SpringNet: A Scalable Architecture
For High Performance, Predictable,
and Distributed Real-Time Computing

J.A. Stankovic, D. Niehaus, K. Ramamritham
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 91-74
October 17, 1991



SpringNet: A Scalable Architecture For High Performance,
Predictable, and Distributed Real-Time Computing®

John A. Stankovic, Douglas Niehaus, Krithi Ramamritham
Dept. of Computer and Information Science
University of Massachusetts

Ambherst, Mass. 01003

October 18, 1991

Abstract

Many next generation, critical, hard real-time systems will require greater flexibility,
dependability, and predictability than is commonly found in today’s systems. These fu-
ture systems include the space station, integrated vision/robotics/Al systems, collections
of humans/robots coordinating to achieve common objectives (usually in hazardous en-
vironments such as undersea exploration or chemical plants), and various command and
control applications. Such real-time applications also have demanding execution require-
ments requiring high performance computing. Our research approach challenges several
basic assumptions upon which most current real-time systems are built and subsequently
advocates a new paradigm based on the notion of predictability and on a method for on-line
dynamic guarantee of certain types of deadlines. The new paradigm requires an integrated
set of solutions ranging from design and specification methods and tools, to real-time lan-
guages, real-time operating systems, and real-time system architectures. SpringNet is an
architecture being developed to support scalable high performance computing of critical,
distributed real-time systems.

1 Introduction

Next generation real-time systems will be large, complex, distributed, adaptive, contain many
types of timing constraints, operate in non-deterministic environments, and evolve over a long
system lifetime. Many advances are required to address these next generation systems in a
scientific manner. For example, one of the most difficult aspects will be demonstrating that
these systems meet their demanding performance requirements including satisfying specific
deadline and periodicity constraints. If this demonstration can be accomplished we refer to
the system as predictable [18].

*This work was supported by ONR under contracts NOOO14-85-K-0398 and N00014-92-J-1048 and NSF
under grant DCR-8500332.

Submitted: 12th Int'l Conf. on DCS.



Except for the simplest of systems, or for completely static systems, the temporal be-
havior of today’s real-time systems are verified with ad hoc techniques, or with extensive
and expensive simulations. Even minor changes in the system require an extensive round of
testing. Different components of such systems are extremely difficult to integrate with each
other, and consequently add to the total cost. The current brute force techniques will not
scale to meet the requirements of guaranteeing the real-time behavior of the next generation
systems [16]. We believe that new paradigms, algorithms, architectures, design and imple-
mentation techniques, languages, operating systems, tools, etc. are required to support the
predictability, dependability, flexibility, and the demanding execution time requirements of
next generation real-time systems.

In this paper we focus on describing the Spring paradigm, its impact on the meaning of
predictability in complex applications, and discuss the architectural requirements implied by
this new paradigm. These requirements are also necessary for most real-time systems, but, to
date, have not been carefully discussed in an integrated manner, as we do in this paper. In
particular, we discuss the system, functional, and component levels of the architecture. In our
architecture, high performance is achieved by using a collection of small scale multiprocessors
connected in an n-dimensional grid via a set of replicated memories. Each replicated memory
connects a set of processors along one row or column of the grid, and is implemented using
a fiber-optic based register insertion ring [20]. Each multiprocessor is relatively small (5-
10 processors) to help achieve predictability at the single node level. Predictability across
physically distributed nodes is supported by the replicated memory hardware and higher
level software such as the Spring scheduling algorithm and real-time virtual circuits. This
combination of hardware and software to achieve predictable, distributed computation under
timing constraints is especially important, because other solutions are either static (completely
set up a priori) and therefore not suitable for many real-time systems, or based purely on best
effort approaches which often lack predictability at the level required.

Currently, we have built a single fiber optic ring of three multiprocessors each with
5 processors. The dynamic guarantee scheduling algorithm, IPC including real-time virtual
circuits, and most of the kernel have all been implemented. Performance measurements, along
with continued development, are now underway.

2 The Spring Paradigm - A High Level Overview

In this section we present the major abstractions that we are applying to our development
of solutions for next generation real-time systems. We first set the stage for the presentation
of these new ideas by stating the general requirements of complex real-time systems (Section
2.1), and by describing the environments of applicability (Section 2.2). In Section 2.3 we state
the major ideas of the new paradigm, and in Section 2.4 we describe the programming and
run-time models used by the system. A description of how these ideas impact and can be
supported by the architecture is then given in Section 3.



2.1 Requirements

We believe that next generatjon, complex, critical, distributed, real-time systems should be
based on the following considerations:

¢ Individual computations are part of a single application with a system-wide objective.
A computation is described as a process at the programming level, but as a set of tasks
forming a task group for use by the scheduler at run-time [8]. The types of computations,
and their descriptions as processes, that occur in a real-time application are known a
priori and can be analyzed to determine their run-time characteristics. There is thus no
need to treat the run-time behavior of a computation as a random process, since many
aspects (such as importance, as well as task timing and resource requirements) can and
must be determined at compile time. Further, designers must follow strict rules and
guidelines while writing the program for a process.

® The value of processes executed should be maximized, where the value of a process that
completes before its deadline is its full value (depends on what the process does) and
some diminished value (e.g., a diminished, zero, or very negative value) if it does not
make its deadline. Fairness and minimizing average response times are not important
metrics for processes with hard timing constraints.

o Predictability should be ensured so that the behavior of individual tasks within the
task group representing a process, the computation represented by the process, and the
system as a whole can be assessed. In other words, we have to be able to categorize the
behavior of tasks, processes, and the system as a whole with respect to properties such
as timing, resource use, and fault tolerance.

o Flexibility should be ensured so that system modification and on-line dynamics are more
easily accommodated.

2.2 The Environment and Definitions

Real-time systems interact heavily with the environment. We assume that the environment
is dynamic, large, complex, and evolving. In a system interacting with such an environment
there exist many types of processes. Our approach categorizes processes found in real-time
applications depending on their interaction with and their impact on the environment. This
gives rise to two main criteria on the basis of which to classify processes: importance and
timing requirements. The Spring Kernel then treats the tasks representing each class of
process differently thereby reducing the overall complexity.

Based on importance and timing requirements we define three types of processes: crit-
ical, essential, and non-essential. Processes’ timing requirements may range over a wide
spectrum including hard deadlines, soft deadlines, and periodic execution requirements, while
other processes may have no explicit timing requirements. Critical processes are those which
must make their deadline, otherwise a catastrophic result might occur (missing their dead-
lines will contribute a minus infinity value to the system). Certain processes, if activated, are



always critical, while others become critical only under certain conditions. It must be shown
a priori that the critical tasks will always meet their deadlines, subject to some specified
number of failures, even under the worst case scenario. Resources will be reserved for such
processes. That is, a worst case analysis must be done for these processes to guarantee that
their deadlines are met. Using current OS paradigms and architectures such a worst case
analysis, even for a small number of processes is complex. Qur new, more predictable kernel
facilitates this worst case analysis. Note that the number of truly critical processes (even
in very large systems) will be small in comparison to the total number of processes in the
system?.

