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Abstract

An important aspect of cooperative design is the resolution of conflicts among the multiple,
heterogeneous agents that contribute to a design. Existing approaches to conflict resolution
view it as occurring outside of the cooperative search process of the agents. The appropri-
ateness of specific conflict resolution strategies and the time when these strategies should be
invoked are related to both the local and composite search processes of agents. A framework,
negotiated search, is introduced that treats conflict resolution as integral part of cooperative
search. This framework is described through a multi-agent system testbed, TEAM, that is
configured for the design of steam condensers. Experimental results are presented that show
communication and aggregation of information by agents about their local search results and
the causes of conflict have a demonstrable impact on both processing time and quality of
solutions. Further, we demonstrate that varying the control policies for relaxation of solution
requirements in response to conflict effects solution quality and processing time.
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Abstract

An important aspect of cooperative design is the resolution of conflicts among the multiple,
heterogeneous agents that contribute to a design. Existing approaches to conflict resolution
view this resolution as occurring outside of the cooperative search process of the agents. The
appropriateness of specific conflict resolution strategies and the time when these strategies are
invoked are related to both the local and composite search processes of agents. A framework,
negotiated search, is introduced that treats conflict resolution as integral part of cooperative
search. This framework is described through a multi-agent system testbed, TEAM, that is
configured for the design of steam condensers. Experimental results are presented that show
communication and incremental aggregation of information by agents about their local search
results and the causes of conflict have a demonstrable impact on both processing time and
quality of solutions. Further, we demonstrate that varying the control policies for relaxation of
solution requirements in response to conflict effects solution quality and processing time.

1 Introduction

In this paper, we are concerned with how to resolve conflicts occurring in cooperative multi-agent
problem solving. Conflict resolution is often discussed as a separate topic in AI literature [4,
7, 12, 13]. However, multi-agent conflict resolution does not naturally occur in a vacuum; it is
always called upon as part of a larger process that we call negotiated search, the process of finding
mutually-acceptable solutions. In negotiated search, conflict resolution is an integral part of multi-
agent problem solving. Other researchers are also looking into integrated approaches to conflict
resolution and problem-solving (5, 9, 10).

We assume that agents are heterogeneous but share a common goal of finding the best global
solution possible. Agents are reusable in the sense that they are not designed to work within a
predefined agent set. Instead an agent is developed to represent an area of expertise. It can then
be incorporated into a dynamically-formed set of agents to work on any problem that requires that
expertise. Conflicts occur not as a result of hostile behavior but rather because they are inherent
in the nature of the agent set. Conflicts can be due to:
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¢ inconsistent knowledge among agents;

¢ incomplete knowledge and/or incorrect assumptions;
o different problem-solving techniques;

e different criteria for evaluating solutions.

Given this model, it is not possible to anticipate and engineer out all potential conflicts at
development time since it is not known what knowledge will be contained in the complete system [3].
Instead of dealing with conflict through knowledge engineering, the agent must consider conflict to
be an integral part of the problem-solving process and address it explicitly as it occurs.

There are two basic ways to characterize conflict resolution in negotiated search: search and
relazation. The first, search, “sidesteps” a conflict by extending the local searches of one or more
agents until a solution is found that does not conflict. Search methods are used when it is believed
that a better solution can be developed if one or more agents continue to examine their local
solution spaces for additional solutions. A good example of a search strategy is presented by Conry
et. al. [1]. A formal model is described for incrementally developing an understanding of the global
search space using communication of local information among agents. Through ongoing interaction,
non-conflicting solutions will eventually be found if they exist.

The second negotiated search strategy, relazation, occurs when one or more agents relax some
requirement on a solution, thereby expanding the local search space (and possibly making a pre-
viously developed solution that was judged unacceptable now become acceptable). Relaxation
methods are utilized when it seems likely that the global solution space is overconstrained or when
the expense of further local search is unjustified. There are many different methods for achieving
these ends that can be applied in specific situations. We describe some of these in detail in Section
3.

The two primary questions that must be answered in negotiated search are:

1. What strategies can be used to develop mutually-acceptable solutions?
2. When should these strategies be applied?

The ultimate goal of our research is to develop a theory that answers these questions based on the
characteristics of the local search space of agents and of the composite of these spaces (the global
search space). As a first step towards developing this theory, we have been empirically exploring
these questions through a multi-agent system testbed, TEAM, that is configured for the design of
steam condensers.

