEY
® ® ° a.
k|
® ® ® ?
S
[Te]
e e 5
it Ig .m.
e —fst | L e 2
F 5
A b — 8
91 0 o 0 ofF—91 S8
i i 7]
0 0)
<
=
e o
Ie m
Gb ——st g 0 [
!
0 Y
t —— ' 0 o4/—o0
°.I||||° OI‘/I —. 3 ’
0 o] : I 3OVIS

€ 39V1S
¢ 3AOVIS

-

95

left unconnected. Similarly 16 of the 32 outputs from PARCOS I in the output stage are left
unconnected. We have developed a modified 4-stage design that extends the size of the Clos
network by a factor of 2. By connecting 256 PARCOS I chips in this topology, a 1024-input
1024-output network can be constructed as shown in figure 4.8. Larger networks can be
constructed with a 5-stage design. For example, by connecting 4096 PARCOS I chips in a
5-stage design, an 8K -input 8 K-output network can be constructed as shown in figure 4.9.

4.4.2 Network setup and re-switching

Programming a connection pattern in these networks can be considered as comprising
two parts. In the first part, address and data values for various stages are derived from the
list of input-output address pairs. In many off-line routing schemes, this is also referred to
as generating routing tags from an input-output mapping. In the second part, these derived
data values are actually written into the derived address locations. Within the framework
of this chapter where all connection patterns are known apriori, we are not interested in the
time and storage costs of the first part of programming a connection pattern, which can be
carried out off-line in the ACU.

For an N-input N-output non-blocking network with m = 2n = r, the second part of
programming a connection pattern can be carried out in N steps. For the 3-stage Clos
network in figure 4.6 the PARCOS I chips in each stage can be partitioned in the address
range:

{0,1,.n-1},{n,n+1,..2n-1},..{(m-)n,(m-1)n+1,.. (m-1)n+n-1}

Corresponding to each input-output address pair, three data values are written simultane-
ously at three addresses in the input, middle, and the output stage respectively (notice that
m = 2n, but only half of these locations have values stored in them). The same scheme is
employed for the 4-stage modified Clos network, where groups of 4 PARCOS chips in stage 3
and stage 4 are addressed in the same way as a larger crossbar by using schemes outlined
in a previous subsection. Similarly, groups of 2 PARCOS chips in stage 1 are addressed as a
single large crossbar. For a 5-stage Clos network, 5 data values are written simultaneously
in the 5 stages for each input-output pair. In the next chapter we show how to derive these
address data pairs.

e T S S S S S A S G S S S S

= - - , €col
€20l -— €9 | €9 €9 €9
800 } <— vm
Lo0t~— 29 | | 29 29 ¢9
266 =1 N | 266
® e ® ®
) ® o ®
o ® o @
—_ - €9
eo-— € | € €
8P -
w— 2 . c [
26 ~-— - 2€
> e
e-—1 1 L 2 | }
.
s—1 0 [0 0 0 .
0 -—l -

v 3ovis € 3A9V1S ¢ 39V1S I 3OVLS

Figure 4.8. A 4-Stage modified Clos network

97

1618 «——S} CIS —-m 21§ St ja——— 1618
9218 ~—o . H ole—— 9218
4
() () m
P Niomjau soy) abeis-g Py -
indino-zs indui-ziLs 5
°® J0 $Hjdo|q cE ® S
O
D
L 1| D— Ie 1E feem m
0
0
I «—]si | 1 St ja—— | <
ol
1 —. i i
9L <+—o 0| (] ofs—91¢ M.
m

137 ‘€ ft—

Sife+——
Gl «——si 0 0 st

0 0 0 0||.\|!MU 0
] 1

S 39VI1S

ml. WL MA.IL WL F FL MI‘J._ m.l[_ E__ W i m..- 4 M - M — mln!L E_ W‘L WlL WIL WuIL

98

4,5 Larger rearrangeably non-blocking networks

Two fundamental approaches have been followed in the design of rearrangeably non-
blocking networks. The first approach is a “rectangular switch” based design, and the
other approach is based on 2 x 2 connectors. The “rectangular switch” approach is based
on Benes networks. Benes networks in turn are derivatives of Clos networks. The 2 x 2
connector-based approach is driven by the need to minimize the total number of switches
(transistors) in the network at the expense of higher latency.

We shall not consider 2 x 2 connector-based designs in this thesis. First, as discussed
earlier, our experience in constructing building block chips for communication networks
shows that the number of switches (transistors) is not the constraining factor. Second, the
three criteria stated at the beginning of section 4.4 for selecting a network architecture
further rule out 2 x 2 connector based approaches.

The original work on “rectangular switch” networks was carried out by Clos. These
networks were discussed previously in section 4.4. Benes extended these ideas in the
context of mathematics of switching systems. The design we consider in this section is the
rearrangeably non-blocking network proposed by Benes [Benes 65]. It should be noted that
in the context of rearrangeably non-blocking networks, the work by Masson together with
Jordan [Masson 72,76] is a generalization of Benes’ work. An overview of these issues can
be found in [Thurber 79). '

4.5.1 Network architecture

A 3-stage N-input N-output Benes network is shown in figure 4.10. Notice the similarity
between the 3-stage Benes network and the 3-stage Clos network. In the notation of the
3-stage Clos network, for m > n, the network is rearrangeable. The network in figure
4.10 is the optimal case of a 3-stage rearrangeable network with m = n = r. For example,
by connecting 96 copies of the PARCOS I chip with m = 32, one can build a 1024-input
1024-output network. In a manner similar to Clos networks, even larger networks can be
constructed with a 5-stage design. For example, by connecting 5120 PARCOS I chips in a
5-stage design, a 32K-input 32K-output Benes network can be constructed.

Before we end this subsection, a brief note on 2 x 2 connector-based approaches is in
order. Figure 4.11 shows the original extension to the Benes network proposed by Waksman

-

S

_ b

—3a 1

—31 3 _3 __13

JIomjou seuag 98e18-¢ ¥ "01°% oms3iyg

STAGE 3
»40 o—>0
1 11— 1
0

1 ni f—ae N-1

(=]
- O
=

STAGE 1 STAGE 2
0 —fo o}¥——m e 0
1 ——ft 1 1 1
0 0
-1 —lnt gy n-1 n-1
n — jo 0 o 0 °
N+l —d1 1 ™11 1
1 1
2n-1 ———pe] N-1 n-1 | n-1 n-1
® o
® o
o o
— 0 0 10 o™
—»] 1 1 1 1
n-1 n-1
N-1 ———In-1 n-1 o0t it

— N+1

Pl it f—e 2n-1

®
®
®
0 of—-»
1 11—
n-1
>in-1 n1~—>N'1

66

100

1-2/N

j«— |-N

- N

Figure 4.11. A 2 x 2 connector based reconfigurable network

101

[Waksman 68]. In Clos network terminology, Waksman has m = 2,n =2, and r = N/2.
The two larger blocks in the middle stage are recursively decomposed into 2 x 2 connectors.
Another approach for deriving 2 x 2 connector-based networks is to start with the Benes
network with m = n = r and recursively decompose each n x n switch into 2 x 2 connectors.
Notice that these two schemes lead to complementary wiring schemes between adjacent
stages of 2 x 2 connectors. Both approaches will result in 2log(N) — 1 stages of 2 x 2 switches.
If any of these networks is broken into two along the middle stage, then either half of these
networks will have a “butterfly” or its complementary connection topology.

4.5.2 Network sei:up and re-switching

Programming a connection pattern in Benes networks is similar to programming Clos
networks. In fact, both classes of networks can use the same scheme for the first part
of programming a connection pattern. It is only in asynchronous routing, where the non-
blocking capability of a Clos network is required, that their programming differs. The first
part of programming a connection pattern affects network setup time in data dependent
routing where processors may request to communicate with other specific' processors, and
will be discussed in the next chapter.

For an N-input N-output Benes network, the second part of programming a connection
pattern can be carried out in N steps as in a Clos network.

4.6 Analysis of PARCOS 1

In this section we discuss the hardware cost, power dissipation, latency and throughput
of PARCOS I in detail. We analyze the hardware cost (die area) of implementing an arbitrary
size PARCOS I crossbar on a single die and show that the maximum size PARCOS I that
can be implemented on a single die is pin-limited rather than area-limited. The design’s
power dissipation is analyzed to support this argument. Its latency and throughput are
also analyzed to project what can be expected from bigger switches using better CMOS
technologies.

102

4.6.1 Hardware Cost

In this section we analyze the hardware cost (die area) of the PARCOS I design, and
show that the number of pins in the VLSI package is a greater impediment to constructing a
larger PARCOS I on a single chip than the number of transistors required. To support this
argument we analyze the area requirements and power dissipation of PARCOS 1 to project
the largest PARCOS I crossbar that can be constructed on a single die using one of the
currently available technologies.

Two approaches can be used in making our projection. The first approach is to purely
derive the die area analytically. We make assumptions regarding the design rules, feature
size, and area requirements of various components to arrive at the final result. We shall not
pursue this approach for two reasons. First, there is a tendency to make inaccurate estimates
of area for various components (e.g. placement and routing constraints in a specific case may
make the chip area significantly greater than using “standard” measures of the areas for its
leaf cells and interconnect). Second, area estimates depend directly on the technology and
process used for implementing the chip. The opposite approach is to empirically compute the
VLSI area by designing (and perhaps fabricating) various PARCOS I chips. This approach
provides the most accurate estimate of area but is impractical because of the cost involved.

We follow an intermediate approach of extrapolating the area from the actual implemen-
tation of the 32 x 32 PARCOS I. First we estimate the die area of larger PARCOS I chips
as if they were built in the same manner as the 32 x 32 PARCOS I. Next we point out
improvements that can be carried out to reduce its die area.

A block diagram of the 32 x 32 PARCOS I chip is shown in figure 4.1, and its checkplot
is shown in figure 4.3. For the time being let us ignore the die area required for global
wiring from the pads. The 32 x 32 PARCOS I layout area is determined as follows: The
width of the layout is determined by the width of the communication matrix. In the layout,
the CPC width was intentionally increased to match the communication matrix width. The
communication matrix width is comprised of 32 1 of 32 multiplexers shown in figure 4.2,
and an input buffer. In the actual design, using a 2 micron technology (A = 1), this width
is about 1000 + 32 x 150 = 5800 or roughly 6000 microns. A checkplot of one half of one of
the multiplexers is shown in figure 4.12. Because of the binary tree structured layout, the
width of a multiplexer will increase proportional to logs of the number of inputs. Therefore,
for a 128 x 128 PARCOS 1, the multiplexer portion of the communication matrix will have a
width of

3

—3 3 3

3

—~3 ~—3 —3 —% 3

&Wj i $ N

| A

Figure 4.12. One half of the MUX tree

103

104

150
150 - A 41
128 x { o33 1092128} 26,88 (4.1)

The input buffer is comprised of 32 chained inverters to drive the multiplexer inputs, and
a jumper to split the 32 inputs to the multiplexers into two groups to feed the upper and the
lower selector trees. The jumper in the 32 x 32 PARCOS I chip is 500\ wide. Jumper width
increases proportional to the number of inputs with a constant of proportionality less than
one. Therefore, the jumper width in 128 x 128 PARCOS I will be less than 500 x 4 = 2000A.
The chained inverter driver’s width in the current design is 274A. Each inverter chain
is comprised of 4 inverters of monotonically increasing size to drive the large load in the
communication matrix. This is done to minimize the delay in the driver. In the ideal case, to
drive a load C}, n = log.(Ci/C,) inverter stages are required, where C, is the capacitance of a
minimum size inverter. Each successive inverter is e (=2.718) times larger than the previous
one. In the practical case, n has to be an integer, and in many cases an even number.
Also, because of the drain island capacitance effect, n is smaller than log.(Ci/C,). Detailed
discussion of this issue can be found in [Lee 84; Lewis 84; Mead 82; Moshen 79; and Shoji
88]. A 128 x 128 PARCOS I will represent about four times the load of a 32 x 32 PARCOS I
to the input buffer. If ny = log.(Ci/C,) inverters are required in the input buffer of a 32 x 32
PARCOS I, ng = log.(4 x Ci/C,) inverters will be required for a 128 x 128 PARCOS I chip.
This gives ng = ny + 1.39. For a moment let us assume that it is possible to have 5.39
inverters. The width of the driver for a 128 x 128 PARCOS I chip is calculated as follows.

Let w, wo, represent the widths of 1-stage, 2-stage, inverter chains for the driver.
Then

wy =k
we=k+ke=k(1+e)

wa=k(l+et+e?+...+e* 1)

where k is the proportionality constant and depends on the CMOS technology used.
This series is solved to give

_k(er-1)

U= -1y

We know that wy = 274. Then

3 3 3 3

.1 1 3 .31 .3 _.23

~3 . 73 ~—3 T3 —3 T3 ™3 T3 —3F —3 T3 T3 13

105
w5.39 _ (85'39 _ 1)
w4 - (84 - 1) (4.2)
or
274(e53° — 1
ws5.39 = % = 1115.5A (4.3)

Therefore the total layout width of 128 x 128 PARCOS I will be 26880 + 2000 + 1115.5 =
29995.5). Currently available technologies with A = 0.4p will result in a layout width of
29995.5 x 0.4 = 11998.2u or about 12 mm. Currently available die widths of the order of
15-18 mm allow plenty of room for the pads and the global wiring. Two additional points
should be noted here. First, A = 0.25u technologies are on the verge of commercial viability,
and will further allow us to reduce the width of the PARCOS I layout, allowing up to a
256 x 256 PARCOS I design to be implemented on a single die. Second, the current 32 x 32
PARCOS 1 is designed very conservatively. A more aggressive layout would allow us to
reduce the multiplexer width by at least 30% resulting in further reduction of the layout
width. Next we address the height of the PARCOS I layout.

The height is the sum of the heights of the communication matrix, control pattern register,
connection pattern cache, and column decoder and drivers. Respectively, this amounts to

1149 + 464 + 2905 + 1322 = 5840A

The height of the communication matrix is directly proportional to the number of inputs.
Therefore, in a 128 x 128 PARCOS I, the communication matrix will be

1149 x 4 = 4596 (4.4)

high. The control pattern register comprises 32 bytes of 5 read bits. A read bit is comprised
of bit line precharge circuitry, followed by a sense amplifier, followed by a buffer to drive the
control lines of the multiplexers in the communication matrix. The only aspect that changes
with a larger communication matrix is the buffer in the read bit, which is about 150\ high
and whose growth is similar to the driver circuit in the communication matrix. Therefore,
for a 128 x 128 PARCOS I, the height of the control pattern register will be approximately

464 + 150(e!%¥ — 1) = 916.2) (4.5)

The height of the connection pattern cache is independent of crossbar size. For now let
us assume that there are just 32 control words. The column decoder and driver comprises

106

an address and data line buffer, followed by bit line drivers. The height of this portion is
completely determined by the number of control words in the connection pattern cache. The
total layout height of a 128 x 128 PARCOS I design with 32 control words will thus be

4596 + 916.2 + 2905 + 1322 = 9739.2) (4.6)

At A = 0.44, the layout height will be 9739.2 x 0.4 = 3895.74, or about 3.9 mm. Therefore,
layout height is not a restriction in designing bigger PARCOS I chips. ! If we allow a
maximum layout height of about 10mm, then there is room for more than 200 control words
in the CPC. It should be noted, however, that the static RAM design used in the 32 x 32
PARCOS I is unoptimized. For example, the CPC contains 32 x 32 x 5 = 5120 bits of RAM
and occupies an area of 3 x 5mm2. By using a 0.8u(X = 0.5x) double polysilicon CMOS
technology in 1988, it was possible to make a 1Mb SRAM with a 15nS access time and a die
area of 6.15 x 15.21mm? [Sasaki 88]. Taking into account the scaling effect.of }, it is possible
to improve our design by a factor of at least 8. Therefore, including 1K control words in the
CPC is feasible using current technology.

Before we end this subsection, a brief note on the silicon area requirements of arbitrary
size PARCOS I is in order. If we assume a fixed number of words in the CPC, its height is
independent of the communication matrix size. The width of PARCOS Ilayout is determined
by the width of the communication matrix. The width of the communication matrix is
dominated by the width of the multiplexer; the input buffer makes a minor contribution
to the communication matrix width. From equation 4.1, it can be seen that for an n x n
communication matrix, its width is proportional to nlogan (150/10og232 is the proportionality
constant). From equation 4.4, it can be seen that PARCOS I height is proportional to n.
Therefore, PARCOS I layout area is proportional to n2 x logen. It should be noted that this
is the die area. As will be seen in the next section, PARCOS I design is pin limited rather
than silicon area limited, and the package and board areas are much bigger than the silicon
die area. Therefore, the seemingly large growth rate of the die area is of no consequence in
the hardware (board area) cost. Next, we discuss the pinout requirements of PARCOS L.

INotice that for a 256 x 256 PARCOS I chip, the layout height will be
1149 x 8 + (464 + 150(e>* — 1)) + 2905 + 1322

= 9192 + 1514.7 + 2905 + 1322 = 14934\
At X = 0.4y, the layout height will be 14934 x 0.4 = 5973.6y, or about 6 mm

] 2 __3

3

107

4.6.2 Pinout requirements

While providing pads for signals in a die, certain design rules have to be followed. For
example, the pads are required to have a minimum size to guarantee a reliable bond to the
wires, e.g. in Pin Grid Arrays (PGA), or the carrier, e.g. Tape Automated Bonding (TAB).
Additionally, the pads should have certain minimum spacing. The minimum pitch in wire
bonding varies from 0.16 mm to 0.30 mm in current state-of-the-art technologies. TAB can
offer lead spacings as-small as 0.08 mm to 0.12 mm. There is a limit, however, to which
the lead spacing can be reduced (and consequently provide more signals to the die). As the
feature size reduces and the operating frequency increases, the power dissipation in the
die increases. Higher operating frequency (in turn higher slew rate of the signals), closely
spaced thinner conductors, and a larger number of signals on a die play a havoc with chip
reliability. Signal coupling (due to radiation and capacitive coupling), signal deterioration
(due to higher lead inductance), and dI/dt noise generated in the power lines when a large
number of output pads are driven simultaneously, limit the maximum number of pins that
can be allowed on a die. The current state of the art allows up to 400 pins on a die. Not all of
these pins are used for signals. For example, in a 180 pin grid array package of TMS320C25,
24 pins are used for distributing power. In a 325 pin grid array package of TMS320C30, 69
pins are used for distributing power. These carriers use a single die. In another e;rample of
a high density interconnect (but using multiple dies) such as Thermal Conduction Module
(TCM) [Blodgett 82], 500 out of the total 1800 pins are used for distributing power. The
increase in the percentage of power supply pins as the total number of pins on a carrier

- increases independent of whether it is a singe chip or a multichip carrier. We showed in the

previous subsection that it is reasonable to implement a 256 x 256 PARCOS I switch on a
single die (from the standpoint of silicon area). Assuming a signal to power supply pin ratio
of 3, such a die will require of the order of 700 pins. Assuming a signal to power supply pin
ratio of 3.5 for a 128 x 128 PARCOS I, such a die will require of the order of 350 pins. A
discussion of issues related to pinout requirements can be found in [Bakoglu 90; Davidson
82].

Therefore, we argue that the maximum size PARCOS I becomes pin limited before
becoming hardware limited. Specifically, current technology is only capable of supporting a
128 x 128 PARCOS I crossbar. Next we discuss the power dissipation in PARCOS 1.

108

4.6.3 Power dissipation

Estimation of power consumption of a CMOS VLSI chip is a difficult task, especially at
an early stage of the chip’s design. To quote Shoji [Shoji 88, pp 294], “The power of a CMOS
VLSI chip is the hardest parameter to estimate. The author’s experience is that the accuracy
of chip power estimate based entirely on the logic design specification is only within 40%
accuracy. There is no way to estimate accurately how often the internal circuits charge or
discharge. It is easier and is more accurate to estimate the power consumption of a chip
from a similar chip designed earlier, by applying a modification factor,”.

We will follow a similar approach in estimating power dissipation in PARCOS I. The
actual observed power dissipation in the 32 x 32 PARCOS I will be used to project dissipation
in larger switches.

The 32 x 32 PARCOS I is comprised of two major blocks. The CPC and a 32 x 32
communication matrix. The CPC is essentially a static RAM and is active only during
reading or writing into control words to modify a communication pattern. The total CPC
capacity is 32 x 32 x 5 = 5K bits. The actual power dissipation in the 32 x 32 PARCOS I
was measured under two conditions: Reads and writes to the CPC with no activity in the
communication matrix, and communication through the matrix without any reads or writes
into the CPC. In the second case it was found that the maximum dissipation occurred in
cases where the input-output mapping in the communication matrix was a permutation. The
measurements were taken on a Tektronix DAS 9200 system. The probes for observing the
output signals from PARCOS I essentially provided about 10pF capacitive load. The supply
current to the chip was directly measured using a multimeter that provided the average DC
current. We project the two currents (i.e. only CPC active and only communication matrix
active) for larger size PARCOS I chips separately and then project their dissipation together.

It can be shown that when driving a capacitive load, the power dissipation is proportional
to the capacitance of the load. The power dissipated in the CPC is essentially in precharging
and transitions related to reads and writes in the word and bit lines. Assuming the same
number of control words in the larger PARCOS I, the power dissipation in PARCOS I will
increase proportional to nlog(n), where n is the number of inputs. The standby current in
the 32 x 32 PARCOS I chip is 3.5mA and the current during reads and writes to the CPC is
18.8 mA. Therefore the current in a 128 x 128 PARCOS I during CPC reads and writes will
be about

—3 3 ‘-3 3 __3

109

12810g2(128)

18.8 X ~351092(39)

= 105.28 mA (4.7)

It should be noted that the SRAM used in the design was about 10 times larger than
state-of-the-art cells. Using a better SRAM design will reduce the power dissipation.

The PARCOS I current during permutation connections in the communication matrix is
18.1mA. A substantial part of this current is dissipated in the pad output drivers. The power
dissipation in driving the DAS 9200 probes is about

Pp = [% x N x Cy x V& x f] Watts (4.8)
here N = 32
Ci =10 x 10-12F
f=20x 108Hz, and
Vaa = 5V
This gives
Pp = % x 32 x 10 x 10712 x 52 x 20 x 10® = 0.08 Watts (4.9)

which is 0.08/5 = 16mA 2. In other words, a large part of the power is spent in driving the
output pads. This allows us to use a linear relationship between chip power dissipation and
the number of outputs in estimating power dissipation in larger PARCOS I chips. Therefore
in a 128 x 128 PARCOS I the current due to communication activity will be about

18.1 x % = 72.4mA (4.10)

The combined current assuming both activities (CPC writes and communication) are
taking place simultaneously in a n x n PARCOS I is given by

n X loga(n)
32 x loga(32)

n

Cor X 35

+ (Cope — Cat) X () + (Cmue — Ca) X 35 (4.11)

Where C,; is the standby current, Cq. is the current during CPC activity, and Cpuz is the
current during communication activity in 32 x 32 PARCOS I chip. Also, it is assumed that

21t should be noted that output signals didn’t change state in every cycle because of the DNRZ format used .
If the ratio of the state change to clock cycles is also taken into account (but difficult to calculate in general) this
number will be smaller

110

the standby current scales proportionally to the size of larger PARCOS I chip. For n = 128
the current will be

128 128 x log(128) 128
Bx — 8-3. 1-85)x —— = 160.9mA 4.12
3.5 % 55 +(188-8.5) x “oo- HEat + (18.1 - 8.5) X - = 160.9m (4.12)

This gives a power dissipation of 160.9 x 5 = 804.5mW in the worst case.

It should be noted that in practical situations, the power dissipation due to output drivers
will be substantially less than the worst case, and also the current in the CPC will be less
because a read or write will not take place in every cycle. A power dissipation of 804.5mW
allows plenty of margin for scaling down of the feature size and increasing the number of
control words in the CPC. Next we discuss the time required to set up the communication
matrix and reconfigure it.

4.6.4 Time to set up and reconfigure the crossbar

The time to set up or reconfigure the switch matrix is completely determined by the
speed of the CPC and was discussed in detail earlier in this chapter. However, a brief note
is in order. The latest state-nf-the-art CMOS SRAM chips with capacities as great as 1 Mbit
allow read or write times as short as 10-15nS. Assuming that this number will decrease
even further as newer CMOS technologies with smaller feature sizes become available, it
can be assumed that switching at a rate of more than 100M connections per second might be
feasible in the near future. This point will be addressed further in the next chapter.

4.6.5 Latency and throughput of PARCOS I

The latency and throughpﬁt of PARCOS 1 is determined by the input-output path through
the communication matrix. The maximum delay occurs in PARCOS I with broadcast mode,
where one input is connected to all 32 outputs. A block diagram of a worst-case delay path in
PARCOS I is shown in figure 4.13. The path passes through the following elements: Input
pad, top-level chip wiring to the inverter chain driver, driver, fanout to 32 pairs of selector
chains, buffer, wiring to the output pad, and the output pad. We calculate the delay in each
of these segments separately to point out where the delay can be improved in designing
future versions PARCOS 1.

3 3 _2

.31 __3 3} __3 __3

—3 __3

A Driver | B
Pad
X1 X2 X3 X4 Fanout to the
. . Communication
Matrix
0017 |o.066 |0.16 0233 |0.398
Cco c10 |C12 C11 C13
Av4 v -
=
E P Side
> 11 10 108 126 136
I ipl
oo B —W——W—_W_-JVW__IVW_ A single muitiplexer
£ 7
g p— p— —_—— p— c
g 0.086 0.072 0.101 0.107 0.119 4 5
& c211 C180 C184 C181 C239 — D
o v X5 X6
o . —r —tn . .
B N Side 0.287 0129 | 0.264
) 60 59 17 131 139 .))
B B | |c176 C256 C175
Wl AWEAW AN
Q — — —_ Ju——
S 0.071 0.045 0.068 0.073 0.085
— c142 C196 C260 C236 c231
Long Wire Cutput
D Pa
[y
[
[

112

Wire segment: The longest wire from an input pad (as well as an output pad) is about
20004 long and 8 wide. Using the actual fabrication parameters, in which sheet resistance
is 0.051 ohms/sq and area capacitance is 0.056 fF/u? (layout to substrate + edge capacitance)
for Metall in 2p P-well CMOS process, the capacitance of the wire is about

0.056 x 10~1° x 2000 x 8 = 0.9pF

and its resistance is about

0.051 x 2_0802 = 130hms

and the time constant is 11.5 pS. The delay in the wires is thus negligible. However, the

capacitance of the wires has implications for the delays in their drivers.

1/0 Pads: From the data provided by MOSIS and our own experience with the measured
delay in previous fabrications, the combined delay in an input-output pad pair is about 12nS.

Driver: A detailed circuit diagram of the driver is shown in figure 4.14. Various
capacitance values were extracted using Spice3. It can be seen from the figure that the nfets
and the pfets are smaller than the optimum necessary for equal rise and fall times in the
inverters X1, X9, X3, andX4, which was mainly done to save die area. For a moment, let us
assume that the rise and the fall times in the inverters are the same. We calculate the delay
in the driver as follows (details of the method used can be found in [Shoji 88, pp 366]).

The cascaded inverters in figure 4.14 consist of individual stages that have pullup delay
time Ty and pulldown delay time Tp given by

Pip1+ Niy1 + (P + Ni)
F;

Ty(i) =Tp (4.13)

and
P14+ N1+ f(P; + N;)
N;

Where P; and N; are the sizes of the pfet and the nfet of the ith stage. 7p is the time constant
defined by the product (R,C) of the gate capacitance of a unit-size FET (the nfet and pfet

Tp(i)=Tn (4.14)

3The capacitance values shown are for a 3u process. The 32 x 32 PARCOS I chip was fabricated using a
2u P-well technology. These capacitance values cannot be scaled easily to get values for a 2u technology. The
capacitance values extracted by Spice account for all the capacitancesin the circuit including gate capacitance,
Miller capacitance and drain island capacitance. Out of these, only gate capacitance can be scaled, and then only
if the gate oxide thickness is the same in both processes. In general even the gate oxide thickness changes with
the feature size

2 x (0.086+0.071)

5.024 pF

/

0398 |
c13

\l/

5.4 pF

95/2
60/2

IE:

X4

! 0.233
C11

44/2
26/2

18/2
12/2
X2

| 0.066
| cwo
v

6/2
4/2
X1
0.017

\
Co
AL

Figure 4.14. Driver for the selector trees

113

114

are assumed to be the same size) and the equivalent resistance of a unit-size pfet. 7x is
defined in the same way for nfets. Parameter f is the ratio of drain island capacitance to the
gate capacitance. It varies between 1-2. If we let the pullup and the pulldown delays be the

same, we get

o _N_T 415
P, N; S (4.15)

Where S; = P; + N; is the size of the gate, and 7 = 7p + 7n is the gate pair delay which
is determined from the ring oscillator frequency for the fabrication technology. The ring
oscillator frequency for the 32 x 32 PARCOS I process was 26.5 MHz for 31 stages with a
pullup to pulldown size ratio of 2. This gives a pair delay for a minimum size inverter (pullup
12/2, pulldown 6/2) of

11
31 ™ 26.5 x 10°

Substituting these values in formulae for the delays in the individual stages of the driver,
we get a total delay of

oo () (500) ¢ ()¢ (S0020)]

The term Cr/Co accounts for the “load” of 32 MUXs in terms of a minimum size inverter.
Cr = 32 x (0.086 + 0.071) = 5.024 pF*. From Spice simulation and data from other similar
technologies, we know that Co = 0.07pF (The output mode capacitance of an inverter with
PU = 6/2 and PD = 4/2 with a single fanout. $; has PU = 6/2 and PD = 4/2). The variable f
is the ratio of drain island capacitance to the input gate capacitance, which varies between

=122nS =171 (416)

1 and 2 in practice.