Essential processes are those which are necessary to the operation of the system, have
specific timing constraints, and will degrade the performance of the system if their timing
constraints are not met. However, failure to finish an essential process on time will not cause
a catastrophe. Essential processes must be scheduled dynamically since there are a large
number of them, and it is infeasible to reserve enough resources to guarantee all possible
combinations of process executions. Our approach applies an on-line, dynamic guarantee to
this collection of processes. In some applications, 100% predictability is associated with a
subset of the essential processes. These will have to be treated like critical processes. Non-
essential processes, whether they have deadlines or not, execute when they do not impact
critical or essential processes. Many background processes, long range planning processes,
and maintenance functions fall into this category.

Another timing issue relates to the closeness of the deadline. Some computations may
have extremely tight deadlines. These processes cannot be dynamically guaranteed since it
would take more time to plan a schedule for them than exists before the process’s deadline.
Such processes must be treated differently, e.g., a set of them might run in a front end using a
cyclic scheduler, another set might execute on a front end using a rate monotonic algorithm,
or some may have preallocated resources on the application processors. Most computations
with very tight deadlines occur in the data acquisition front ends of the real-time system.

Process characteristics are complicated in many other ways as well. For example, a pro-
cess may be preemptable or not, periodic or aperiodic, have a variety of timing constraints,
precedence constraints, communication constraints, and fault tolerance constraints. The prop-
erties of the process have a significant influence, in turn, on the properties of the tasks in the
group used to represent it at run-time. These include preemptability, precedence constraints,
inter-task delays, task duplication, and task resource use. While we will not specifically ad-
dress each of these issues in this paper, it would be unrealistic to design a real-time operating
system for a large system that could not support these types of processes and tasks.

2.3 The New Paradigm

In light of the complexities of real-time systems, the key to next generation real-time systems
will be finding the correct approach to make the systems predictable yet flexible in such a

'Many of today’s static hard real-time systems are designed so that every computation is guaranteed to
make its deadline. This essentially elevates all processes to the critical level which is rarely, if ever, true. While
it is desirable for all processes to make their deadlines, the accompanying disadvantages include inflexibility at
run time, difficulty in modification, overdesign and high cost.



way as to be able to assess the performance of the system with respect to its requirements,
especially timing requirements. In particular, the Spring Kernel stresses the real-time pre-
dictability and flexibility requirements, and also contains several features to support fault
tolerance. Our new paradigm is a combination of the 10 ideas listed below. It can be briefly
stated as presenting the view of an a priori guarantee for critical processes, and a dynamic
guarantee for essential processes by using on-line planning and reflective information. In this
paper we simply list the 10 main ideas. For a full explanation of each of these ideas see
(17,13, 17, 21]. In Section 3 we discuss each of these 10 ideas as they apply to the SpringNet
Architecture. The main ideas are:

¢ functional partitioning,

e resource segmentation/partitioning,

e selective preallocation,

o integrated CPU scheduling and resource allocation,
¢ providing for a priori guarantee where needed,

¢ providing for an on-line guarantee where needed,

o use of the scheduler in a planning mode,

o the separation of importance and timing constraints,
¢ end-to-end scheduling, and

o the utilization of significant information about processes at run time including timing,
process importance, fault tolerance requirements, etc. and the ability to dynamically
alter this information. This means that our operating system is highly reflective [15].

2.4 Programming and Run-time Models

The representations used for computations in the Spring system has a significant effect on
the properties of the system, and on its ability to produce the desired real-time behavior
predictably. The process, a single thread of control within an address space, is a familiar
and effective abstraction used to describe computations. Under this model, processes execute
independently, compete for access to shared resources, and block when waiting for shared
resources to become available. A process thus experiences episodes of execution punctuated
by periods when the process execution is suspended. However, one of the main features of
the Spring approach to scheduling is its ability to avoid blocking due to resource contention.
The scheduling method assumes that computations are represented as a set of tasks which
have known worst case execution time (WCET) and resource use [13, 21]. The essence of the
approach is the construction of an execution plan that explicitly avoids concurrent execution
of tasks with resource conflicts, and thus avoids blocking due to resource contention. Since we
wish to preserve the process abstraction as the Spring programming model, but require the



task abstraction for the run-time representation, a method for translating between the two
representations is required.

We now describe the general outlines of the translation method, a more detailed presen-
tation is available in [8]. We call places in the code where the process may suspend scheduling
points, since they are places in the process code that have significance for the scheduling
method. Such points appear at the beginning and end of critical sections, at synchronous
communication calls, or where explicit suspend calls appear in the code. When the process is
running, each episode of its execution begins and ends at a scheduling point. The translation
method is based on first producing a minimal size representation of the process’s structure
including these scheduling points, and then analyzing this representation to determine the
WCET and resource use of each execution episode.

We call our representation a time graph (TG) since it represents the control flow struc-
ture and temporal properties of the process, while discarding its semantics. The original TG is
isomorphic to the basic block graph used by the compiler at code emission time. Calculating
the worst case behavior of the process requires us to consider every possible execution path
through the process code. We could perform this calculation by exhaustively generating every
possible path through the TG and accumulating the worst case episodic execution behavior
of the process, but this would be computationally expensive. Instead, we reduce the size of
the TG using subgraph reductions until it is of minimal size, which we call the irreducible
time graph (ITG). The subgraph reduction step replaces sections of the TG with single nodes
giving the WCET of the subgraph being replaced. This is a form of preprocessing since the
single nodes are equivalent to the original subgraph, for WCET calculation purposes, but
using them reduces the number of possible paths through the TG.

A simple example is the reduction of the subgraph for a conditional statement from three
nodes, a node each for the conditional test and the body of the two branches, to a single node
containing the sum of the test time and the maximum time of the two branches. Subgraph
reduction proceeds until further reduction is impossible. A TG containing no scheduling
points will reduce to a single node giving its WCET. However, a TG containing one or more
scheduling points will contain more than one node, since the scheduling points cannot be
eliminated without discarding information about the process’s blocking behavior.

We analyze the ITG to determine the worst possible execution behavior of the pro-
cess by exhaustively generating every possible path through the ITG, and accumulating the
maximum WCET and the union of the resource use of every execution episode of a given or-
dinality along any path. This is computationally equivalent to exhaustively generating every
possible execution path through the original TG of the process and accumulating the worst
case episodic execution behavior. However, analyzing the ITG is many times simpler, since
the ITG is so much smaller than the original TG. A task group representing the process is
constructed, with a number of tasks equal to the maximum number of execution episodes the
process can exhibit. Each task in the group is then assigned the WCET and resource use
accumulated for the corresponding execution episode during the analysis of the ITG.



