Program Representation and Translation
for Predictable Real-Time Systems*

Douglas Niehaus
Department of Computer and Information Science
University of Massachusetts

Ambherst, Massachusetts 01003

Abstract

As increasingly complex real-time systems are cre-
ated, program representations must improve to meet
the demands of more sophisticated programs. In real-
time systems, when an answer is produced is part
of its correctness. Proper run-time management in
a real-time system thus depends on accurately pre-
dicting program execution behavior, which must be
based on information either specified in the program
source or derived from it during translation. This pa-
per discusses our method for deriving behavioral pre-
dictions while translating between the programming
and run-time representations used by the Spring sys-
tem. A graph representation of the program is derived
from the intermediate representation the compiler uses
to emit code. This graph is then reduced and ana-
lyzed to make behavioral predictions. We present the
basic translation method, and give examples of how it
translates programming language constructs for criti-
cal sections and synchronous communication.

1 Introduction

As real-time systems become more complex, and
are created for ever more dynamic environments, the
methods used to represent programs will have to in-
crease in sophistication to meet the new demands. Ex-
amples of such dynamic and demanding application
environments include command-and-control systems,
space shuttle and aircraft avionics, automated facto-
ries, process control systems, nuclear power plants,
and sophisticated robots. In these systems, the cor-
rectness of the computation depends not only on the
logical correctness of the answer, but also on when it is
produced. Run-time management of the real-time sys-
tem must thus include control of when computations
are completed, which depends on the predictability of
program behavior.

Predicting the behavior of programs with such
time-dependent semantics is a challenging problem;

*This work is part of the Spring Project at the University
of Massachusetts funded in part by the Office of Naval research
under contract N00014-85-K-0398 and by the National Science
Foundation under grants DCR-8500332 and CDA-8922572.

and representing the predicted behavior will require
descriptions that are substantially more complex than
those for programs which are not time dependent.
Predictions about process behavior depend on a num-
ber of factors, and unsatisfactory treatment of any of
them renders the predictions less accurate or invalid.
Coordination of the designs for different layers of a
real-time system is required to ensure predictable be-
havior for the system as a whole. These issues cover
the programming language, translation, operating sys-
tem and hardware levels.

The programming representation is used by the de-
veloper to describe the properties of real-time compu-
tations, which include: timing constraints, resource re-
quirements, importance levels, and a number of other
aspects of the computation’s properties and require-
ments. Typically, the familiar non-real-time process
model is enhanced with representations of the tempo-
ral and system configuration information. The many
real-time languages that are objects of current re-
search differ from one another mostly in the details of
how they express the temporal and configuration at-
tributes of each process. These differences are partly
stylistic, and partly a reflection of different assump-
tions about the properties of the run-time system.

Most real-time systems use a process representation
at run-time as well as for programming, and schedule
the processes using a priority driven scheduler. How-
ever, the Spring system scheduler is significantly dif-
ferent because it dynamically builds explicit execution
plans, rather than being priority driven. To do this,
it assumes that each process is represented as a group
of precedence related non-blocking tasks with known
execution time and resource use behaviors.

In this paper we concentrate on the translation be-
tween the programming and the run-time represen-
tations. The translation requires us to predict pro-
cess behavior in a number of ways, and to represent
these predictions in the task based form the Spring
scheduler expects. The behaviors of the process we
must predict include: its execution time, its use of
resources shared with other processes, and its com-
munication with other processes. The differences be-
tween the properties of the process based and task
based representations require that we develop a trans-
lation method differing significantly from other efforts.
This paper presents the basic translation method, and
gives examples of how it treats programming language



constructs used to specify critical sections and syn-
chronous communication. We address other aspects of
fonstﬁucting a predictable real-time system elsewhere
11, 9].

One of our goals is to establish a source language,
Spring-C, that can serve as a target for many of the ex-
isting languages. The details of the language we have
developed for describing the process properties and
system configuration, and our modifications to C syn-
tax are described in [10]. The purpose of Spring-C is to
provide many existing real-time languages with access
to a run-time system that can predictably produce the
behavior they specify. The translation method pre-
sented here is one step toward this goal.

A survey and comparison of several existing real-
time languages is given in [2]. In general, these ef-
forts consider the source language structures required
to describe real-time computations, while paying little
attention to how the behavior can be predictably pro-
duced by the run-time system. They assume that the
worst case execution time (WCET) of a process can be
calculated, and that the system is capable of produc-
ing whatever behavior is specified. Some investigators
into real-time languages have suggested the use of mul-
tiple implementations of an algorithm, one of which is
selected at run-time according to execution time and
other scheduling constraints [4, 8]. Klingerman and
Stoyenko use a model where processes contend for ac-
cess to shared resources, and so take worst case block-
ing time into account in the execution time [5]. In
more recent work, Stoyenko and Marlowe use a graph
representation to analyze program behavior, and con-
trol transformations [19]. However, their method as-
sumes a system using a process based run-time repre-
sentation, and so has significant differences from the
work described here. Nirkhe describes program trans-
lation of an object oriented language with temporal
extensions that has some similarities to the translation
described here, but does not address how the behavior
of the program can be accurately predicted, and then
reliably produced by the underlying system [12]. This
is also true of the object oriented language described
in [3].