18+12 , 44+26 , 95+ 60 , (5.02/0.07) x (6 +4)
6+4 ' 18+12 44+26 95 + 60

To-river = +4x f] (4.18)

using a value of f = 1 (as suggested in the literature for technologies such as ours) this gives

TD-—Driver = 1.22(3 + 2.33 + 2.21 + 4.63 + 4) = 19.73nS (4.19)

The design can be optimized further by resizing the transistors so that every stage has
the same delay. In that case, the delay in the driver will be about

“These numbers are from the circuit extraction of the actual layout

_3 3

3

3

’ ' 115
C 1
TD_Dyiver = TN [f + (—C-E)] (4.20)
or .
5.024\ 4
TD-Driver = 1.22x 4 [1 + (W) ‘ = 19.1nS (4.21)

Notice that our design is nearly optimal for 4 stages. The optimal design will need

_ log. (%‘:) B log. (%%%

=)=31 (4.22)
1+14 1+4

or 3 stages. Using a 3 stage design, the delay would have been

5.024\ $
1.22 x 3 x [1 + (W)] =18.9 nS (4.23)

In order to obtain the desired logic sense, however, an even number of stages was required.

Multiplexer: A detailed circuit diagram of the multiplexer is shown in figure 4.15 The
delay in the inverters X5 and X can be calculated in a manner similar to the driver and is

0.9 6+4
|34 +17 (m) x 5
Tp—Buffer =T [12+8 + (34317) +2x f] (4.24)

= 1.22(2.55 + 3.78 + 2) = 10.16nS

The delay in the pass transistor selector tree is calculated as follows. As before, the
details of the method can be found in [Shoji 88, pp 275). Referring to figure 4.15, the
transistors in the selector tree can be assumed to be in the ochmic region. Without going into
the details of this derivation, it can be shown that the circuit in figure 4.15 is equivalent to
the circuit in figure 4.16 where

Ry=Ro+Ri+Ra+ R3+ Ry (4.25)

Rp=Rs5+ R¢+ R7+ Rg + Ro (4.26)

£ " . ¢ € F_ EF- © - T ©- O EFE- ET O ET ET PTG

116

ped indino aui o1 enm 1€20 9€20 8«05. 9619
S80°0 £20°0 890°0 S$0°0
6y _ 8y Ly 9% Sy
_ m= mm«o ot |<<<(4\<<(‘\<<(| I$>>T
60 8«0 6210 B«o 6ct 29 opIS N LLL % a

/ _ 6620 1819 35 0810
6110 2010 e o 2100

a
nt._. n\a
4 €/ve erelL _
n ao— oL (v (v

4d voL'L

Figure 4.15. Selector tree and buffer

%‘: %

117
R
A
FIB Cc A Cg
v v
Figure 4.16. Equivalent circuit for a selector tree
[Ro(Cis0 + Cis4 + Cis1 + Caso + %0176) +]
1 Ry (Ci84 + C181 + Ca39 + %Cm) +
Ca= . R3 (Ci81 + Cos9 + %0176) + (4.27)
R3(Cas9 + %0176) +
| R4 %0176) |
and
[Rs (Ci96 + Caso + Cass + Cas1 + %Cns) +]
1 Reg (Ca60 + Cags + C2a1 + %0176) +
Cp = %5 R7(Cass + Caz1 + %0176) + (4.28)
Rg (Coz + %Cm) +
| Ro ’21‘0176)

.Using an approximate resistance value for P-channel of 15000 ochms/sq (/sq is a dimen-
sionless unit) and 6000 chms/sq for N-channel [Mukherjee 86, pp 156] and noting that the
pfets in the selector tree are 6/2 and the nfets are 4/2 in size, we get

Ro = Ry = Ry = Rz = R4 = 15000 x % = 50000hms
and

Rs = Rg = R7 = Rg = Ry = 6000 x = 30000hms
Thus

R4 = 5 x 5000 = 250000hms

118
Rp =5 x 3000 = 150000hms
Ca = 228 (227 x 5+ 0.119 x 4+0.107 x 3+ 0.101 x 2 + 0.072) = 0.36pF
and
Cp = 9% (%2 x 5+ 0.085 x 4+ 0.073 x 3+ 0.068 x 2 + 0.045) = 0.29pF
Thus the total delay in the selector tree is
Ry X RB)
Tp_ —_— C (4.29
D~ Selector (R.4+RB X (Ca+Cs) .)
25000 x 15000 2
(25000 X 15000) % (0.36 + 0.29) x 10~12 = 6.1n5
From above, the total latency of a worst-case path through the 32 x 32 PARCOS I is
Tp_ParcoSI = TD_Pads + TD_Driver + TD—Selector + TD-B._.f_fer (4.30)

= 12+ 19.73+ 6.1 + 10.16 = 48 nS

This figure is in close agreement with the delay measured in the fabricated chip, which
is 42 nS for a high-to-low transition at the output and 52 nS for a low-to-high transition at
the output.

The throughput of the chip is the inverse of its latency multiplied by the number of
outputs. It should be noted that the throughput can be increased by buffering the signals
inside the PARCOS I chip (currently a path from an input pad to an output pad is fully
combinational). The delay in the driver can be reduced by using one driver each for the
P-selector tree and the N-selector tree. It should be noted, however, that the delay in the
selector tree is the smallest component of the total delay. It can be shown that the delay in
a pass transistor selector tree increases in proportion to the square of the number of links it
contains. Therefore, for a 128 x 128 PARCOS I, the delay in the selector tree will be about

2
6.1x7—=12n5

52
The contribution of the MUX delay in larger versions of PARCOS I will be small. Further,
the effect on delay of smaller feature size is more than linear. For example, a MOSIS
1.6 CMOS technology has a ring oscillator frequency of about 72 MHz for 31 stages and a
1.2p technology has a ring oscillator frequency of more than 90MHz. These figures should
be compared with 2 technology where the ring oscillator frequencies are in the range of

3

-3 _ 3 _3 __3 __3

—3 3 _1

—3

4 3 —a —3 —3 T3 m—3 3 T3

r

3

3

119

26-35MHz. Thus, the effect of reduced T due to smaller feature size technologies will provide
more than a linear improvement in the PARCOS I latency. We project that, using 1.2u

~ technology, it is feasible to design a 128 x 128 PARCOS I chip with a latency of less than 25

nS.

4.7 Comparison of various networks

In this section we analyze and compare the three classes of networks (Crossbar, Clos,
Benes) described earlier in this chapter, in terms of (1) Hardware cost, (2) Time to setup and
reconfigure, and (3) Latency and throughput.

4.7.1 Hardware cost

Here we are primarily interested in determining the circuit board area required for
implementing networks of various sizes. Traditionally, multistage networks have been
compared with respect to the number of transistors (or switches) in them. We showed earlier
that the number of pins in a VLSI package is-a greater impediment to constructing larger size
networks on a single chip than is the number of transistors. Some interesting observations
can be made concerning the hardware cost of networks when the measure of cost (board
area) in terms of VLSI package area is chosen instead of the number of transistors in the
circuit. Also the size of the building block chip plays an important role in the total board area
for these networks. These results are presented in two forms: Hardware costs of various
size networks in terms of a fixed size PARCOS I chip and the effect on the hardware cost of
varying the PARCOS I size.

Table 4.1 through 4.7 list the number of chips and the normalized board area required for
building various sizes of crossbar, 3-stage Clos, and 3-stage Benes networks using different
sizes of PARCOS I packages. For calculating the normalized board area, we assume that the
different PARCOS I chips can be packaged in equal-pitch PGAs. PGA area is proportional
to the number of pins in the package. The area of a hypothetical 8 x 8 PARCOS I chip is
chosen as one unit. Using a chip area of an 8 x 8 PARCOS I as the measurement results in
some inaccuracies in the board area calculations for larger PARCOS I designs because larger
packages don’t necessarily use the same lead pitch or even the same packaging technology.
Therefore, in practice, the board areas for networks using larger PARCOS I chips will be less

120

than those listed in the tables. From a known area of 1.44 sq inch for a 32 x 32 PARCOS
I package, we can use an approximation of 0.5 sq inch for the area of an 8 x 8 PARCOS
I, which allows us to get at least a rough estimate of the board areas for larger networks.
For example, from table 4.5, the board area for an 8K-input 8K-output Clos network using
128 x 128 PARCOS I chips will be about

6144 x 0.5 = 3072 Sqinch

Using 18 x 12" boards (roughly the size of a VME board), this will require

3072

or about 15 boards.

A brief note is in order regarding the blank entries in the tables for Clos and Benes
networks. For example, in table 4.3 there is only one optimal 3-Stage Clos network
construction (512-input 512-output) using 32 x 32 PARCOS I chips, and is the largest 3-stage
Clos network that can be built with 32 x 32 PARCOS I chips. For network sizes smaller
than 512 x 512, a 32 x 32 PARCOS I is actually being used as two or more smaller PARCOS

I switches. The same situation occurs for the blank entries in the Benes network columns.

The reason for computing estimates based on PARCOS I sizes larger than 128 x 128 is
as follows. With currently available PGAs, it is feasible to implement a 128 x 128 PARCOS
I on a single die. A rule of thumb is that the clocking rate on a board is about an order of
magnitude less than on a die. Therefore, it is important to construct as large a switch as
possible on a single package. Using packaging technologies such as the Thermal Conduction
Module (TCM) [Blodgett 82] and multichip modules using Direct Die Mounting methods (see
[Bakoglu 90] for an overview), it is feasible to construct larger PARCOS I modules without
paying the full penalty of routing signals on board (a module substrate can be clocked faster
than a printed circuit board but not as fast as a die). Such PARCOS I modules will further
reduce the board area and in turn allow potentially smaller latencies in the entire network.
Also, more driver area and power are required for a signal to go from one package to another
on a PC board than on the same die or a module substrate. Together, these factors dictate
that the number of packages should be minimized in a design.

An additional note is in order as to why we are not considering Clos and Benes networks
with more than 3 stages. Using 262144 copies of a 256 x 256 PARCOS I chip, it is possible
to build a 4M-input 4M-output, 5 stage Clos network. Such a network will require a board
area of about

—3 ~ 3 T3 T3 3 | 3 I ~— 3 T a "~ 3 "~ 3

121

262144 x 32 x % = 4,194,304 Sq inch

About 19,418 12 x 18” (rough size of a VME board) PCBs will be required to build this
network. Therefore, 5 and more stage Clos network designs are impractical. The same
applies to 5 or more stage Benes networks. In addition, the control algorithm for 5 or more
stage Clos and Benes networks are a lot more time consuming, which limits the usefulness
of these networks in large scale multiple-processor systems.

Table 4.1. Various networks built out of 8 x 8 switch

Number of packages | Relative area
Network required (8 x 8switch = lunit)
Size Cross [3-St [3-St | Cross | 3-St | 3-St
-bar Clos | Benes | -bar Clos | Benes
8x8 1 - - 1 - -
16 x 16 8 12 6 8 12 6
32 x 32 32 24 12 32 24 12
64 x 64 128 - 24 128 - 24
128 x 128 | 544 - - 544 - -
256 x 256 | 2176 - - 2176 - -
512 x 512 | 8704 - - 8704 - -
1K x1K | 35072 |- - 35072 | - -
2K x 2K | 140288 | - - 140288 | - -
4K x 4K | 561152 | - - 561152 | - -

122

Table 4.2. Various networks built out of 16 x 16 switch

Number of packages Relative area
Network required (8 x 8switch = lunit)
Size Cross | 3-St [3-St Cross | 3-St | 3-St
-bar Clos | Benes | -bar Clos | Benes
16 x 16 1 - - 2 - -
32 x 32 8 12 6 16 24 12
64 x 64 32 24 12 64 48 24
128 x 128 | 128 48 24 256 96 48
256 x 256 | 512 - 48 1024 - 96
512 x 512 | 2112 - - 4224 - -
1K x 1K | 8448 - - 16896 - -
2K x 2K | 33792 - - 67584 - -
4K x 4K | 135168 | - - 270336 | - -
8K x 8K | 541696 |- - 1083392 | - -
16k x 16k | 2166784 | - - 4333568 | - -

Figure 4.17 is a graph showing the relationship of the board area required to construct
larger crossbar, 3 stage Clos, and 3 stage Benes networks using various sizes of PARCOS 1
chips. For example, the ratio of the board areas for a 1-K input 1-K output crossbar network
built with 32 x 32 PARCOS I chips to the same size network built out of 512 x 512 PARCOS
Iis

8192
1z - 16

This apparent disparity comes to light only if we use a more practical measure of hardware,
the number of packages and their size, rather that the silicon area. There is no correct way
of comparing the board areas of a specific size Clos or Benes network built with PARCOS
I switches of different sizes. As pointed out earlier, there is only one optimal 3-stage Clos
network defined for a specific size of PARCOS 1. Therefore, there is only one point each for a
specific size 3 stage Clos or a specific size 3 stage Benes network in the graph.

3 3

3 _3 _3 .3 __3

3 3

3 3

—3

Table 4.3. Various networks built out of 32 x 32 switch

Number of packages Relative area
Network required (8 x 8switch = lunit)
Size Cross | 3-St | 3-St Cross |3-St | 3-St

-bar Clos | Benes | -bar Clos | Benes

32 x 32 1 - - 4 - -
64 x 64 8 12 6 32 48 24
128 x 128 32 24 12 128 96 48
256 x 256 128 48 24 512 192 | 96
512 x 512 | 512 96 48 2048 384 | 192
1K x 1K 2048 - 96 8192 - 384
2K x 2K 8320 - - 33280 - -
4K x 4K 33280 - - 133120 | - -
8K x 8K 133120 | - - 532480 | - -
16K x 16K | 532480 | - - 2129920 | - -
32K x 32K | 2129920 | - - 8519680 | - -

Table 4.4. Various networks built out of 64 x 64 switch A

Number of packages Relative area
Network required (8 x 8switch = lunit)
Size Cross [3-St [3-St | Cross 3.St | 3-St

-bar Clos | Benes | -bar Clos | Benes
64 x 64 1 - - 8 - -
128 x 128 | 8 12 6 64 96 48
256 x 256 | 32 24 12 256 192 | 96
512 x 512 128 48 24 1024 384 | 192
1K x 1K 512 96 48 4096 768 | 384
2K x 2K 2048 192 | 96 16386 1536 | 768
4K x 4K 8192 - 192 65536 - 1536
8K x 8K 33024 - - 264192 - -
16K x 16K | 132096 | - - 1056768 | - -
32K x 32K | 528384 | - - 4227072 | - -
64K x 64K | 2113536 | - - 16908288 | - -

123

Table 4.5. Various networks built out of 128 x 128 switch

Number of packages Relative area
Network required (8 x 8switch = lunit)
Size Cross | 3-St | 3-St | Cross | 3-St | 3-St

-bar Clos | Benes | -bar Clos | Benes
128 x 128 |1 - - 16 - -
256 x 256 | 8 12 6 128 192 | 96
512 x 512 32 24 12 512 384 | 192
1K x 1K 128 48 24 2048 768 | 384
2K x 2K 512 96 48 8192 1536 | 768
4K x 4K 2048 192 {96 32768 3072 | 1536
8K x 8K 8192 384 | 192 131072 | 6144 | 3072
16K x 16K | 32768 | - 384 524288 | - 6144
32K x 32K | 131584 | - - 2105344 | - -
64K x 64K | 526336 | - - 8421376 | - -

Table 4.6. Various networks built out of 256 x 256 switch

Number of packages Relative area
Network ‘required (8 x 8switch = lunit)
Size Cross | 3-St | 3-St Cross 3-St | 3-St

-bar Clos | Benes | -bar Clos | Benes
256 x 256 1 - - 32 - -
512x 512 | 8 12 6 256 384 192
1K x 1K 32 24 12 1024 768 384
2K x 2K 128 48 24 4096 1536 | 768
4K x 4K 512 96 48 16384 3072 | 1536
8K x 8K 2048 192 | 96 65536 6144 | 3072
16K x 16K | 8192 384 | 192 262144 | 12288 | 6144
32K x 32K | 32768 | 768 | 384 1048576 | 24576 | 12288
64K x 64K | 131072 | - 768 4194304 | - 24576

124

— 3

125
S2097152 +
]
31 048576 +
2
§ 524288
o
R 262144
o
S 131072
<
©
S 65536 -
]
o 32768 1
7]
N
o 1 4 1
£ 638
2 8192/
4096 1
2048 1
1024 1
512 -
256
128}
[| B 32Kx32K Clos, or 64Kx64K Benes
641 O———0 8Kx8K Clos, or 16Kx16K Benes
32 A A 2Kx2K Clos, or 4Kx4K Benes
) * ¥ 512x512 Clos, or 1Kx1K Benes
161 + + 256x256 Clos, or 512x512 Benes
. & 16Kx16K Crossbar
sl o ¢ 8Kx8K Crossbar
® ® 4Kx4K Crossbar
sl O O 2Kx2K Crossbar
X X 1Kx1K Crossbar
Py . & 512x512 Crossbar
O & 256x256 Crossbar
1 i i 1@———® 138x128 Grossbar, { | | {
0 50 100 150 200 250 300 350 400 450 500 550

PARCOS I Size

Figure 4.17. Normalized board area vs switch size

126

Table 4.7. Various networks built out of 512 x 512 switch

Number of packages Relative area
Network required (8 x 8switch = lunit)
Size Cross | 3-St | 3-St Cross 3-St | 3-St
-bar | Clos | Benes | -bar Clos | Benes
512 x 512 1 - - 64 - -
1K x 1K 8 12 6 512 768 384
2K x 2K 32 24 12 2048 1536 | 768
4K x 4K 128 48 24 8192 3072 | 1536
| 8K x 8K 512 96 48 32768 6144 | 3072
16K x 16K | 2048 192 | 96 131072 | 12288 | 6144
32K x 32K | 8192 (384 | 192 524288 | 24576 | 12288 |
64K x 64K | 32768 | 768 | 384 2097152 | 49152 | 24576

4.7.2 Time to set up and reconfigure

The setup time or the time to program an input-output connection pattern is comprised of
programming the individual PARCOS I memories, and was discussed earlier in this chapter
for the three classes of networks. Crossbar networks do not require any “precomputing,”
however, Clos and Benes networks do. The cost of “precomputing” will be discussed in
the next chapter. If we ignore the “precomputing” time as part of the setup time in these
networks, then all three classes of networks can be programmed in N steps for an N-input
N-output system. The time to reconfigure from one stored connection pattern to another is
equal to one memory cycle time in all of these networks.

4.7.3 Latency and throughput

The PARCOS I communication matrix is a fully combinational circuit. As was discussed
in a previous subsectidn, it is reasonable to expect a 128 x 128 PARCOS I to have a latency
of less than 25nS. When building larger Crossbar, Clos or Benes networks with PARCOS
I building-block chips, two approaches can be followed: Allow a fully combinational circuit
from the input to the output of the entire network, or buffer the signals at the individual
stages. Clearly the second choice is preferable for high throughput. Suppose a 3-stage Clos
network is designed using PARCOS 1. The latency of such a network using the first approach
will be at least 75nS and the throughput per serial link will be less than

3 3

-3y 3 _3 ___3 __3 3 3 13 3

3

—3 T3 T

—3 ~— 3 ~ 3 "3

’ 127

1

W = 1333 Mb/sec

Using the second approach, however, the latency will still be around 75nS but the throughput
will be about

1

W =40 Mb/sec

PARCOS I can be designed to have this buffering capability at its inputs and/or at its outputs.
Possibilities for buffering signals inside PARCOS I to further increase its throughput were
discussed in subsection 4.6.5.

4.8 Conclusions

The major conclusion of this chapter is that crossbar and other dense networks, such
as Clos and Benes, are viable design alternatives, even for large scale multiple-processor
systems. Such networks, in general, have been considered impractical to build.

To arrive at this conclusion, we presented the architecture of a VLSI PARallel COmmu-
nication Switch (PARCOS I) chip that was designed and fabricated as the building block for
the ICAP communication network, as well as a variety of other communication networks.
Next, we demonstrated how PARCOS I can be used in building large crossbar, Clos, and
Benes networks. To further lend support to the feasibility of constructing such networks,
we analyzed the PARCOS I architecture with respect to its hardware cost (die area), pinout
requirements, power dissipation, time to set up and reconfigure the switch, and its latency
and throughput. An interesting conclusion of this study is that even though the layout area
grows proportional to n2 x logen, the PARCOS I design is pin limited rather than silicon
area or power dissipation. This warrants the design of large crossbars on a single chip or
module, limited only by the packaging technology. Finally, we analyzed and compared the
aforementioned networks with respect to their hardware cost, time to set up and reconfigure,
and the latency and throughput. It was shown that it is practical to build large crossbar
networks with up to a few K inputs, or large Clos and Benes networks with up to a few tens
of K inputs, using state of the art technologies. The following is a summary of the goals
achieved in this thesis so far and the remaining goals.

128

4.8.1 Goals achieved

The objective of the generation 1.0 design was to address the requirements of a multiple-
processor network when the target parallel processor is used in a SIMD mode or in
synchronous MIMD (SMIMD) mode. In this chapter we addressed the requirements of a
multiple-processor network when the interprocessor communication patterns in the target
parallel processor are fixed and known apriori. We showed that under central routing
control, these networks can be programmed and reconfigured in the best possible time.

4.8.2 Goals remaining

This design does not work well in situations where the communication patterns are not
known apriori (e.g. in data dependent communication), which are common in MIMD parallel
processors and some SIMD processors such as the CM2 and the MassPar. In the next chapter
we will extend the design to partially address the requirements of such systems.

3

—3

3

3 —3 (a— —3 L | —3 1§ 3

—3 3 T3 " 3

l——@ l‘"“.%)

CHAPTER 5
GENERATION L5: CENTRAL ROUTING CONTROL

In this chapter we address the requirements of a multiple-processor network when
the interprocessor communication cannot be determined apriori, but, once established, the
pattern is likely to be used later. Also, the target parallel system is operated in a SMIMD or
a MIMD mode.

To support fine-grained low latency self routing in the networks discussed in the previous
chapter, we follow a two stage approach. First, in this chapter we discuss a series of designs
that can be built by using simple additional custom hardware besides PARCOS I chips,
to provide an interim solution to the problem of supporting data dependent interprocessor
communication at the ICAP level of the IUA. These designs use central routing control which
in general, is serial in nature. Therefore, these designs are not optimal. We call these
designs, Generation 1.5 design - i.e. these designs besides being interim solutions for the
ICAP communication network, serve as stepping stones to the Generation 2 design.

Even though Generation 1.5 designs are inadequate to satisfy all of our goals, they
serve two important purposes. First, they are valuable exercise because they show that it
is possible to construct networks that fit the above mentioned section of the requirements’
space, and provide insight that will lead to the self-routing designs. Second, they provide
backup solutions to the ICAP communication network, in case the Generation 2 design
should encounter problem or delays.

The routing control in Generation 1.5 design is central. We will first develop simple
extensions of the existing designs to support synchronous data-dependent routing. In data
dependent synchronous routing, a custom VLSI chip can be used to determine whether all
of the communication requests have been fulfilled. This chip was originally designed to
construct the TUA feedback concentrator mechanism. After developing extensions to support
synchronous data-dependent communication, we will further extend the design to support
asynchronous data-dependent routing. '

The rest of this chapter is organized as follows. The IUA feedback concentrator and its
building block chip are described first as a self-contained section. In section 5.2 we discuss

129

130

the extensions to support synchronous data-dependent routing, followed by discussion of
extensions to support asynchronous data-dependent routing. Multicast is a useful capability
in multiple-processor systems. Issues related to supporting multicast operations in these
networks will be discussed in section 5.4. The designs developed in this chapter will be
analyzed and compared in section 5.5, followed by an evaluation of Generation 1.5 design.

5.1 The IUA feedback concentrator

Recall from section 1.2 that the control for the CAAPP and the ICAP is provided
by the SPA, using associative processing techniques, and the CAAPP level is especially
oriented towards associative processing with an emphasis on fast global summary feedback
mechanisms supported in hardware. This section provides the details of the TUA feedback
concentrator and its building block chip. The IUA feedback concentrator implements the
associative processing primitives in the IUA, to be discussed shortly. In data dependent
synchronous routing, the IUA feedback concentrator can be used to determine whether all
of the communication requests have been fulfilled. The details of the feedback concentrator
and its building block chip are organized as this self contained section and can be skipped,
without losing continuity in this thesis.

Many parallel algorithms, when mapped onto multiple-processor systems, require gath-
ering data from all of the processors to generate a global value. In SIMD parallel processors,
this global value can be used by the central controller either as data in scalar processing
or as input to control flow decisions. Many low- and intermediate-level vision algorithms
are characterized by this kind of processing. Making a global decision in fine-grained SIMD
parallel processors is equivalent to a test-and-branch operation in a uniprocessor, and should
have a similar time cost. Thus a fast global feedback mechanism is required in the system.

All of the above observations apply to the IUA. Fine-grained control at the low and the
intermediate levels in the IUA is achieved by using associative processing techniques. Foster
[Foster 76] has identified four key processing capabilities in associative computation:

(1) Global broadcast/local compare/ activity control.
(2) Select a single responder.

(3) Some/None response, and

(4) Count-responders.

We present the architectural details of the last two of these capabilities as they are

3

131

embodied in the IUA feedback concentrator, and demonstrate their power in parallel
processing by giving a few example algorithms.

The rest of this section is organized as follows. Next we present the details of the
feedback concentrator mechanism as implemented in a custom VLSI chip, which uses an
innovative combination of circuit techniques to achieve high speed. A brief description of
the chip is provided thereafter. Next we compare the performance of our architecture with
a mesh connected processor without the feedback mechanism for three common low-level
vision tasks, followed by a brief overview of the plans for the feedback concentrator for the
next generation of the IUA.

5.L1 The IUA Feedback Concentrator Architecture

The hardware comprising the two lower level processors of the IUA is built from 4096
CAAPP chips and 4096 ICAP processor chips, along with memory chips and the associated
interface and I/O circuitry. Each CAAPP chip contains 64 bit-serial CAAPP PE’s, their local
memory, and interface logic. A CAAPP chip together with an ICAP processor constitutes
what we call a node. The system is divided into 64 motherboards each containing 64 nodes.

Each CAAPP PE has a response register called the X register, and an activity register
called the A register. The fastest method of counting the number of responders would be
to feed the 1-bit output from the X registers of the 512 x 512 = 262,144 CAAPP PEs to
a hardware adder and generate a 19 bit sum for the ACU. One technique, proposed by
Favor [Favor 64] for counting the number of responders, uses a pyramid of full adders to
generate the least significant bit of the count of the inputs. Next, the carries generated at
various stages of the adder pyramid are fed to a second smaller pyramid to generate the
second least significant count bit. Successively smaller adder pyramids are chained together
to develop the full count. In this method each stage waits for one count bit to be formed
before feeding any carries from the current level to the next. Foster [Foster 71] improved
upon Favor’s scheme such that at any stage of the current adder pyramid, as soon as 3
carries are available, they are fed to the next level adder pyramid. Foster’s scheme, called
a carry-shower adder, results in a significant speedup over Favor’s scheme. For example,
Favor’s scheme has a delay of 21 full adders for 64 inputs, whereas Foster’s scheme has
a delay of 10 full adders for 64 inputs. In another study, Swartzlander [Swartzlander 73]
corrected Foster’s lower bound formula and showed that the theoretical lower bound on the
delay is 9 full adders for 64 inputs. But the best known actual circuit has a delay of 10
full adders. Further, Swartzlander proposed a “faster” scheme for the counting hardware by

132

using Read-Only Memory (ROM). However, his scheme is suitable for only small numbers of
inputs, and he assumed that the delay in a ROM is independent of its size. The fan-in from
262,144 processors to a single sum is too great to be practically realized this way.

In the IUA design, the pin constraints on the processor chip, and space and pin limitations
for the external circuitry required that the chip-level counts be output serially. Figure 5.1
illustrates the logical organization of the Some/None and the Count-responder mechanisms
on one node. Local Some/None is the logical sum of the X register of the 64 CAAPP PEs on a
node, generated at the end of every CAAPP instruction by using Foster’s scheme within the
processor chip. A special instruction, called latch_count, allows either the CAAPP count or an
8-bit value from the associated ICAP processor to be loaded in the node count register (CR).
The value in the CR can be read out serially from the CAAPP chip. A separate instruction,
called latch_local_count, allows the CAAPP count to be loaded in the local count register,
where it can be read by the corresponding ICAP processor. Three additional general purpose
signals Do — D3 are provided by the ICAP and are multiplexed under program control with
three special purpose feedback signals from the CAAPP chip.