3 The SpringNet Architecture

In this section we discuss the SpringNet architecture at three levels of detail: the system level,
the functional level, and the component level. The discussion at the system and functional
levels reflect work which either has been implemented, or is a part of our planned development.
At the component level, the discussion is necessarily speculative, since we are proposing
hardware architectures which do not currently exist. However, our discussion is grounded
in the experience gained while doing implementation on the current target hardware?, and
so we describe the current status of our system before discussing the component designs we
believe will be useful for real-time systems. We also indicate how the SpringNet Architecture
incorporates the ideas of our new paradigm listed in the previous section, thereby supporting
predictable, flexible, and high performance computing. Finally, we summarize and discuss the
definition of predictability and important implications imposed by our paradigm.

3.1 System Level

SpringNet is a physically distributed system composed of a network of multiprocessors each
running the Spring Kernel. Each multiprocessor (see Figure 1) contains one (or more) ap-
plication processors, one (or more) system processors, and an I/O subsystem. Application
processors execute previously guaranteed processes as specified in the execution plan con-
structed by the scheduler executing on one or more system processors. System processors 3
offload the scheduling algorithm and other OS overhead from the application processors both
for speed, and so that external interrupts and OS overhead do not cause uncer-
tainty in executing guaranteed processes. The I/O subsystem is partitioned away from
the Spring Kernel and it handles non-critical 1/0, slow I/O devices, and fast sensors.

Currently we have 3 multiprocessor nodes each with 5 processors and connected via two
networks. First, as shown in Figure 1 there is an ethernet to support non real-time traffic.
Second, a fiber optic register insertion ring connects 2 Mbtye memory boards on each node,
supporting 2 Mbytes of replicated memory. This provides a shared memory model for this 2
Mbytes (of physically distributed but logically centralized memory). Each node also has at
least 20 Mbtyes of non-replicated memory (4 Mbytes per processor thereby presenting a local
memory model for the rest of the memory of the multiprocessor). The replicated memory
is implemented via the off-the-shelf product called Scramnet [20). This replicated memory
together with communication software and scheduling constraints are used to provide end-to-
end predictable performance. The replicated memory can also be exploited for fault tolerance.
In other words, important data structures and other information at a given node are written to
the replicated memory board and are then automatically reflected in the replicated memory
of all the nodes on the ring. This duplication of information is useful in recovering from
several classes of node failure faults including power loss, bus failure, and Scramnet failures
that do not cause corruption of the replicated memory. Of course, to enhance fault tolerance

*Most off-the-shelf hardware is not completely suitable for real-time systems and building such systems
requires techniques to circumvent the unsuitable aspects. Examples of these problems are given in Section 3.4.

3Ultimately, system processors could be specifically designed to offer hardware support to our system ac-
tivities such as guaranteeing processes.



it is possible to add other parallel register insertion rings, each supporting its own replicated
memory. As mentioned earlier, our current configuration has only one fiber optic register
insertion ring supporting 2 Mbytes of replicated memory.

The SpringNet architecture can scale by connecting rings of replicated memory in an
n-dimensijonal grid. For example, a 2-dimensional grid would have one replicated memory
register insertion ring for each row and another replicated memory register insertion ring for
each column. See Figure 2 where the grid is shown and Figure 3 where the Scramnet memory
boards (labeled MEM) are added to each multiprocessor.

Even though the SpringNet architecture resembles a multicomputer, it is important
to note that the SpringNet architecture can be physically distributed, limited only by the
maximum fiber optic ring size.

3.2 Functional Level

The system architecture described above facilitates functional partitioning, since each node in
the multiprocessor contains one or more system processors, communications processors, one
or more application processors, and one or more front end I/O processors. In nodes containing
more than one system processor, the duties of supervising the system can be divided among
them. An example of this would be a system with special hardware addressing all or part
of the problem of constructing a schedule. Functional partitioning provides many benefits
including dividing a large problem into more manageable pieces, allowing us to treat critical,
essential and non-essential processes differently, and allowing different solutions for processes
with timing constraints at several levels of granularity.

Interrupts generated by events in the external environment directly affect only the sys-
tem processor and I/O front ends. The indirect effects of these environmental events on tasks
executing on the application processors are accounted for by the guarantee algorithm. This
treatment of interrupts is extremely important and together with our guarantee algorithm
allows us to construct a more macroscopic view of predictable performance since the collec-
tion of tasks currently guaranteed to execute by their deadline are not subject to unknown,
environment-driven interrupts. This reduces context switches and significantly simplifies the
problems of predicting the execution time of tasks and guaranteeing that a task will make its
deadline because unpredictable delays will not occur. Further, if we extend the partitioning to
higher levels of the system, in large systems different subsystems can be allocated to different
ring segments of the n-dimensional grid.

Many real-time constraints arise due to I/O devices, including sensors. The set of I/0
devices that exist for a given application will be relatively static in most systems. Even if
the I/O devices change, since they can be partitioned from the application processors and
changes to the software associated with them are isolated, these changes have minimal impact
on the Kernel. Special independent driver processes must be designed to handle the special
timing needs of these devices. Slow I/O devices are multiplexed through a dedicated processor
running only I/O processes. System support for this is predetermined and not part of the
dynamic on-line guarantee. For example, the I/O processor might use a cyclic scheduler or
a rate monotonic scheduler to manage execution of the I/O processes. However, the process



managing a set of slow I/O devices might invoke another process with a deadline subject to
the on-line guarantee.

Fast I/O devices are handled with a dedicated processor, or have dedicated cycles on
a given processor or bus. The processors might be front-end I/O processors or one or more
of the application processors (See Figure 1). The processes associated with the fast I/0
devices are critical since they interact closely with the real-time application and have tight
time constraints. They can invoke higher level real-time processes which may or may not
be critical. However, it is precisely because of the tight timing constraints and the relatively
static nature of the collection of sensors that we preallocate resources for the process associated
with the fast I/O sensors. In summary, our strategy suggests that some of the processes which
have real-time constraints can be handled through static resource allocation, and others by
a dynamic scheduling algorithm in the front-end. This leaves a smaller number of processes
which typically have higher levels of functionality and greater latency, for the dynamic on-line
guarantee routine.

The second aspect of our paradigm is resource segmentation. All resources in the sys-
tem are partitioned into well defined entities including processes, process groups, tasks, task
groups, and various resource segments such as code, stacks, process control blocks (PCBs),
task descriptors (TDs), local data, global data, ports, virtual disks, and non-segmented mem-
ory.

It is important to note that the execution behavior of processes, which includes the use
of operating system primitives, is time and resource bounded. This means that the worst case
execution behavior of every process has been analyzed, and represented as a group of tasks
with well defined WCETSs and resource use. In an important sense, the worst case analysis
segments the worst case behavior of a process into a set of execution episodes represented
as tasks [8]. Kernel primitives are also time and resource bounded, which is a necessary
prerequisite to calculating worst case process behavior correctly.

Formulae are associated with each task in a process’s representation which specify their
worst case behavior in terms of some of the process’s input variables. These formulae are
derived during the compilation of the code for the process, and are used to compute the
timing and resource requirements for each task associated with a given process instance.
Resource segmentation thereby provides the scheduling algorithm with a clear picture of all
the individual resources that must be allocated and their use scheduled. This contributes
to the microscopic predictability, i.e., each process, upon being activated, is bounded. Note
that it is important to develop good process and resource assignment heuristics with which
to guide loading the memories of the various processors with the application processes’ code.