The WCET is an important aspect of real-time pro-
cess behavior, though it is by no means the only aspect
of behavior that must be predicted. At the simplest
level, any method of calculating WCET for the code
of a process, or a section of it, will require summation
of the execution times for individual machine instruc-
tions specified by the code emitted by the compiler.
The difficult aspects of the problem are how to orga-
nize the summation, and how to phrase the descrip-
tion of process behavior. Park and Shaw address the
derivation of WCET using source level timing schema
and assume a process based run-time model [13]. This
method has the advantage of being partly indepen-
dent of the target architecture, but it has difficulty
predicting the actual code emitted by the compiler
due to the effects of optimizations performed by the
compiler that cross the boundaries of their source-level
schemata. Since they work with approzimations to the
actual emitted code, they also would have difficulty ac-
curately accounting for the effects of hardware features
such as caches. Amerasinghe derives WCET from the

assembler code produced by compilation [1]. An ex-
tension of this work for the Spring project was recently
completed [6]. Since this method works at the assem-
bly language level, it can more easily consider how
specific hardware features will affect execution time.
However, since it works solely with the assembler out-
put of the compiler, it is very difficult to perform any
transformations on the program.

The translation method described in this paper
compromises between the source and assembler ex-
tremes by working with the compiler’s intermediate
representation of the code. This permits us to work
with the machine instructions actually emitted by the
compiler, while preserving the ability to transform
portions of the program. Program transformations
enable us adjust the number of tasks in the process’s
run-time representation. This lets us balance the ben-
efit of a finer grain description of a process’s behavior
using more tasks, against its cost in terms of increased
scheduling load resulting from the larger number of
tasks. In addition to deriving the WCET of tasks in
the group representing the process at run-time, our
translation method also derives task resource require-
ments, and the precedence relations between tasks
arising from synchronous communication.

Section 2 of this paper will discuss two different
scheduling paradigms and how their properties and as-
sumptions require different run-time representations.
Section 3 describes the translation method we have
developed to bridge the gap between the program-
ming representation using processes, and the run-time
representation using a group of well defined, non-
preemptable tasks to represent a process. Section 4
will then describe the current status of our work and
how we plan to develop it in the future.

2 Scheduling Paradigm Assumptions

A distinction must be drawn between the great
body of scheduling research that exists, and the
scheduling paradigms used at run-time in real-time
systems. We are concerned with the run-time schedul-
ing paradigms and how their assumptions affect the
representation of a process. One of the significant ap-
proaches to run-time scheduling for real-time systems
is the explicit construction of task execution plans.
This research generally assumes that non-blocking
tasks with known WCETSs and resource requirements
are the entities being scheduled [15]. This explicit
planning paradigm avoids resource contention by tak-
ing the tasks’ resource use into account when con-
structing the execution plan. In this context a re-
source is used to represent any element in the sys-
tem for which concurrent access is restricted. The
access restriction creates a constraint that the sched-
uler must take into account when constructing the ex-
ecution plan. Compare this with a run-time repre-
sentation using processes that run freely, contending
for resources as they require them, and blocking un-
til they are available. The explicit planning approach
must consider tasks that represent a portion of the pro-
cess’s execution to achieve adequate levels of efficiency



and schedulability. The run-time representation of a
process under the explicit scheduling paradigm will
thus be a group of non-blocking tasks each represent-
ing a portion of a process instance’s execution. Prece-
dence constraints among the tasks in a group ensure
that the scheduler considers the process’s execution
episodes in the correct order. This is one reason why a
non-trivial translation between the programming and
run-time representations is required for a system us-
ing explicit plan scheduling. Current research is ad-
dressing the problem of explicit plan construction for
groups of tasks with precedence constraints [20].

In contrast, systems using the rate monotonic ap-
proach to run-time scheduling use preemptable pe-
riodic processes for both the programming and run-
time models. The basic rate monotonic approach was
described by Liu and Layland [7] assuming no re-
source contention. Under this scheduling paradigm
the WCETSs of the processes are assumed to be known,
and processes are assigned priorities proportional to
the frequency with which they must execute. The
run-time scheduling decision is simple since the system
always runs the highest priority ready task. Schedula-
bility analysis can determine if all processes will meet
their deadlines.

A number of extensions to the basic paradigm have
been developed to handle blocking due to resource
contention [14] and aperiodic process execution in re-
sponse to environmental events [16]. However, the
rate monotonic approach has significant limitations,
as well. First, the rate monotonic approach has not, as
yet, been extended to handle groups of processes with
precedence constraints, or to consider processes which
engage in synchronous communication. The handling
of aperiodic events is limited to statically allocated ex-
ecution time for periodic servers, which makes it more
difficult for the system to handle dynamic environ-
ments. Also, the blocking time for resource contention
can become very large since schedulability analysis
must always assume the worst possible blocking be-
havior.

Both scheduling paradigms depend on the accurate
prediction of the process’s behavior including WCET
and resource use, but they approach the problem quite
differently. The rate monotonic approach uses the
same representation for programming and at run-time,
which is an initially attractive feature. The explicit
planning paradigm uses the task group representation
of a process at run-time creating a gap that must be
bridged with a translation step. This may at first
appear as a disadvantage, but the explicit planning
paradigm has several attractive features which cause
us to select it for the Spring system, and to accept the
problem of translating between the programming and
run-time representations.