From the nodes, one option is to use an instruction to shift out each bit of the count
register. However, this idles the processors during output of the count. Our analysis
showed that typically some short operation is performed between the counts in a burst. The
operation may be as simple as loading another bit in the response register, but is likely to be
a comparison (for example, in computing a histogram). Thus, it was decided to use a finite
state machine that automatically shifts the count out of the chip, least significant bit first,
one bit per cycle. Output begins as soon as a count is latched. The processors are thus able
to overlap computation with the development of the current count.

There are many ways to sum the node counts. One method would be to feed the 8-bit
values from 4096 nodes to a hardware adder such as a Carry Save Adder (CSA) [Cavanagh
84]. This approach is infeasible because of the hardware cost and the number of wires.

Our final solution is to trade a small amount of the speed of counting responders for
a substantial saving in the hardware and the number of wires — we serialized the entire
adding process. This scheme is shown in figures 5.2 and 5.3. Figure 5.2 illustrates the
Some/None and the Count._responder mechanism on one motherboard. The local Some/None
(L-S/N) outputs from the 64 nodes are fed into the motherboard Some/None tree. (The
Do — D, feedback signals are treated in the same way.) The local counts (L_Count) from the
count register (CR) of the 64 nodes are serially fed into the motherboard count responder
tree. Figure 5.3 illustrates the global Some/None and Count-responder mechanisms for the
full TUA, which concentrate the outputs of the motherboard level networks in a pipelined

3

|

1

A

3

—3 3

CAAPP CHIP
Local
. Count P
B Bt £ | icap
i |sN EF B IC ICR__|=—+{D2 D1 po.
MUX
LSB
: CR
y vy Y { Y .
\ MUX /

L_COUNT

L_SN D2/EFr Di/B Do/C
D2, D1, DO : ICAP Status Lines
EF, B,IC : ICAP/CAAPP Status Lines
SN : Local Some/None line on a Ncde
LCR : Local Count Register
ICR : ICAP Count Register
CR : Node Count Register

Figure 5.1. Node Some/None and Count network

134

manner and are similar in design.

Before describing the functioning of the feedback concentrator, we discuss the design of
a custom VLSI chip that was built to implement all four blocks of figures 5.2 and 5.3.

5.L.2 The feedback concentrator building-block chip

A schematic of the concentrator chip is shown in figure 5.4. It comprises four hardware
blocks: a carry-shower adder, registers, an auxiliary logic unit, and a carry-select adder.
The CAAPP PE’s operate with a 100nS cycle time, therefore the delay from the inputs to
the outputs was constrained to 100nS. Additionally the delay through the second adder was
constrained to 25nS. Also, the technology was limited to a MOSIS 2-micron CMOS process
and an 84-pin package.

The carry shower adder is designed using a full adder cell and is similar to the one
proposed by Foster, as discussed in the previous section. The carry-shower adder generates
a 7 bit sum from 64 (one-bit) inputs and has a delay of about 50nS.

Another hardware block of the concentrator chip is a pair of registers D Reg.1 and
D_Reg 2, whose sizes are 7- and 6-bits respectively. The clock-to-output delay in the
registers is about 6nS.

The auxiliary logic unit is used to generate the logical AND, logical OR and logical EXOR
of the 64 inputs to the concentrator chip. The inputs to the auxiliary logic unit are taken of
the 7 binary outputs of D_Reg.1. The logical OR is used for building the Sorhe/None circuitry
at the motherboard and the global level. The logical AND and the logical EXOR are provided
for future use. The auxiliary logic unit has a delay of less than 10nS.

The last major block of the concentrator chip is a 7 bit carry-select adder. Its design was
particularly critical to the overall speed and timing of the chip. Subtracting 6nS for the D
register delay and 4nS for the delay in the output pads from the 25nS goal left a maximum
of 15nS of allowable delay in the 7 bit adder. A ripple carry adder using 7 adder cells is
not adequate, because each cell would have a 5nS delay for a total of 35nS. Also, a 7 bit
carry look-ahead adder cannot be constfucted in the available technology with a delay of
less than 15nS. We achieved the desired speed by trading more hardware (VLSI chip area)
for speed, through the use of a 7 bit carry-select adder [Cavanagh 84]. A microphotograph
of the feedback concentrator chip is shown in figure 5.5.

31 1 2

3 3 '3 __3

.

r

=

135

L_S/N_63 L_S/N_O

Motherboard Some/None Tree

—

l

M_S/N

L _Count_63 L _Count 0

E CK
Motherboard Reset

Count Responder Tree
Contr.
0
' l\ M_Par_Count /
M_Ser_Count

(Networks for other 3 inputs are similar to L_S/N)

Figure 5.2. Motherboard Some/None and Count Networks

136

M_S/N_63 M_S/N_0

Global Some/None Tree / ‘

G_S/N
M_Ser Count 63 M_Ser Count 0
l l CK
Global Reset
Count Responder Tree
Contr.

0
l\ G_Par_Count /l

Y
G_Ser_Count

(Networks for other 3 inputs are similar to M_S/N)

Figure 5.3. Global Some/None and Count Networks

~3 T3 3%

+ 1
AND

Inputs

Carry Shower
Adder Tree

| | Reset_2
Reset_1 -
D_Reg_1
Clock —
**
B —
ALU
e

OR
y
EXOR

7 Bit Carry Select Adder

6__5

4

3 2

e

Most significant 6 bits

Y

Serial Sum to
Next level

Figure 5.4. Schematic of the Concentrator Chip

137

}
]
.
k
A

138

P

.

Figure 5.5. Microphotograph of the concentrator

139

5.L3 The IUA feedback concentrator operation

When the concentrator chip is used for computing global Some/None, it functions as
follows. The logical sum (L_S/N) of the response registers (X registers) on a node stabilizes
at the end of the instruction cycle (this operation is carried out in every CAAPP instruction
cycle). In the second cycle, a logical sum of the 64 nodes is computed for every motherboard.
By the end of the second cycle, the M_S/N from the 64 motherboard concentrator chips is
ready at the inputs of the global concentrator chip. Meanwhile, in the second cycle, the
L_S/N from the next instruction passes through the motherboard concentrator chips in a
pipelined manner. By the end of the third cycle (or 0.3uS), a global Some/None is available,
the second L_S/N is at the inputs of the global concentrator and a third L_S/N is at the inputs
of the motherboard concentrator.

When the concentrator chip is used for counting the responders in the CAAPP or for
summing 8-bit values from the ICAP, it functions as follows. One cycle after the low-order
bits of the chip-level counts are input, the 7-bit motherboard-level result appears. If another
set of bits are input, the high-order 6-bits are recirculated and added to the next result
through the carry-select adder. The low-order bit is output to the next stage of the count
circuit. The process can be repeated to sum 64 inputs of any length with the low-order
portion of the result being shifted out serially and the high-order 6 bits available in parallel
one cycle after the last set of bits is input. To serially output the entire result, zeros are
input after the last set of bits. By the end of the third cycle, the least significant bit of the
final count appears at the serial output of the global concentrator chip, and by the end of
16 cycles (1.6uS), the last of the low-order bits is output (assuming 8 bits are output by the
daughterboards) and the high-order portion of the final count is available in parallel.

5.1.4 Sample algorithms

In this section we discuss three sample algorithms, used extensively in low-level vision
tasks. We provide their exact running time for a 512 x 512 image on the same size
CAAPP array, and then compare these times with another 512 x 512 mesh-connected
SIMD architecture but without the Some/None and the Count-responders mechanisms. The
algorithms presented here are merely intended to demonstrate the power of the two feedback
mechanisms in the extreme case. There is a great body of literature on other architectures
for low-level vision, that provide speedups between these two extremes. We will not compare

140

these architectures with the CAAPP.

Both the mesh connected processor (MCP), and the CAAPP are assumed to have the
same 100nS machine cycle time. For the CAAPP, the feedback response is stored in the
array control unit (ACU), whereas the feedback response from the MCP is stored in the
top rightmost PE (Possibly to be offloaded later. The top right PE is chosen merely for

convenience).

A. Some/None

As mentioned earlier, it takes 3 cycles on the CAAPP or 0.3uS for this operation. On
the MCP, in the worst case, a 1 from the lower left corner PE will have to be shifted to
the upper right hand corner PE. Assuming that the MCP has an instruction that allows a
PE to get a value from a neighbor PE’s-register, OR it with its register value, and store
the result in its local register (which is possible in CAAPP), all in one cycle, it will take
2 x 512 x 0.1 = 102.4uS on the MCP for this instruction.

B. Count Responders

Here we want a count of PEs with 1 stored in their registers. As mentioned earlier, this
instruction takes 16 cycles or 1.6xS in the CAAPP. In the MCP, the final count length is 19
bits. First we accumulate the counts of the rows in the rightmost PE’s. The variable ‘count’
is kept in each rightmost column PE’s memory. By successively shifting right the values in
the rows and accumulating in the rightmost PEs, we get a maximum length of 10 for the
‘count’ variable. For the initial two cycles, the ‘count’ variable can be a maximum of 2 bits,
for the next 4 cycles it can be of 3 bits, for the next 8 cycles it can be of 4 bits, and so on. This
gives us a formula to compute the time for computing sums in the rows; which is:

2x2+3%x4+4x8+..+9x256+10x 1=4106

or 410.6uS.
Next the values in the rightmost PEs are accumulated from bottom to top in the rightmost
column. The time taken for this operation is given by -

11x2+12x4+...+18x 256+ 19 x 1 = 8705

or 870.5uS.
The total time taken is thus 1281.1uS.

It should be noted that the count can be used to quickly compute other statistical

141

measures, such as mean, median, mode, standard deviation etc., and to compute a histogram
of an array of data.

C. Find greatest value

In this algorithm, the goal is to determine the greatest value in a given memory field
of the PEs. In the CAAPP, the algorithm begins by loading the high-order bit of a given
field into the response register of all cells. The ACU then tests the Some/None output of the
CAAPP. If any PEs have their high-order bit set, then they are candidates for the maximum
value, in which case any cells that have a 0 in their high-order bit are then deactivated.
However, if no cells have their lﬁgh-order bit set, then none are deactivated because they are
still potential candidates. This process repeats with each successively lower-order bit in the
field. When the low-order bit has been processed, only those cells that have the maximum
value will remain active. For each iteration, the ACU saves the Some/None response so that
the maximum value is available in the ACU at the conclusion of processing. A pseudo-code
algorithm is shown below.

For Bit Num := Field_Length-1 Down to 0 Do {Begin with the high-order bit}

Response := Field[Bit_ Num] {Put bit in response register}
If Some {If any cell has a 1 in this bit}
Then
Activity := Response {Then turn off activity in cells }
{with a 0 in this bit}

This algorithm takes 40 CAAPP instruction cycles or 4.0uS for an 8 bit value.

For the MCP, first we find the maximum in each row, and put it in the rightmost PEs.
Next we find the maximum in the right column and put the value in the top PE. The basic
operation is to compare the fields of two neighbors, and put the greater value in the right
hand side PE’s memory during the row phase, and in the upper PE’s memory during the
column phase. It will take some & multiples of 8 instructions for each compare. The value of
k for the MCP will depend upon the specific architectural implementation and its instruction
set. When this algorithm is emulated on the CAAPP, the value of k is 4. Thus, the total run
time for the algorithm on the MCP will be of the order of

4x8x2x512 Cycles

or 3276.8uS for the operation.

142

There are numerous algorithms where a hardware Some/None and Count-responder
mechanism will give significant speedups. Our objective in this section was merely to
demonstrate a few low-level algorithms that make use of the feedback concentrator mecha-
nism.

5.L.5 Second generation IUA feedback concentrator

Since the development of the IUA prototype started in 1986, VLSI technology has
improved sﬁbstant'ially in terms of minimum feature size, speed and packaging. The
connector technology has also kept pace with the VLSI technology in terms of /O pin density.
These technological improvements have enabled us to start developing the second generation
IUA with a substantially higher packaging density.

A smaller version of the second generation IUA, called the IUA prototype II comprises
8 daughterboards on a single motherboard. Each daughterboard holds 8 CAAPP chips, 8
ICAP processors, memory chips and associated interface and I/O circuitry. Each CAAPP
chip contains 256 CAAPP PEs. Thus there are 64 ICAP processors and 16K CAAPP PEs in
the IUA prototype II. The full IUA system is expected to have up to 32 motherboards.

In a way similar to the first generation IUA, the Local Some/None is generated at the
end of every CAAPP instruction in the IUA prototype II. The 8 Some/None lines on every
daughterboard are fed in parallel to an 8-input OR gate. The 8 Some/None lines from the
daughterboards are fed to an 8-input wired OR backplane trace on the motherboard. The
total delay from the generation of the Local Some/None to the generation of motherboard
level Some/None is less than 100nS.

The scheme for counting CAAPP PE responders in the JUA prototype II is as follows. The
9-bit chip-level counts from 8 CAAPP processors on every daughterboard are serially fed, 2
bits at a time, into a daughterboard concentrator chip. A block diagram of the daughterboard
concentrator chip is shown in figure 5.6. A single phase edge triggered flip-flop is used that
allows a simpler design of the concentrator chip. The outputs from 8 daughterboards are
serially fed, 2 bits at a time, into a motherboard concentrator chip. A block diagram of the
motherboard concentrator chip is shown in figure 5.7.

The count scheme for the JUA prototype II works in a manner similar to figures 5.2,
5.3, and 5.4. It takes 5 cycles to serially feed the 9-bit CAAPP counts into daughterboard
concentrator chips. One additional cycle is used to latch the most significant bit of
daughterboard counts at the output of the daughterboard concentrator chip. One more cycle

3 _ 3 .2 .2 __3 _3 _ 3 .3 -_3

-3 3 _3 _ 3 3 __3

3

8 2-bit numbers

——

_—

l n

— D Flip/Flop

o

Figure 5.6. Schematic of the daughterboard concentrator chip

143

8 2-bit numbers

—

-~

l n
J\ e

————l> D Flip/Flop

Figure 5.7. Schematic of the motherboard Concentrator Chip

144

3

3

ﬂ 4

7

~2 —3 T8 ~3 ™3 3 —3 —% —F "I 3 3

145

is required to transmit the last bit from the daughterboards to the motherboard concentrator
chip through the backplane. Finally, the motherboard concentrator chip introduces an
additional 1-cycle delay in producing a 16-bit motherboard level count. Thus the total delay
is 8 cycles. The delay in the new concentrator chip is low enough to allow us to clock the
count circuitry at twice the CAAPP instruction rate. Thus in terms of the CAAPP instruction
cycle, the delay in the count_responders operation for the IUA prototype II is 4 cycles. It

" should be noted that if the same scheme is followed for an TUA system with 1M CAAPP

PEs, the delay in counting responders will be only 6 CAAPP instruction cycles which still
compares favorably with a uniprocessor test-and-branch instruction.

5.2 Data dependent synchronous communication

In this section we consider centrally controlled networks to support data dependent
synchronous communication that can be based upon the networks discussed in the previous
chapter. That is, these new networks will be extensions of the earlier networks and will
thus include their functionality as well. The processing that takes place in a system is
comprised of alternating steps of computation and communication. Such processing is also
called Staged Computation. In the following subsections, we discuss two of these networks:
Crossbar and 3-stage Clos.

5.2.1 Crossbar network

In the previous chapter we showed the feasibility of constructing crossbar networks for a
moderate number of processors. We will show in this section that in addition to providing
low latency and the highest possible common access throughput, a crossbar also has simple
network setup and reswitching schemes, and will also discuss two crossbar network designs.
The designs differ in the way they handle contention, and in the way they implement some
of the routing functions in software vs hardware.

Network architecture

Figure 5.8 is a block diagram of the first of the two designs for building a crossbar
network, whose links are computed on-line, using PARCOS I chips. It is comprised of three

|N_0 — 0 > ————_— OUT_O

IN1T ———» 1 > - OUT_1

N XN
SRF1 CROSSBAR

|—— OUT_N-1

=

o

0o

7

/)]

ﬁ IN N-{ —————— N-1 >

g Data Address
£ Control Data

g Control
0

< -

ﬁ B

B NETWORK
> CONTROLLER
(=]

e >

Address
Data
Control

From the Central Controller
(ACU)

141

?» B _% '_d® _» o ® _B _B® i_A® '3 .2 __B ._.D __B _D B __B D __3

[

3

’ 147

basic building blocks. The first block is the N x N crossbar, built with one or more PARCOS
I chips as in the previous chapter. Second, a network controller is interposed between the
Array Control Unit (ACU) and the crossbar. As will be seen below, the network controller
performs extremely simple operations and can be operated at up to ten times the clock rate of
the ACU, allowing the network to be set up much faster than if the ACU were to perform the
same operations. Further, the ACU is freed to perform other useful functions concurrently
while the network is being set up. The third block is a shift register file, SRF1. All of the
processors can simultaneously write a destination port number into SRF1 in a serial manner
(bit serially if the processor ports are bit-serial. If the processor ports are wider than one bit,
that can also be accommodated.) and the network controller can access this file, one word at
a time, as a shift register or FIFO.

Figure 5.9 is a block diagram of the second crossbar design. It is similar to the first
except that a second shift register file, SRF2, has been added on the output side of the N x N
crossbar. The purpose of SRF2 will be explained shortly.

Network setup and re-switching

Both of these crossbar designs are restricted to synchronous routing. Therefore, all of
the processors have to communicate simultaneously. Establishing a communication pattern
in the networks of figures 5.8 and 5.9 requires multiple steps. We first describe the network
setup and re-switching schemes for the network of figure 5.8.

First, the ACU interrupts all of the processors in the system and directs them to write
the addresses of their respective destination processors into SRF1. Keep in mind that the
entire system operates with a centralized clock. Writing into SRF1 will take loga(N) cycles,
where N is the number of processors in the system. The time to interrupt the processors
varies with the processor design. For TMS320C30s (the processors used in IUA GEN II), it
takes 4 cycles. Thus the total time for the first step is

loga(N)+4 Cycles

In the second step the ACU issues an instruction to the network controller to select a
specific control word in the row select registers (RSR) of the PARCOS I chips and start
building a connection pattern. The network controller then writes this word address in the
RSR of all of the PARCOS I chips to select the desired row. Next it shifts out N words
from SRF1, one word at a time, using a counter that it presets to N-1, and decrimenting

INO —» 0 — > 0 — OUT_0
IN1 —»™ 1 | — 1 L ——» OUT_1

5 SRF1 NXN tag! Jtag2| SRF2

g ‘ CROSSBAR

o

©

&

g

N . . N1 |— OUT_N-1

‘é '} 'y

g. [[

5 Data Address Address

Q Control Data Data

& Control Control

g -

5 NETWORK

01 CONTROLLER

g

[=]

B > <

Address
Data
Control

From the Central Controller
(ACU)

8¥1

-5 .32 _» _3% _3» . _® ‘3 _» __B® ' D P D B _B ‘B B i3 3B

149

for each shift. The counter value corresponds to data (i.e. input port number) for the
selected control word in the N x N crossbar and the associated value shifted out of SRF1
corresponds to the address (i.e. the output port number) for the crossbar. The SRF1 is
designed in such a manner that as the last word is shifted out, the connections behind it
are shorted across SRF1 (i.e. input INx is directly connected to the crossbar rather than
through the logo(N) stages of the shift register). Thus, after a communication pattern is
established, the SRF1 is logically eliminated from the communication path. SRF1 can be
easily designed to incorporate this feature. Or alternately, this function can be performed
by the network controller such that it directs all inputs to SRF1 to bypass their respective
log2(N) bit shifters. After N shifts out of SRF1 and N writes into the N x N crossbar
memory, a connection pattern is established in the selected control word. Next, the network
controller issues an instruction to load this control word into the PARCOS I control pattern
register (CPR), thus establishing the communication paths. If multiple processors request
to communicate with the same processor, the last request overwrites previous requests.
Retries must be handled in software with this design (The second crossbar design partially
alleviates this problem). '

The second step of routing thus takes 2 cycles per link ((1) Shift a word out of SRF1 and
(2) Write it in the N x N crossbar). These two steps can be pipelined to reduce the setup
time. Thus the total time for this step is

1+N+14+1=N+3 Cycles

The two additional cycles in the total account for selecting a word number to be filled
and loading the filled control word into the CPR. The total time taken for establishing a
communication pattern is therefore,

N + 3+ 1logoN +4 =N +1logaN + 7 Cycles

Thus, for a system with 64 processors, 77 cycles would be needed, and for a 4096 processor
system, 4115 cycles would be needed. It should be noted, however, that during the second
(0(N)) step the ACU can be independently executing other operations. This is especially
useful in the IUA, where the ACU performs other functions such as issuing instructions to
the low-level processors.

The crossbar design in figure 5.9 addresses some of the shortcomings of the first design.
The first step in setting up the second network is identical to the first design and thus takes

loga(N)+ 4 Cycles

150

The second step, is considerably different from the first design, in part because shift
register file SRF2 differs from SRF1 in two respects: The network controller can read or
write into SRF2 like a standard RAM, and every word of SRF2 has two additional tag bits
that are reset to 0 in the first step of'setting up the network. When the network controller
shifts a word out of SRF1, it uses the contents of the word as an address into SRF2 to fetch
the first tag bit (tag,). If the fetched tagis 0, it indicates that the destination port is free, and
the network controller uses the contents of the corresponding SRF1 word as the address for
PARCOS I and the current counter value as the data (input port number) to set up the link
in the N x N crossbar. The network controller simultaneously uses the same address and
data to write into SRF2 word and set tag; to 1. On the other hand, if the destination port is
busy (tag; is 1), the network controller uses the counter value as the address into SRF2 and
sets the second tag bit, tags, to 1. :

Thus the second step of setting up the network takes 3 cycles per link ((1) Shift a word
out of SRF1, (2) Fetch tag;, and (3) Write in crossbar and SRF2.). These three steps can be
pipelined to reduce the setup time. The total time for this step is

1+ N+2+4+1=N+4 Cycles

Two of the extra cycles account for selecting a word in the RSR of PARCOS I and loading
a control word into the CPR to enable the communication pattern.

In the third step, the ACU instructs the processors to read their corresponding words
and tag bits from SRF2. From this information, each processor knows (1) if its request
to connect to a destination processor was fulfilled or not, and (2) if it is going to receive a
message and from which processor. At this point the feedback concentrator mechanism can
be used in two ways: (1) By using the Some/None mechanism the ACU can determine if
the communication requests of all processors have been met or not. If not, the ACU can
instruct the processors and network controller to create another pattern for the remaining
processors. In general, if the communication fan-in (i.e. P is the maximum of the number
of messages sent to a common processor) is P, P communication‘patterns must be created to
satisfy all of the communication requests. (2) The Count_responder mechanism can be used
to determine the degree of communication contention in the system. This information can
be used to guide process migration in instrumentation of system performance.

Notice that by suitable modification the network controller can incorporate all of the
functions performed by the feedback concentrator. In our case there is no need for this
because the feedback concentrator already exists in the IUA to perform other functions.

The third step of network setup also takes loga(N) + 4 cycles, so the total cost of network

3 3

' g’ i (;l

151

setup (i.e. filling one control word) is
N +2xloge(N)+ 12 Clycles

For a system with 64 processors, the total time is thus 88 cycles; with 4096 processors,
it is 4132 cycles. Thus for a 64-processor system, the second design takes 15% longer to
set up a pattern, but detection and resolution of communication contention is considerably
simplified.

5.2.2 Non-blocking network

As discussed earlier, there is a practical limit to the size of crossbar network that can
be built from smaller crossbars. In order to build larger connection networks we consider
the ndn-blocking 3-stage Clos network in this section. We are considering only 3-stage
Clos networks for three reasons. First, we want to minimize the network latency. Second
the control algorithms for 5 or higher stage Clos or Benes networks are considerably more
time consuming than for the 3-stage networks, which makes them impractical. Third, as
discussed in the preceding chapter, we contend that the size of network that requires, for
example a 5-stage Clos design, is impractical to construct in the near future.

An additional note is in order. Within the framework of this subsection, where all
processors request to communicate simultaneously, a Benes network will suffice. However,
we will not examine the Benes network for .the following reasons. First, in a following
section dealing with data dependent asynchronous routing, a strictly non-blocking network
is required. Second, as discussed in the previous chapter, the pinout on the circuit board
and chips are the real impediments to building larger networks and the Benes network is
no better than the Clos network in this regard. Third, the Benes network utilizes a more
complex and time consuming control algorithm than a Clos network.

Network architecture

Figure 5.10 is a block diagram of the non-blocking network design using PARCOS I
chips. It is similar to the crossbar design in figure 5.8 and is comprised of three building
blocks. The N x N Clos design was discussed in the preceding chapter, and contains 3 stages
of PARCOS I chips. Each stage is comprised of m m x m PARCOS I switches. Only half of the

N X NClos
STAGE 1 STAGE 2 STAGE 3
INO —] 0 {5 5 5 o 5 o = OUT_0
IN_1 —— 1 1 , 1, ! 1y ! -+ OUT_1

,_",1, ,._ln-1 m-1 m-1 m-1 m-1 n1 L
g : 0 0 0 0

1 1 1 1
o ‘ ‘
g SRF1 _ln-i m-1 m-1 m-1
o
5‘ 1] 0 0 0
=] 1 1 1 1
& m-1 m-1
g IN_N-1 —— N-1 sitnt m m1 m > OUT_N-1
') [
(=2
° .
E e B heea” e
®R ontro Control Control Control
B >
)
S NETWORK CONTROLLER
wl

Address, Data, Control
From the Central Controller (ACU)

(494

* 153

m inputs are used in each chip in Stage-1. Similarly only half of the m outputs are used in
each chip in Stage-3. With 3 x m PARCOS I chips one can build an m2/2-input, m2/2-output
3-stage non-blocking Clos network. For m = 32, a 512 x 512 Clos network can be built with
96 copies of the 32 x 32 PARCOS I chip. The shift register file SRF1 is similar to that of
figure 5.8. All of the processors can simultaneously write a destination port number into
SRF1 in a bit serial manner and the network controller can access this file, one word at a
time, as a FIFO. A network controller is interposed between the ACU and the N x N Clos
network to control it under the supervision of the ACU. The network controller of figure 5.10
is considerably different from the one in figure 5.8, and will be discussed below.

Network setup and re-switching

Establishing a communication pattern requires the following steps, which can be
pipelined to reduce the total number of cycles needed to establish a communication pattern
in the network.

The first step in establishing a communication pattern is identical to the crossbar network
and takes

logaN + 4 Cycles

The second step is considerably different from the crossbar network. First, the network
controller selects a specific control word in all of the PARCOS I chips of the N x N Clos.

' Nexi;, it shifts out N words from SRF1, one word at a time. As before, the network controller

has a counter that it initializes to N-1 and decrements after each shift. The counter value
corresponds to an input port number in the network and the associated value shifted out of
SRF1 corresponds to an output port number of the network.

As in the crossbar networks of figure 5.8 and 5.9, two schemes can be used to handle
contention. In the first scheme, the network controller maintains an internal array that
is initially reset. As the connections are established, the network controller fills in values
corresponding to the input-output mapping. Before the network controller writes an entry
in this array it checks whether the requested output port is available. If the output port is
not available, it simply ignores the request and goes back to the first step!. This scheme
takes one additional cycle for every link. The second scheme is identical to that of figure
5.9. We will not explain these two schemes further because their derivation is obvious from

INotice that this is different from the crossbar where the last request overwrites all previous requests

154

the crossbar design. However, the programming of a link from an input to an output is
considerably different from the crossbar design.

Programming one link in the N x N Clos network involves writing one data value in a
PARCOS I chip in each of the three stages of the network. All three data values can be
written simultaneously. The three addresses and the data values are derived as follows.
Suppose the input and the output ports are numbered 0,1,2, ..., N — 1, and chips in each of
the three stages are numbered from 0 to m — 1. Inputs 0,1, ..., n — 1 are in the chip number
0 in Stage-1. Inputs n,n + 1,...,2n — 1 are in chip number 1 in Stage-1 and so on. Similarly
outputs 0,1, ..., n — 1 are from chip number 0 in Stage-3. Outputs n,n + 1, ...,2n — 1 are from
chip number 1 in Stage-3 and so on. For a specific link to be established, let the input port
numberbe X (0 < X < N -1)and the output port numberbe Z (0 < Z < N -1). Suppose that
input X is on the chip numbered 155 (Input Stage Switch. Switch is a common terminology
used in the field of these networks rather than chip. 0 < ISS < m — 1) in Stage-1. The
output Z is on the chip numbered 055 (Output Stage Switch, 0 < 0SS < m - 1) in Stage-3.
The task of establishing a communication link from input X to output Z involves selecting
a chip MSS (Middle Stage Switch) in Stage-2 through which neither any other input from
ISS is connected to any output, nor any output in 0SS is connected to any input. It was
shown previously that in a non-blocking Clos network, at least one such M SS always exists.
Suppose the input X on ISS is numbered z; (0 < z; < n — 1) and the output Z on 0SS is
numbered z, (0 < 2, < n — 1). Further let us assume that when the link from input X to
output Z has been established, the input z; is connected to output z, (0 < z, < m - 1) in
ISS, which is connected to input y; (0 < y; < m - 1)in MSS, which is connected to output y,
(0 Ly <m-1)in MSS, which is connected to input z; (0 < z; < m - 1) in 0SS, which is
connected to output z, in 0SS (which is output Z).