The remainder of the ideas of the new paradigm are only briefly discussed because
they have less impact on the architectural design those above. The discussion is similar to
that found in [17], but not as detailed. The one exception is that we provide a detailed
discussion of the end-to-end scheduling problem because it directly impacts the network-wide
communication structure, i.e., the fiber optic register insertion ring and the replicated memory.

Resources and execution time needed by critical processes (and process groups), essential
processes that require 100% guarantee, and processes with very fast I/O requirements are



preallocated. The Spring Kernel contains process management primitives that utilize the
notion of preallocation where possible to improve speed and to eliminate unpredictable delays.

The notion of guaranteeing timing constraints is central to our approach. However,
because we are dealing with large, complex systems in non-deterministic environments, the
guarantee is separated into two main parts: a priori guarantees and on-line guarantees. For
processes guaranteed a priori, resources are reserved either on dedicated processors, or as a
dedicated collection of resource slices on the application processors (this is part of the selective
preallocation policy used in Spring). These processes are guaranteed for the entire lifetime of
the system, or for particular modes of execution. While dedicating resources a priori to such
processes is, of course, not flexible, due to their importance and tight timing constraints, or
due to application specifications, we have no other choice!

Preallocation of resources and execution time for all essential processes is prohibitively
expensive because there will generally be a large number of such processes, and the number
of their possible invocation orders will be enormous. Preallocation is also not desirable, due
to its inflexibility. Hence, this class of processes is guaranteed on-line. This allows for many
process invocation scenarios to be handled dynamically (partially supporting the flexibility
requirement).

Current real-time scheduling algorithms schedule the CPU independently of other re-
sources. For example, consider a typical real-time scheduling algorithm, earliest deadline first.
Scheduling a process which has the earliest deadline does no good if it subsequently blocks
because a resource it requires is unavailable. Our approach integrates CPU scheduling and
resource allocation so that this blocking never occurs. Scheduling is an integral part of the
Kernel, but our scheduling method assumes a run-time representation in terms of a set of tasks
with known WCETs and resource use. It then provides the abstraction of the guaranteed task
set. This is why we have also had to develop ways to translate between the process based rep-
resentation used by developers to describe computations, and the task based model required
for scheduling at run-time. By integrating CPU scheduling and resource allocation at run
time, we are able to understand (at each point in time), the current resource contention and
completely control it so that task performance, and thus process performance, with respect
to deadlines is predictable, rather than letting resource contention occur in a random pattern
usually resulting in an unpredictable system.

Another important feature of our scheduling approach is how and when we use the
scheduler; we use it in a planningmode. When a new process is invoked, the scheduler attempts
to plan an execution schedule for its task group and the task groups of some number of other
processes so that all the processes considered will be guaranteed to make their deadlines.
This enables our system to understand the total load on the system and to make intelligent
decisions when a guarantee cannot be made, e.g. see the discussion below. This is at odds
with other real-time scheduling algorithms which have a myopic view of the set of processes.
That is, these algorithms only know which process to run nezt and have no understanding
of the total load, the current capabilities of the system, or whether the process can meet its
deadline. This planning is done on the system processor in parallel with the execution of
the tasks representing the previously guaranteed processes on the application processors, so
it must account for those tasks which may be completed before it itself completes. A major

10



advantage of our approach is that we can separate deadlines from importance. Again, all
critical processes are of the utmost importance and are scheduled a priori. Essential processes
are not critical, but each is assigned a level of importance which may vary as system conditions
change. To maximize the value of executed processes, all critical processes should make their
deadlines and as many essential processes as possible should also make their deadlines. Ideally,
if any essential processes cannot make their deadlines, then those which do not execute should
be the least important ones. In general, it is also possible to schedule contingency processes

or exception handlers to perform some simple corrective action for processes which cannot
make their deadlines.

Most application level functions (such as stop the robot before it hits the wall) which
must be accomplished under a timing constraint are actually composed of a set of smaller
dispatchable computations. Previous real-time kernels do not provide support for a collection
of processes with a single deadline. The Spring Kernel supports tasks, task groups, processes,
and process groups. A task is the basic entity manipulated by the scheduling algorithm, and is
assumed to have a WCET and resource use associated with it. A task group is a collection of
simple tasks that have precedence constraints among themselves, but have a single deadline.
A task group is used to represent a process with more than one execution episode. A process
group is a set of simple processes that have precedence constraints among themselves, but
have a single deadline. Precedence constraints at the process level translate into precedence
constraints between tasks in the corresponding task group representations of the processes.

This approach supports the notion of end-to-end scheduling either on a single node or
across the network. In particular, consider a periodic process group consisting of two processes
which are located on different nodes in the same ring, where process 1 modifies some data and
sends it to process 2. The Spring system supports the notion of a real-time virtual circuit.
Each process would be guaranteed to execute such that process 1 completes in time to place
the message into the replicated memory. In a worst case time, which is known a priori, that
message appears in the replicated memory of the destination node (and every other node in
that ring too, but it is just ignored at those nodes). Process 2 is scheduled to execute after
the arrival of the message and with enough laxity so as to meet the deadline of the group.
The entire process group is periodic and guaranteed. The set up time is non-trivial and is not
subject to hard deadlines. In other words we can only guarantee that the deadlines will be met
after the real-time virtual circuit is set up, and the tasks representing the individual processes
are scheduled on the two nodes. The same strategy applies to process groups of any size with
hard deadlines. Note that the replicated memory is a very efficient way to obtain predictable
real-time communication. There are no complicated layers of communication software.

Finally, information about processes and process groups is retained at run time and
includes formulas describing WCET of tasks in the task groups representing the processes,
deadlines or other timing requirements, importance level, precedence constraints, resource
requirements, fault tolerance requirements, process group information, etc. The Kernel then
dynamically utilizes this information to guarantee timing and other requirements of the sys-
tem. In other words, our approach retains significant amounts of semantic information about
a process or process group which can be utilized at run time. Kernel primitives exist to inquire
about this information and to dynamically alter it. This enhances the flexibility of the system.

11



3.3 Current System Status

The system and functional levels of the SpringNet architecture can and are being implemented
using conventional hardware as the target. Specifically, we are using multiprocessor nodes with
a VME backplane, and using Motorola 68020 based processor boards with 4 Mbytes of on-
board memory. Each processor board has a 68851 MMU and 68881 FPU to support memory
management and floating point respectively. Each node has a 2 Mbyte Scramnet replicated
memory board which is used to support inter-processor communication.

The Spring Kernel is under development, and is currently able to load and run simple
sets of application processes predictably while managing each process’s logical address space.
Processes can interact with each other and the environment through shared memory or the
interprocess communication (IPC) system calls. All aspects of the system configuration, in-
cluding assignment of processes to processors, processor configuration within a node, and all
process and task group properties, are currently described explicitly to the system using a
configuration language [6]. These values are currently calculated by hand, but efforts are un-
derway to automate the calculation of several of them. Limited support for calculating WCET
for sequences of assembler instruction is available[5]. Compiler support for WCET calculation
and task group comstruction according to the method described in Section 2.4 is currently
being implemented. Memory sharing between processes is supported using configuration lan-
guage directives to specify the logical base address, size, and name of a shared section. The
Kernel, during system initialization assigns the shared sections to physical memory, maps it
into the logical spaces of the processes sharing it, and checks for consistency.