In TEAM various search and relaxation strategies can be enabled or disabled by individual
agents and thresholds can be set to change the control behavior of the agents. This allows us to
examine both the functionality of various strategies and the effect of different control plans for those
strategies. The major focus of experiments discussed in this paper is to show that communication
among agents about their local search results and the causes of conflicts has a demonstrable impact
on both processing time and quality of solutions. In addition, no matter how sophisticated an
agent’s search and communication capabilities are, there are cases in which no mutually-acceptable
solution exists. In these cases, relaxation methods are required. We demonstrate that varying the
control policies for relaxation of solution requirements in response to conflict effects solution quality
and processing time. In this paper, we use a simple relaxation strategy (described in Section 4.3):
other work (2, 6, 10] describes more sophisticated operators for relaxing solution requirements.

Section 2 introduces TEAM. Section 3 describes how local proposals are generated and merged in
the TEAM system and how this process realizes a negotiated search. Specific search and relaxation
strategies that are currently implemented for TEAM are also presented in Section 3. Section 4
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discusses the setup and results of experiments on the use of various negotiated search strategies
and control policies for relaxation. Finally, Section 5 explores the implications of the behavior we
see in the experiments and presents some ideas about the long-term contributions of this work.

2 The TEAM Domain: Multi-Agent Parametric Design of a
Steam Condenser

TEAM is an application system that performs parametric design of steam condensers under a set of
user-defined specifications. In parametric design, the general form of the artifact being designed is
known, but the designer must find values for a set of variable parameters. Much of the application
knowledge in TEAM was originally developed by Meunier [8] for use in an iterative respecification
system. The original agents were designed to work in a hierarchically structured environment and
did not include any mechanisms for explicit peer negotiation.

Figure 1 shows the general form of a steam condenser, comprising a pump, heat exchanger,
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Figure 1: A Steam Condenser

motor, platform, shaft and v-belt. TEAM agents produce proposals where each proposal is a
design for a single component of a condenser. Each component is designed by a separate agent,
for example, PUMP AGENT produces pump proposals. The components are independent except
for shared parameters which represent the interface points of the design. The values for these
parameters must be acceptable to all agents that use them. For example, the shared parameters of
a pump component include water-flow-rate and power. The pump and heat exchanger share the
water-flow-rate parameter (water flows between the pump and heat exchanger) and the pump
and motor components share power (the motor must deliver sufficient power to run the pump).

The TEAM architecture is shown in Figure 2. Agents are distinct entities that can view the
shared blackboards. An agent cannot write directly on the design blackboard, but can send messages
to the framework monitor asking that a design change or addition be made. A set of framework
knowledge sources (FKSs) make required changes and do bookkeeping tasks on the blackboard
objects (for example, totalling the cost of a design when a new component is added). During
processing, each agent is given the opportunity to execute, then the FKSs execute, updating the
shared blackboards.
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Figure 2: The TEAM Architecture

3 The Structure of Search in TEAM

3.1 Generating Anchor Designs

Problem solving begins in TEAM when a problem definition is specified by the user. All agents
receive the problem definition and choose whether or not to respond to it. In general, if the problem
is too underconstrained by the triggering object for an agent to develop a reasonable proposal given
its specific requirements, the agent may choose to wait until a later point in the processing. New
constraints will be added by other proposed components and will eventually provide the constraining
information desired. Figure 3 shows the internal task structure of an agent in response to a problem
definition. Each responding agent uses a default local search strategy, generate-best-proposal, to
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Figure 3: Responding to a Problem Definition

generate a component proposal that fulfills the user-defined specifications. Generate-best-proposal
is a general strategy to search an agent’s local solution space. The boundaries of the local search
space are defined by the agent’s local comstraints and by the attribute values specified in the
problem definition. The actual type of search used is left to the agent implementor based on the
domain characteristics of the agent. The agent generates a proposal that meets or exceeds the
current required quality level if it can find one. Required quality level is set to ezcellent at the
start of processing. Its value can change dynamically when necessary, e.g., if no solutions exist
at the current required value. When this occurs, the agent must choose whether to inform the
user that the problem definition is problematic or to immediately lower its own required quality
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level. In the experiments we present, the agent lowers its required quality level and again applies
generate-best-proposal. If no feasible proposal can be found at any level, the agent must inform the
user that the problem definition is infeasible.