We know that

I8S = Xdiv(n) (5.1)

and

0SS = Zdiv(n) (5.2)

Notice that we are assuming that n and m are powers of 2. IS5 and 0SS are simply the
logz2(m) most significant bits of X and Z respectively.

2;=X-nxISS (5.3)

—3

2

: 3

3

—3 1

~3 3 _3

—3 __3

155

and

z=2-nx 0SS (5.4)

Thus z; and z, are the loga(n) least significant bits of X and Z respectively.
From the construction of the 3-stage Clos network we know that the m inputs to 0SS

in Stage-3 are from outputs numbered 055 (0 < 0SS < m — 1) from each chip in Stage-2.
Therefore

Yo=0SS (55)
and we know that the m inputs to MSS in Stage-2 are from outputs numbered MSS
(0 < MSS < m - 1) from each chip in Stage-1. Therefore

zo=MSS ' (5.6)
Similarly output from 7SS are connected to inputs numbered ISS one in each chip in Stage-2.

Therefore

y; = ISS (5.7)

Similarly

z=MSS (5.8)

The only unknown quantity on the right hand side of equations 5.1 through 5.8 is MSS.,
which is determined with special hardware in the network controller. A block diagram of
that hardware is shown in figure 5.11. There are two major blocks MEM1 and MEM2, each
of which is an m x m 1-bit memory array. Before a routing cycle starts, all bits in the two
memory arrays are set to 1. In MEM1, columns correspond to a specific output number (y,)
on a chip in Stage-2, whereas a row corresponds to a specific chip in Stage-2. Similarly, in
MEM?2, columns correspond to a specific input number (y;) on a chip in Stage-2, whereas a
row corresponds to a chip in Stage-2.

The objective in finding MSS is to find a row that has a 1 in column y, in MEM1 and
column y; in MEM2. This is done as follows: The OSS derived in the first step of the routing
algorithm is used to enable column y, in the MEM1 array. At the same time, all rows are

Output # in .
STAGE 2 PRECHARGE CKT. Match PRECHARGE CKT. pat# 0

=
E "~ M o1 m-1 = ﬁ_,.’)- o |1 a-1 |—
i’,_.: m [m+l 2m-1 _:D_._». o lm+1 2m=1 l—al
E:: PRIORITY
g_ MEM1 MEMH1 —=1ENCODER
g D] -1 D w?-o] w-1{—
: [I
o]
E CONTROL ™ COL DRIVER CONTROL™ COL DRIVER
/2 f—
l I I l l Y
ALL MSS 0SS MSS ISS MSS

g1

- » . » _® 3 _3¥ _3®» 3 '» .1 __» ¥ _» _p 13 3 1T _3 3 __1B

157

enabled in the array by asserting the ALL signal?. Corresponding to each row in MEM1
there is a Match output on the right hand side of the array. This output is set to 1 if there
is a 1 in the bit corresponding to column OSS in a given row. At any time, more than one
match line may be high. The I5S derived in the first step of the routing algorithm is then
used to enable column y; in the MEM2 array. Then, only those rows in MEM2 that had a
match in MEM1 are enabled, which results in an output of 1 on the corresponding Match
lines of MEM2. Each match in turn corresponds to PARCOS I chip in Stage-2 that has a free
input as well as a free output, and is thus a candidate for making a connection from X to
Z. Since we need only one one of them, a priority encoder is used to select the first available
chip. Notice that obtaining M SS by using I5S and 0SS can be done in one cycle.

Once M SS is known, the three writes (one in each stage of the N x N Clos) can be carried
out in one additional cycle. In the same cycle, a 0 is written in column 0SS and row M SS of
MEM1 as well as in column 1S5S and row M SS of MEM2 to indicate that this input-output
pair of M SS is now occupied. Thus, the second step of routing takes 4 cycles per link ((1)
Shift a word out of SRF1, (2) Determine whether the output is free, (3) Find a match in
MEM1 and MEM2, and (4) Write as necessary to establish the link). These four steps can be
pipelined to reduce the setup time. Thus the second step of the network setup takes a total
of

N +5 Cycles

In the second design, a third step must be added in which the ACU interrupts the
processors and directs them to read their corresponding words and the tag bits from SRF2.
In that case, the total time cost for network setup is

N +2xlogaN +13+4+2=N +2xlogaN + 15 Cycles

Notice that in our case, the serial setup time of (N) matches with a parallel setup time
of §(N) in Benes networks as reported in many algorithms [Carpinelli 87; Lee 85; Lee 87].
This is somewhat a case of comparing apples and oranges. We are comparing the serial
setup time of a non-blocking Clos network with the parallel setup time of a rearrangeably
non-blocking Clos (also called Benes) network. Therefore this shows another disadvantage
of Benes network. We are not aware of any other reports on serial or parallel setup times for
non-blocking Clos networks.

Next we turn to methods for incorporating data dependent asynchronous routing in these
two networks.

2For brevity we are not describing the obvious steps of precharging, reading and writing, etc.

158

5.3 Data dependent asynchronous communication

In this section we consider extensions to the networks of the previous section to support
data dependent asynchronous communication. It is imperative to incorporate this mode of
communication if the target system is to efficiently support MIMD-mode computation. The
network control is still central and hence serial in nature, but if the amount of reconfiguration
in the network is small, the controller can support this mode of communication. Finkel
[Finkel 87] shows three case studies: Palindrome-generating puzzle, a general package for
recursive tree search, and the Simplex method for linear optimization, where this mode of
computation and communication is involved. Also, notice from section 3.4 that a variety of
vision tasks are particularly suited for this mode of computation at the ICAP level.

5.3.1 Asynchronous crossbar network

To incorporate asynchronous communication, the circuitry peripheral to the N x N
crossbar must be redesigned. Each input port to the network now must have additional
signals for making a connection request, disconnecting a connection, and for reading a Ready
signal from the network. Notice that our objective is still to have a design that supports
fine-grained, low-latency communication. Therefore, we are not interested in designs where
the connect and disconnect requests are encoded in special bit strings, a technique used in
long-haul as well as some short-haul computer networks. Such networks are, in general,
not concerned with the kinds of communication granularities and latencies required in
multiple-processor systems.

Figure 5.12 is a block diagram of the asynchronous crossbar network. The block diagram
is very similar to figure 5.8 except that the shift register file, SRF1, has been replaced by
an interface unit we call the Front-End. The network controller can read any of the words
in the Front-End as if they are stored in a standard RAM. Associated with each port in the
Front-End are two flags that are set by the requesting processor through the lines REQ and
REQCLR. The network controller can reset any of these flags. There is an additional Ready
line associated with every input port, which indicates to the requesting processor when ité
request (connect or disconnect) is satisfied. A logical OR of the REQ flag of every input to the
Front-End is provided via the signal S/N; (Some/None;) to the network controller. A logical
OR of the REQCLR flag of every input to the Front-End is provided through the signal §/N»
to the network controller. Additionally, there are two priority encoders in the Front-End

3 -3 _3 __%» 3 _3 3 __3

—- 3

3 3

—3a 3 __3

1 3

3 3 __3

INO -—>» 0 > — OUT_0
N1 ——» 1 - —— OUT_1
NXN
&> Front-End CROSBAR
o
[
3]
1
E IN_N-1 t— N-1 > —— OUT_N-1
E-] \
g deress Sg?aress
ata
Q Control Control
3 S/N 1
@ SIN2
g >
B DATAIN 1 NETWORK
& CONTROLLER
g REQ, ——
-~ -
w "
READY Address
Data
REC.')CLF{1 —_— Control
From the Central Controller

6S1

160

whose inputs are the REQ and REQCLR flags from the input ports. In conjunction with §/N;
or S/N3 and one of the priority encoders, the network controller can identify the processor’s
connect or disconnect requests. Once a request is satisfied by the network controller, it
resets the appropriate S/N; or S/Na bit so that other processors may be serviced.

. Recall that the entire system is being operated under a central clock. This restriction can
be easily removed from the network by providing an additional clock line in parallel with with
every input port. A processor makes a request to connect or disconnect a communication
link to a destination processor by asserting its REQ or REQCLR line and sending the
destination port address through its DATAIN line. All REQ, REQCLR and DATAIN signals
must conform to the timing restrictions imposed by the design. The request step takes
loga(N) cycles. Once a processor makes request, it cannot make another request until the
network controller has satisfied it by asserting the READY signal. Once a connect request
is satisfied, the link is retained by the sending processor until it requests to disconnect the
link. This approach has a potential starvation problem, which can be avoided by having a
watchdog timer such that if a processor’s request is not satisfied in certain predetermined
time, the request is canceled and removed from the Front-End. This is only necessary
for the connect request. Notice that by making multiple connect requests, processors can
create multicast communication patterns. Notice that there is a deadlock situation in this
scheme. For example, if processors A and B both want to multicast to processors C and D,
and each has one of the two lines, they will be deadlocked. This case is treated no differently
than where a source processor requests to communicate with a destination processor and
the destination processor port is busy. Using a watchdog timer, the source processor must
remove its request, if it is not satisfied within a predetermined time. Notice that this can
also be incorporated in SRF1 with every input port. In multicast communication, software
has to handle situations where only partial requests can be satisfied.

As soon as an address for a request is latched in the Front-End, the corresponding REQ
or REQCLR flag is set and the respective S/N; or S/Nz line is asserted to the network
controller. It is obvious that the network controller should give higher priority to disconnect
requests. In conjunction with S/N; or S/N2 and the corresponding priority encoder, the
network controller can determine the source and the destination processor number in one
cycle.

If it is a disconnect request, the network controller resets the REQCLR flag for the
requesting processor, disables the corresponding link in the selected control word in the
N x N crossbar and pulses the READY line to indicate satisfaction of the request to the
processor, all in one cycle. The network controller can be designed in such a manner that

j 3

2

|
L

161

it waits until there are no other disconnect requests pending before it writes the modified
control word in the control pattern register (CPR), thus establishing the new communication
pattern. Notice that reloading the CPR between processor communication has no effect on
the state of the links that don’t change. Additionally the PARCOS I design can be modified
so that in this mode of communication, it is not necessary to explicitly load a control word
into the CPR after every link change. The CPR can be operated in a transparent mode
such that any change in a control word is automatically reflected in the communication
matrix. Alternately, the network controller can reload the CPR with every request. The two
schemes have different network re-switching times. Therefore a disconnect request takes
either one or two cycles depending upon the scheme used. Notice that the network controller
can service a disconnect request every 2 or 3 cycles. From the beginning of a disconnect
request, the shortest time to service it, using the scheme where CPR is reloaded after every
disconnect request is

loga(N)+3 Cycles®

Notice that if PARCOS I is designed in such a manner that explicit loading into the CPR
is not required after every link change, then the network controller can service multiple
disconnect requests at a rate of one every two cycles. If the S/N3 line is set in the beginning
of a cycle, the network controller starts a disconnect cycle. The corresponding priority
encoder provides the address of the requesting processor which is used to fetch a word from
the Front-End. During next cycle, the link is disabled in the N x N crossbar, the REQCLR
flag is reset and the READY line is asserted.

To service connect requests, the network controller maintains an array with the busy/free
status of every output. Alternatively this array could store the network’s input-output map
(obtained from reading SRF1), to be read by the ACU for load-balancing or instrumentation
purposes. In either case, the network controller reads the status of the destination port from
the array in one cycle. If the port is free, the controller then resets the REQ flag in the
Front-End, updates the status array and programs the link in the crossbar, all in the next

-cycle. During the third cycle, the controller loads the new control word into the CPR enabling

the communication pattern, and signals the READY]ine to indicate service completion to
the requesting processor. As discussed previously (with respect to a disconnect request), this
step can be eliminated by redesigning the PARCOS I chip. From the beginning of a connect
request, the shortest service time is

3This is latency and not throughput.

162

logaN + 4 Cycles

With pipelining, the network controller can service connect requests at a rate of one every 4
cycles as long as there is no contention. If the destination port is busy, the controller must
disable the corresponding REQ flag from the priority encoder in the Front-End so that other
requests can be serviced. The network controller can re-enable all disabled REQ flags in the
Front-End after the next (or a cycle of, depending upon the scheme) disconnect request is
serviced. :

5.3.2 Asynchronous non-blocking network

 Figure 5.13 is a block diagram of the non-blocking Clos network to support data
dependent asynchronous routing in large systems. The operation of this network is quite
similar to the asynchronous crossbar design, and therefore we will only briefly explain the
differences. '

The Front-End in figure 5.13 is identical to that for the crossbar network and performs
the same functions. The method for a processor to make a request is also identical to
that for the crossbar. However, unlike the crossbar network, non-blocking Clos networks
as well as rearrangeably non-blocking Benes networks cannot support arbitrary multicast
communications. This will be explained in the following section. We assume that it
is requesting processor’s job to ensure that it does not request simultaneous connections
to multiple processors. As before, the network controller can determine the source and
destination ports in one cycle.

The network controller in this design maintains an N-row table corresponding to every
output of the network. Each row entry is comprised of a tag bit that indicates whether
the port is free and an integer entry MSS, indicating the the number of the Stage-2 chip
being used for a connection to this output if it is busy. Thus, an additional cycle is required
to determine whether a requested output port is free and to read the M SS number for a
disconnect request. .

For a disconnect request, the network controller resets the REQCLR flag for the request-
ing processor, disables the corresponding link in the selected control word in the N x N Clos
network, writes 1 at appropriate locations in MEM1 and MEM2, resets the busy flag in
its internal N-row table, and signals the READY line to indicate service completion to the

‘._—_.g . %

3

-3 3 3 __3 ___13

‘%

3

N X N Clos
STAGE 1 STAGE 2 STAGE 3
|N_ i > 0 0 0 0 0 o - OUT_O
IN_1 —— 1 =11 1 1 1 1 1 = QUT_1
0 0 0
= ,_ln-1 m-1 m-1 m m-1 n1f
g —] o [0 0 [[}
11 1 1 1 1 1
= 1 1 1
o Front-End —{n-1 m1 m m m1 pt
g —10 0) 0 ol—
=] —11 1 1 1 1 1
& m-1 m-1 m-1
g ' IN_N-1 «—»] N-1 > Jn-1 m-1 m1 o m mi n = OUT_N-1
o
[=]
E Adcress e Aaaress .
R Ca at | Control Control Control
5 ontro
e SN 4
§ SN,
5, N NETWORK CONTROLLER
DATAN —— ¢
REQ —» i [}
REQCLR ———»f Address, Data, Control
READY ~——
i From the Central Controller (ACU)

€91

164

requesting processor, all in one cycle.

If the network controller reloads the CPR after every disconnect request, then the shortest
time to service a disconnect request is

logaN + 4 Cycles

For a connect request where the network controller has determined that the requested
output port is free, the same steps are followed as in the case of the synchronous non-blocking
network, to establish the link, except for the difference in the fourth cycle, and an additional
fifth cycle. In the fourth cycle, in addition to writing in the Clos network, the network
controller resets the REQ flag for the requesting processor as well as updates its internal
N-row table. The fifth (additional) step is to reload the CPR and pulse the READY line
for the requesting processor. From the beginning of a connect request the shortest time to
service is

logaN +5 Cuycles

If, however, the requested destination port is busy, the network controller follows an
approach identical to that of the asynchronous crossbar network.

Next we will briefly discuss multicast communication in non-blocking Clos and rear-
rangeably non-blocking Benes networks.

54 Multicast communication

Broadcast communication can be a useful capability in multiple-processor systems. For
example, multiplication of two N x N matrices on an N-processor system requires that the
contents of one of the matrices to be broadcast to all processors.

One straightforward way of broadcasting in point to point communication topologies is
by message replication at intermediate nodes. For bounded degree networks, this operation
takes §(N'/2) steps and in unbounded degree networks it takes 8(logN) steps, assuming
a single source and N destinations. In disjoint subset broadcasts (also called multicast),

these times can be much longer depending upon the network architecture and the routing
algorithm.

In multistage networks, multicast communication is possible if the individual switches
support multicast communication. An extensive amount of work has been done in this area.

3 3 __3

3 3 __1 3 3 __ 13

3

P =3

’ 165

Many networks, based on 2 x 2 switches, have been proposed that allow NV mappings of
their inputs onto their outputs. A survey can be found in [Thompson 78].

We discuss two cases of supporting multicast communication in 3-stage Clos and 3-stage
Benes networks: Asynchronous communication, and Synchronous communication.

5.4.1 Asynchronous communication

Itis not possible to support multicast communication in asynchronous 3-stage Clos as well
as asynchronous 3-stage Benes networks, which is easily established by a counter-example
given in figure 5.14. A multicast from input 0 to outputs 0,2,4,and 6 is shown. If the
scheme in figure 5.14 is followed for creating this subset first, input 1 cannot be connected to
any output. Masson and Jordan [Masson 71; Masson 72] have shown a generalized 3-stage
network design with X inputs and Y outputs (X is not necessarily equal to Y') that supports
multicast communication. In the case where X =Y, their theorem can be stated as

Theorem L: Let N(n,m,r)be a 3 stage network as shown in figure 4.6, where the first
stage in the network comprises r switches that implement an n x m crossbar function,
the second stage comprises m switches that implement an r x r crossbar function, and
the third stage comprises » switches implementing an m x n crossbar function. This
network is strictly non-blocking in supporting NV mappings (such networks are also
called generalized connection networks. N = n x) if

m>naxr+n-1

This is for a strictly non-blocking generalized 3-stage connection network (as encountered
in asynchronous routing). For a rearrangeable generalized 3-stage connection network (as
encountered in synchronous networks of generation 1.0 design and in the next subsection)
m > n x r is sufficient. Notice that even in this case the 3-stage Clos as well as the 3-stage
Benes network cannot support the N N mappings property (Because a 3-stage Clos network
hasm=r=2xn).

We will not go into the details of the proof of these results, as they can be found in the cited
papers [Masson 71; Masson 72). In our case, we have m = r = 2n. Therefore, it is obvious
that neither the 3-stage Clos nor the 3-stage Benes network can support asynchronous
multicast communication in circuit switched configuration.

sjdwrexa-199unoy) ‘H1'g aInsS1y

STAGE 1

STAGE 2

STAGE 3

—3 _ 3 _ 3 __1 3 3 13 3 31 __ 3

= 0

se2sssssnsy o

—

—1

991

167

5.4.2 Synchronous communication

From the above theorem, it is clear that even synchronous 3-stage Clos as well as
synchronous 3-stage Benes networks cannot support multicast communication. However,
a different approach has been described for supporting multicast communication in syn-
chronous networks built with rectangular (n x m, n and m are not necessarily equal) crossbar
switches, by using more than three stages of these switches. It remains to be proven whether
four stages of switches are sufficient to support multicast communication. Kumar [Kumar
88] showed how to support multicast communication using two back-to-back 3-stage Benes
networks. He further showed that rather than using two physical Benes networks, the same
can be achieved by making two passes of the messages through one 3-stage Benes network
(with the processors acting as intermediate storage between the two passes). The first
pass is comprised of generating replicated copies of the input requests corresponding to the
cardinality of the output set that each input is connected to, in a monotonically increasing
ordering of the input numbers (in other words, look at input 0 first. If it is connected to
4 different outputs, generate 4 copies of this message from input 0 to outputs 0-3 in the
first pass. Then, say input 1 is connected to 7 different outputs. Generate 7 copies of the
messages from input 1 to outputs 4-10 in the first pass, and so on). The second pass is
comprised of permuting these copies to the appropriate outputs. Thompson’s generalized
connection network is designed along similar lines [Thompson 78].

Many serial and parallel routing schemes exist for the control of synchronous Benes
networks [Andersen 77; Carpinelli 87; Chow 80; Lee 87; Nassimi 82; Opferman 70;
Ramanujam 73; Tsao-Wu 74; Waksman 78; Wilkerson 87]. Some of these algorithms assume
a specific construction of the Benes network. The optimum worst-case serial time is §(N?)
and the optimum worst-case parallel time is §(N¥). The replication algorithm of Kumar’s
[Kumar 88] two-stage scheme has the same complexity as the permutation algorithm. Notice
that all of these algorithms assume apriori communication patterns.

We can handle synchronous multicast communication more efficiently in our non-blocking
network design. Using a serial network controller, we achieve speeds equivalent to many
parallel control algorithms for rearrangeable networks. As before, this is somewhat a case
of comparing apples and oranges. We are comparing the serial set up time of a Clos network
with the paraliel setup time of a Benes network. Therefore this shows another disadvantage
of the Benes network.

168

5.5 Analysis and comparison of networks

In this section we analyze and compare the four networks (Synchronous crossbar,
synchronous 3-stage Clos, asynchronous crossbar, and asynchronous 3-stage Clos) described
earlier in this chapter, in terms of (1) Hardware cost, and (2) Time to set up and reconfigure.

5.5.1 Hardware cost

Here, we are primarily interested in determining the hardware implications of the four
designs discussed in this chapter - i.e. the hardware cost involved in building them, in terms
of the number of different custom chips and board area. Recall that the hardware costs of
the blocks containing crossbar and 3-stage Clos networks were discussed in the previous
chapter and do not change in these designs. Of greater interest here are various blocks
added to incorporate data-dependent routing.

Crossbar network

In synchronous crossbar design, let us consider the second design in figure 5.9. The
network controller is a pipelined design. It can be built with off the shelf parts, but for
maximum performance, it will be a custom VLSI chip. The shift register file, SRF1 is similar
to corner turning memories [Batcher 77; Batcher 80]. On one side, a number of input ports
can simultaneously shift an address into SRF1, in a bit-serial manner. On the other side,
the network controller can shift these words out, one word at a time. Assuming a limit of
400 pins on current PGAs, it is feasible to implement a 128-input SRF1 on a single custom
VLSI chip. From figures 5.8 and 5.9, notice that it is not necessary to route signals to the
N x N crossbar via SRF1. Inputs INg — INy.; can be routed in parallel to two places: SRF1
and the N x N crossbar. After the network controller sets up a communication pattern in
the crossbar, it can simply disable SRF1. This will allow a single chip design of SRF1 with
more than 256 inputs. Let us assume that it is 256. Thus an N x N crossbar network
will require [£] custom SRF1 chips. Identical approach can be followed for SRF2. Rather
than routing outputs from the N x N crossbar via SRF2, they can be multiplexed with the
outputs from SRF2 under network controller supervision. Using 8 32 x 32 PARCOS I chips
from the previous design, along with one custom VLSI chip each for the network controller,

—3 __3

3 3

3

gl

169

SRF1, and SRF2, it is feasible to design a 64-input 64-output ICAP communication network
for IUA GEN II prototype.

The network controller in the asynchronous crossbar network is again a single VLSI chip.
The Front-End design requires 4 pins for every input port. Using a scheme identical to SRF1
(for data pin), the pins required for input to the crossbar from the Front-End can be saved.
This will allow a single chip in the Front-End to support 64 inputs. For an N x N network,
[#] custom Front-End chips will be required. By using 8 32 x 32 PARCOS I chips and
one custom chip each for the network controller and the Fronf-End, ICAP communication
network for [IUA GEN II prototype can be fabricated on a single board.

Clos network

In synchronous Clos network design of figure 5.10, SRF1 is identical to that for a
synchronous crossbar network. The network controller in figure 5.10 even though, is
considerably different from that in synchronous crossbar, can still be built on a single custom
VLSI chip. The hardware for finding MSS as shown in figure 5.11 is implemented inside
the network controller. For example, by using 48 128 x 128 PARCOS I chips, along with 4
SRF1 chips and a network controller chip, a 1K -input 1X-output Clos netwozk can be built.
MEM1 or MEM2 in the network controller for such a network will be 128 x 8 bits each.
Using sizes for these chips from the previous chapter, such a network will require

(484 4+1) x 16 x % = 424 Sq.inch
Using 18 x 12" boards, this will require
424
Tex - %

or 2 boards.

In asynchronous Clos network design of figure 5.13, using a scheme for the Front-End
similar to that for the asynchronous crossbar, a 64-input Front-End can be implemented on
a single chip. Notice that Front-End has to be designed in such a manner that it is possible
to extend its size (for §/N1, S/ N3, and priority encoder) by using multiple chips. The network
controller design is similar to that for the synchronous Clos network. For example, by using
192 128 x 128 PARCOS I chips along with 64 Front-End chips, and a network controller,
a 4K -input 4K -output asynchronous Clos network can be built. MEM1 and MEM2 in the

170

network controller for such a network will be 128 x 64 bits each, Using the size of these
chips from the previous chapter, such a network will require

(192 +64+1)x 16 x %: 2056 Sgq.inch

Using 18 x 12” boards, this will require

2056
18x12 9.5

or 10 boards.
Next, we turn to the time for setting up and reconfiguring these networks.

5.5.2 Time to set up and reconfigure

Recall that the latency and throughput for the same topologies were discussed in the
previous chapter. The extensions proposed in this chapter have no effect on these aspects of
performance. Of greater interest here is the time required for setting up a communication
link as well as a complete pattern. We chose the worst-case time for the comparison purposes.
The processor is assumed to be TMS320C30 (or one that requires™ cycles for interrupt).

Table 5.1. Number of cycles for routing

~ | Synch. ~ | Synch. Asynch. | Asynch.
Operation | Crossbar Clos Crossbar | Clos
One link | 2logN + 11 2logN + 12 logN +4 | logN +5
Nlinks | N + 2logN + 12 | N + 2logN + 15 | 4N + logN | 5N + logN |

Table 5.1 lists the routing times in terms of network controller cycles. It is obvious from
the discussion of the network controller that its design is relatively simple and pipelined.
By extrapolation from currently available RISC processors and memory technologies, we
assume that the cycle time can be 25nS using a MOS technology and 15nS using a bipolar
technology. As an example, a synchronous crossbar of size 1X x 1K can be fully configured
m

25 nS x [1024 + 2 x log(1024) + 12] = 26.4uS

using a MOS technology, or in

—3 __3 3

1

’ 171

15 nS x [1024 + 2 x log(1024) + 12] = 15.8uS

using a bipolar technology.

If we assume the processors operate at 20 MIPS (50nS per instruction), the network
setup time is equivalent to 550 instruction times using a MOS technology or 330 instruction
times using a bipolar technology.

As another example, a 4K x 4K synchronous Clos network can be configured in

25 n§ x [4096 + 2 x log(4096) + 15] = 103.4uS

using a MOS technology, or in

15 nS x [4096 + 2 x log(4096) + 15] = 62.0uS

using a bipolar technology.
For the asynchronous case, the best time to service a connect request in 1K x 1K crossbar
is
25 nS x [log(1024) + 4] = 350 nS
using a MOS technology or is

15 nS x [log(1024) + 4] = 250 nS

using a bipolar technology. This is on the order of 5 to 7 processor instruction cycles, de-
pending on the technology used in the network. However, in the case where N simultaneous,
non-conflicting connect requests are made, it will take

25 nS x [4 x 1024 + log(1024)] = 102.6u5

- using a MOS technology or

15 nS x [4 x 1024 + log(1024)] = 70.6pS

using a bipolar technology. These times are on the order of 140 to 200 instruction cycles.
Remember that redesigning PARCOS I, so that it doesn’t require reloading the CPR after

172

every link modification, will reduce the asynchronous network routing times by N cycles.
This results in a reduction of about 25% in the above two times. Even so, this design is
restricted to MIMD systems where network reconfiguration requests do not occur in bursts
or are more evenly distributed in time.

5.6 Conclusions

The major conclusion of this chapter is that central control is a viable solution for
reasonably large network sizes, in supporting data dependent routing, which is contrary to
conventional wisdom.

To arrive at this conclusion, we presented the architecture of centrally controlled crossbar
and Clos networks. We further subdivided the problem and showed how synchronous

(i.e. all processors make communication request at the same time. This mode is used .

in SMIMD mode of operation at the ICAP level) as well as asynchronous (i.e. for MIMD
mode of computation) data dependent routing can be carried out in these networks. It
was shown that by using a special search memory to implement part of the Clos network
routing algorithm in hardware, it is possible to carry out incremental routing in constant
number of steps. Further, by pipelining this routing algorithm, it was shown that a complete
assignment (i.e. setting N links for an N x N network) can be carried out in N + Constant
number of steps. This is the best serial time known so far. It was shown how multicast
communication can be supported in these networks. Finally, we analyzed and compared
these networks with respect to their hardware cost and time to setup (incremental as well
as complete assignment) and reconfigure. The following is a summary of the goals achieved
in thesis so far and the remaining goals.