First, the handling of aperiodic process execution
is handled much more directly, by inclusion in the ex-
ecution plan, rather than through servicing by a pe-
riodic server. The explicit planning approach gives
more a detailed view and finer control of the system
state under overload conditions. Resource contention
1s explicitly represented, and so the blocking time need
not be included in the WCET, but is treated sep-
arately. This is useful for building a system where

the real-time processes are divided into the critical,
which absolutely must meet their deadlines and have
resources statically allocated, and essential which are
necessary to the operation of the system, but will not
cause a catastrophe if they are not finished on time.
We believe that real-time systems of the future will
have a large number of essential processes, and that
the construction of explicit execution plans will enable
the system to better handle the tradeoff among con-
flicting essential tasks. The details of these and other
arguments supporting this approach to scheduling are
given in [18].

3 Program Translation

Programs are translated from the representation
used by the developer, into the representation used by
the system at run-time. We use the conventional pro-
gramming model based on processes, which execute
until they finish, or until they are suspended for one
of several reasons. A task is a non-blocking episode
of execution with known WCET and resource use. A
task groupis a set of tasks among which precedence re-
lations hold, which express constraints on the order in
which the tasks may be executed. We have developed
a method for translating from the process to the task
group representation. Each task in the group repre-
sents an episode of execution for the process, and the
process execution is certain to be complete when each
task in the group has been executed. The task groups
are thus used by the scheduler to build an execution
plan for the processes. To perform the translation,
we must consider all the places in the code where the
process can suspend its execution.

In conventional systems, processes suspend for four
major reasons: preemption, access to a critical section,
explicit delay statements, and synchronous communi-
cation. Since we will only consider nonpreemptive task
execution at this time, preemption is not an issue.
This leaves critical sections, delay statements, and
synchronous communication calls; which we explicitly
represent during the translation. Under the explicit
plan scheduling paradigm, these points of potential
process suspension create task boundaries. We call
them scheduling points since they delimit the episodes
of execution for which the scheduler constructs a plan.

We translate from the process to task representa-
tion by predicting the process’s worst case resource
requirements and duration of its execution episodes.
An ezecution episode begins and ends with process
suspension. The execution episodes, as predicted at
compile time, are then presented to the scheduler as
“tasks” for which it constructs an execution plan. The
translation method has three phases:

e time graph construction,
e subgraph reduction, and
e task group construction.

Time graph construction builds a representation of
the program’s control structure which preserves its



temporal behavior while discarding its semantics. Cal-
culating the worst case behavior of the process requires
us to consider every possible path through the process
code. Subgraph reduction replaces sections of the time
graph with single nodes giving the worst case time
through the subgraph being replaced. This is a form
of preprocessing since the single nodes are equivalent
to the original subgraph, for WCET calculation pur-
poses, but using them reduces the number of possible
paths through the time graph. Task group construc-
tion uses the fully reduced form of the time graph to
calculate the worst case behavior of the process by
enumerating all possible paths through the reduced
graph, and finding the worst possible behavior for each
execution episode of the process.

The rest of this section discusses each phase of
the translation method, describes scheduling points
in greater detail, and gives examples of some program
transformations that can be done.

3.1 Time Graph Construction

The time graph (TG) is a representation of the con-
trol structure of a process which abstracts its temporal
and resource use behavior, discarding everything else.
The TG is constructed from the intermediate repre-
sentation of a process used by the compiler for code
emission, called “register transfer language” (RTL)
[17]. The TG thus reflects the temporal behavior of
the code which is actually emitted. Each node in the
intermediate representation is represented in the TG
by a node giving the WCET of the machine instruc-
tions it represents, as calculated by the tool described
in [6]. The original time graph is thus as complex
as the program’s intermediate representation at code
emission time. Figure 1 illustrates this by showing a
simple conditional statement and the corresponding
RTL graph and TG.

The conditional statement is converted into the
corresponding RTL control flow graph by the com-
piler. We produce an enhanced RTL graph, with
nodes added which preserve the original block struc-
ture of the source. In the figure these are the grey
nodes marking the beginning and end of the condi-
tional statement. The dotted arrow connecting them
lllustrates that the two structural nodes refer to one
another. Similar structural nodes would be emitted
for loops, switch statements, and to bound the proce-
dure itself. Structural nodes are required to provide
context for some of the reductions related to loops,
switches, and procedures.

For clarity we have illustrated the RTL graph with
a single node for each C statement, but there will gen-
erally be a single TG node for each basic block in the
source procedure. This representation of the condi-
tional statement preserves the full range of its execu-
tion behavior, while eliminating its semantics. In this
case the only possible behaviors are the paths follow-
ing the true and false branches, but this representation
permits us to calculate the time for each. Note that
code will eventually be emitted for the procedure, but
we do execution behavior analysis and task group con-
struction first.

Figure 1: Time Graph Construction

The RTL nodes in the figure are far simpler than
those actually used. For example, consider the RTL
and time graph nodes representing the conditional test
“a > b”. The actual RTL statements and the equiva-
lent assembler instructions are:

RTL Assembler
(insn 24 4 6 (set (reg:SI 0)
(mem:SI (symbol_ref:SI ("a"))))
-1 (nil) (nil))

movel _a,d0

(insn:QI 6 24 7 (set (cc0) cmpl _b,do
(compare (reg:SI 0)
(mem:SI (symbol_ref:SI ("b'")))))
11 (nil) (nil))
(jump_insn 7 6 8 (set (pc) jle L2

(if_then_else (gt (cc0)
(const_int 0)) (pc)
(label_ref 13)))

227 (nil) (nil))

The triplet of integers in each statement give the
statement number, its predecessor, and successor in
the RTL graph, respectively. The execution time for
the three assembler instructions would be added to-
gether, and this would be the value of the TG node,
“WCET(a > b)”.