The initial proposal generated at this point in processing reflects the agent’s selfish perspective:
it represents an agent’s “ideal” component under the constraints imposed by the user-defined prob-
lem definition. Once an initial proposal is found, it is sent to the framework monitor which creates
an “anchor” condenser design using the specified attribute values of shared parameters. Figure 4
illustrates the anchor designs created from the component proposals of PUMP AGENT and HEATX
AGENT in response to a problem definition. These represent different starting points for designing
a condenser, each the preferred starting point of its originating agent.
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Figure 4: Initial Anchor Proposals

3.2 Responding to Anchor Designs

As anchor designs are generated on the shared blackboards, they are available to all agents. Any
agent that can respond to an anchor design by adding a component initiates a task to do so. For
example, in the problem above Condenser_1 is owned by PUMP AGENT (meaning that the original
proposal that triggered the creation of Condenser_1 was generated by PUMP AGENT). It still
requires a heat exchanger component, so HEATX AGENT initiates a task to generate a component
that will “fit” Condenser-1.

The negotiated search strategy used to generate components that are constrained by specific
values of shared parameters is generate-matching-proposal. An agent will return a proposal with
the specified parameter values if a feasible one exists. The quality level of the proposal will be
as high as possible, but need not meet the required quality level of its agent. In other words, the
responding agent will generate the most highly-rated proposal it can find that matches the attribute
values of the anchor design.

The internal task structure of an agent in response to an anchor design is shown in Figure 5. As
shown, there are three possible results to the generate-matching-proposal strategy: 1) a matching
proposal is generated that meets the required quality level of its owner (the agent that creates the
proposal) ; 2) a matching proposal is generated that does not meet the required quality level of
its owner; and 3) no proposal can be generated that matches the values of the shared attributes
specified in the anchor design.
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Figure 5: Responding to An Anchor Design

In the first case, the acceptable proposal is sent to the framework monitor which creates an
extended version of the anchor design. The original anchor also remains available, but is made
inactive for the time being. If the extended design is complete (it contains all of the compo-
nents that can be generated under the current configuration of agents), and all components are
locally acceptable to their owners, and the global utility value of the complete design exceeds some
user-specified threshold, then this condenser is considered an acceptable design. The number of
acceptable designs that will be presented to the user is controlled by a user-specified variable. For
our experiments, we used a default value of 3. When an acceptable design is found, the framework
monitor checks to see if the number-of-acceptable-designs requirement is fulfilled and, if so, pro-
cessing ends and the finished designs are presented to the user. If there are not enough acceptable
designs yet, processing continues. If an agent has no other work to do on a cycle, it will create a
new anchor proposal using the generate-best-proposal strategy.

The second possible result to the generate-maiching-proposal strategy is that a feasible matching
proposal is generated that does not meet the required quality level of the responding agent. In other
words, the best proposal that matches the specified attribute values is unacceptable to its creator.
In this case, if the responding agent can “explain” the lower quality rating, it will attach that
information to its response. For example, in Figure 6, the attribute value for head in Condenser_2
is 280.1. PUMP AGENT has a constraint:

Constraint_1:
predicate: (head <= 145)
flexibility: §
quality: excellent

The best pump component design found by PUMP AGENT violates Constraint_1. PUMP AGENT
responds to Condenser_2 with a message to HEATX AGENT that a conflict was detected and a
message to the framework monitor containing both the generated pump design and the violated
constraint. It isn’t always the case that an agent can send information that explicitly pinpoints the
cause of the conflict. When this happens, the agent sends a message that a conflict was detected
to the owner of the anchor design and sends its (unacceptable) proposal to the framework monitor
which adds the proposal to the anchor design. For example, in Figure 6, HEATX AGENT sends a
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Figure 6: Matching Proposal Generation

conflict message to PUMP AGENT but does not send a conflicting constraint. Note that although this
anchor is currently considered an unacceptable design, it has the potential to become acceptable
at some future time if the required quality levels of the agent or agents that have given it an
unacceptable rating change.

The third possible result to the generate-matching-proposal strategy is one in which the re-
sponding agent cannot generate a feasible proposal given the specified values of input parameters.
In this case, the responding agent sends a message to the owner of the anchor design and the
framework monitor containing its violated constraints (when possible). The framework monitor
marks the anchor design as infeasible.

3.3 Responding to Conflict Detected by Another Agent

In Section 4, we will present two sets of experiments that have different negotiated search strategies
enabled. One set does not take advantage of conflict information that is returned by responding
agents (conflict messages are ignored) while the other uses that information to guide further local
search. We hypothesized that incorporating constraining information from external agents would
narrow the boundaries of the local search space of the receiving agent, thereby focusing the search
and resulting in faster and more effective processing. Sycara [11] describes a model of distributed
constrained heuristic search in a job-shop scheduling domain that uses communicated information
about local requirements to develop a shared characterization of resource utilization. This charac-
terization is then used to focus local search on critical resources and activities. Although the system
is very different from TEAM, in both domain characteristics and problem-solving paradigm, it has
the same flavor of building a local view of shared resources that can be used to guide local search.