5.6.1 Goals achieved

The objective of the generation 1.5 design was to address the requirements of a multiple-
processor system that is operated in such a manner that the interprocessor communication
is data dependent and cannot be known apriori. We showed that under central routing
control it is possible to provide such a capability by extending the generation 1.0 network
designs. These extensions are low cost solutions that, because of their serial nature, cannot
be used for arbitrarily large networks. A network controller was interposed between the

3

3 3) 3 3

—3 3 _3 __3 _3

173

central controller (ACU) and the switching network to carry out network operations under
ACU supervision. It was shown how a feedback concentrator mechanism can be used to
aid the network controller. The network controller can be operated concurrently with the
ACU and thus, in many cases, the network setup time can be overlapped with other ACU
activities.

5.6.2 Remaining goals

These designs are not effective in fine-grained communication where the amount of
network reconfiguration is high (also called statistical switching). There is considerable
debate in the community whether it is justifiable to assume that large-scale multiple-
processor systems require support for dense irregular communication. Certainly, this is
necessary to support a distributed, shared memory of computation. Thus, we are still
interested in exploring ways to further extend these designs to support low latency, parallel
self-routing.

CHAPTER 6
GENERATION 2: DISTRIBUTED ROUTING CONTROL

This chapter deals with the last of the requirements of multiple-processor systems:
Distributed or parallel control of communication. Our original plan was simply to add this
capability to the crossbar and 3-stage non-blocking Clos networks. Recall from section 1.3
that we understood at the beginning of the IUA effort that machine vision is highly dynamic
and evolutionary in nature, and the development of parallel architectures for machine vision
is a nascent field. Therefore, the requirements of the ICAP communication network outlined
in sections 1.3 and 3.5 were as they were understood at the start of the IUA effort and
it was known that they would evolve as the project proceeded. During the course of this
research new intermediate-level vision requirements evolved along with different IUA design
constraints. This provided the opportunity to develop an entirely new network family using
a different methodology than that used for the first three stages.

The organization of this chapter is as follows. In the next section we describe the
architecture of PARCOS II chip that implements a self-routing 6 x 6 crossbar network, and
addresses the original plan for building largef self-routing networks. Next, we discuss the
changes in the architectural requirements of the intermediate level and the new IUA design
constraints. We tackle the problem in stages, presenting three designs. Thereafter, we
discuss what might be involved in building larger networks with these capabilities, followed
by conclusions.

6.1 PARCOSII

In this section we describe the architecture of a self-routing communication network
building block chip called PARCOS II, which implements a self-routing 6 x 6 crossbar switch.
The switch is capable of arbitrating between its inputs in unit time in order to route them to
their respective outputs. The broader objective is to use either the individual cells from this
chip to build large crossbar networks on a chip or to directly replicate this crossbar switch on

174

’ 175

a chip to build larger crossbar networks. Once a crossbar switch (using one or more chips)
of a specific size is obtained, copies of this switch can be used to build various networks such
as Clos, Hypercube etc.

A block diagram of the chip is shown in figure 6.1. It is comprised of a 6 x 6 array
of building block cells. The I/O interface to each processor using a network built with this
chip has 5 lines, namely DATAIN, DATAOUT, CHREQ, CHACK and CHREQCLR. Because
of constraints on the pin count for the particular (low cost) fabrication run employed, this
design uses a central clock. Making the design completely asynchronous, i.e. eliminating
the central clock, requires only one additional pin for every I/O port, and can be readily
incorporated at a future date.

The function of this switch (we will sometimes interchangeably use the term switch
instead of chip, because the ideas discussed here pertain to the design and are not specific to
whether the switch is implemented on a single or multiple chips) is to establish connections
in parallel between DATAIN lines connected to the requesting processors and DATAOUT
lines connected to the destination processors. A processoi' requests a connection to another
processor by asserting its CHREQ signal to PARCOS II and shifting in a 3-bit destination
processor address via its DATAIN line. After the destination processor address has been
input, the channel request line - CHREQ is pulled low. If the requested output is busy, a 0
is returned on the CHACK line. In the present design, if the request‘ed output is busy, the
requesting processor will have to retry by repeating the request. (We are currently working
on a design in which a request for a busy output is queued. As soon as the requested output
becomes available, the requesting processor is then notified by the CHACK signal and a
link is established.) If the requested output is free, a 1 is returned on the CHACK line and
the DATAIN line from the requesting processor is connected to the DATAOUT line for the
destination processor. After a clock cycle delay, the requesting processor is free to send data.
The path from DATAIN to DATAOUT is circuit switched and fully combinational. After all
data transmission is over and the source processor no longer requires the connection, it sends
a channel request clear signal on its CHREQCLR line, thereby releasing the connection.

A block diagram of an individual cell of PARCOS II is shown in figure 6.2. The first
step in establishing a connection between a source and a destination processor is to shift in
the address of the destination processor into the 3-bit register under the control of the finite
state machine (FSM). The outputs of the FSM are 3 enable signals for the 3-bit register and
one enable signal for the decoder. The FSM has four states, encoded by two bits. When the
state of the FSM is 00, the outputs ENO, EN1, EN2, and EN3 are 0001. In this state, none
of the bits in the 3-bit register are enabled to accept data from DATAIN. At the positive edge

DATAOUTO

| |1

11

DATAOUT1

176

CHREQCLRQ —»
CHREQO —_— Cello Cellt
CHACKO D —
DATAINO ——
PR
out
OK/Busy PR
in
—
B
Cell0 Cell1
i
e i
D —
—
Cell0 Celll
——

DATAQUTS
] i
Cell5
il
e -
e
Cell5
t—
e
i
Cell5
e
-

N

R

Figure 6.1. Block diagram of PARCOS II

3

—3 3

—3 _ 3

177

1nodd _n
¥
“ Niviva
MOVHO —
ﬂ . Asng=1 3
MHO=H m
. 'O3H g e
fo
m m 2o NQIII.U _ T
-(B31 m.
3
a 3
A0
u10 1“
=1
43000340 - —_
£N3 m
o
©
ZN3 INIHOVH %0010 =
H3iS1©34 118 € 3LVIS
tN3 ENTVE]
CN3
4
O3HHO
—— & v
HI0034HHO
21=H ?P_uusz
1noviva Niud Asngnio

178

of the CHREQ signal, i.e. when a particular source processor begins a request, the state of
the FSM changes to 01. The outputs in this state are 0010. Now the least significant bit
(LSB) of the destination address is shifted from DATAIN into the LSB (bit 0) of the 3-bit
register. At the next rising edge of the clock, the state changes from 01 to 10. The outputs
of the FSM are now 0100 and the second bit of the destination address is shifted into bit
1. At the next rising edge of the clock, the state of the FSM changes to 11 and the outputs
change to 1001. The most significant bit (MSB) of the destination address is shifted into
bit 2 and simultaneously the DECODER is enabled. At the next clock edge, the state of
the FSM becomes 00 and all three of the bits are disabled while the DECODER remains
enabled. The state of the FSM remains 00 until the next rising edge of the CHREQ signal,
i.e. when the next request is made. Note also that a CHREQCLR signal brings the FSM to
state 00 regardless of its current state. :

Depending on the destination address that was shifted into the 3-bit register, the output of
the appropriate DECODER in the row corresponding to the requesting processor is asserted
high during the third cycle of the address input, after which, the CHREQ line is pulled low.
At the falling edge of CHREQ, the output of the decoder is latched at the output @; of the D
Register. Additionally, the state of the OK/Busy line is latched at output Q2 of the D Register.
The OK/Busy line is used by all of the cells in a column to arbitrate for a common output.
At this point, depending upon the status of the OK/Busy and PRIN lines, the connection
between DATAIN and DATAOUT may be established. At the same time an acknowledge
signal CHACK will be generated for the requesting processor. Note that if more than one
processor requests a connection to the same output in the same clock cycle, the OK/Busy line
will not be sufficient to arbitrate. The PRIN and PROUT lines provide arbitration between
inputs in this situation. As can be seen from figure 6.2, arbitration is priority-based.

The original goal of this design was to be able to queue all unfulfilled requests without
requiring processors to retry. The design can be used to achieve this for requests made
during the same cycle. if multiple requests are made for a common output during the same
cycle, then the outputs Q; and Q3 of the respective cells will be 1. However, the top cell will
be connected first and all other cells’ PRIN lines will be low. As soon as the first processor
is done with its communication and asserts CHREQCLR, its PROUT line goes high and the
second requesting processor is connected to this column and a CHACK signal is generated
for it. The same process is repeated until the last request is fulfilled. If, during a waiting
period, a processor wants to cancel its request, it can do so by asserting its CHREQCLR
signal and it will be deleted from this queue. If a request for an output is made while it is
busy, the requesting processor’s Q2 will be 0 after the CHREQ signal goes low and thus there
is no way to automatically fulfill this request after the existing communication terminates.

-4 3 __3

E|

E|

179

This situation can be addressed in a later design.

If the CHACK signal is high, i.e. the channel is free, then data may be transmitted via
the DATAIN line. At the end of data transmission, the CHREQCLR signal is asserted (a one
cycle duration return-to-1 pulse) to disconnect the link and free it for other processors.

A checkplot of one of the cells is shown in figure 6.3. All 36 cells in PARCOS II are
similar to figure 6.3 except that the DECODER and pullup resistors are used only in the left
column and top row. This chip was fabricated by the Massachusetts Microelectronics Center
(MMC or M2C) using a 2u N-well double metal CMOS technology on a 40 pin package.
Uni:ortu.nately, due to some problems in the standard pad frame library, the chip could not
be tested. The simulation results using SPICE indicate that the design can be clocked
at 25MHz. This design is extensible to larger crossbar switches, either on a chip or with
multiple chips.

This approach to self routing multistage networks was discontinued at this point because
of the new architectural requirements and design constraints on the ICAP level of the IUA.
We discuss these changes in the next section. However, it should be noted that this design
achieves our original goals for communication in the ICAP. In terms of the taxonomy of
communication network outlined in Chapter 1, thus far we have achieved all of the checked
capabilities in table 6.1 below

Table 6.1. Taxonomy of Communication Networks

Patterns Central control T Distributed control
Computed | Synchronous | Asynchronous | Synchronous | Asynchronous
Off-line Vv - Vv -
On-line v v v v

The designs presented in the remainder of this chapter provide additional capabilities
that were not required in the first generation ICAP architecture.

6.2 Changes in the intermediate level

Our original plan in this research was to demonstrate the feasibility of incorporating fast
self-routing into the networks outlined in chapters 4 and 5. We discontinued pursuit of this
path beyond the design and fabrication of the building block PARCOS II chip for the reasons

180

£ 3 3
R A AR AN ARRIIEEARRZDLHHBHHIIMHBBHUIBBBBOIN
%ﬁm%x%&%éﬁg A g
< Z Z 27
W\ 7

Z

- 27

. 7
anvinsnnnginne

%//////.M?///////mfx////////ﬁ “
Z = Z

NVCANN
M,/////IB////////%///////////// MV////////

\#\\\\é\\\

NSNS UNERNRA AR NN NN

\//////07///////%///////// SEEER ~
w/,w./// ////%/////////M/& X
: mm S 722 2 nm
%«\Vv// N B R~

B\\\\\
NN

SHRERS
RN
22

RN RN

BB NN

AN
P Ll
&)

wéd iy (8w
/ D 01017 SRR ;

l.

Figure 6.3. Checkplot of one cell

\\\\\\\\\\
%
Z %27
kx/////////%,/////////////,w/ﬁ
Z 7z z 77

pAC
"% % o s, S
\ “ V2Ll dds ////*//////I//////////////

NANSNNNA
1117411277

181

stated in the previous section. It was noted in Chapter 1 that any optimal solution must
satisfy an application’s requirements while also satisfying its design constraints. The new
architectural requirements of the intermediate-level vision require a different solution, and
the design constraints require a different methodology for satisfying these requirements.

In the next subsection, we discuss new observations with respect to the current approach
to processing at the intermediate-level of vision and the architectural requirements they
impose on the ICAP design. Thereafter, we will discuss the new design constraints on
the IUA. The new constraints make it necessary to solve the problem with a different
methodology.

6.2.1 Architectural requirements

In IUA GEN], the ICAP communication network was designed to act as a data alignment
network in case of apriori and fixed interprocessor communication patterns, or as a message
passing network in case of data-dependent interprocessor communication. It did not have
hardware mechanisms to support shared memory access. Of course, shared memory can
be emulated by a message-passing system, but at the cost of speed (latency) and efficiency.
In bottom-up processing in the IUA, a SIMD or SMIMD mode of computation is used
because a large part of this kind of processing is inherently synchronous or staged. In
top-down processing however, in addition o these two modes, the computation as well as
the communication network require operation in MIMD mode such that different ICAP
processors can simultaneously perform different tasks for the high-level system.

The view of intermediate-level vision in the VISIONS group at the University of Mas-
sachusetts was outlined in chapter 3. In that view, the ISR token database has become a
significant part of intermediate-level vision and the ICAP level will play a critical role in its
efficient implementation.

ISR is very different from traditional databases such as transaction processing systems,
CAD, hypertext etc. A detailed discussion of the ISR was provided in chapter 3. Some
additional properties of the ISR that evolved during last 5-6 years, as the IUA project
progressed, are as follows:

¢ Fine Grained: In addition to coarse grained data structures, the ISR must support
fine-grained storage, access, manipulation, and computation of tokens.

e Distributed: Not only may the database be distributed over multiple processors, but a

182

token set or even a token may be distributed over more than one processor.

o Concurrent: The objective of the ISR is not merely to perform storage and retrieval,
but also to perform (potentially concurrent) computation on data items. In other
virords, in a parallel implementation, it will be an integrated parallel processing and
parallel database system. For example, the current ISR implements what is called
lazy evaluation, wherein evaluation of functions may not take place until their results
are accessed. Thus, a function evaluation may be performed in parallel at any point
between the call and access of its result.

¢ Dynamic modification [reconfiguration: Individual or grouped entries are modified
dynamically and the all or part of the database may be reconfigured on-line.

¢ In addition to storage and retrieval, the ISR involves massive amount of data manipu-
lation and computation.

These characteristics are most efficiently served by a shared memory programming model
with a common name space at the ICAP level. The specific issues involved in implementing
concurrent ISR on the IUA are currently under study by other researchers.

Note that although our message passing implementation of the ICAP communication
network can emulate a common memory name space, it does not provide the low latency and
efficiency required for real time image understanding and scene interpretation.

6.2.2 Design consiraints

Recall that the generation 1.0 and generation 1.5 ICAP communication networks are
based on the multistage network design outlined in figure 6.4. The actual IUA GEN I
prototype hardware with 64 ICAP processors is organized as 16 motherboards on a backplane
bus. The communication network resides on an additional motherboard to which 64 sets of
wires, one set for each ICAP processor, are routed on the backplane. Each set is comprised
of 6 wires (data input, data output, clock input, clock output, frame sync input, and frame
sync output). The ICAP communication network requires 64 x 2 + 4 = 132 wires on the
backplane.

During the course of development of the IUA GEN I, plans were underway for the future
generations of the JUA. The VLSI and packaging technologies improved to an extent that

!This is because data input and data output signals from 64 processors have to be wired individually to the
router board. The remaining four signals are common to all 64 processors, thus they require only one wire each.

34 _3 _ 3

3 3

-
i

*!1 ProcoO

Proc 1

»] Procx

Proc n-1

INTERCONNECTION
NETWORK

Figure 6.4. Schematic of ICAP communication network

183

184

allowed us to incorporate 256 CAAPP PEs on a single chip as compared to 64 PEs in the
first design. Thus the CAAPP can be made four times larger using the same number of
chips. At about the same time, the next generation of Texas Instruments DSP processors
became available. The new TMS320C30 processor provides a number of additional and
improved features over the TMS320C25 that was used in JIUA GEN I. With respect to the
ICAP communication network, each TMS320C30 (henceforth referred to as a C30) has a pair
of 1 MB/S serial channels, each with handshaking capability. Serial channels from two C30s
can be directly connected without any external hardware or global control, allowing them to
communicate under program control of the two processors. In addition, the serial channels
in the C30s have DMA capability such that packets of any length can be transferred from
the memory of a source processor to the memory of a destination processor concurrently with
computation. For this as well as other reasons (such as increased memory address space), it
was decided to switch from the C25 to the C30 in the IUA GEN II.

The IUA GEN II prototype is organized as 8 motherboards on a backplane. Each
motherboard holds 8 CAAPP chips and 8 ICAP processors. Thus, it will have 64 ICAP
processors and 8 x 8 x 256 = 16K CAAPP PEs. Together, the two communication channels
on each C30 require 12 wires. Thus, 8 C30s would require 8 x 12 = 96 pins on a motherboard
connector for the ICAP communication network alone. Similarly, if we were to use a
multistage network as in the IUA GEN I, it would require 64 x 12 = 768 traces on the
backplane for the ICAP communication network alone.

Pin constraints on the motherboard connectors do not allow us to route all 16 serial
channels from the 8 C30s to the backplane. Similarly, constraints on the backplane traces
do not allow us to route all 128 serial channels from 64 C30s to a separate network board. It
should be noted from the construction of the crossbar and Clos networks in Chapter 4 that it
is not possible to reduce the number of traces on the backplane by distributing the network
switches across 8 motherboards. For example, the cardinality of a cut-set [Liu 68, pp 188]
in figure 4.6, when the 3-stage Clos network is cut along a vertical line between stage 1 and
stage 2, or stage 3 and stage 3, is m x » = 2N. Therefore, say if this network is put on two
motherboards (with unequal number of chips on each), the number of traces required on the
backplane for communication between the two boards alone will be 2N (in addition to traces
required for routing signals to and from non-local board to a processor). The cardinality of
a cut-set, when this network is cut along a horizontal line is §(r%), which is §(N). Similar
observation can be made for the crossbar network. In addition, splitting the network across

a larger physical space would potentially increase clock skew and reduce its effective data
rate.

185

We therefore started to pursue a new methodology for the ICAP communication network.
It was clear that it must be based on a point to point topology in order to reduce the number
of traces on the backplane and the motherboard connectors. In the following sections we
describe this effort. It should be noted that the work is in progress and hence some of the
results are preliminary in nature.

6.3 IUA GEN II communication network

We decided to address the problem of developing a new ICAP communication network
in two phases. The first phase addresses only the design constraints of the IUA GEN II
and the second phase further addresses the architectural requirements. In other words, we
decided to first design an ICAP communication network that supports message passing and
is implemented as a point to point network. In the second phase, mechanisms are added to
the network to support fine grained, shared memory access. This section deals with the first
phase and the next section deals with the second phase.

The reasons for choosing a two phase approach were: (1) This research is to be part of
a deliverable project with a hard deadline, and (2) The second phase ICAP communication
network requires complex and performance-critical hardware. Within a university envi-
ronment, it is a high risk project. Therefore, it was necessary to have a backup scheme
which would allow the ICAP processors to communicate with each other using easily built
hardware. Therefore, it must be possible to upgrade the simpler scheme with additional
hardware after the system has been fabricated, and possibly in the field.

Even the first phase is subdivided into two stages. The first stage deals with an ICAP
communication network design for 64 TMS320C30s in the IUA GEN II prototype with no
custom VLSI hardware, which is the ultimate backup scheme. If everything else fails, this
scheme can be used for ICAP communication. The second stage uses a custom VLSI PARCOS
III chip and the design is optimized for the [UA GEN II prototype. Issues related to extending
the design to larger networks will be discussed in a separate section. Next we discuss some
of the important features of C30 that are exploited in our design. Thereafter, we discuss the
original Hughes Research Laboratories (HRL) proposal for an ICAP communication network
in the IUA GEN II prototype, our first stage design, and our second stage design

186

6.3.1 Some TMS320C30 features

The TMS320C30 has three important features that make it well suited for multiple-
processor systems. These features are outlined in figures 6.5 through 6.8 as adapted from
[TI 901.

Figure 6.5 is a block diagram of the processor, which we will not examine in depth. The
details can be found in [Papamichalis 88; TI 90]. One aspect of the architecture to be noted
in this figure is that the C30 has two address and data buses, called the primary bus and
the expansion bus, which allow a pair of simultaneous accesses to take place. The expansion
bus is primarily intended for use with peripherals. For ease of use and programming, the
expansion bus address space is mapped within the primary bus address space.

The first of the three features of TMS320C30 mentioned above is a pair of bidirectional
serial channels as shown in figure 6.6. The two channels are totally independent, but
identical in function, with a separate set of memory mapped control registers controlling
each one. A serial channel can be configured to transfer 1 to 4 bytes per word and any
number of words per message. The clock for each channel can originate either internally
or externally, which, in conjunction with a special handshake mode, allows two or more
TMS320C30s to communicate without any external hardware or clock. On a TMS320C30,
one end of these serial channels is connected to the outside world through I/O pins and the
other end is connected to the 32 bit data and 24 bit address peripheral bus?. |

The second of the three important features of the C30 is an on-chip DMA controller as
shown in figure 6.7. The on-chip DMA controller can read from or write to any location in the
memory map without interfering with the operation of the CPU. Therefore, the TMS320C30
can interface to external peripherals (the two serial channels in our case) without reducing
throughput to the CPU. The DMA controller contains its own address generator, source and
destination registers, and transfer counter. One end of the DMA controller is connected to the
peripheral bus and the other end is connected to an internal dedicated DMA bus (DMAADDR
and DMADATA)? to minimize conflicts between the CPU and the DMA controller. A DMA
operation consists of a block transfer of one or more words to or from memory. Since the
serial channels are memory mapped, the DMA controllers on two connected processors can
be programmed so that a block of words from any location in the source processor can be

%The external expansion bus is a subset of the internal peripheral bus. See figure 6.5.

SDMAADDR and DMADATA is one of the 4 busses internal to C30. Multiple internal busses allow multiple
data accesses in one cycle (C30 is a superscalar architecture).

33

i

187

-%?%ﬂﬂﬂ

—

pu——

—

—

p——

v —

KOVt 04 ——m]

g o ——ued
POvpy —e- «
B0Vt O e s
“Ovoy et §
vyt el =
Ovggiis ——nd g

L2

exf=id
tH

.4,
L

Figure 6.5. TMS320C30 Block Diagram

B

188

)
1
A
i
]
]
i
|

—

CLKX1
FSR1
DR1
CLKR1

CLKRO
FSX1
DX1

o
o X [=}
x o X [i'ed o
x - I
2 a o ¢ a
A i

QORMNA XXX RN NN XXN N XN RN X

Serial Port 1

Serial Port 0
Data Transmit Register
Data Receive Register

Data Recsive Register
R/X Timer Register

Data Transmit Register
Port Control Register

Port Control Register
R/X Timer Register

[050000050508050509080505258
N ARRRH XN
R325200000050305052¢505050]

30VdS AHOW3N

Figure 6.6. Serial channels in TMS320C30

DMADATA BUS E
R S

szt DMA Controller

Global Control Register-

Source Address Register

Destination Address Register

e o "
38
3 @D b
s
0 . A
=
23 o2
e D &
B
s = &
[}
[+

L

Transfer Counter Register

Figure 6.7. DMA Controller

189

190

moved to any location in the destination processbr concurrently with processing.

The third important feature of The C30 is a set of five instructions and two external flag
pins that allow multiple TMS320C30s to share a common memory. This scheme is shown
in figure 6.8 and the five instructions are listed in table 6.1. The instructions and flag pins
provide the necessary arbitration, handshaking and synchronization mechanisms to allow
multiple C30s to share a global memory, in what is called interlocked mode. By configuring
external flag zero (XF0) as an output pin and XF1 as an input pin, XF0 can signal an
interlock operation request (read, write, or modify shared location), and XF1 can send an
acknowledge signal for the requested operation.

Table 6.2. Interlock Operations
Mnemonic | Description —_____ | Operation |

LDFI | Load foating-point value into a Signal interlocked
register, interlocked | src — dst
LDII Load integer into a register, Signal interlocked
interlocked src — dst
SIGI Signal, interlocked Signal interlocked
‘| Clear interlock
STFI Store floating-point value to memory, | src — dst
interlocked . Clear interlock
STII Store integer to memory, interlocked | src — dst
- Clear interlock

The LFI and LDII instructions are similar except for the type of data involved and
perform the following actions. |
1. Simultaneously set XF0 to 0 and begin a read cycle

2. Execute LDF (load floating point value) or LDI (load integer value) instruction and
extend the read cycle until XF1 becomes 0 and a ready is signaled*.

3. Leave XF0 set to 0 and end the read cycle’.

The STFI and STII instructions are similar to each other except for the type of data
involved and perform the following operations.

“The ready signal is generated by the arbitration logic to the shared memory. See figure 6.8. Interlocked mode
can be used on either primary or secondary bus. In IUA GEN II, primary bus is used for shared memory.

5XFO is set high during the STFI or STFII cycle.

3 3 3 13

r

191

1. Simultaneously set XF0 to 1 and begin a write cycle
2. Execute a STF (store floating point value) or STI (store integer value) instruction and
extend the write cycle until a ready (by the arbitration logic) is signaled.

The fifth instruction, SIGI, is used to signal other processors in a multiprocessor configu-
ration, and functions as follows:

1. Set XF0 to 0.

2. Idle until XF1 is' set to 0.

3. Set XFO0 to 1 and end the operation.

These five operations allow implementation of shared memory operations such as a busy-
waiting loop, manipulation of shared counter to support a simple semaphore mechanism, or
to synchronize multiple TMS320C30s. For example, a busy waiting loop can be implemented
as shown below and described in [TI 90]. Location LOCK is the interlock for a critical section
of code, and a nonzero value in that location means the lock is busy.

ILDI 1,R0 ;Put 1in RO
Ll1: LDII @LOCK,R1 ; Interlock operation begun
: Contents of LOCK — R1
STII R0, @LOCK ; Put RO (=1) into LOCK, XF0=1
; Interlocked operation ended
BNZ, L1 ; Keep trying until LOCK=0

To access a critical section when several processors are connected to a shared memory,
semaphores may be used. The example in figure 6.8 shows two processors sharing a
global memory, but can be readily extended to more processors. Two primitive, indivisible
operations are defined on semaphores:

VS): S=S+1
P(S): P: if(S=0),goto P
elseS=S-1

Global Memory

!
(1 A
5| E| E
< a ‘ o
Arbitration Logic -

XFO XF1

TMS320C30 #1

(X)A

Lock, Count, or S

|

(XD

)

(X)A

CTRL

Arowmow [eqo[8 Surreys 0£D0ZESIL AN "8"9 snSLg

L

(X)o

CTRL

Bl
B

Local Memory

Local Memory

-2 _2» _» D _¥» _3 _13 __3 3 _3 _1 _3 1

1

XF1 XFO
TMS320C30 #2
3 A

a6l

' 193

Prior to entering a critical section, a P operation is performed on a common semaphore,
say S, which is initialized to 1. The first processor performing P(S) will be able to enter its
critical section. All other processors are blocked because S has become 0. After leaving its
critical section, the processor performs V(S), thus allowing another processor to execute P(S)
successfully. The codes for these operations are shown below.

V: LDII @s, RO ; Interlocked read of S begins (XF0 = 0)
; Contents of S — RO
ADDI 1,R0 ; Increment RO (=S)
STII RO, @S ; Update S, end interlock (XF0 = 0)
P: OR 4, IOF ; End interlock (XF0 = 1)
LDII @S,R0 ; Interlocked read of S begins
; Contents of S — RO
BZ P ; If S=0, go to P and try again
SUBI 1,R0 * ;Decrement RO (= S)
STII RO, @S ; Update S, end interlock (XFO0 = 1)

Having discussed the serial channels, the DMA operation and how to implement shared
memory on a cluster of TMS320C30s, we next discuss the design proposed by HRL to
implement a message passing system on the 64 TMS320C30s of the IUA GEN II prototype.

6.3.2 Design proposed by Hughes Research Laboratories

There are 64 ICAP processors (TMS320C30) in the IUA GEN II prototype. In ordexj to
connect these processors in some meaningful point to point topology with diameter less than
6(N), more than two communication channels are required on each processor. In theoretical
computer science, an open extremal problem in graph theory still exists, called the (d, k)
graph problem [Cattermole 77] and consists of maximizing the number of nodes n of an
undirected regular graph (d, k) of degree d and diameter k. A survey of approaches to the
problem can be found in [Memmi 82]. This problem has obvious implications in point to point
mulﬁple-pmcessor communication networks. It has been shown that there exist regular
graphs with diameter k and degree d with #(d*) nodes (the constant is very close to 1).

194

Space constraints on the motherboards and the requirement that there should be a
backup scheme without any custom VLSI hardware, do not permit a separate custom VLSI
/O processor to be attached to every ICAP processor in order to increase the number of
channels beyond the two supplied. Therefore, a scheme had to be devised to solve this
problem without custom hardware.

Before we discuss the design proposed by HRL, a brief note is in order. If we had chosen
to connect the 64 TMS320C30s in a 6-dimensional hypercube topology using a pair of serial
channels per link (via an attached /O processor per node), it would have required 48 serial
channels or 48 x 6 = 288 pins on the motherboard connector for the ICAP communication
network alone. The diameter in that case would have been 6. As will be seen shortly,
the HRL solution achieves lower latency. Also, the motherboard connector in the IUA
GEN II prototype is comprised of 3 128 pin connectors. Therefore, each motherboard has
only 3 x 128 = 384 pins. Even if we ignore the pins used for ground connections?, only
384 — 288 = 96 pins remain to support all other system functions. Obviously, such an
arrangement is unworkable.