Procedure calls in the TG are simply replaced with
the TG of the procedure being called. If the TG for
the procedure is not currently known, a place hold-
ing node can be inserted. TGs can be stored in an
intermediate form, pending the analysis of all refer-
enced procedures. The TG for a process is the TG
for its main level procedure, where the TGs for all the
procedures it calls are properly substituted.



HH

Figure 2: Time Graph Code with Critical Section
3.2 Scheduling Points

Scheduling points mark places in the process’s TG
and ITG where suspension could occur. This discus-
sion emphasizes the suspension that comes from block-
ing for access to shared resources and synchronous
communication, but a scheduling point will exist wher-
ever suspension can occur, for whatever reason. We
could, for instance, insert scheduling points to enforce
process suspension at specific places. How scheduling
points affect code expansion is subject to a number of
factors which are discussed in Sections 3.4 and 3.5. In
this section we discuss scheduling points arising from
critical sections, explicit delay statements, and syn-
chronous communication calls.

A critical section exists, by definition, to control ac-
cess to a resource that is shared among concurrently
executing processes. Under explicit plan scheduling
we avoid resource conflict by scheduling computations
using the same shared resource so they do not run
concurrently [15]. Figure 2 illustrates code containing
a critical section, the corresponding TG, and the task
group that would represent the code. In this exam-
ple arbitrary C code is represented by the statements
“S1;7, “S2;”, and “S3;”. The critical section is de-
noted by the with statement, whose argument gives
the critical section name.

One part of translating from the process to the task
group representation is to present the code inside the
critical section as a separate task, so that its use of
the resource represented by the critical section can be
noted, and the task may be scheduled to avoid con-
flicts. We could declare that the process uses the re-
source protected by the critical section for its entire
WCET. This would enable us to represent the process
with a single task, but would also, in general, mean re-
serving the resource for much longer than the WCET
of the code actually contained in the critical section.
Reserving the resource for longer than necessary will
needlessly constrain concurrency, and so we represent
the critical section by a separate task using the critical
section’s resource. We use the with construct rather
than simple P and V semaphore calls to emphasize

that this discussion applies only to critical sections,
and not to other applications of P and V. On the
other hand, in the RTL graph and TG we use the P
and V nodes at the critical section boundaries because
in some situations these nodes will be expanded into
actual P and V subroutine calls when code is emitted.

While full analysis can only be done in the con-
text of the process’s ITG, it should be fairly easy to
see that the P and V scheduling points are where
the system will suspend process execution, marking
the boundary between tasks in the run-time represen-
tation. In conventional systems, of course, processes
may not suspend at the V call, but this is clearly re-
quired by our task representation to mark the end of
the task using the resource. The three tasks will corre-
spond to the three C statement nodes in the ITG, with
precedence constraints between them to ensure they
are executed in the correct order. It is important to
note that a consequence of our method of representing
critical sections as tasks using resources is that critical
sections do not nest. The WCET of a task represent-
ing a set of nested critical sections will be equal to the
WCET of the whole set, and the resource use of the
task will be the union of resources representing the
critical sections in the nested set. However, while we
must acquire all the resources at the beginning of the
task, it is possible to release them before the end of
the task, moderating the increase in resource holding
time for the nested critical sections.

Synchronous communication calls and explicit de-
lay statements will be translated into single schedul-
ing points. The delay statement defines a boundary
between two tasks with the first ending at the entry
to the delay and the second beginning at the exit
from it. The statement’s argument gives the inter-
val that must elapse between the end of the first task
and the beginning of the second in the execution plan
constructed by the scheduler. A synchronous commu-
nication point will create a task boundary and a set
of precedence relations between tasks in the sending
and receiving process representations. The details of
synchronous communication translation are given in
Section 3.5, when sufficient background understand-
ing of the issues has been established.

3.3 Subgraph Reductions

A naive approach to calculating the worst case be-
havior of the process would examine every possible
execution path through the original TG, but this is
unnecessary. We reduce the TG to minimal size to
simplify the calculations required during task group
construction. The method is based on a set of rules
for reducing sections of the original TG, also called
subgraphs, which are of a specific structure to single
nodes giving the WCET for the subgraph. The new
node is, generally, equivalent to the original subgraph
for the purpose of calculating the worst case behavior
of the process. Detecting cases where this is not true
requires the use of constraints arising from the seman-
tics of the program, which we do not attempt at this
time.



Figure 3: Conditional Subgraph Reduction

Scheduling points cannot be eliminated without
discarding information about how the process can
block. As subgraph reductions are applied the TG will
reach a point beyond which, because of the scheduling
points, it cannot be reduced further. This form of the
TG is called the irreducible time graph (ITG). A TG
without scheduling points will reduce to a single node
giving the WCET of the process.