3.4 Component Level

Designers of real-time systems, in common with all designers, seek the best possible perfor-
mance. For conventional systems this generally means the best average case performance. In
real-time systems, however, average case performance is not sufficient because the correctness
of the system’s results depend on when they are produced as well as what the results are. Real-
time system designers must thus be able to predict the behavior of the system at development
time in ways which are unnecessary for conventional systems. The predictions most often
used are those for WCET, since the designers are usually concerned with guaranteeing the
correctness of the system’s behavior under all possible circumnstances. As a result, calculation
of WCET for programs is an active research area [10, 1, 4].

Estimation of WCETs must consider the properties of the system within which the
programs will be executed. The most obvious factor is the execution times of processor
instructions, but other system properties are equally if not more important. These include the
system’s methods for handling interrupts, how it controls process’s access to shared resources,
the properties of the system’s scheduling paradigm, and the presence of caches. A WCET
estimate is valid if it is greater than or equal to the actual WCET. A WCET which is less
than the actual WCET is obviously wrong. The ultimate goal, perhaps unattainable, is to
produce WCET estimates which are ezact. Failing this, we try to produce estimates which
are valid but not too pessimistic.

12



One way of accomplishing this requires restrictions and advances at the programming
language level, at the compiler level, and at the architecture level. Our experiences in devel-
oping the system to its current state have highlighted several important limitations of conven-
tional hardware design which we believe must be addressed if we expect to design and build
predictable real-time systems. We limit our discussion to the following architectural compo-
nents: the application CPUs (where we also discuss pipelines and caches), MMUs, floating
point co-processors, DSP chips, other I/O front-end processors, and a specialized scheduling
processor. We also make comments about support at the compiler level when appropriate.
The component design for Spring follows several basic principles. That is, each component
and interface must be well defined and predictable, and we prefer a slower but predictable
machine to a faster, but unpredictable machine. Then, if the slower, but predictable machine
does not meet the real-time performance requirements, it can be speeded up by adding mul-
tiprocessor nodes or even increasing the grid size as long as those additions adhere to the
principles. In other words, it is not sufficient to have excellent average performance.

For example, assume that a real-time systems designer chooses a fast, but complex
instruction set processor (CISC processor) with a deep pipeline, a cache, possibly an additional
instruction buffer, an MMU supporting virtual memory, a shared bus with other processors
(to produce a multiprocessor configuration), and memory that requires a wait state and a
refresh cycle time. Given such an architecture, it would be very difficult (if not impossible) to
analyze this architecture in such a way as to determine a WCET for each instruction that is not
unusably pessimistic. Further, even if this could be accomplished, the WCETs would be very
large compared to average case times resulting in extremely poor utilization. Consequently,
we would like both predictability and low variance in execution times of instructions. RISC
machines, being much simpler, are more conducive to the analysis required. However, as
designers strive to obtain more speed from RISC machines some of architectural features that
caused the difficulties mentioned above are being re-introduced.

The Application Processors: Most architectures strive for greater and greater speeds.
One way to do this is by including a pipeline. However, pipelines for CISC machines (e.g.,
the CDC 6600, the IBM 360/91, and the VAX 8600) are quite complex and must deal with
complex data and control dependencies, and must include logic for dealing with branch in-
structions. Some systems use dynamic scheduling of instructions in the pipe requiring complex
scoreboards. The fill and drain times of the pipe may vary considerably, and handling inter-
rupts and exceptions causes more uncertainty in execution times. Further, the published
execution times usually assume that the instructions and operands are in the cache. If there
is a cache miss then greater variance of execution time occurs. Some of these problems are
solved in RISC machines where pipelines are less complex and may rely on static scheduling
of instructions through the pipe (at compile time).

Our experience with using the 68020 as our target processor illustrates the problem.
The published timing information was never intended for ezact WCET prediction and is, as
a result, both incomplete and inaccurate. However, the major problem is simply that the
68020, as a fairly complex CISC processor, has a significant amount of internal pipelining and
state information which is not documented, but which affects instruction execution time. Our
WCETs tend, as a result, to be significantly overestimated. What we require, but have been
unable to obtain, is a model of the 68020 internals which is sufficiently detailed to enable us

13



to predict the WCET of a sequence of instructions. A RISC-like architecture with a simple
internal pipeline would greatly simplify constructing an accurate processor model.

Since we advocate a RISC-like architecture for the application processors let us consider
the main principles of RISC. The pure RISC philosophy is based on a number of concepts
including the use of instructions with the same format and one operation per instruction.
The latter means that no instruction can compute the address of its own operands. Each
instruction assumes that its operands are already in the CPU register file. Load and store are
the only instructions that access memory, and consequently the load instruction is used to
load the registers prior to instruction execution. Further, if all instructions require the same
number of cycles, then a simpler design of the CPU is facilitated and pipelining becomes easy
and fast. Unfortunately, in practice, branches, interrupts, long instructions (like multiply) and
support for test and set violate this simple picture. Consequently, RISC strives to achieve 1
cycle per instruction on the average. Since the instructions are simple it is possible to execute
them very fast, creating a memory bottleneck. To minimize the memory bottleneck RISC
makes use of caches and pipelines.

Currently, some of the more complicated RISC machines have claimed suitability for
real-time systems; it is true that these machines have reduced context switch costs and
have minimized interrupt latency, but this is not sufficient for predictability. Because of
the pipelines and caches in these machines their behavior is inherently probabilistic; giving
fast average case performance but wide variance in possible execution times. On the other
hand, the Harris Semiconductor RTX 2000 seems to support predictability by not including
a pipeline or a cache. All primitive instructions execute in one cycle, those instructions re-
quiring access to memory require 2 cycles. A given instruction always executes in the same
number of cycles. This simplicity is a significant advantage in real-time systems. If such a
machine is not fast enough to meet the timing requirements, adding a cache and pipeline to
where the machines seems to be fast enough is not the correct approach. Rather, one needs to
either increase the speed of the simple machine by new technology, use parallelism afforded
by multiple machines, or use what we will call here predictable real-time caching [9)].

Other examples of the type of support needed for the application processor are: shift
instructions should be implemented as a barrel shifter so that any number of bits (up to some
predetermined number) can be shifted in a single cycle; all instructions should be the same
size; support is required for Test and Set; support for short context switch time is desirable;
a special synchronization pin to allow the internal operation of multiple processors to be
synchronized is also desirable.