The solution proposed by HRL is shown in figure 6.9. Using the shared memory
support mechanisms provided by the TMS320C30 architecture, groups of 4 ICAP processors
are connected in shared memory clusters called supernodes or SNODEs. Each SNODE
is treated as one unit in the ICAP communication network. There are 8 communication
channels in each SNODE and there are a total of 16 SNODEs in the IUA GEN II prototype.
By using a binary hypercube topology, one can construct a 256 SNODE system. The 16
SNODEs are connected in a 16-node Dual-Hypercube topology as shown in figure 6.10.
Simply stated, instead of one communication link between two adjacent SNODEs, there are
two. Using the handshake mode of the TMS320C30 serial channels, one of these channels
is programmed for outgoing messages and the other channel is programmed for incoming
messages. For end-to-end TMS320C30 communication, the shared memory (SMEM) of an
SNODE serves as intermediate storage space in a store-and-forward protocol. It is possible
to set up a DMA mode such that either a word is read from the SMEM and put on a serial
output channel (in handshaking mode, a serial channel has to be prepogrammed as an input
or an output channel) or a message is read through a serial input channel and is stored in the
SMEM without interrupting the CPU. By suitably programming the DMA .controllers and
the serial channels on two connected ICAP processors, it is possible to transfer a message of

$To alleviatg sfgnal coupling and other noise related problems, every alternate signal is grounded on PCB
connectors. This is especially critical in signals that are broadcast to multiple boards such as address and data

lim;s. St.xch signals induce large dV/dT noise and thus alternate ground signals reduce this as well as common
modae noise. .

3 3] 3 3

1 3 3

|

C30 #1

C30#3

SMEM

]

Figure 6.9. HRL SNODE structure

m| C30#2

C30 #4

|

195

F ¢ 0 F 0o e

196
15

"

Figure 6.10. 16-Node Dual-Hypercube

13

197

one or more words from anywhere in the SMEM of the source processor to anywhere in the
SMEM of the destination processor without interrupting processing. It should be noted that
there is only one DMA controller in every TMS320C30 and it must be preprogrammed for
reading from or writing into SMEM. As such, the DMA controller on a TMS320C30 can be
used for only one serial channel at a time.

Performance

In a 4-dimensional binary hypercube configuration, the maximum SNODE to SNODE
distance is 4. Each serial channel has a maximum data rate of 1MB/sec (the maximum clock
frequency of the serial channels is 8MHz or 125nS for a 32MHz input clock frequency to the
C30). Assuming a message length of 64 bits, it will take 64 x 125 = 8uS, to transmit a 64-bit
message through a C30 serial channel.

For non-neighbor communication, SMEM in the intermediate SNODEs acts as temporary
storage for messages in transit. A processor in an intermediate SNODE that receives a
message must interrupt another processor on the same SNODE to forward this message to
the next SNODE. Interprocessor interrupt on a SNODE is implemented by shared, memory
mapped registers. If a processor-writes a 1 at a specific shared address, it activates the
hardware interrupt of a particular C30.

In addition to the store and forward overhead, the overhead of setting up DMA and serial
channel transfer modes at the two ends and starting the transfer must be considered. We
assume that it will require 30 additional processor cycles (2uS), resulting in a communication
time of 10uS between two processors on adjacent SNODEs. The best time between any
two ICAP processors corresponds to the diameter of the hypercube and is 40uS. The worst
case time for many to many or many to one communication will take at least log?N steps or
16 x 10 = 160uS. For example if 63 C30s send a message to the 64th C30 at once, it will take
16 steps to receive the 60 messages (from remote SNODEs) via the four input channels on
the destination SNODE.

Next we discuss our Stage I design and show how it improves upon this performance.

6.3.3 Stage I design

In the HRL proposal, there are two SNODEs with 4 C30s each on every motherboard. Of

198

the 16 serial communication channels on each motherboard, 12 are routed to other mother-
boards through the backplane. The remaining four channels are used for interconnecting the
two SNODEs on a motherboard. Each serial channel requires six pins on the motherboard
connector. Thus, there are 12 x 6 = 72 pins on the motherboard connector for the ICAP
communication network. When configured in handshaking mode, a serial channel can send
data in only one direction at a time, the other direction being used for acknowledgment.
Each serial channel is capable of only a 1MB/S data rate. The cumulative capacity of all
of the serial channels on one SNODE in HRL design is 4 MB/S. When either a source or a
destination for DMA is in the internal memory of the C30, as it is in the case of the memory
mapped registers, and the other end of the transfer is on the primary bus (SMEM in this
case), the DMA timing for transfer of one four-byte word is given by

(2+c,+1)x§

Where f is the system clock frequency (32 MHz in our case) and C, is the number of wait
states in the SMEM (3 in our case). Thus each C30 in the IUA GEN II prototype is capable
of transferring

' 4 _ 4x32x108
2+C-+1)x % (2+3+1)x2

=10.7MB/S

Therefore, an SNODE can support communication between more than four C30s.

The Stage I design incorporates several changes. First, all eight C30s on a motherboard
reside in single SNODE, so that there is only one SNODE on every motherboard. Even so,
the DMA of one processor has a much higher capacity than all of the serial channels in an
SNODE combined. The second modification is to change the interconnection topology of the
network on the backplane from a hypercube to fully connected between motherboards. Each
SNODE on a motherboard has 16 serial channels. Seven of these channels are configured
as output channels and seven as input channels, connected to thé seven SNODEs on other
motherboards. The remaining 2 channels on each SNODE are connected to neighboring
SNODEs in a daisy-chain that terminates at an outside.connector. This connector is used for
diagnostic purposes or for direct input of data to the C30s or for output of data from them.
- This connector can also be used for instrumentation purposes.

In the Dual-Hypercube topology, there are 12 serial channel connections on the backplane.
By having only two additional serial channels (a total of 14), one can have a fully connected
topology between the motherboards. The benefit of this topology will be apparent in the
following paragraphs and in the next design.

3 13

1

—4a 3 3 _3 _3

—

199

Performance

The maximum SNODE to SNODE distance in the Stage I design is 1. Using the same
figures for transmission of a 64-bit message as in the HRL design, the best communication
time between any two ICAP processors without conflicts in the Stage I design is 10uS.
The worst case time is observed in many to one or one to many communication. At most
there can be 8 outgoing messages from a motherboard queued on a single serial channel,
which will take 80uS. Notice that between the HRL design and the Stage I, the worst
case communication time has improved by a factor of 2. Also notice that the average case
communication time has improved by a factor between 2-4 (worst case vs. the best case).
The average time will depend on the communication pattern.

6.3.4 Stage II design

The Stage II design requires custom VLSI hardware. Within the time constraints
imposed by the delivery schedule for the IUA GEN II system, it may not be possible to
deliver functional Stage II hardware in time. Also, as discussed earlier in this chapter, an
additional constraint was imposed on the ICAP communication network design that there
should be a backup scheme that does not require custom VLSI hardware. Therefore, Stage
II has been developed as an add-on to the Stage I design that can be installed without
modifying the layout of the backplane or the motherboards.

The organization of the Stage I and Stage II designs is shown in figure 6.11 The dotted
area is the communication daughterboard on every motherboard. Converting the system
from the Stage I design to Stage II involves replacing this daughterboard. The serial channel
signals along with XFO0 and XF1 from eight C30s are routed to the daughterboard and from
there, 7 pairs of channels are jumper-connected to the backplane connector. The eighth
channel pair is wired to an external connector for diagnostic purposes as discussed above.
The arrangement so far is functionally equivalent to the Stage I design.

For now, let us call the custom VLSI hardware for Stage II design, PARCOS III. For
interprocessor communication, the Stage II design does not use the serial channels. Instead,
all messages are encoded as memory mapped writes to the shared memory. PARCOS III
implements part of the SNODE shared memory which is used to implement message passing
queues on the send and receive sides of PARCOS 111, and for queue management. PARCOSIII
is additional master of the SMEM bus and implements an interlock instruction set identical

12 Wires for the 2 serial
channels, XF0 & XF1

C30 43

C30#4

TTTITT

Figure 6.11. SNODE on a motherboard

200

3 3 1 __3

—3 13

3

201
to that of the processors.

The message passing mechanism implemented in the Stage Il design is to take a 64 bit
(2 word) message written into a PARCOS III queue by a source processor, deliver it to the
destination SNODE PARCOS III, which in turn writes these 2 words at a specific location in
the destination SNODE'’s shared memory and interrupts the destination processor.

Architecture

Figure 6.12 is a block diagram of PARCOS III. Only one of the seven pairs of channels is
shown in the diagram. The other pairs are identical except for their address mappings. In
any SNODE a number (to be defined shortly) of memory locations are reserved for the ICAP
communication network. Seven 1-bit Empty/Full registers, one corresponding to each send
queue in PARCOS III, are memory mapped in the shared address space. These registers are
set by the corresponding port controller #n (0 < n < 6) to indicate whether the corresponding
send queue is empty or full. Before sending a message, a source processor has to read this
bit in interlocked mode. The actual size of the send queue has yet to be determined, subject
to simulations with actual data. We chose a size 8 which would take care of the case in which
every processor on an SNODE simultaneously sends a message to a common SNODE.

Each item in the send queue is 68 bits in length. Of these bits, 64 are the actual message
and the remaining bits represent the number of the processor on the destination SNODE
(Currently we have only 8 processors on an SNODE. A 4-bit address allows future extension
of up to 16 ICAPs on a single SNODE). The send queues are mapped into the shared address
space so that in order to write in to one of them, a processor performs a write to a specific
location. The send queue on an SNODE transmits data to the connected receive queue on
another SNODE via the 6 wires employed in the Stage I design. Four of these wires are
used for sending data in 4-bit nibbles. One wire is used to gate writing of the nibble into the
receive queue, and the last wire is used to determine whether the receive queue is empty or
full. A receive queue is similar to a send queue in design but different in functionality. Each
pair of queues in a channel has its own controller. All seven of these controllers operate
under the control of the PARCOS III controller. A message in the receive queue is stored
at a location in SMEM determined by the destination processor number. If that location is
not empty (because the processor has not yet removed its previous message), the blocked
message is inserted at the end of the queue to prevent other received messages for other
processors on the same SNODE from being blocked. If there are messages in multiple receive

%

SN ED NS EEEN AN NN aEE IS AANE A AN MO AN ORI AN ANSNCOOENNRENERAREEEENSNANERAGRARERREASR

Empty/
Fullpty

»| Controller

=1 Send Queue

—&= Write

#n

N

6 Other similar Boxes

De
Mux

III SODY¥Vd jo weiderp yoo[g 'Z1'9 a3ty

AN SR NN NE NN NN IEN NN oSO ON OO OREOEENANEREN RSN O NN UENE NN NN NS RS eI NN NN O NONNONREERED

EEEEESONANNENONNOONCOSNNEEORRENINOSEESCsdesennEpsneneEmenoenssnenanand

<

Receive Queue a—1 Mux

e e ————

PARCOS Il CONTROLLER

—

02

—y ~™3 —% ~— 3§ ~ 3 ~ 8 —8 —8 3 3 TF TI TF T3 —3 T3F T3 T3 T3

203

queues then the respective controllers are polled (and operated) in a round-robin fashion
by the PARCOS III controller. Writing into send queues’ is governed by the arbitration
mechanism on the SNODE itself.

Operation

An ICAP processor performs the following operations in order to send a 64 bit message
under the Stage II design.

1. The ID of the appropriate send queue is derived from the destination processor number.
In interlocked mode, the processor checks if the send queue is empty by reading the
corresponding Empty/Full bit.

2. If the queue is full, it releases the SMEM bus and retries later.

3. If the queue is empty, it writes two words at specific locations, associated with the
queue and then releases the SMEM bus. There are 7 sets of 8 pairs of these locations,
one set for each SNODE send queue with each pair assigned to a specific processor in
the destination SNODE. Depending upon which of the 8 pairs is written to, the port
controller will extract the 4 bit® destination processor number and attach it to the 64
bit message in the send queue.

If a send queue has one or more messages, it tries to send them to the corresponding
receive queue, depending on the Empty/full signal from the receive queue. There are two
hardware approaches to transmitting data from the send queue to the receive queue. In a
centralized clocking scheme, a write signal is merely used as a gating signal for the message.
The clocking out and in of the data is performed using the system clock. Clock transitions
can be used to transfer a 4-bit nibble at the rising edge of the clock and another at the falling
edge. In a non-centralized clock scheme, the write signal is actually used for clocking every
nibble out of and in to the queues. The first scheme provided twice the data transfer rate of
the second approach.

As soon as there are one or more messages in a receive queue, its corresponding port
controller, under control of the PARCOS III controller, tries to deliver the messages to their

"Note that only one ICAP can write a message at a time in any SNODE shared memory.
8Note that in JUA GEN II, only three bits are sufficient.

204

appropriate locations in the SMEM. To deliver a message, the port controller performs the

following operations:

1

3.b

3.c

From the destination processor number, it determines where the message is to be
delivered. In interlocked mode, it checks if the destination processor has removed the
previous message by reading a predetermined location. There are 8 sets of locations
with 3 words each, one set for each processor on an SNODE. The first word in a set
is used by the port controller as well as the corresponding processor for handshaking.
Every time the processor removes a 64-bit message from the other two words, it sets
the first word to 0. Every time a port controller writes a message in the last two words,
it sets the first word to 1 so that no other port controller will overwrite the message

before the processor removes it.

If the destination buffer is full, then the port controller moves the message from the
front of the receive queue to the end and releases the SMEM bus.

If the destination buffer is empty, the port controller sets the first word to 1 and writes

the remaining 2 words containing the actual message.

The port controller writes in the memory mapped interrupt register to indicate receipt
of a message to the destination processor.

The port controller releases the SMEM bus.

When the destination ICAP receives an interrupt, it removes the message and sets the
first word to 0 in interlocked mode.

Having discussed the operation of the Stage II design we next discuss its performance.

Performance

The best communication time between any two processors on different SNODEs is
calculated as follows:

The time for the first step, in which the source processor writes a message in to the send
queue, is comprised of:

i

In interlocked mode, check if the send queue is empty or full. This takes 5 cycles.
(Recall that there are 3 wait states in the SMEM.)

205
2. Write two words in the send queue. This takes 8 cycles.
3. Release the SMEM bus, which takes 4 cycles.
Thus the total time for the first step is 17 cycles. With a 32 MHz system clock, each

instruction cycle being half the clock rate, the cycle time is 62.5 nS. Therefore, 17 cycles will
take

17 x 62.5 = 1062.5 nS

Or 1.06uS. Note that with a zero wait state SMEM, this step would have taken 5 cycles or
312.5 nS.

A message from the send queue to the receive queue is broken into 4-bit nibbles. Assuming
the approach based on a centralized clock, a 68-bit (17-nibble) packet will take

1 1
(-2- x 17 x m) = 265.5 nS

to be transmitted between PARCOS III chips.
The time for delivering a message from the receive queue to the SMEM is comprised of

the following steps:
1. Check if the destination buffer is empty. This will take 5 cycles.

2. If empty, mark this buffer full and write the 2 words of the message. This will take 12
cycles.

3. Set the appropriate bit in the memory mapped interrupt register. This will take 4
cycles.

4. Release the SMEM bus. This will take 4 cycles
Thus the total time for this step is 25 cycles or

25 x 62.5 = 1562.5 nS

Note that with a zero wait state SMEM this step would have taken 7 cycles or 437.5 nS.

Thus, the total time for communication is:

1062.5 + 265.5 + 1562.5 = 2890.5 nS

’ - 206
or 2.89uS, with 8 wait state SMEM, or
312.5 + 265.5 + 437.5 = 1015.5 nS

or 1.02uS, with a zero wait state SMEM.

It is not realistic to analytically calculate average or worst case latency in this design,
because they depend on the actual computation taking place in the processors. For example,
the communication latency due to delay on the SMEM bus will depend upon the activity of
the other processors which might be using it for computation. Similarly, the latency in the
send and the receive queues will depend upon the computation and communication in other
processors, which, in MIMD processiné, is in general, nondeterministic. This analysis is
therefore subject to simulation with actual tasks on the ICAP.

Note that between the Stage I and ‘Stage II designs, the best communication time has
improved by a factor of 3 to 10, depending upon the speed of the SMEM.

In the next section, we discuss schemes for supporting shared memory at the ICAP level
in the IUA. The design in the next section was carried out independently of the other designs
in this chapter. Therefore, we refer to it as the IUA GEN II+ communication network.

6.4 IUA GEN II+ communication network

This section describes the second phase of the new ICAP communication network design.
We discuss mechanisms that are added to the network of the Stage II (or they can be
considered additions to Stage I) design to support fine grained, shared memory operations.
The field of shared memory multiple-processor designs is very rich, but different systems
have been, in general, influenced by the application space as well as the architectural
constraints. It should be noted that in our case, the logical name space is shared and
not the physical address space. The ICAP in JUA GEN II+ is therefore, a NUMA (Non-
Uniform Memory Access time) machine. Another example of NUMA architecture is the
BBN Butterfly [LeBlanc 88]. In order to keep our design relatively simple, we decided to

support five operations, which can be visualized as an extension of the Stage II design. The
5 operations are:

¢ Send

Send two words from the local SNODE shared memory to the remote SNODE shared
memory.

7 3 __3

3

J

207
¢ Send.int

Send two words from the local SNODE shared memory to the remote SNODE shared
memory. Interrupt a specific remote processor when completed.

¢ Get

Retrieve two words from the remote SNODE shared memory to the local SNODE
shared memory.

¢ Get.int

Retrieve two words from the remote SNODE shared memory to the local SNODE
shared memory. Interrupt a specific processor in the local SNODE when completed.

¢ Fetch & Replace (F & R)

Fetch a word from a specific location in the remote SNODE shared memory, replace it
by the value supplied, store the fetched word at a specified location in the local SNODE
shared memory, and interrupt a specified local processor when completed.

By using F & R in conjunction with multiple Send or Get operations, a number of shared
memory primitives such as a critical section guarded by semaphores can be implemented.

The organization of an SNODE that supports shared memory is shown in figure 6.13.
We will refer to the custom VLSI router as PARCOS III+. PARCOS III+ is another master
on the SMEM bus and always snoops on the bus signals. In addition, it implements an
interlock instruction set like that of the C30s.

All 5 of the operations outlined above are encoded as memory mapped writes to the part
of the shared memory that is implemented in PARCOS III+. The architecture of PARCOS
III+ is discussed next.

Architecture

Figure 6.14 is a block diagram of PARCOS III+. Only one of the 7 pairs of channels
is shown in the diagram. The other pairs are identical except for their address mappings.
Comparing this figure to figure 6.12, it can be seen that rather than writing into the send
queue, a processor requests one of the 5 operations by writing a three-word instruction in
one of the task queues. There are seven 1-bit Empty/Full registers, one corresponding to
each task queue in PARCOS I1I+, that are memory mapped in the shared address space.

208

SMEM

A I

Address |Data |Control

/

ARBITRATION LOGIC + ADDRESS MAPPING LOGIC + INTERRUPT LOGIC

A |p |[XFo | XF1|Cont.

C3ok0 | | C3oH C3046 c3047

NS e

PARCOS lll+

[T

To other boards

Clock ————
Sync ——— |

Reset ———

-’ adamn LT
H]

0 0
Send and receive queues
i
6 i 6
pt— ———]

Figure 6.13. SNODE for shared memory

209

]

liny/Adw3
BILIM

EleQ

(Iny/Adw3
el
eleq

SN NSNS IS NN E NSNS N eSS NSNS Sa S A RS sERNRES

T —r————

H3TTOH.LNOD *ill SOJHVd

—r EL,_HM__

—_—

—_—

-

-t

SIS OEEECONENECNENSNERARERRRNRREERES

xny |F—=1 enanp aa808y

IIIIIIL"

XNN
ad

ENSEEEEANSEANIESNNISNACNUNSREEERENERERERERRNEY

anenp puasg

Ut

e 1ajjo5u0n

Y

N4
/Adw3

sexog Jejiuis 18yl 9

enanp jse)| |fe——m—

[Ind

/Adw3

GEEESINNEENOEINAEESONEONEEGEENNEEUNENEEENE NS SNSRI IR NSNS SEEENEREENREREERTES

sEsEEmsImoUNSE

S N EEEEESEFENUUNEETONEINEENEEEANEUNENESEUEUNNINENNENEOENENNEENEEENNOEEESDONEEpOEESEREUERERARRAE

Figure 6.14. Block diagram of PARCOS III+

210

These registers are set by the corresponding port controller #n (0 < n < 6) and the task
queue to indicate whether the queue is empty and thus able to receive this request. Before
making a request, a source processor has to check this bit in interlocked mode. The size of
the send queue must be determined from simulations with actual data.

Each item in a task queue is three words in length. The first word contains the operation,
the source processor number, the destination processor number, and a value (for the F&R
operation). The second word contains the address for the remote SNODE shared memory.
The third word contains the address for the local SNODE shared memory. The format of the
first word is:

[OPCODE [Processor # | Replace value |

The 3-bit OPCODE field indicates one of the five operations. The four processor # bits®
indicate the source or-the destination processor to be interrupted, depending upon the
operation. The remaining 25 bits can be used as the replacement value in an F&R
operation!®. The second and third words contain 32-bit addresses, even though there are
currently only 1M words in SNODE shared address space. The task queues are mapped into
the shared address space so that a processor merely has to perform memory writes to three
contiguous locations.

A port controller continuously monitors the task and receive queues and performs
operations requested via either of these. The communication between a send queue and a
receive queue is performed just as in the Stage II design.

Operation

A processor executes the following steps to perform one of the five shared memory
operations. ’

1. From the destination SNODE number, it determines which task queue is associated
with the desired SNODE. In interlocked mode, it checks if the queue is empty by
reading the corresponding Empty/Full bit.

SRecall from Stage II design, that only 3 bits are sufficient for [UA GEN II
1°It is possible to specify a 32-bit value by modifying this instruction to a four word instruction.

—43 .3 3 3

— 13

211
2. If the task queue is full, it releases the SMEM bus and retries later.

3. If the task queue is empty, it writes a three word entry in the queue, and releases the
SMEM bus.

If there are one or more requests in the task queue and the send queue is empty, the port
controller tries to satisfy the requests one by one. From the first word of a request in the
task queue, it determines the operation requested and simultaneously puts the word in the
send queue. If the requested operation is Get, Get.int, or F&R, it moves the second and the
third word from the task queue to the send queue and proceeds to the next request. If the
requested operation is Send or Send.int, it moves the second word from the task queue to
the send queue, and uses the contents of the third word in the task queue as the starting
address of the two words which will be fetched from the local SMEM; it then moves them to
the 3rd and the 4th words in the send queue, before proceeding to the next request.

Process of communication between the send and receive queues is identical to that of the
Stage II design. Each packet in the send queue is either 3 or 4 words long depending upon
the operation. The first word in the send queue has the same format as in the task queue.
If the requested operation is Get, Get.int or F&R, the second and the third words are those
copied from the task queue. If the requested operation is Send or Send.int, the second word
contains the address in the remote SNODE’s shared memory and the remaining two words
contain the actual value to be stored in the remote locations.

As soon as there are one or more messages in a receive queue, the corresponding port
controller tries to satisfy them, by performing the following steps.

1. From the first word of the message it determines the operation requested.

2. Ifthe requested operation is Send or Send.int, it uses the second word as an address into
the local SNODE shared memory and, using interlocked mode, stores the remaining
two words starting at the specified address. For a Send.int operation, it additionally
writes in the appropriate interrupt register bit. Lastly, it releases the SMEM bus.

3. If the requested operation is Get, Get.int or F&R, it checks whether the send queue is
empty or full. If the queue is full, it moves the request from the front of the receive
queue to its end.

4. If the send queue is empty, it uses the first word to determine the operation and does

the following:

’ 212

(a) If the requested operation is Get or Get.int, it uses the second word as the address
in the local SMEM and fetches two words in interlocked mode. Meanwhile, it
transfers the first word in the receive queue to the first word in the send queue,
modifying the Opcode from Get to Send. Following this first word, it moves the
third word from the receive queue to the second word in the send queue. Once the
two words are fetched from local SMEM, it places them in the 3rd and 4th words

in the send queue.

(b) If the requested operation is F&R, the second word in the receive queue is used
as the address in the local SMEM to fetch the word there, and replace it with the
value supplied in the first word of the receive queue. The Opcode part of the first
word is changed to Send_int and put in the first word in the send queue. The third
word from the receive queue is moved to the second word in the send queue and
the fetched value from the local SMEM is placed in the third word. In order to
reduce controller complexity, we chose to include an additional dummy fetch in the
F&R operation so that same number of fetches are performed for all operations.

Having discussed the operation of this design we now discuss its performance.

Performance

The best case times for performing the five operations discussed in this section are
calculated as follows.

The time for the first part, in which the source processor writes a request into the task
queue is comprised of:

1. Check if the send queue is empty, in an interlocked mode. This takes five cycles.
2. Write three words in the task queue. This takes 12 cycles.

3. Release the SMEM bus. This takes four cycles.

Thus the total time for the first part is 21 cycles. With the same cycle time as before, 21
cycles will take

21 x 62.5 = 1312.5 nS

3 g 3

3 1 1

3

"il

213

Or 1.3148. Note that with a zero wait state SMEM this would have taken six cycles or 375
nS.

Assuming that the port controller operates at the same rate as the C30s, it will take
eight cycles to test and move three words from the task queue to the send queue for the Get,
Get_int, or F&R operations (we assume two cycles for fetching and testing). Thus the time is

8 x 62.5 =500 nS

It will take 14 cycles to fetch two words from the local SMEM and move two other words
from the task queue to the send queue for the Send or Send.int operations. Thus the time is

14 x 62.5 = 875 nS
with a 3 wait state SMEM or
8 x 62.5 = 500 nS

with a zero wait state SMEM.

Moving a request from the send queue to the receive queue will take

1 1
(§X24X§2—)-<—10—6)-—375 nS

for the three-word (24 nibbles) of a request or
1 1
(-2-X32Xm) = 500 nS

for a four-word request.

For a port controller, the time for acting on a request in the receive queue is comprised of

the following steps:

1. From the first word in the receive queue, find the operation requested. This takes 2
cycles.

2. If the requested operation is Send, it will take 12 cycles to put the two words in the
SMEM.

3. If the requested operation is Send.int, it will take 16 cycles to put the two words in the
SMEM and set the bit in the interrupt register.

214

4. Releasing the SMEM bus will take another 4 cycles.

5. If the requested operation is Get or Get.int, it will take 16 cycles with 3 wait state
SMEM or 10 cycles with zero wait state SMEM to move the fetched word to the send
queue and modify the Opcode.

6. If the requested operation is F&R, it will take 20 cycles with 3 wait state SMEM or 11
cycles with zero wait state SMEM.

The Get, Get.int and F&R operations are not complete yet. These three instructions
must move the fetched data value to the originating SNODE and interrupt a processor if
necessary. The times for these steps are as follows:

500 + 62.5(2 + 12 + 4) = 1625 nS
or 1.63uS for a Get instruction using 3 wait state SMEM, or
500 + 62.5(2 + 6 + 1) = 1062.5 nS
or 1.06uS using zero wait state SMEM;
500 + 62.5(2 + 16 + 4) = 1875 nS
or 1.88uS for a Get_int or an F&R instruction using 3 wait state SMEM, or
500 +62.5(2+ 7+ 1) = 1125 nS

or 1.13uS using a zero wait state SMEM.

At this point all operations are over. With 3 wait state SMEM the total time for a Send
operation will be

62.5(21 + 14) + 500 + 62.5(2 + 12 + 4) = 3812.5 nS
or 3.8148S. With zero wait state SMEM a Send operation will take

62.5(6 + 8) + 500 + 62.5(2 + 6 + 1) = 1937.5 nS

or 1.93uS.

! E|

—3 3

7 1 3

—y ™3 ~—3 ~—3 ~—3 —3 T3 —3 3 —3 ~3 T3 —31 T3 "3 3 "3 i T3

With 3 wait state SMEM a Send.int operation will take
62.5(21 + 14) + 500 + 62.5(2 + 16 + 4) = 4062.5 nS
or 4.06uS. With zero wait state SMEM a Send_int operation will take

62.5(6 + 8) + 500 + 62.5(2 + 7 + 1) = 2000 nS

or 2.0uS.
With 3 wait state SMEM, the total time for a Get operation will be

62.5(21 + 14) + 375 + 62.5(2 + 16 + 4) + 500 + 62.5(2 + 12 + 4) = 5562.5 nS
or 5.56uS. With zero wait state SMEM, a Get operation will take
62.5(6 + 8) + 375 + 62.5(2 + 10 + 1) + 500 + 62.5(2 + 6 + 1) = 3125 nS

or 3.13uS.
With 3 wait state SMEM, the total time for a Gat_int operation will be

62.5(21 + 14) + 375 + 62.5(2 + 16 + 4) + 500 + 62.5(2 + 16 + 4) = 5812.5nS
or 5.81uS. With zero wait state SMEM, a Get-int operation will take
62.5(6 + 8) + 375 + 62.5(2 + 10 + 1) + 500 + 62.5(2 + 7 + 1) = 3187.5n5

or 3.19uS.
With 3 wait state SMEM, the total time for a F&R operation will be

62.5(21 + 14) + 375 + 62.5(2 + 20 + 4) + 500 + 62.5(2 + 16 + 4) = 6062.5 nS
or 6.06uS. With zero wait state SMEM, a F&R operation will take

62.5(6 + 8) + 375 + 62.5(2 + 11 + 1) + 500 + 62.5(2 + 7 + 1) = 3250 =S

or 3.25u8.