The basic idea is illustrated in Figure 3, which
shows the reduction of the graph for the conditional
statement considered in Figure 1. Note that the basic
block in the false branch of the conditional is shown
as a single node. The worst case time value for this
subgraph is easily understood as the sum of the time
to evaluate the condition and the maximum time of
the true and false clauses. Similar rules exist for all
other programming constructs, but space limitations
prevent us from specifying them. The structural nodes
are required for those situations where the worst case
calculation requires the program context of the sub-
graph. An example of such a situation is the break
statement in C. It may appear in either a switch
statement or a loop, but reducing the subgraph con-
taining it requires us to update information in the
switch or loop block within which it appears.

The ITG is a condensation of the RTL graph for
the program, and so a path through the ITG repre-
sents a set of paths through the process code. When
a subgraph is reduced, a single node replaces two or
more nodes. In the case of the conditional in Figure
3, the node giving the WCET represents two paths
through the original subgraph. A path through the
ITG represents all the paths through the original TG
than can be constructed by replacing each single node
along the ITG path with any of the paths through
the subgraph from which it was produced. Since sub-
graphs are nested in precisely the way programs are
nested, a single path through the ITG can represent a
large number of paths through the original TG. This
is particularly true when loops containing conditionals
are reduced.

The ITG is minimal because it contains no re-
ducible subgraphs. A subgraph is not reducible if it
contains a scheduling point. ITG transformations can

make further reduction possible, as discussed in Sec-
tion 3.5. We believe that every process will have a
unique ITG, though we do not have room to offer a
proof of this. However, it is fairly easy to see since
the TG of a process consists of nested loops and con-
ditionals, and the structure of the ITG is not sensi-
tive to the order in which reductions are performed.
The complexity of the reduction procedure will also be
reasonable, since it is directly analogous to the com-
pilation of the program. A depth first traversal of the
TG reducing subgraphs as we find them will visit each
node at most twice, indicating that the complexity will
be proportional to the number of nodes in the graph.
Compare this to the number of times a node would be
visited during a depth-first enumeration of all possible
execution paths through the original TG.

While we currently employ simple reduction tech-
niques, the subgraph reduction approach is quite flex-
ible, and can be enhanced to consider some of the
effects of caching or to create symbolic expressions for
WCET. In the caching case, we concentrate on in-
struction caching, and each block in the TG holds both
cached and uncached times. The reductions become
more complex, especially for loops, as we must take
the possibility of following different paths through the
loop body on different iterations into account. The
presence of caches will also require us to modify how
the executable code for a process is linked, so that we
can control the overlap of the cache footprint of sub-
routines and the code that is calling them. This will
enable us to predict a substantially smaller WCET if
loops containing subroutine calls can coexist in the
cache with the code of the subroutines they call. A
preliminary discussion of how we handle the effects of
instruction caching is given in [11].

Symbolic expressions are produced by subgraph re-
ductions that construct expressions for the execution
time instead of merely accumulating numerical val-
ues. This will make it possible to construct expres-
sions for the WCET of a task, which could depend
on the number of input data items or on the location
of certain data structures in a memory hierarchy with
non-uniform memory access times.

3.4 Task Group Construction

The worst case behavior for the process is calcu-
lated by enumerating all possible paths through the
ITG. As the paths are enumerated, the WCET and
resource use is determined for each ezecution episode
along that path. An execution episode is defined, in
the context of the ITG, as the segment between two
scheduling points along any execution path. The pre-
dicted behavior for an episode of a given ordinality is
the maximum WCET and the union of the resource
use for all episodes with that ordinality along any exe-
cution path. Since we exhaustively enumerate all pos-
sible paths through the ITG, these are the worst case
behaviors. The episodes are then presented to the
scheduler as tasks, with the WCET and resource use
calculated for each episode.

ITGs, and so the processes they describe, can be
divided into three major classes: singular, linear, and



A
-

i alyi

|y

Figure 4: Examples of Irreducible Time Graphs

non-linear. Singular ITGs arise from processes con-
taining no scheduling points, an are thus represented
by a single node giving the process’s WCET. Linear
ITGs arise from processes that only have scheduling
points in sections of the code that are visited by all ex-
ecution paths. Non-linear ITGs (NL-ITG) arise from
processes that have scheduling points in sections of the
code that are visited by some execution paths, but
not others. The number of tasks required to repre-
sent a path through the ITG is defined by the number
of scheduling points it crosses, since each scheduling
point represents a suspension of the process. Exam-
ples of linear and non-linear ITGs are given in Figure
4. In each of the ITGs the grey structural nodes mark
the beginning and end of the process’s main level pro-
cedure.

Construction of the task group representation of a
process is done by enumerating all possible execution
paths through the ITG, and accumulating the worst
case resource use and execution time for each execu-
tion episode of a given ordinality. The enumeration of
all possible paths is easily implemented as a depth-first
traversal of the ITG. The ordinality of a given execu-
tion episode is defined by the number of scheduling
points crossed along the execution path up to the be-
ginning of the episode. We can easily maintain a count
of the scheduling points crossed by the current path
in the course of a depth-first traversal of the ITG. It is
equally simple to accumulate the maximum execution
time and union of resource use for each episode of a
given ordinality as the depth-first traversal progresses.