Just as for RISC machines, in the real-time RISC-like machine being advocated for
Spring, we have a memory access bottleneck. One way to solve this problem is using a
wide bus and short instruction sizes so that each access to main memory brings in multiple
instructions. The bus must be wide enough to keep up with the application CPU. However,
it is likely that caches will continue to be very important in solving this problem, so it is
necessary to develop cache designs which can be considered during WCET calculation. The
design of the system as a whole has a significant influence on how difficult it is to take the
effects of a cache into account. The functional partitioning discussed in Section 3.2, and the
details of the translation method discussed in section 2.4 are both important in making it

14



possible to compute WCETSs that are not too pessimistic, though at the expense of added
complexity in the compiler.

Functional partitioning simplifies the problem by shielding the execution of a task from
arbitrary interruption, and the translation method must carefully consider the worst case
behavior with respect to the target cache architecture. It is important to realize that the
worst case behavior of a process will change with the cache architecture. Our current efforts
are limited to considering instruction caches, but we plan to investigate how they can be
applied to data caching as well. Let us now consider predictable real-time caching.

For the Spring Architecture we require a simple instruction set conducive to timing
analysis, and where instruction execution time has low variance. The best approach would be
a non-pipelined, non-cached machine with a limited number of instruction types where most
instructions execute in one cycle and that cycle time is as short as possible. Other instruction
classes may require multiple cycles. The important thing is that every instruction would take
a fixed number of cycles (or an easily computed number of cycles), rather than achieving
1 cycle per instruction on the average. In any case, theoretically, using the fixed time per
instruction approach, it would be simple to add instruction times. If such a machine were fast
enough then we would not require pipelining or caching. However, let’s assume that we still
require more speed. How can we increase the speed, yet maintain predictability?

One way is to decrease the cycle time. Another is to add a simple pipeline and have
the compiler do static scheduling. The compiler can still compute the WCET for sequences of
instructions by knowing the details of the pipe and simulating the execution of the sequence
within it. Two problems in making even a simple pipe predictable are dealing with branch
instructions and interrupts. For branch instructions the compiler would generally have to
assume that the program arrives at the target of a branch in an unfavorable pipeline state,
thus slightly increasing the WCET. The uncertainty caused by interrupts is solved by our
functional partitioning of the processors in a Spring node. Let us consider non-preemptive and
preemptive tasks. For non-preemptive tasks, the application processors are not interrupted
by external events. Consequently, when a given task is running it executes to completion.
For preemptive tasks, since we plan ahead, the future schedule already contains where, when,
and how often a task can be preempted. The context switch time, including pipeline flushing,
is accounted for during this planning. The currently running task (or piece of a preemptive
task) is never preempted in our model.

Because of this, we can consider conventional cache designs when making valid WCET
predictions. As we consider ways to make our predictions less and less pessimistic, we may
well wish to add features to our cache design. However, we believe a direct mapped logical
address instruction cache provides an interesting starting point. Data caching might be done,
but is not considered here. We believe that its benefits will tend to be limited, though we will
certainly consider it in our future work.

The benefits of our approach to predicting the effects of caching arise in several ways.
First, the use of a logical cache decreases the reference time for a hit, since cache processing
can take place in parallel with address translation. Since context switches happen only at
the large granularity of task boundaries, we can flush the cache at every context switch, and
still gain a significant benefit from its presence. Flushing the cache at each context switch

15



eliminates the aliasing problems commonly associated with logical caches, simplifying the
design. Direct mapped caches have several attractive properties including; generally lower
cost, faster response, and an easily understood replacement policy. Note, however, that only
some of the speedup from caching can be predicted. When we consider the caching effects we
will lower the WCET, but also, generally, increase the execution time variance as well.

The effects of caching are considered during the subgraph reduction phase of the trans-
lation from the programming to the run-time representation of a computation. The nodes
within a time graph (TG) give the cached and uncached times for the segment of code they
represent. For straight-line code, this is trivial. More difficult cases arise when a conditional
appears inside a loop. The subgraph reductions must consider the fact that the worst case
path through the body of the loop will generally include execution of both branches of a
conditional. Subroutine calls also give rise to complication, since the cache footprints of sub-
routine code and the code calling it may or may not overlap. Our analysis currently assumes
that either the entire body of a loop, including subroutines called, fits into the cache without
conflict, or that none of it does. It is thus currently incapable of predicting the significant
speedup seen in situations where conflict exists, but is minimal. This is one reason that the
variance of execution times may increase when taking caches into account. We are working
on ways to enable the developer to give directives to the compiler about which loops should
be optimized to avoid cache image conflicts with the called subroutines. These efforts interact
strongly with our work on methods for predictably supporting logical address spaces.

This establishes the outlines of how to provide CPU hardware that enables us to execute
a single task predictably. This is some of the support which the translation method described
in Section 2.4 required. It is important to note that our current target hardware has only
an insignificantly tiny instruction cache, and no data cache. As a result, investigation of the
issues just discussed will have to be done either using a functional simulation of a 68020 target
board with a cache and able to accurately reflect temporal behavior, or using different target
hardware. However, this limitation should not obscure the fact that an instruction cache can
be used to decrease the WCET. We will now discuss aspects of the design for other parts of
a processor that are important to providing predictable real-time performance.

MMUs: We believe that next generation real-time systems will require the ability to
predictably support logical address spaces. It is important to distinguish the idea of a logical
address space from virtual memory. Virtual memory is difficult or impossible to support
predictably, because worst case behavior would have to take worst case paging on and off
disk into account, resulting in unusably large WCETs. However, it is feasible to predictably
manage a logical address space which is fully mapped onto physical memory.

The use of logical address spaces for both application processes and the operating system
offers several advantages over the use of a physical address space. The most obvious is the
issue of protection. The Spring system is designed with a separate address space for each
application process executing in user mode, and a single shared address space for processes
executing in system mode. The operating system can thus be viewed as having an address
space within which multiple threads of control execute. The protection advantage of this
design is that application code cannot modify the contents of the system space, and system
code cannot modify an application address space without using special instructions. Under

16



a physical address space, such as that used by VRTX [12], both user and system code have
the ability to modify any part of the system memory. This leaves the system vulnerable to
complete failure as a result of an application process accidentally modifying the wrong portion
of the system code or data.

It is reasonable to view a system using a physical address space as being many threads
of control, both system and user mode threads, in a single address space. Every thread has
access to every part of the whole address space. When we introduce multiple address spaces,
we also create the need for controlled address space overlap, i.e., shared memory. The Spring
system implements this through the familiar technique of making the memory maps for the
shared sections of the address spaces point to the same physical memory. At the programming
level this provides a way for application processes to interact efficiently, while maintaining the
advantages of protection.

The other advantage of logical address spaces is more subtle. Consider the set of pro-
cesses that are active on the system at a given time. If this set never changes, then the system
is static. However, next generation real-time systems are likely to have process sets which
will change dynamically, in response to environmental events. A logical address space helps
support dynamic process sets because a process is compiled to a specific logical address, but
can be loaded into an arbitrary set of physical pages. Complex process structures and data
sharing between processes in a group can be supported by comparatively simple manipulation
of the processes’ memory maps. A process compiled for a physical address space would have
to be assigned addresses that would not cause conflicts in any of the active process sets of the
process is a member. If the number of active process sets is very large, as it is likely to be for
dynamic environments, then the problem of assigning physical addresses to a process could
become extremely complex. This is one way in which the use of logical address spaces makes
real-time application development easier.