215

216

Table 6.3. Best times for shared memory operations

Operation | 3 wait state SMEM | zero wait state SMEM |
Send 3.81 uS 1.93 S
Send.int 4.04 uS 2.00 S
Get 5.56 uS 3.13 S
Getant 5.81 uS 3.19 S
' F&R i 6.06 uS 3.25 uS

The total times for all these operations are tabulated in table 6.2. Analysis of the average
and worst case latency in these operations is subject to simulation using actual tasks on the
ICAP,

Next we very briefly discuss issues related to building larger networks.

6.5 Larger networks

A huge body of literature exists‘ that deals with shared memory systems. The design
of these systems, in general, has been influenced by the application space as well as
the architectural constraints. We feel that at this moment, exploring designs for larger
networks for the ICAP is very speculative in nature, because the application space (parallel
processing as related to intermediate-level vision) and the architectural constraints of the
future generation IUAs are not well defined. Nonetheless, one of the following schemes
might be used for building larger ICAP communication networks.

6.5.1 Based on point to point topology

By redesigning SNODES, it is possible to have a 64-bit wide SMEM bus. By pipelining
SMEM access and operating the SMEM bus at 10MHz, it is possible to achieve an effective
throughput of 80 MB/S for each SNODE shared memory. This would allow increasing the
number of processors on a SNODE from 8 to 16. The fan-in on the SMEM bus will not allow
a substantially larger number of processors on an SNODE. In addition, access to the SMEM
is serial, therefore, increasing the number of processor will increase the average latency.

"An analysis could be developed using queuing theory, but such an analysis is of doubtful value without
simulation data to validate it.

)

E|

1 __ 3 1 __3

]

|

3 3 |

217

It was seen in sections 6.3 and 6.4 that the majority of the delay in message passing or
shared memory access occurs inside SNODE. For example, with a zero wait state SMEM, a
Send operation in section 6.4 took 1.93 uS. Out of this time, only 0.5 uS was spent in actual
message transmission between SNODEs. Therefore, by improved SNODE design and using
7-Dimensional hypercube topology with virtual cut through routing between PARCOS III+,
it is possible to build a 27 = 128 SNODE, or 2K processor ICAP system with latencies of
the order of twice those in JUA GEN II+ prototype. It is feasible to incorporate 8 pairs of
channels in each PARCOS III+, and thereby, support up to 4K processors in the ICAP.

6.5.2 Based on multiple buses

An outline of this scheme is shown in figure 6.15. Each PARCOS III+ on an SNODE is
connected to multiple buses. This scheme offers potentially lower latencies than hypercube

topology in sparse communication. An obvious extension to this scheme is by using
hierarchical buses.

6.5.3 Hybrid scheme

An outline of this scheme is shown in figure 6.16. This scheme is advantageous if
there is sufficient spatial locality in interprocessor communication. Clusters of SNODEs
are connected via self-routing crossbar switches (PARCOS II can be used here). The same
crossbar switches are also connected to one or more buses. SNODEs in the same cluster
communicate via their respective crossbar switch. Inter-cluster SNODE communication
takes place via one of the global buses. An obvious extension to this scheme is by using
hierarchical crossbars instead of buses to connect the clusters.

6.6 .S.ummary

This chapter dealt with two different issues. The first issue relates to parallel or
distributed control of communication in message passing multiple-processor systems to
support fine-grained MIMD tasks. In section 6.1 we presented the architecture of a building
block PARCOS II chip that implements a self-routing crossbar network. Individual cells

218

N# JAONS

Z# JAONS

L# 3AONS

Figure 6.15. Multiple bus based scheme

219

i < = SNODE
o
e
m
a2 ® O @
o)
(o
(]
- = SNODE
@ ©
® (@)
s b
[77]
3 3 o *
- > SNODE
(ne
<
2
2 e o o
o
@
(@]
< = SNODE
- < = SNODE
@
=
& e o o
o)
e
(&)
- = SNODE

Figure 6.16. Hybrid scheme

220

from this chip can be used to build larger crossbar networks on a chip, or this chip can be
used as a building block in constructing a variety of self-routing networks.

The second part of this chapter dealt with providing NUMA shared memory support at
the ICAP level. During the course of this investigation, it was discovered that supporting
a symbolic token (ISR) database at the ICAP level is a more fundamental requirement
than supporting particular intermediate-level vision algorithms. It was also discovered that
flexible communication and shared memory support are much more critical for supporting
intermediate-level vision than providing a variety of fizred communication patterns. To
this end, we developed an evolving series of ICAP communication network architectures
in sections 6.3 through 6.5. We first elaborated the additional requirements and design
constraints at the ICAP level that evolved during the course of this research. In section
6.3.3 we described Stage I design that is intended to be the backup solution if Stage II or
Stage III design fails — it does not require any custom hardware and partially addresses
the aforementioned requirements. In section 6.3.4 we described Stage II design that uses
a custom VLSI PARCOS III chip and improves upon the performance of Stage I. In section
6.4 we described Stage III design that follows a different path from Stage II and provides
mechanisms for NUMA shared memory. Finally in section 6.5, we discussed some schemes
that might be used for building larger ICAP communication networks.

.3 3

3 _a _3 __3 3 3 3 __ 3

-3

-3 1 __3

CHAPTER 7

RESULTS AND CONCLUSIONS

7.1 Summary of research

This thesis has addressed issues related to Processor-Processor or Processor-Memory
communication in multiple-processor architectures. A central theme has been that the three
main aspects of a multiple-processor system, its target application, its architecture, and
its communication mechanisms greatly influence each other. Another theme has been that
real-world problems are often comprised of multiple tasks with varying forms of parallelism
(where we define the extremes to be fine-grained data parallelism and coarse-grained control
parallelism). In order to be more effective, future multiple-processor architectures will have
to be “fexible” in supporting multiple forms. of parallelism. Machine vision in general, and
intermediate-level vision in particular, is an excellent example for demonstrating multi-
modal parallelism, which is chosen as the application domain for this thesis.

The specific problem addressed has been to determine the communication requirements
of the intermediate level processors (ICAP) of the Image Understanding Architecture (IUA),
explore the design space of potential solutions, develop a network design that meets
the requirements, demonstrate the feasibility of constructing the design, and show both
analytically and empirically that the design meets the requirements.

The approach has been to first investigate the computational characteristics of the vision
tasks to be run at the ICAP level. The architectural (communication and control) require-
ments of the ICAP communication were extracted from the computational characteristics.
The requirements were then divided into logical groups, and an evolving series of network
architectures was developed that cummulatively supports or addresses these groups.

Chapter 2 provided an overview of parallel processing and interconnection networks.
Various schemes have been proposed to classify computer architectures, but none of them
covers the entire functional model of the ICAP level of the TUA. Therefore, a new terminology
was defined for identifying a parallel processor such as the ICAP. A myriad of schemes have

221

222

been proposed for interconnection networks for PE - PE communication or for PE - Memory
communication in parallel processing systems. An overview of the field of interconnection
networks was provided. A combination of more than one of these schemes was used as the
solution to the ICAP interprocessor communication in the following chapters.

Chapter 3 addressed the architectural characteristics and requirements of interprocessor
communication at the ICAP level of the TUA, which in turn, were derived from the compu-
tational characteristics of the tasks to be run at the ICAP level. There are two problems
with this approach. First, it is impossible to look at the tasks for the ICAP in isolation,
because many of the tasks are ill-defined and transcend the processor boundaries of the
CAAPP, ICAP, and SPA. Second, the IUA is primarily intended as a vision research tool
and, therefore, different researchers may choose to divide and map the tasks differently
onto different levels of the IUA. These two problems make it necessary to study the compu-
tational characteristics of the intermediate-level tasks in two stages: First, from the point
of view of the well-established image interpretation tasks that have been identified in the
VISIONS [Hanson 86] laboratory at the University of Massachusetts, and second, by using
a representative sample from the literature where other vision researchers have utilized a
wide range of techniques for image interpretation. Additionally, because of the non-unique
mapping of intermediate-level vision tasks onto the ICAP level, they are viewed in the light
of low- and high-level vision tasks.

The general communication characteristics and control requirements that directly affect
the architecture of the ICAP communication network were found to be:

¢ Varying communication load
¢ Varying computational granularity

o Iterative processing with massive temporal parallelism (Cycle through different algo-
rithms repeatedly, using different data sets)

e A mix of static (and known apriori), and dynamic (data-dependent) interprocessor
communication, and

o A mix of local, and non-local interprocessor communication
¢ Centrally controlled SIMD

o Centrally controlled Synchronous-MIMD
¢ MIMD

.3 _3 _3 _3 _3 3 .1 _3

3 3 ___ 3 F 3

— 3 a 3 __3 3 3

223 .

Based on the architectural characteristics and requirements of the ICAP level to efficiently
support intermediate-level vision, the architectural requirements of the ICAP communication
network were defined and are again summarized here:

o It should have low latency, high bandwidth, and high common access throughput,
especially in real time applications

e It should have the ability to support low-overhead SIMD-like synchronous routing,
under central control

¢ In SIMD-like routing, it should be equally efficient in supporting both regular and
irregular communication patterns. In other words, it should not have a bias towards
one communication pattern over others

o It should have the ability to support data-dependent synchronous routing under the
SMIMD mode of ICAP computation

o It should have the ability to support data-dependent asynchronous routing under the
MIMD mode of ICAP computation, and

o Most importantly, it should have a capability for rapid reconfiguration to efficiently
support all of the above requirements

These requirements were broken into logical groups and an evolving series of ICAP
communication architectures were developed in the succeding chapters that cummulatively
support or address the requirements.

Chapter 4 discussed the first stage design, which is used when the ICAP is operated
in SIMD-like manner, i.e. when the interprocessor communication is fixed and known
apriori. A family of networks can be built using copies of the building-block custom VLSI
PARCOS I chip. In addition to an n x n crossbar, the PARCOS I chip contains a control
memory that allows the networks built with the chip to store a large number of network
configurations and with a single instruction, the network configuration can be changed from
one stored pattern to another. Any of the stored patterns is incrementally modifiable without
interrupting processing, using an existing network configuration. This scheme eliminates
header generation and routing (control) overheads in case of fixed apriori communication.
The major conclusion of this chapter was that crossbar and other dense networks, such
as Clos and Benes, are viable design alternatives, even for large scale multiple-processor
systems. Such networks, in general, have previously been considered impractical to build.

. : 224

Chapter 5 discussed second stage design, which addresses the requirements of the ICAP
when the interprocessor communication is data-dependent and cannot be determined apriori.
The ICAP can be operating in a Synchronous-MIMD (SMIMD) or a MIMD mode. This design
is such that various networks can be built with simple custom hardware in addition to
PARCOS I chips, to provide an interim solution to the problem of supporting data dependent
interprocessor communication at the ICAP level of the IUA. The networks built using this
design use central routing control. Even though the network controller, which is used for
the routing control, is serial, by using a special hardware search memory it can achieve
network set up times comparable to many parallel control schemes for non-blocking and
rearrangeably non-blocking networks. Nonetheless, because of its serial nature, this design
is suitable only for smaller networks. The major conclusion of this chapter was that central
control is a viable solution for reasonably large network sizes, in supporting data dependent
routing, which is contrary to conventional wisdom.

Chapter 6 dealt with two different issues. The first issue relates to parallel or distributed
control of communication in message passing multiple-processor systems to support fine-
grained MIMD tasks. The architecture of a building block PARCOS II chip that implements
a self-routing crossbar network was presented. Individual cells from this chip can be used
to build larger crossbar networks on a chip, or this chip can be used as a building block
in constructing a variety of self-routing networks. The second part of this chapter dealt
with providing Non-Uniform Memory Access (NUMA) time shared memory support at the
ICAP level. During the course of this investigation, it was discovered that supporting a
symbolic token (ISR) database at the ICAP level is a more fundamental requirement than
supporting particular intermediate-level vision algorithms. It was also discovered that
flexible communication and shared memory support are much more critical for supporting
intermediate-level vision than providing a variety of fixed communication patterns. To this
end, the additional requirements and design constraints at the ICAP level that evolved
during the course of the research were elaborated, followed by the description of an evolving
series of ICAP communication network architectures to address these requirements.

7.2 Future research

Because of its diverse nature, this research has many useful future implications in

the areas of high performance systems and application specific parallel architectures and
algorithms. The following is a brief discussion on each of them.

3

a3 3

3

225

7.2.1 High performance systems

As a continuation of this research, the following three critical issues in high performance
(multiple-processor) system architecture! need further attention:

Processing Element design

The design of the PE is most crucial to the raw power of a multiple-processor system.
To this end, important concerns include the datapath width, memory address space, clock
speed, I/O bandwidth, etc. The operation mode (SIMD, MIMD, etc.) of the multiprocessor
influences the PE’s instruction set, local control, communication interface, I/O subsystem,
testing and diagnostics, etc. The following two areas deserve further attention.

Close coupling of computation and communication subsystems

Often, the communication mechanisms are considered separately from the design of the
PEs in multiple-processor systems. In many cases this introduces inefficient synchronization
and communication overhead in interprocessor communication. There is a need to explore
PE designs that incorporate the computation and communication subsystems in a unified
manner to alleviate the interprocessor communication problem. The ultimate goal is to
achieve communication latencies comparable to memory access time and communication
setup overheads comparable to memory access overheads.

Multi-mode capability

Adding capabilities to PEs to efficiently support different operation modes (for example,
SIMD and Synchronous-MIMD) for multiple-processor systems is a necessity. Alternate
approaches based on “multiprocessor-network” have been proposed to tackle the same
problem, by connecting a number of specialized multiprocessors through a high bandwidth
communication network. The individual multiprocessors are expected to tackle specific
tasks of the bigger problem in the most efficient manner. Arguably, many of the themes in
the research on “fexible-multiprocessors” (with multi-mode capability) and “multiprocessor-

IThese issues become even more complex if the target application requires a “flexible-multiprocessor”
architecture.

226

network” based approaches are similar.

Multiple-processor communication networks

The topic of this thesis is communication networks for multiple-processor systems. With
respect to this, the following two areas deserve further attention.

Easy reconfigurability

Conipleting the designs discussed in chapter 6 is one potential area of future research.
For example, how to extend NUMA shared memory architecture for the ICAP to larger size
machines.

Alternate technologies

Integrated optics might alleviate the bandwidth limitations and other problems associated
with multicast operations. Also, this technology will be helpful in system clock distribution,
because it has minimal skew and it does not suffer from the fan-out problem associated with
conventional technologies. Additionally, wafer scale integration and similar technologies
might alleviate some of the communication latency problem.

Control Mechanisms

Control mechanisms are crucial to the overall efficiency of a multiple-processor system,
broadly these mechanisms cover the synchronization of various subsystems in a multiple-
processor, and program flow control. They vary with the target application, operational

mode(s), and the architecture of the multiple-processor system. The following two areas
deserve further attention.

Associative processing techniques

The IUA has shown great effectiveness by using fine-grained control based on associative
processing techniques. It was shown that the IUA feedback concentrator can be used
effectively in the second message passing network design. Some other interesting issues
are: the effectiveness of these techniques in other multiple-processor operation modes such

227

as Multi-SIMD, and their usefulness in general computing.

Control mechanisms for “fexible-multiprocessor” architectures

Itis important to further explore control mechanisms for a multiple-processor architecture
that would allow it to operate efficiently over a wide range of modes. The question to be
addressed is, for example, whether it is possible to automatically switch multiple-processor
control from local/global mode, to global/local mode, based on the requirements of a task,
without a centralized control mechanism.

7.2.2 Application specific parallel architectures and algorithms

The architecture of a multiprocessor and its target application greatly influence each
other. For example, an application may have specific requirements in terms of the pro-
gramming language, data storage, I/O method and bandwidth, real-time constraints, and
computational characteristics and requirements. These requirements put specific demands
on the multiple-processor system design. On the other hand, a specific multiprocessor
architecture essentially defines a set of capabilities and limitations. In order to design
efficient parallel architectures that meet an application’s performance requirements while
also satisfying the design constraints of the application, it is imperative to better understand
their interdependence.

A two pronged approach can be followed to tackle this problem. In the first part, one
would investigate the interdependence of parallel algorithms and parallel architectures in a
more general sense without regards to a specific application. In the second part, one would
deal with specific applications.

Interdependence of parallel algorithms and parallel architectures

Complexity analysis of serial algorithms allows programmers to compare various al-
gorithms, and predict their performance on actual machines. The analysis of parallel
algorithms, however, is not a straight forward extension of the serial case. Unlike a
uniprocessor, a parallel architecture greatly influences the design and analysis of parallel
algorithms. Approaches based on abstract machine models such as PRAM, CRCW, CREW,
etc., give only a crude estimate of the actual performance of a parallel algorithm. On the

228

other hand, designing optimized parallel algorithms for particular parallel architectures
represents a huge investment, since it is not easy to port a parallel algorithm from one ar-
chitecture to another. A better understanding of the interdependence of parallel algorithms
and parallel architectures will lead to better algorithm and architecture designs. This
research would involve experimentation, with the ultimate goal of carrying out qualitative
and quantitative analysis of parallel algorithms from an architectural point of view. The

following questions deserve specific attention.

Are there uniquely preferred architectures for specific algorithms/tasks

Another way of looking at this question is: What are the characteristic computational,
communication, and control requirements of specific tasks, and what architectural features
are required to best support these requirements? An alternate question is: What kinds of
algorithms/tasks are best suited for a specific parallel architecture. For example, many data
~ dependent computations may not be suitable for globally controlled SIMD architectures.
On the other hand, many fine-grained staged computations may not be suitable for MIMD

architectures with relatively large synchronization and communication overheads.

Programming environment and language

How does the programming environment and language influence the design and perfor-
mance of a parallel architecture? This question is often considered separately from the actual
tasks and algorithms that will run on a parallel architecture. In real world problems, the
importance of this issue is often as great as the speedup a parallel architecture might offer.
The question is of particular importance from a systems point of view, since the programming
environment is the interface between a parallel algorithm and the architecture that it runs

on. Every interface has potential overhead and thus it influences the efficiency of a parallel
architecture.

7.3 Conclusions

Many existing multiple-processor architectures are designed to efficiently exploit paral-
lelism in a specific narrow range (where the extremes are fine-grained data parallelism and
coarse-grained control parallelism). Most real world problems are comprised of multiple

tasks which vary in their range of parallelism. Extreme examples are found in Al problems

229

that deal with sensory data, such as speech, machine vision, and robotics. We argue that,
in order to deal with real world and advanced research problems more efficiently, future

multiple-processor architectures must be “flexible” in supporting parallelism over a wider
range.

Communication is crucial to the overall performance of a multiple-processor system. To
alleviate the bottleneck of interprocessor communication, a “good” interconnection network
for PE-PE communication in a message passing system or for PE-Memory communication
in a shared memory system is required. It is a very complex task to design a “good”
interconnection network, since it depends on many factors that interact with each other to
determine the performance of a multiple-processor system. A “good” interconnection network
can be defined as one that meets the performance requirements of a given application while
also satisfying its engineering constraints. That is, a measure of “goodness” can only be
defined for an interconnection network in relation to the context of its use.

In order to run as an efficient integrated system, a communication network must be
designed in close cooperation with the system architecture. In other words, the architecture
of a communication network is intimately tied to the overall multiple-processor architecture
(such as control, operation mode, etc.), it cannot be treated as just a means for creating links
(with certain desirable properties) between processors, or processors to memory modules.
The central theme and the main result of this thesis is that it is indeed feasible to design
networks for the aforementioned “flexible” multiple-processor systems.

BIBLIOGRAPHY

[Adams 82] George B. Adams and Howard J. Siegel, “The Extra Stage Cube: A Fault-
Tolerant Interconnection Network for Supersystems,” IEEE Transactions on Computers,
vol C-31, no 5, May 1982, pp. 443-545.

[Akers 89]Sheldon B. Akers and B. Krishnamurthy, “A group theoretic model for symmetric
interconnection networks,” IEEE Transactions on Computers, Vol. 38, No 4, April 1989,
Pp 555-566.

[Al-Sadoun 85] H.B. Al-Sadoun et al, “Interconncecting off-the-shelf microprocessors,”
1985 National computer conference, AFIPS, pp 175-181.

[Andersen 77]Steiner Anderson, “The looping algorithm extended to base 2¢ rearrangeable
switching networks,” IEEE Transactions on Communications, vol COM-25, no 10,
October 1977, pp 1057-1063.

[Annaratone 87] Marco Annaratone, et al, “The WARP computer: Architecture, Imple-
mentation, and performance,” IEEE Transactions on Computers, Vol. C-36, No. 12,
December 1987, pp 1523-1538.

[Athas 88] William C. Athas and Charles L. Seitz , “Multicomputers: Message-passing
concurrent computers,” IEEE Computer, Aug 1988, pp 9-24 .

[Bakoglu 90] H.B. Bakoglu,Circuits, Interconnections and Packaging for VLSI, Addison-
Wesley Publishing Company, 1990.

[Ballard 82] D. Ballard and C Brown, Computer Vision, Prentice Hall Inc, Englewood
Cliffs, NJ, 1982.

[Barber 88 1 F.E. Barber et al, “A 64 x 17 Non-blocking crosspoint switch,” 1980 IEEE
International Solid-State circuits conference, pp 116-117, 322.

[Bassalygo 73 1 L.A. Bassalygo and M.S. Pinsker, “On the Complexity of Non-Blocking
Switching Networks without Rearrangement,” in Problems in Information Trnasmis-
sion, Plenum Publishing Corporation, New York, 1973, pp 84-87.

[Batcher 68] Kenneth E. Batcher, “Sorting networks and their applications,” Spring Joint
Computer Conference, AFIPS, 1968, pp 307-314.

[Batcher 76] Kenneth E. Batcher, “The Flip network in STARAN,” International Conference
on Parallel Processing, Aug 1976, pp 65-71.

[Batcher 77-1] Kenneth E. Batcher, “STARAN series E,” International Conference on
Parallel Processing, 1977, pp 140-143.

[Batcher 77-2] Kenneth E. Batcher, “The Multi-Dimensional-Access Mmeory in STARAN,”
IEEE Transactions on Computers, vol C-26, Feb 1977, pp 174-177.

230

3

-8 3 __1

— 13 j 3

3

T3

E|

f

231

[Batcher 80] Kenneth E. Batcher, “Design of a Massively Parallel Processor,” IEEE
Transactions on Computers, Vol. C-29, No. 9, Sept 1980, pp 836-840.

.[Beetem 85] John Beetem, Monty Denneau, and Don Weingarten, “The GF11 Supercom-

puter,” International Symposium on Computer Architecture, 1985, pp 108-115.

[Benes 62-1] VE. Benes, “Algebraic and topological properties of connecting networks,”
Bell Systems Technical Journal, July 1962, pp 1249-1274.

[Benes 62-2] V.E. Benes, “On rearrangeable three-stage connecting networks,” Bell Systems
Technical Journal, Vol XLI, No. 5, Sept 1962, pp 1481-1492.

[Benes 65] V.E. Benes, Mathematical theory of connection networks and telephone traffic,
Academic Press, New York, 1965

[Bently 79]J.L. Bently, “Decomposable searching problems,” Information processing letters,
Vol. 8, No. 5, June 1979, pp 244-251.

[Berg 72 1 R.O. Berg et al, “PEPE - An overveiw of architechture operation and implemen-
tation,” Proceedings of the National Elect Conference, 1972, pp 312-317.

[Berman 83]Francine Berman, "Parallel computations with limited resources,” Conference
on Information Sciences and Systems, John Hopkins University, 1983.

[Beveridge 89]J. Ross Beveridge, et al, “Segmenting Images Using Localized Histograms
and Region Merging,” International Journal of Computer Vision, Vol 2, 1989, pp 31-347.

[Blodgett 82] A.J. Blodgett and D.R. Barbour, “Thermal Conduction' Module: A high Per-
formance Multiplayer Ceramic Package,” IBM Journal of Research and Development,
vol. 26, no 1, Jan 1982, pp. 30-36.

(Bode 85] A. Bode et al, "Multi-Grid oriented computer Architecture,” International Con-
ference on parallel processsing, 1985, pp 89-95.

[Bokhari 84] Shahid .H. Bokhari, “Fmdmg maximum on an array processor with a global
bus,” IEEE Transactions on Computer, Vol. C-33, No 2, Feb 1984, pp 133-139.

[Boldt 87] Michael Boldt and R. Weiss, “Tbken based extraction of straight]jngs,” COINS
Tech Report 87-104, Computer and Information Science Dept., University of Mas-
sachusetts, Amherst, MA 01003, Oct 1987.

[Bouknight 72] W.J. Bouknight et al , “The Illiac IV System,” Proceedings of the IEEE Vol
60 No 4, April 1972, pp 369-388.

[Briggs 79 1 F.A. Briggs, et al, “PM4 - A Reconfigurable Multiprrocessor system for Pattern
Recognition and Image Processing,” AFIPS National Computer Conference, 1979, pp.
255-266.

[Brolio 89] John Brolio, et al, “ISR: A Database for Symbolic Processing in Computyer
Vision,” IEEE Computer, December 1989, pp 22-30.

(Broomell 83] G. Broomell and J.A. Heath, “Classification categories and historic develop-
ment of circuit switched topologies,” ACM Computing Surveys, Vol. 15, No. 2, June
1983, pp 95-133.

[Burns 86] J. Brian Burns, Allen Hanson, and Edward Riseman, “Extracting Straight
Lines,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol PAMI-8,
no 4, July 1986, pp 425-455

232

[Cantor 71] D.G. Cantor, “On Non-Blocking Switching Networks,” Networks, vol 1, no 4,
1971, pp. 367-377.

i i inelli ithms for Clos
[Carpinelli 87] J.D. Carpinelli and A. Yuvuz Oruc, “Paralle setup algorit
ar?networks using a Tree-Connected computer,” Second International Conference on Su-
percomputing, 1987, pp 321-327.

[Cattermole 77] K.W. Cattermole and J.P Summer, “Communication _networks based on
the product graph,” Proceedings of the Institution of Electrical Engineers, Vol 124, Jan
1977, pp 38-48.

[Cavanagh 84] Joseph J. F. Cavanagh, Digital Computer Arithmetic, McGraw Hill, New
York, 1984.

[Chen 80] T.C. Chen, “Overlap and pipeline processing,” in Introduction to Computer
Architechture, H.S. Stone (Ed), SRA 1980.

[Chow 80] Yuan-Chieh Chow, R.D. Dizon, Tse-Yun Feng, and Chuan-Lin Wu, “Routing
techniques for rearrangeable interconnection networks,” In Proc. -Workshop on Inter-
connection networks for parallel and distributed processing, H.J. Siegel (Ed), 1980, pp
64-69

[Chu 89] Jeff Chu and Geog Schnitger, “The communication compexity of several problems
in matrix computation,” Symposium on Parallel Algorithms and Architectures, 1989,
pp 22-31.

[Clos 53] Charles Clos, “A Study of Non-Blocking Switching Networks,” Bell Systems
Technical Journal, vol 32, no 2, March 1953, pp 406-424.

[CM-2 87] Thinking Machines Corporation, Connection Machine Model CM-2 technical
summary, Thinking Machines Tech rep HA 87-4, Cambridge, MA, April 1987

[Cuny 84] J.E. Cuny and L. Snyder , "Testing the coordination predicate,” IEEE Transac-
tions on Computer, vol C-33, No 3, March 1984, pp 201-208.

[Cvetanovic 87] Zarka Cvetanovic, “The effects of Problem Partitioning, Allocation, and
Granularity on the performance of Multiple-Processor Systems,” IEEE Transactions on
Computers, vol C-36, No 4 April 87, pp 421-432.

[Dally 86] William J. Dally and Charles L. Seitz, “The Torus routing chip,” Distributed
Computing, Springer Verlag, 1986, No 1, pp 187-196.

[Dally 87] William J. Dally and Charles L. Seitz, “Deadlock-Free message routing in
multiprocessor interconnection networks,” IEEE Transactions on Computers, vol. c-36,
No 5, May 1987, pp 547 - 558.

[Davidson 82] E.E. Davidson, “Electrical Design of a High Speed Computer Package,” IBM
Journal of Research & Development, Vol 26, No 3, May 1982, pp 349-361.