It should now be obvious why subgraph reduction is
used. The depth of the stack required to support the
depth-first traversal of the ITG is determined by the

A

-

A

Figure 5: ITG and Corresponding Task Group

length of the longest path through it, while the num-
ber of paths is determined by the number of branch-
ing points. Subgraph reduction eliminates unneces-
sary complexity in the path enumeration step, par-
ticularly that resulting from loops, by calculating the
WCET for a reducible subgraph once. If the ITG we
produce is still complex enough to contain a problem-
atic number of possible execution paths, then it will
also produce a task group representation too complex
to be scheduled by any realistic scheduler. In such
a case, we would provide feedback to the developer
about which parts of the program were causing the
problem.

We first consider the analysis of ITGs containing
scheduling points arising from critical sections, and
show the task groups that we construct to represent
them. We then discuss the more difficult case of syn-
chronous communication scheduling points and their
translation.

In part (a) of Figure 4, the ITG is linear and obvi-
ously exhibits a data independent number of execution
episodes. In part (b), the scheduling points associated
with the critical section lie along a data dependent
subpath, and so the number of execution episodes will
be data dependent. In (a) the critical section in the
original TG was in a portion of the TG which is always
visited regardless of the input data. Such TGs will al-
ways reduce to linear ITGs. In the second case, the
conditional statement could not be reduced because
one of its branches contained the scheduling points
associated with the critical section.

The simplest linear ITG is a single node arising
from a process containing no scheduling points. This
ITG then maps directly onto a task group with a single
task with the same WCET as the process. Non-trivial
linear ITGs map onto isomorphic task groups, where
scheduling points denote task boundaries, and critical
sections specify which resources are used. Each task
in the group corresponds to one of the nodes in the
ITG, as with the single node case, and the tasks form
a group with linear scheduling precedence constraints.



Figure 6: NL-ITG and Corresponding Task Group

Figure 5 illustrates this for the linear ITG from Fig-
ure 4. Note that the P and V scheduling points have
been implemented as task boundaries. Exclusive ac-
cess to the resource is ensured in the execution plan
the scheduler will construct by noting that the second
task in the group uses resource X.

The creation of a task group representation for a
non-linear ITG with two possible execution paths is
lllustrated in Figure 6. The execution path which
follows the true branch of the conditional crosses no
scheduling points and thus has a single execution
episode with duration (4+ B+ C + E). The execution
path which follows the false branch of the conditional
crosses two scheduling points, and so exhibits three
execution episodes with durations (4 + B), (D), and
(E), respectively. For the task group representation
we take the maximum execution time and the union
of resource use for every episode of a given ordinality
along any path. In this case the first episode, with or-
dinality 1, is the only one with a representative along
more than one path. No resources are used by the first
episode along any path, so the worst case time is the
only issue.

The first path has the maximum time for the first
episode, so this value is used. The second and third
episodes exist only along the second execution path,
so their times are the maximum values. Resource X
is used in the second episode along the second path,
so the second task uses resource X. While this is a
simple example, it shows how the episode attributes
are accumulated.

A more complex situation arises when loops are in-
volved. Note that the only loops that are important
in this context are those containing scheduling points.
Loops without scheduling points will be reduced in

Figure 7: Reduction of a Transformed NL-ITG

the normal course of subgraph reduction, and will not
appear in the ITG. Loops that do contain scheduling
points will be effectively “unrolled” by the path enu-
meration, and each iteration will then be represented
by a separate task or set of tasks. While it is possible
to imagine loops which would pose a processing prob-
lem during task construction, these same structures
would generate task representations far too complex
to schedule effectively. In such cases, feedback to the
programmer is appropriate, pointing out the section of
the program that is creating the problems, and sug-
gesting a change.

3.5 Time Graph Transformations

The basic approach to constructing a task group
representation from the ITG should now be clear, at
least for critical sections. However, there are several
interesting issues that arise around transformations to
the original ITG that have different effects on the task
group properties. In particular, one of these trans-
formations is required to make the implementation of
synchronous communication feasible. While there are
several interesting transformations, due to space limi-
tations we will only be able to present two of the most
important ones. The first is an extension of the critical
section example, and the second is a transformation
required for synchronous communication.

The first transformation is of interest because some
critical sections should not really be treated as sepa-
rate tasks; the management of a FIFO queue accessed
by several processes is a good example. Concurrent
additions or deletions must be avoided, so access to the



Figure 8: NL-ITG Transformation and Reduction

structure holding the list head and tail pointers is pro-
tected by a critical section. However, the time spent
by each process to update the pointers is so small, it is
difficult to justify the overhead of a separate task. In
such a case the critical section scheduling points can be
expanded into actual semaphore calls, as long as the
worst case blocking time is taken into account. This
is easy to calculate when all the uses of the resource
in question are known, and their TGs are available.
The scheduling points are replaced with nodes giving
the worst case execution and blocking time, and the
graph is then reduced further.

As illustrated in Figure 7, the P and V scheduling
points of Figure 6 are replaced by nodes representing
the execution and blocking time of actual semaphore
calls. Changes are made to the RTL graph to insert
the P and V subroutine calls. Note in particular that
the node replacing the P scheduling point contains a
term for the worst case blocking time on resource X,
BT(X), calculated using the WCET of the X critical
sections in all processes using the resource. The rest
of the figure illustrates the reduction and translation
of the transformed ITG into a representation using a
single task.

The second ITG transformation inserts scheduling
points into a non-linear ITG, making corresponding
modifications to the RTL graph, to make the num-
ber of its execution episodes data independent. This

is a necessary condition for the correct implementa-
tion of synchronous communication using task bound-
aries and precedence constraints. However, we will
first discuss its application to our critical section ex-
ample. Figure 8 shows how the transformation inserts
simple scheduling points along the conditional path
which does not contain the critical section, producing
ITG.