Within the Spring paradigm, our problem is to manage the logical address space in a
way which is predictable and has adequate performance. We will first describe how we use the
MMU within the current target hardware, and then discuss features we would like to see in
an MMU designed specifically for real-time systems. The current hardware uses a Motorola
68851 MMU chip. This is a page based MMU which is designed for virtual memory support in
conventional systems. It has a 64 entry fully associative translation look-aside buffer (TLB),
which provides fast mapping for the most recently used pages. A logical address reference is
first checked against the TLB entries. If a hit occurs, the address is translated without further
delay. If the proper mapping is not in the cache, then the MMU goes to the memory map
contained in physical memory to obtain it.

Our strategy for using the MMU predictably is to limit the size of a process so that
the mappings for all of its pages will fit into the TLB, and to explicitly manage the TLB
contents. The fact that all code and data for a process are resident in physical memory while
the process is executing eliminates paging delays associated with virtual memory. The fact
that all memory references will be mapped through the TLB, without additional memory
references to consult the map in main memory, ensures that the worst case performance of a
process is both predictable and acceptable. In the Kernel we take measures to ensure that the
MMU cannot service a TLB miss unless we are explicitly manipulating the TLB contents.

17



The most obvious drawback to this design is the limitations on code size. Our system
design dictates that the system code mappings remain in the TLB at all times, and are shared
by all processes. The currently executing process is thus limited to a number of pages less
than or equal to the number of TLB entries remaining after the operating system pages have
been mapped. However, since we are using a page size of 8K, we can still write programs
of reasonable size. The other drawback is that context switching includes the time required
to explicitly manage the TLB. This is a cost already paid implicitly in conventional systems,
although it is not usually considered part of the context switching time, since the TLB entries
are obtained as required by TLB misses.

The page orientation of the MMU is a result of its being designed for conventional
systems using virtual memory. In that context, dividing the physical memory into pages
is the correct course, because of the significant role disks play in virtual memory support.
However, in Spring there is little reason to use pages, and several reasons to consider an
MMU based on segments instead. The most obvious effect would be to lower the context
switching time, since a process would generally have fewer segments than pages. Nonetheless,
the TLB for a real-time MMU is likely to be more complex than in our current MMU. There
was little motivation for the designers of the 68851 to provide a larger TLB because, for the
conventional systems they were targeting, their design produced a TLB hit rate of from 95 to
99 percent.

Another obvious effect of using a segment oriented MMU would be to essentially elimi-
nate the constraint on code size. The only possible drawback would be the tendency to require
large areas of contiguous physical memory, since each segment must be contigunous. However,
if the MMU was capable of supporting a fairly large number of segments, then the system
would have greater flexibility in managing physical memory and assigning it to a process at
load time. In 7] we consider a number of design alternatives, concentrating on the structure
and size of the TLB. For example, the TLB should at least be large enough for both the cur-
rent process and system maps. We also considered architectural options that affect the time
required to load a process’s memory map into the TLB, and the frequency with which this
must be done.

A flexible design for the support of a segmented address space can also be useful for
decreasing the WCET in the presence of instruction caches. If we selectively assign code to
the logical addresses within segments according to constraints on how their cache images may
conflict, we can produce a lower predictable WCET than a system which does not explicitly
control the code’s cache images. The reason for this is that the constraints on the cache images
are designed to ensure that the cache images of the most important code do not conflict, thus
reducing their execution time. An example would be a constraint guaranteeing that the cache
images of the code for a loop and the subroutines called from its body would not conflict.
This constraint would then enable the WCET calculation to assume that the loop would be
executed from the instruction cache, producing a lower WCET. Efforts have been made in
this area for conventional systems, but the work is understandably focussed on reducing the
average case execution time, not the WCET(3, 11]. The effectiveness of this approach for
Spring would depend on the hardware’s ability to support a fairly large number of segments
efficiently, and on language and compiler support for generating cache image constraints.

18



In summary, next generation real-time systems applied to dynamic environments will
require a programming model, run-time model, and memory management scheme that are
substantially more flexible than current systems provide, and which can support dynamic
process sets. As real-time applications become more complex, more complex process structures
and relationships will be managed by the system. For these and other reasons, logical address
space support for real-time processes is desirable. We have argued that with appropriate
restrictions, proper care, and hardware designed specifically for the new situation, predictable
management of logical address spaces in real-time systems is feasible.

Floating Point Co-processors: Many real-time applications do not use floating point
co-processors with the general purpose application processors because of their unpredictability.
Let us now briefly discuss some of the difficulties that arise for real-time computing because the
more complicated floating point co-processor designs aim for very fast average case execution
at the expense of high WCET. Assume a typical situation where the main processor is pipelined
and the co-processor is pipelined. Consider an example where a floating point add is followed
by an integer add. Let the floating point add be under way, then integer add begins and
completes, and then as part of the floating point add there is an overflow error. This causes
significant problems with restoring state and is referred to as the precise interrupt problem
[14]. The precise interrupt problem gets even more complicated if virtual memory and caching
are involved. Another complicating possibility is when there is an external interrupt. Here
you have similar problems as in the overflow error example, but you also have the possibility of
a significant delay before you can handle the interrupt. For example, if an external interrupt
occurs, instructions that have not been issued in the pipe are held up, but all those instructions
issued are usually allowed to complete before the interrupt occurs incurring the extra delay.
The overall architectural design we advocate basically avoids these problems in the following
manner.

Many real-time applications require floating point calculations both in the front-ends
(see the section on DSP below) and in the application processors. In this section we only con-
sider the needs at the application processor level. One possible approach is to use application
processors as defined above and emulate floating point in software, thereby retaining the pre-
dictability. However, this will usually be too slow. A solution then is to add a floating point
co-processor, but it must be done in a manner which retains predictability. One approach is
to use processors which are not pipelined and thus execute instructions in sequential order.
When a floating point instruction appears, it is executed by the co-processor at a much faster
rate than if it were emulated in software, but still in order. Given the current level of chip
densities it seems possible to put the floating point co-processor on-chip. The next problem is
that the worst case time of each floating point instruction must be known. This is facilitated
since the floating point co-processor itself need not be pipelined (since only one instruction
at a time is fed to it from the main processor). In summary, this approach to an integrated
CPU - floating point processor is predictable and much faster than if there is no floating point
co-processor. However, on the average it is slower than the fastest designs which cater to fast
average case performance and use complex pipelining.

If, when using this approach, we still do not have sufficient speed, another performance
improvement could allow some overlap of execution between the application CPU and the
floating point co-processor. In particular, if we allow the application CPU to perform an

19



address calculation while the floating point CPU is executing, then this can lead to significant
performance improvements in applications which access arrays heavily. Since the address
calculation takes significantly less time than the floating point operation we effectively obtain
it for free in computing the WCET for a program. This is an example of adding more
complexity for speed, but it must be done in a carefully orchestrated manner.