[Dekel 81] E. Dekel, David Nassimi, and Sartaj Sahni, “Parallel Matrix and Graph
Algorithms,” SIAM Journal of Computing, Vol 10, no 4, Nov 1981, pp 387-403.

[Dolan 89]John Dolan and Rich Weiss, “Perceptual Grouping of Curved Lines,” Proceedings
of DARPA Image Understanding WOrkshop, Palo Alto, CA, 1989.

[Draper 89] B.A. Draper, R.T. Collins, J. Brolio, J. Griffith, A.R. Hanson, and E.M.

Riseman, “The Schema System,” International Journal of Computer Vision, Vol 2,
March 1989, pp 209-250.

233

[Draper 90]1B.A. Draper, et al, “ISR2 User’s Guide,” COINS Tech Report, 90-, C.
. . ? 4 H] > T t
and Information Science Dept, University of Massachusetts, Amhergt, MA 010(‘))?:7 puser

[Duff 78] M.J.B. Duff, “Review of the CLIP image processin ” 1
. > g system,” Proceedi the
National Computer Conference, AFIPS, 1978, PP 1055-1060.y s of

[Duff 86] M.J.B. Duff (Ed), Intermediate-Level Image Processing, Academic Press, New
York, 1986.

[Favor 64 1J. Frivor, “A method for obtaining the exact count of responses using Full and .
Half adders,” AP-111770, Goodyear Aerospace Corporation, Akron, Ohio, Oct 1964.

[Feng 72] T.Y. Feng , “Some characteristics of Associative/Parallel Processing,” proceedings
1972 Sagamore computer conference, Syracuse University 1972, pp 5-16. .

[Feng 74] TY. Feng, “Data Manipulating functions in parallel processors and their im-
13)11e8mentat10ns,” IEEE Transactions on Computers, vol C-23, March 1974, pp 309 -

[Finkel 87] Raphael A. Finkel, “Large-garin parallelism - Three case studies,” in The
glzgai::;esr;stws of parallel algorithms, L. Jamieson et al (Eds), MIT press, Cambridge,

[Flynn 66] Michael J. Flynn , “Very high-speed computing system,” Proceedings of the
IEEE vol 54, 1966, pp 1901-1909.

[Foster 71]1C. C. Foster, “Counting responders in an Associative Memory,” IEEE Trans. on
Computers, Dec 1971, pp 1580 - 1583.

[Foster 76] C. C. Foster, Content Addressable Parallel Processors, Van Nostrand Reinhold
Company, New York, 1976.

[Gajski 83] Daniel Gajski et al, “Cedar,” in Tutorial on supercomputers: Design and
applications, Kai Hwang (Ed), IEEE Press, pp 251-275.

[Gannon 84] Dannis G. Gannon and J.V. Rosendale, “On the impact of communication
complexity on the design of parallel numeric algorithms,” IEEE Transactions on
Computers, Dec 1984, pp 1180-1194.

[Gentleman 78] W.M. Gentleman, “Some complexity results for matrix computation on
parallel processors,” Journal of the ACM, Jan 1978, pp 112-115.

[Goke 73] L.R. Goke and G.J. Lipovski, “Banyan networks for partitioning multiprocessor
systems,” First Annual symposium on computer architecture, 1973, pp 21-28.

[Gottlieb 83] A. Gottlieb et al, “The NYU ultracomputer - Designing an MIMD shared
memory parallel computer,” IEEE Transactions on computers, vol C-32 No 2, Feb 1983,
pp 175-189.

[Grondalski 87]Robert Grondalski, “A VLSI chip set for a massively parallel Architecture,”
IEEE International Solid-State Circuits Conference, 1987, PP 198-199.

[Growther 85] W. Growther et al , “Performance measurements on a 128-node butterfly
parallel processor,” International conference on Parallel Processing, 1985, pp 531 - 540.

[Handler 77 1W. Handler , “The impact of classification schemes on computer architecture,”
International Conference on Parallel Processing, 1977, pp 7-15.

234

[Hanson 78] A.R. Hanson and E.M. Riseman, Computer Vision Systems, Academic Press,
New York, 1978.

[Hanson 80]Allen R. Hanson and Edward M. Riseman, “Processipg cones: a cpmputational
structure for scene analysis,” In Structured Computer Vision, S. Tamimoto and A.
Klinger (Eds), Academic Press, New York 1980.

[Hanson 86] Allen R. Hanson and Edward M. Riseman, “The VISIONS Image Under-
standing System,” COINS Tech Report, 86-62, Computer and Information Science Dept,
University of Massachusetts, Amherst, MA 01003. .

[Hanson 87-1] Allen R. Hanson and Edward M. Riseman, “Summary of progress in image
understanding research at the University of Massachusetts,” COINS Tech Report, 87-
20, Computer and Information Science Dept, University of Massachusetts, Amherst, MA
01003.

[Hanson 87-2] Allen R. Hanson and Edward M. Riseman, “From image measurements
to object hypothesis,” COINS Tech Report, 87-129, Computer and Information Science
Dept, University of Massachusetts, Amherst, MA 01003.

[Hays 86] John P.Hays, Traver Mudge and Quinton F. Stout, “A microprocessor-based
hypercube supercomputer,” IEEE MICRO, October 1986, pp 6-17.

[Hedlund 82]K.S.Hedlund and L. Snyder, “Wafer scale integration of Configurable, Highly
parallel processors,” International Conference on Parallel processing, 1982, pp 262-264.

[Herbordt 90] Martin C. Herbordt, Charles C. Weems, and James C. Corbett, “Message-
Passing algorithms for a SIMD Torus with Coteries,” Proceedings of the 2nd ACM
Symposium on Parallel Algorithms and Architectures, July 1990. .

[Hill 86] Mark Hill et al, "Design Decisions in SPUR,” IEEE computer, vol 19, No 11, Nov
1986, pp 8-22.

[Himfg?;?-, 1 W.D. Hillis, The Connection Machine, MIT Press, Cambridge, Massachusetts,

[Hockney 85] R. W. Hockney, “MIMD computing in the USA - 1984,” Parallel Computing,
North Holland, vol 2, 1985, pp 119-136.

[(Holland 59] John Holland, “A universal computer capable of executing an arbitrary

number of sub-programs simultaneously,” Eastern Joint Computer Conference AFIPS,
1959, pp 108-113.

[Horn 86] B.K. Horn, Robot Vision, MIT Press, Cambridge, MA, 1986.

[Horowit? 8! 1Ellis Horqwitz and A. Zorat, “The binary tree as an interconnection network:
Applications to mu.l1§1processor systems and VLSL,” IEEE Transactions on Computers,
Vol C-30, No. 4, April 1981, pp 247-253. Also in Proceedings, workshop on interconnec-

i‘gg Onetw‘{"fg for parallel and distributed processing,, April 21-22, Purdue University,
’ pp - -

[Hunt 81] D.J. Hunt, “The ICL DAP and its applications to image processing,” In languages

and architectures for image processors. M. J. B. Duff, S. Levialdi . >
Press: London 1981. ger vialdi (eds). Academic

[Huntz 72] R.G. Huntz, and D.P. Tate, “Control Data STAR-10 ion.”
COMPCON, Fall 1972, pp 1-4. a 0 Processor design,” Proc

a 3

— 1 3

235

[(Hwang 79] Kai Hwang, Computer Arithmetic: Princi ; .
New York, 1979. P etic: Principles, Architecture and Design, Wiley,

(Hwang 84] Kai Hwang and F.A. Briggs, Computer Architecture and Parallel P]
McGraw Hill, New York, 1984. P ara rocessing,

[Jensen 78]E. Jensen, “The Honeywell experimental distributed processor - An overview,”
IEEE Computer, vol 11, pp 28-38, Jan 1978.

[Kautz 68] W.H. Kautz, et al, “Cellular Interconnection Arrays,” IEEE Transactions on
Computers, vol C-17 No 5, May 1968, pp 443-451.

[Kermani 79] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer com-
munication switching technique,” Computer Networks, North Holland Publishing Com-
pany, vol 3, 1979, pp 267-286.

[Kog%gssll 1 PM. Kogge, The architecture of pipeline computers, McGraw-Hill, New York

[Kohl 87] (?.A. Kohl, A.R. Hanson, and E.M. Riseman, “A Goal-Directed Intermediate-Level
executive fr Image Understanding,” Proceedings of the International Joint Conference
on Artificial Intelligence, Milan, Italy, August 1987, pp 811-814

[Kuck 82] David J. Kuck and R.A. Stokes , “The Burroughs scientific processor (BSP),”
IEEE Transactions on Computers, May 1982, pp 363-376.

[Kuck 86] David J. Kuck et al, “Prallel supercomputing today and the Cedar Approach,”
Science, vol 231, Feb 1986, pp 967-974.

(Kuhn 80] Robert Kuhn, “Transforming algorithms for single stage VLSI Structures,”
Proceedings of Workshop on Interconnection networks for parallel and distributed
processing, H.J. Siegel (Ed), 1980, pp 11-19.

[Kumar 87] VK.P. Kumar and C.S. Raghavendra, “Array processors with multiple broad-
casting,” Journal of parallel and distributed computing, Vol 4, 1987, pp 173-190.

[Kumar 88] Manoj Kumar, “Supporting Broadcast conenctions in Benes Network,” IBM
Research Division, Tech Report RC 14063, T.J Watson Research Center, Yorktown
Heights, NY 10598, Oct 1988.

[Kung 80 1H.T. Kung, “The structure of parallel algorithms,” in Advances in computers, Vol
19, Academic Press, 1980, pp 65-112.

(Kung 83] H.T. Kung and C.E. Lieserson, “Systolic arrays for VLSL,” 15tk ACM Symp on
theory of computing, 1983.

[Lang 76-1 1 Thomas Lang and Harold S. Stone, “A shuffle-exchange network with simplified
control,” IEEE Transactions on Computers, vol ¢-25, No 1, Jan 1976, pp 55-66.

[Lang 76-2] Thomas Lang, “Interconnection between processing and memory modules
using the Shuffle-Exchange network,” IEEE Transactions on Computers, Vol C-25, May
1976, pp 496-503.

[Lawrie 75] D.H. Lawrie, “Access and alignment of data in an array processor,” IEEE
Transactions on Computers, Vol C-24, No 12, Dec 1975, pp 175-189.

[LeBlanc 88] Thomas J. LeBlanc, Michael L. Scott, and Christopher M. Brown, “Large-
Scale Parallel Programming: Experience with the BBN Butterfly Parallel Processor,”
International Symposium on Computer Architecture, 1988, pp 161-172.

’ 236

Lee 84] C.M. Lee and H. Soukup, “An algorithm for CMOS timing and area optimization,”
. IEEE Journal of Solid State Circuits, vol SC-19, Oct 1984, pp 781-7817.

[Lee 85] K.Y Lee, “On the rearrngaebility of 2(logoN — 1) stage permutation networks,”
IEEE Trnasactions on Computers, vol c-34, May 1985, pp 412-425.

(Lee 87] K.Y. Lee, “A new Benes network control algorithm,” IEEE Transactions on
Computers, vol ¢-36, no 6, June 1987, pp 768-772

[Lehrer 87] Nancy Lehrer, George Reynolds, and Joey Griffith, “A method for initial
hypothesis formation in image understanding,” COINS Tech Rep 87-04, Department of
Computer and Information Science, University of Massachusetts, Amherst, MA 01003,
1987.

[Leighton 84] F.T. Leighton, “Parallel computation using meshes of trees.,” 1983 workshop
on Graph-Theoretical concepts in computer science, Trauner Verlag, Linz, pp 200-218.

[Levitan 87] Steven P. Levitan, “Measuring communication structures in para}lel archi-
tectures and algorithms,” in The chracteristics of parallel algorithms, L. Jamieson et al
(Eds), MIT press, Cambridge, MA 1987.

[Lewis 84 1 E.T. Lewis, “Optimization of device area and overall delay for CMOS VLSI
design,” Proceedings of the IEEE, vol 72, June 1984, pp 670-689.

[Li 87] Hungwen Li and M. Meresco, “Polymorphic-Torus: A new archroecture for vision
computer,” IEEE workshop on computer architectures for pattern analysis and machine
intelligence, 1987, pp 176-183.

[Li 89]Hungwen Li and M. Meresco, “Polymorphic-Torus Architecture for computer vision,”
IEEE Transaction on PAMI, vol 11, No 3, March 1989, pp 233-243.

[Lint 81] B. Lint and T. Agerwala, “Communication issues in the design and analysis of
parallel algorithms,” IEEE Transactions on Software Engineering, March 1981, pp
174-188.

[Liu 68] C.L. Liu, Introduction to Combinatorial Mathematics, McGraw Hill, Ney York,
1968.

[Markus 77] M.J. Markus, “The theory of connecting networks and their complexity: A
review,” Proceedings of the IEEE, vol 65, No 9, Sept 1977, pp 1263-1271.

[Marr 82] David Marr, Vision, W.H. Freeman, San Francisco, CA, 1982.
[MasPar 90] MasPar Computer Corporation, “MP-1 Hardware Manual,” 1990.

[Masspn 71] G.M. Masson and B.W. Jordan, “Realization of a class of multiple connec-
tion assignments with asymetric three stage networks,” Proc Fifth Annual Princeton
Conference on Information sciences and systems, 1971

[Masson 72] G.M. Masson and B.W. Jordan, “Generalized Multi-Stage Connection Net-
works,” Networks, Vol 2, 1972, pp 191-209

[Masson 76] G.M. Masson, “On Rearrangeable and non-blocking switching networks,”
Proceedings of 1976, International Computer Communication Conference Record, also
in “Tutorial: Distributed Processor Communication Architecture,”, K.J. Thurber (Ed),
IEEE Computer Society.

3

3 3 3 __3 __13 3 __3

3

1] 3

237

[McMillen 82] Robert: dJ. McMillen and Howard J. Siegel, “Routing schemes for the aug-
mented data manipulator network in an MIMD system,” IEEE Transactions on Com-
puters, vol C-31, Dec 1982, pp 1202-1214.

[McMillen 84] Robert J. McMillen, “A survey of interconnection networks,” IEEE GLOBE-
COM, 1984, pp 105-113.

[Mead 82] Carver Mead and M. Rem,“Minimum propagation delays in VLSI,” JEEE Journal
of Sqlld-State Circuits, vol SC-17, Aug 82, pp. 773-775.

[Memmi 82] Gerard Memmi and Yves Raillard, “Some new results about the (d, k) graph
problem, IEEE Transactions on Computers, Vol C-31, no 8, Aug 1982, pp 784-791.

[Miller 87] R. Miller et al , “Parallel computations on reconfigurable meshes,” Tech Rep
IRIS Nq 229, Dept of EE - Systems and Institute for Robotics and Intelligent Systems,
University of Souther California, Los Angeles, CA, March 1987.

[Monier 85] L. Monier and P. Sindhu, "The architecture of the Dragon,” Proceedings 30th
IEEE Computer Society International Conference, 1985, pp 118-121.

[Moshen 79] A M. Moshen and C.A. Mead, “Delay-Time optimization for driving and
sensing of signals on high-capacitence paths of VLSI systems,” IEEE Journal of
Solid-State Circuits, vol SC-14, April 1979, pp 462-470.

[Mukherjee 86] Amar Mukherjee, Introduction to nMOS & CMOS VLSI System Design,
Prentice Hall, 1986.

[Nassimi 82] David Nassimi and Sartaj Sahni, “Parallel algorithms to setup the Benes
permutation network,” IEEE Transactions on Computers, vol c-31, no 2, Feb 1982, pp
148-154. :

[Nath 83] D.D. Nath, S.N. Maheshwari and P.C.P. Bhatt, “Efficient VLSI networks for
parallel processing based on orthogonal trees,” IEEE Transactions on Computers, Vol
C-32, No 6, June 1983, pp 569-581.

[Opferman 70]1D.C. Opferman and N.T. Tsao-Wu, “On a class of rearrangeable networks,
Part I: Control algorithms,” Bell Systems Technical Journal, vol 50, no 5, May-June
1971, pp 1579-1600

[Overton 79]K. Overtonand T.E. Weymouth, “A Noise Reducing Preprocessing Algorithm,”
Proceedings of IEEE Conference on Pattern Recognition and Image Processing, Chicago,
IL, 1979, pp 498-507.

[Papamichalis 88] Panos Papamichalis and Ray Simar, “The TMS320C30 Floating-Point
Digital Signal Processor,” IEEE MICRO, December 1988, pp 13-29.

[Parker 82]D.S. Parker, and C.S. Raghavendra, “The Gamma network: A multiprocessor
network with redundant paths,” 9th Annual Symposium on Computer Architecture,
1982, pp 73-80.

[Patel 79] Janak H. Patel, “Processor-memory interconnections for multiprocessors,” 6th
Annual Symposium on Computer Architecture, 1979, pp 168-177.

[Patel 81] Janak H. Patel, “Performance of Processor-Memory interconnections for multi-
processors,” IEEE Transactions on Computers, Vol C-30, No 10, Oct 1981, pp 771-780.

[Payne 86] William A. Payne, “Complexity and performance of statistically switched
interconnection networks,” PhD dissertation, Illinois Institute of Technology, May
1986.

238

[Pease 68 1 Marshall C. Pease, “An adaption of the Fast Fourier Transform for parallel
processing,” Journal of ACM, vol 15, pp 252-264, April 1968.

[Pease 77] Marshall C. Pease, “The indirect binary n-cube microprocessor array,” IEEE
Transactions on Computers, Vol C-26, No 5, May 1977, pp 458-473.

[Perron 86] R. Perron, "The architecture of the Alliant FX/8 computer,” Proceedings
COMPCON, May 1986, pp 390-396.

[Pfister 85] G. Pfister et al, “The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture,” International conference on Parallel Processing, 1985,
pp 764-771.

{Pippenger 78] Nicholas Pippenger, “On rearrangeable and Non-Blocking Switching Net-
works,” Journal of Computer and System Science, vol 17, no 4, Sept 1978, pp. 145 -
162.

[Preparata 81] Franko P. Preparata and J.E. Vuillemin, “Th_e cube-connected cycles: a
versatile network for parallel computation,” Communications of the ACM May 1981,
pp 300-309.

[Preston 89] Kendall Preston, “The Abingdon Cross Benchmark Survey,” IEEE Computer,
July 1989, pp 9-18.

[Ramanujam 73] H.R. Ramanujam, “Decomposition of permutation networks,” IEEE
Transactions on Computers, vol ¢-22 no 7, July 1973, pp 639-643

[Rana 88] Deepak Rana, Charles C. Weems, and Steven P. Levitan, “An easily recon-
figurable circuit switched connection network,” IEEE International Symposium on
Circuits and Systems, June 1988, pp 247-250.

[Rana 89] Deepak Rana, and Charles C. Weems, “The ICAP parallel processor communi-
cations network,” IEEE International Symposium on Circuits and Systems, June 1989,
PP 126-129. ‘

[Rana 90a] D. Rana, and C.C. Weems, “The IUA Feedback Concentrator,” Proc 1990 IEEE
International Conference on Pattern Recognition, Atlantic City, New Jersey, June 1990.

[(Rana 90b] D. Rana, and C.C. Weems, “A Feedback Concentrator for the Image Under-
standing Architecture,” Proc 1990 Application Specific Array Processors, Princeton,
New Jersey, July 1990.

[Rattner 85] Justin Rattner , “Concurrent processing: A new direction in scientific com-
puting,” National Computer Conference, AFIPS, 1985.

[Reynolds 87] G. Reynolds and R. Beveridge, “Searching for geometric Structures in
Images of Natural Scenes,” Proceedings of the DARPA Image Understanding Workshop,
Los Angles, CA, Jan 1987

[Rosenfeld 82] Azriel Rosenfeld and Avinash Kak, Digital Picture Processing, Academic
Press, New York, 1982.

[Rosenfeld 86] Azriel Rosenfeld, “The prism machine : an alternative to the pyramid,”
Journal of Parallel and Distributed computing, Vol 3, pp 404-411.

[Russell 78] R.M. Russell, “The Cray-1 computer system,” Communications of the ACM,
dan 1978, pp 63-72.

=

239

[Samatham 89] M.R. Samatham, and D.K. Pradhan, “The De-Bruijn multiprocessor net-
work: A versatile parallel processing and sorting network for VLSI,” IEEE Transactions
on Computers, vol. C-38, no 4, April 1989, pp 567-581.

[Sasaki 88]. Katsuro Sasaki, et al, “A 15nS 1Mb CMOS SRAM,” IEEE International Solid
State Ciruits Conference, 1988.

[Schanin 86] D. Schanin, "The design and development of a very high speed system bus
- The Encore Multimax Nanobus,” Proceedings Fall Joint Computer Conference, Nov
1986, pp 410-418.

[Schwartz 80] Jack T. Schwartz, “Ultracomputer,” ACM Transactions on Programming
languages and systems, vol 2 No 4, Oct 1980, pp 484-521.

[Sedgewick 88] Robert Sedgewick, ”Algorithms,” Addison Wesley, Reading, Mas-
sachusetts, 1988.

[Seitz 85] Charles L. Seitz, “The Cosmic Cube,” Communication of the ACM, Vol 28, No 1,
Jan 1985, pp 22-33. '

[Sejnowski 80] M.C. Sejnowski et al, “An overview of the Texas Reconfigurable Array
Computer,” National Computer Conference, AFIPS, 1980, pp 631-641.

[Sequin 81] Carlo H. Sequin, “Doubly twisted torus network for VLSI processor arrays,”
Proc 8th annual International Symposium on Computer Architecture, 1981, pp 471-480.

[Sharma] M. Sharma, et al, “NETRA: An architecture for a large scale multiprocessor
vision system,” Workshop on computer architecture for pattern analysis and image
database management, Miami Beach, Florida, Nov 1985, pp. 92-98.

[Shaw] David. E. Shaw, “NON-VON’s applicability to three Al task areas,” International
Joint conference on Artificial Intelligence, August 1985, pp 61-72. '

[Shin 88] H.J. Shin and D.A. Hodger, “A 250 Mb/s crosspoint switch,” 1988 IEEE Interna-
tional Solid-State circuits conference, pp 114 - 115, 321.

[Shoji 88] Masakazu Shoji, CMOS Digital Circuit Technology, Prentice Hall, New Jersey,
1988.

[Shooman 60] W. Shooman, “Parallel computing with vertical data,” Eastern Joint Com-
puter Conference, AFIPS, 1960, pp 108-113.

[Siegel 78] Howard J. Siegel and S.D. Smith, “Study of multistage SIMD interconnection
networks,” 5th Annual Symposium on Computer Architecture, 1978, pp 223-229.

[Siegel 81] Howard J. Siegel and Robert J. McMillen, “The multistage cube: a versatile
interconvertion network,” IEEE Computer, vol 14, Dec 1981, pp 65-76.

[Siegel 85] Howard J. Siegel, “Interconnection Networks for large-scale parallel process-
ing,” Lexington Books, 1985.

[Slotnick 62] D.L. Slotnick et al, “The Solomon computer,” National Computer Conference,
AFIPS, 1962, pp 97-107.

[Snyder 82] Lawrance Snyder, “Introduction to Configurable Highly Parallel Computers,”
IEEE Computer, Jan 1982, pp 47-56.

({Snyder 84] Lawrance Snyder, "Parallel programming and the Poker programming envi-
ronment,” IEEE Computer, July 1984, pp 27-36.

240

[Srini 85] Vason P. Srini, “An architecture for doing concurrrent systems research,” Na-
tional Computer Conference, AFIPS,1985, pp 267-277.

[Stenstrom 88] P. Stenstrom, "Reducing contention in shared-memory Multiprocessors,”
IEEE Computer, Nov 1988, pp 26-37.

[Stone 71] Harold S. Stone , “Parallel processing with perfect shuffle,” IEEE Transactions
on Computers, Vol C-20, No 2, Feb 1971, pp 153-161.

[Stone 80] Harold S. Stone , “Parallel computers,” in introduction to computer architecture,
H.S. Stone (Ed), SRA 1980.

[Stone 87] Harold S. Stone, High-Performance Computer Architecture Addison-Wesley
Publishing Company, 1987.

[Stout 83] Quinton F. Stout, “Mesh connected computers with broadcasting,” IEEE Trans-
actions on Computers, Vol C-32, 1983, pp 826-830.

[Stout 86] Quinton F. Stout, “Meshes with multiple buses,” 26th IEEE Symp. on Founda-
tions of Computer Science, 1986, pp 264-273.

[Swan 77] RJ. Swan, S.H. Fuller, and D.P. Siewiorek, “CM* - A modular, multi-
microprocessor,” National Computer Conference, AFIPS, 1977, pp 637-644.

[Swartzlander 73] E.E. Swartzlander, “Parallel Counters,” IEEE Trans on Computers,
Nov 1973, pp 1021-1024.

[Tanimoto 83] Steven Tanimoto , “A pyramidal approach to parallel processing,” Proceed-
ings 10th Annumal International Symposium on Computer Architecture, Stockholm,
June 1983.

[Thakkar 88] Srikant Thakkar, “The Balance Multiprocessor System,” IEEE Micro, Feb
1988, pp 57-69. |

[Thompson 77] Clark D. Thompson and H.T. Kung, “Sorting on a mesh connected parallel
computer,” Communications of the ACM, Vol 20, 1977, pp 263-271.

[Thompson 78] Clark D. thompson, “Generalized Connection Networks for paralle pro-
cessor interconnections,”, IEEE Transactions on Computers, vol ¢-27, no 12, December
1978, pp 1119-1125.

[Thurber 78] Kenneth J. Thurber, “Circuit Switching Technology: A State of the Art
Survey,” IEEE COMPCON, Fall 1978. :

[Thurber 79] Kenneth J. Thurber and Gerald M. Masson, Distributed-Processor Commu-
nication Architecture, Lexington Books, 1979.

[TI 90] TMS320C30 User’s Guide, Texas Instruments, 1990.

[Tripathi 79] A.R. Tripathi and G.J . Lipovski, “Packet switching in Banyan networks,” 6th
Annual Symposium on Computer Architecture, 1979, pp 160-167.

[Trujillo 82] V.A. Trujillo, “System architecture of a reconfigurable multiprocessor research
system,” International Conference on Parallel Processing, 1982, pp 350-352.

[Tsao-V{u 7.4] Nelson T. Tsao-Wu, “On Neiman’s algorithm for the control of rearrangeable
switching network,” IEEE Transactiosn on Communications, vol COM-22, no 6, June
1974, pp 737-742.

. 3] 33

3 _ 3

-3 3 __3

3

-2 __1

3

241

[Tuazon 85] J. Tuazon et al, “Caltech/JPL mark II hypercube concurrent processor,”
International Conference on Parallel Processing, 1985, pp 666-673.

[Tucker 88] Lewis W. Tucker and G. G. Robertson , “Architecture and applications of the
connection machine,” IEEE computer, August 1988, pp 26-38.

[Uhr 72] Leonard Uhr , “Layered recognition cone network that preprocesses classify and
describe,” IEEE Transactions on computers, Vol C-21, 1972, pp 758-768.

[Uhr 189787! Leonard M. Uhr , Parallel Computer Vision, Academic Press, Orlando, Florida,

[Unger 58] S.H. Unger, “A computer oriented toward spatial problems,” Proceedings of the
IRE, Oct 1958, pp 1744-1750.

[Waksman 68] Abraham Waksman, “A permutation network,” Journal of ACM, vol 15, Jan
1968, pp 159-163.

[Watson 72] W.J. Watson, “The TI-ASC: A highly modular and flexible supercomputer
architecture,” Fall Joint Computer Conference, AFIPS, 1972, pp 221-228.

[Weems 84] Charles C. Weems, “Image processing on a content addressable array parallel
processor,” PhD dissertation, COINS Tech Rep 84-14, Department of Computer and
Information Science, University of Massachusetts, Amherst, MA 01003, 1984.

[Weems 89] Charles Weems, Steve Levitan, Allan Hanson, Edward Riseman, David Shu,
and J. Greg Nash, “The Image Understanding Architecture,” International Journal of
Computer Vision, March 1989, pp 251-282.

[Weems 91] Charles C. Weems, “The Architectural Requirements of Image Undrstanding
with respect to Parallel Processing,” Proceedings of the IEEE, (To appear), 1991.

[Weiss 86] R. Weiss and M. Boldt, “Geometric Grouping Applied to Straight Lines,”
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami,
FL, June 1986, pp 489-495.

[Wilkerson 87] R. Wilkerson, “A routing algorithm for the three stage rearrangeable Clos
networks,” ACM Computer Science Conference, 1987, pp 235-238.

[Wu 78] C. Wu and T. Feng, “Routing techniques for a class of multistage interconnection
networks,” International Conference on Parallel Processing, 1978 pp 197-205.

[Wu 79]1C. Wu and T. Feng’ “The reverse-exchange interconnection networks,” International
Conference on Parallel Processing, 1979, pp 160-174.

[Zakharov 84]Vladamir Zakharov, “Parallelism and array processing,” IEEE Transactions
on Computers, Vol C-33, No 1, Jan 1984, pp 45-78.