This enables us to reduce the conditional block to
a linear subgraph, producing TG’'. Note that the P
scheduling point in TG’ records the WCET of the orig-
inal critical section using the notation P(X,D). A
further reduction to combine the A and B blocks is
not shown. Since there is only a single path through
a linear ITG, construction of the task group is sim-
ple. One subtlety is that the resource use notation,
Res(X, D), for the second task records the duration
of the original critical section D. Compare this task
representation to that in Figure 6. The execution time
of the first task has been reduced from A+ B+ C+ E,
but the execution time of the task using resource X is
now the maximum of C and D. If D > C simply not-
ing that resource X is used would be correct, since D
was the original duration of the critical section. How-
ever, if D < C we can avoid holding X for longer than
necessary by informing the scheduler that X is actu-
ally used for a maximum duration of D. This is the
reason for the addition to the resource notation. We
can now consider how this transformation plays a role
in implementing synchronous communication.

There are two significantly different ways to define
the semantics of synchronous communication. The
first assumes that the synchronization is simple; mean-
ing that no application level processing on the receiv-
ing end is required to produce a reply. The second
assumes a send-accept-reply semantics. We will limit
ourselves to the simple semantics for the time being.

A reasonable definition of these semantics would be
that the sender and receiver may enter their commu-
nication calls in any order, but that the sender may
not return until the receiver has entered its call, and
the message is available on the receiving side. Un-
der this definition the communicating processes will
have task boundaries representing the entry and exit
from the send and receive calls. Each task termi-
nated by the entry to the synchronous call will have
a precedence relation with the tasks beginning at the
exit from the calls in both processes. In addition, the
precedence constraints on the sending side have the
communication delay associated with them. This is
the time that must elapse to ensure the message has
arrived at the receiving side. The value is specified
by the real-time network service when the scheduler
sets up the communication. When the scheduler con-
structs an execution plan for the process group, it will
leave a gap at least this large between the task ending
with the entry to the send, and the two tasks begin-
ning with the exit from the communication calls in
both processes.

Figure 9 illustrates several important properties of
synchronous communication. First, processes which
engage in synchronous communication form a group
which is defined in the program source. The commu-
nication relation must hold between specific calls in



Il

:

%WT@
3

|

><u

Figure 9: Simple Synchronous Communication

the sender and receiver, to permit proper translation
into task representations. The process name and label
arguments to the synchronous calls uniquely identify
the sending and receiving calls. The communication
relation at the process level translates into an equiva-
lent relation between the send and recv nodes in the
TGs. When the communication nodes are used to cre-
ate the task representation, the precedence constraints
across process boundaries are created as illustrated in
Figure 9.

The requirement that we be able to pair the syn-
chronous send and receive calls syntactically is a
strong one, but we believe it is necessary condition
for the construction of a reasonable task group repre-
sentation which implements the synchronous commu-
nication semantics correctly for all input data. When
the task representation is constructed, precedence con-
straints across process boundaries enforce the commu-
nication semantics. We create these constraints at the
task boundary where the communication call occurs
in each process. We want to do this at only one place
in the task group for each communication act to keep
the task representation reasonably simple. However,
for this to be correct, the ordinality of the communi-
cation scheduling point must be path invariant. That
is, if the communication call is the boundary between
execution episodes 7 and ¢+ 1 along one execution path
in a process’s ITG, it must be so for every execution
path.

If the ordinality of the synchronous communication
scheduling point is not constant across all execution
paths, then we would have to impose the communi-
cation related precedence constraints, and the asso-
ciated communication delays, everywhere they might
occur. If the communication scheduling point was the
ith scheduling point along one path in the send pro-
cess’s ITG, but the jth along another, then the com-
munication delay would have to be imposed between
tasks ¢ and 7 + 1, and between tasks 7 and j + 1 in
the sending process’s task group. Precedence con-
straints would also be required between tasks 7 and
j in the sending process, and the task beginning with
the exit from the receive in the receiving process. This
greatly increases the number of constraints that must
be considered by the scheduler. If the ordinality of the
scheduling point for the receive is also data dependent,
the situation becomes extremely complicated.

Since task group construction is done at compile
time, unique labeling of the calls in the source is re-
quired for us to know which send corresponds to which
receive, enabling us to check, in turn, the invariance
of the communication scheduling point ordinality. The
techniques discussed earlier for inserting process sus-
pension points along paths are used to make the or-
dinality of the communication points invariant. Note
that we can permit more than one send or receive in
each communicating process to correspond, as long as
all of the corresponding calls in each process have the
same ordinality.

These are not the only transformations that are
possible, and we continue to investigate the applica-
tion of transformations for several purposes. However,
the techniques explained here are sufficient to imple-
ment a working system. Optimizations and extensions
of many kinds are possible, and provide ample oppor-
tunity for long-term development of this approach to
program translation and representation.

4 Summary and Future Work

This paper has described our basic approach to the
problem of program translation for systems using ex-
plicit plan scheduling. The need for translation be-
tween the programming and run-time models arises
because this type of scheduling assumes nonblocking
tasks as the schedulable entities, yet we wish to pre-
serve the process model as the programming model.
The time graph representation of a process’s tempo-
ral control flow structure was introduced. The three
phases of the translation method were described and
lllustrated: time graph construction, subgraph reduc-
tion, and task group construction.