DSP: Single DSPs and DSPs working in concert form part of the front-end I/O sub-
system of the Spring Architecture. DSPs are widely used in real-time systems for tasks
such as telecommunications, signal processing and numeric applications. Let us confine our
remarks to signal processing of sensor data. Generally speaking, signal processing can be
divided into three stages: preprocessing, feature extraction, and pattern recognition. Today’s
DSPs are primarily used for the preprocessing stage. For audio and speech signal processing
applications, the preprocessing includes preamplification, equalization, and noise reduction.
This type of preprocessing is accomplished by using DSPs as digital filters. In image pro-
cessing applications, preprocessing includes intensity and geometric correction, and geometric
transformation. For these image applications, the DSPs are used both as digital filters and
for matrix multiplication and inversion. In next generation real-time systems, we expect that
DS5Ps will be more sophisticated and that collections of them will not only perform the prepro-
cessing stage, but also the feature extraction and perhaps even the pattern recognition stage.
An important aspect of using DSPs is how they will interface to the “core” of the Spring
Architecture. To explain this interface, let us consider two cases: (1) where preprocessing and
feature extraction are handled by the DSPs, but the pattern recognition is handled by the
Spring application processors, and (2) where preprocessing, feature extraction, and pattern
recognition are all performed by the DSPs.

In the first case, there is a requirement for potentially large amounts of data to be
transferred from the front-end DSP complex to the application processors’ memories. This
must be done in a predictable manner. This may be accomplished in several ways. Here
we only present one way. See Figure 4. First, we require multiple DMA channels to the
application processors’ memories (M) operating on one or more busses that are separate from
the bus that connects the application processors (APs) and is primarily used for process-
process communication. In Figure 4 we show all DMAs accessing AP memories over one
shared bus. More busses may be required in some situations. Second, we need properly
integrated periodic scheduling of the process that performs the pattern recognition (running
in the application processor) with the I/O process that performs the DMA*. In other words,
the data must be in memory “in time,” and the periodic pattern recognition process must
have been guaranteed. Note that when the periodic pattern recognition process identifies
something important, it could invoke yet another process (which has to be guaranteed) to act
on that information.

In the second case, all stages of the signal processing occur in the front-end. Here the
data movement requirement is generally low (although not always). When the data movement
requirement is low, the process on the DSP would simply send a signal and some small amount
of data to the system processor (SP) (See Figure 4) informing it that a certain feature has been

*Note that the TMS320C25 contains a concurrent DMA capability which allows the DSP chip to do DMA
and local processing in parallel, greatly increasing throughput.

20



recognized. The signal would activate a higher level process to act upon that information.
Depending upon the implementation, the data required by this higher level process may be
passed to it via the system processor, or directly via the DMA controller as in the first case
described above.

The above discussion describes how we interface DSPs to the core Spring Architecture
and briefly mention timing issues involved with that interface. However, there is an additional
level of timing requirements within the DSP chips themselves. That is, there is an incoming
stream of data arriving at some rate, and the processing that needs to be done must be
fast enough to match that rate. Generally, in the DSP chip missing some incoming data
or processing the data too late is not catastrophic. In other words, these are soft real-time
constraints. On the other hand, to quantitatively demonstrate that all the processing will
be done “in time” is sometimes a very difficult matter. Because of the strategy of divide-
and-conquer, used extensively in the Spring Architecture, the designer needs only to worry
about this one signal processing process or a collection of such processes assigned to this
front-end node, thereby simplifying the analysis problem. Further, in many instances, once
implemented, the processes performing the signal processing do not change frequently, and
operate almost as a data flow processor. We expect to find many types of DSP implementations
co-existing in a large, complex, distributed, next generation real-time system. For example,
some DSP functions may be implemented on a CISC processor, others constructed out of
function-specific building blocks, others using the RISC-like general purpose DSPs, and yet
others requiring ASIC DSPs. Each approach is chosen based on performance, reliability,
board space and cost requirements. Various development tools and application support exist
to help designers, and, with the exception of the interface to the application processors, these
decisions can be made on a local level. At this time, we do not provide any special techniques
to implement the front-end DSP functions so that all these low-level timing constraints are
met,

Other I/O Front-Ends: In addition to DSPs, the I/O subsystem of the Spring Ar-
chitecture may contain microprocessors or other specialized components that monitor simple
sensors. Here the microprocessors may be scheduled with a cyclic scheduler, a rate monotonic
scheduler, etc. In general, the I/O microprocessors are dealing with a relatively small number
of sensors so that it is possible to a priori quantify the timing performance of the microproces-
sor. These microprocessors interact with the “core” of the Spring Architecture in a manner
similar to the DSP chips. It is important to note that it is usually fairly easy to design the
front-end to minimize interrupt latency at the front-end. However, the more macroscopic view
of interrupt latency could be defined as “How long does it take for an interrupt to be handled
at the front-end, a signal and data sent to the systems processor, a guarantee performed at
the systems processor, a process execution to do the required higher level computations, and
signals returned to some actuator?” Space limitations preclude further discussion of this issue.

Specialized Scheduling Co-Processor: Since the guarantee is the heart of the Spring
system it would be beneficial to develop direct hardware support for the algorithm. Such a
guarantee processor would have many advantages including: it would execute the guarantee
faster, it would be continuously active thereby reducing the macroscopic latency mentioned
above, it could perform various optimizations and smart processing when not attempting to
guarantee a new process (such as reordering the schedule, finding holes in the schedule for

21



quick subsequent guarantees, and other optimizations), and frees the system processor from
guaranteeing so that it can be better used for other system duties. A possible disadvantage
is that this new special purpose processor could be an example of a single point of failure if
not backed up by redundant hardware, or the ability to run the guarantee algorithm on the
system processor if the specialized guarantee processor fails.

We are currently working on the design for a simple scheduling co-processor which would
calculate the value of a heuristic function for each of the tasks being scheduled, and find the
task with the highest value. This is the calculation in the innermost loop of our scheduling
algorithm, and seems a prudent place to begin applying specialized hardware. This design,
when validated, would then become the core of a coprocessor applying the entire scheduling
algorithm to a set of tasks.

3.5 Predictability

Let us now summarize what we mean by predictability in a large, complex, real-time system
operating in a non-deterministic environment. Based on a careful software and hardware
design, we believe that we can achieve both microscopic and macroscopic predictability. In
the microscopic view, we can compute the worst case behavior of any process. This is not
as simple as it first may seem. First, we require a simplified architecture so that instructions
times are well defined. Second, we must be able to account for resource requirements and
procedure and/or system calls made by the process. We accomplish this via careful compile-
time analysis, and the use of our planning scheduler at run-time. In this way, the execution
time of a particular invocation of a process with its resource needs can be accurately computed.
In many other approaches predictability breaks down here because they have no good method
for dealing with delays due to contention for resources.

Further, our approach enables a macroscopic view of predictability, but it is defined in a
very particular way. First, we have the macroscopic view that all critical processes will always
make their deadlines (subject to the assu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>