The design of the basic translation method is com-
plete and we are integrating it into our compiler and
related tools. We are also implementing, in paral-
lel, the next version of the Spring operating system
which provides predictable low level process manage-
ment and general system support. The scheduling
code from the previous version of the system is in-
tegrated into the predictable version, and we are now



conducting simple tests of the process code and task
representations produced by the compiler.

Extensions of the translation method will follow
several directions. We would like to develop more ITG
transformations that will enable us to simplify the gen-
erated task group. Consideration of caching effects
will require modifications to the subgraph reductions,
and improvement of the processor models used to gen-
erate the WCETs for the RTL graph’s basic blocks
should increase the accuracy of our behavioral predic-
tions. Extension of the reductions to construct sym-
bolic expressions for execution time will enable us to
do scheduling-time evaluation of task execution times
in terms of specific input data or system configuration
characteristics, which should decrease excess alloca-
tion of resources.

A cknowledgements

I would like to thank my advisors, Jack Stankovic
and Krithi Ramamritham for their advice and en-
couragement. I would also particularly like to thank
Chung-Huei Kuan and Decao Mao for their invalu-
able assistance with the kernel implementation work
so necessary to support the work described here.

References

[1] P. Amerasinghe. An Interactive Timing Analy-
sis Tool for the SARTOR Environment. Master’s
thesis, University of Texas at Austin, 1985.

[2] W. A. Halang and A. D. Stoyenko. Compar-
ative Evaluation of High-Level Real-Time Pro-

gramming Languages. Real-Time Systems Jour-
nal, 2(3), 1990.

[3] Y. Ishikawa, H. Tokuda, and C. W. Mercer. Ob-
ject Oriented Real-Time Language Design: Con-

structs for Timing Constraints. In Proceedings of
OOPSLA/ECOOP. ACM, October 1990.

[4] K.Kenney and K. Lin. Building Flexible Real-
Time Systems Using the Flex Language. IFEE
Computer, 24(5):70-78, May 1991.

[5] E. Kligerman and A. D. Stoyenko. Real-Time
Euclid: A Language for Reliable Real-Time Sys-
tems. IEEE Transactions on Software Engineer-
ing, September 1986.

[6] P. S. Lavoie. Tool to Analyze Timing on
68020 Processor. Master’s Project, University of
Massachusetts-Amherst, 1991.

[7] C.L. Liu and J.W. Layland. Scheduling Algo-
rithms for Multiprogramming in a Hard Real-

time Environment. JACM, pages 46-61, February
1973.

[8] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and
W. Zhao. Algorithms for Scheduling Imprecise
Calculations. IEEE Computer, 24(5):58—68, May
1991.

[9] D. Niehaus. Program Representation and Execu-
tion in Real-Time Multiprocessor Systems. Phd.
Thesis Proposal, University of Massachusetts-
Ambherst, 1991.

[10] D. Nichaus and C. Kuan. Spring Software Gen-
eration System. Technical report, Spring Project
Documentation, 1990.

[11] D. Niehaus, E. Nahum, and J. A. Stankovic. Pre-
dictable Real-Time Caching in the Spring Sys-
tem. In Proceedings of the Eighth IEEE Work-
shop on Real-Time Operating Systems and Soft-
ware, pages 80-87. IEEE, May 1991.

[12] V.M. Nirkhe, S. K. Tripathi, and A. K. Agrawala.
Language Support for the Maruti Real-Time Sys-
tem. In Proceddings of the IEEE Real-Time Sys-
tems Symposium. IEEE, December 1990.

[13] C. Park and A. Shaw. Experiments with a Pro-
gram Timing Tool Based on Source-Level Tim-
ing Schema. IEEE Computer, 24(5):48-57, May
1991.

[14] R. Rajkumar, L. Sha, and L. Lehockzy. Real-
Time Synchronization Protocols for Multiproces-
sors. In Proceedings of the IEEE Real-Time Sys-
tems Symposium. IEEE, 1988.

[15] K. Ramamritham, J. A. Stankovic, and Perng-
Fei Shiah. Efficient Scheduling Algorithms for
Real-Time Multiprocessor Systems. IEEE Trans-
actions on Parallel and Distributed Systems,
1(2):184-194, April 1990.

[16] B. Sprunt, L. Sha, and J. Lehoczky. Aperi-
odic Task Scheduling for Hard-Real-Time Sys-
tems. Real-Time Systems, 1(1):27-60, 1989.

[17] R. Stallman. Using and Porting GNU CC. Tech-
nical Report 88-85, Free Software Foundation,
October 1989.

[18] J. A. Stankovic and K. Ramamritham. The
Spring Kernel: A New Paradigm for Real-Time
Systems. IEEE Software, 8(3):62-72, January
1991.

[19] A. Stoyenko and T. Marlowe. Schedulability, Pro-
gram Transformations and Real-Time Program-
ming. In Proceedings of the Eighth IEEE Work-
shop on Real-Time Operating Systems and Soft-
ware, pages 33—41. IEEE, May 1991.

[20] G. Zlokapa. Hard Real-Time Multiprocessor
Scheduling with Precedence Constraints. Phd.
Thesis Proposal, University of Massachusetts-
Ambherst, 1991.