To test the value of incorporating nonlocal information into local search, we developed a nego-
tiated search strategy, generate-bounded-proposal, that takes advantage of communicated external
constraints. When this strategy is enabled, an agent gathers constraining information from re-
sponses to some anchor design it initiated. This information is analyzed and incorporated into the
agent’s local search if possible. The response of an agent to a conflict detection from another agent
is shown in Figure 7.

When the agent begins processing a conflict detection, it first looks to see if any new information
has been sent. In some cases, the detecting agent is unable to provide any constraining information,
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Figure 7: Response to a Conflict Detected by Another Agent

in others, the detecting agent will send constraining information that is already known to the
receiving agent, and in some cases, the constraining information is new to the receiving agent. If no
new information is received pertaining to a conflict, the receiving agent applies generate-bounded-
proposal to its existing search space. An agent keeps a history of proposals it has previously
submitted and will attempt to find a different solution under the same bounding conditions.

When new information is received, that information is incorporated into the agent’s search
space boundaries. In the simplest case, the information does not conflict with any existing internal
boundaries. For example, suppose HEATX AGENT receives Constraint.1 from PUMP AGENT as in
Figure 6. Constraint.1’s predicate is (head <= 145 ). The most stringent constraints HEATX
AGENT currently has on the value of head are:

Constraint Hi: Constraint H2:
predicate: (head <= 809) predicate: (head >=0.1)
flexibility: O flexibility: O
quality: >=poor quality: >=poor

Incorporating the constraint from PUMP AGENT narrows the set of potential values of head without
conflicting with the current constraints. HEATX AGENT can then generate a new anchor proposal
within the new boundaries.

In some situations, external constraining information cannot be reconciled with existing con-
straints. If an incoming constraint has less flexibility than a conflicting internal constraint, the
internal constraint is relaxed. Otherwise, the external constraint is ignored. A more appropriate
response would be to inform the agent that sent the conflicting constraint of the conflict, thereby
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enabling another level of negotiation. This response capability is being implemented at the current
time.

Assuming that no conflict occurred when the external constraints were analyzed or that a
conflict occurred but some reconcilation has been accomplished, the agent tries to generate a
design, with previously untried parameter values that fall within the new bounding constraints.
This is sometimes straightforward: a new proposal is generated, sent to the TEAM monitor, and
a new anchor design is built. The new anchor is more likely to be acceptable to the agents that
responded to the initial anchor since it is bounded by the constraining information that was sent.
However, it is not necessarily acceptable. The current set of agents in TEAM communicate only
constraints on attribute values. A situation that frequently occurs is that there are dependencies
among attributes that aren’t captured in the constraints. For example, PUMP AGENT calculates the
value of head as a function of the value of water-flow-rate and this functional relationship cannot
be explicitly communicated to another agent. Therefore any anchor design owned by another agent
that assigns values to those parameters may not satisfy the required relationship. This relationship
could conceivably be communicated in some form, but that would require both agents to have
specialized capabilities. The generalized TEAM framework is neutral to the existence of these
capabilities: the more information that can be shared, the more it can be used, but it is not
required.

The application of generate-bounded-proposal can result in no proposal of the current required
quality level being found. Again, because of dependencies that are not captured in the constraining
information, it may be that all constraints are consistent but that there are no actual solution
points for some attribute within the boundaries. The agent must choose whether to relax its
internal quality or to get another agent to relax some constraint.

4 Problem-Solving in TEAM: Experiments

We describe a set of two-agent experiments. In each experiment, the system is required to produce
at least three designs that are considered mutually acceptable since, in a design domain, it is
worthwhile to present the user with multiple potential designs representing different trade-offs.
These designs are rated by TEAM and presented in order of their rating. In reporting the results
of experiments, we present the global utility value of each acceptable design, and the average global
utility of all acceptable designs. We also present the number of “processing cycles” that occurred.
During processing, an agent cycle is run in which each agent is given the opportunity to execute,
followed by an framework knowledge source (FKS) cycle in which all triggered FKSs execute. Each
cycle of agent execution followed by FKS execution is called a processing cycle. Finally, we report
the required quality level at both agents at the end of processing, i.e., what quality level each agent
has agreed to accept for its components.

In the first set of experiments, experiment-set-300, the user specification sets the value of the
parameter, required-capacity, at 300. Under this specification, the solution spaces of HEATX
AGENT and PUMP AGENT are depicted in Figure 4. This figure was developed by generating
the best solution for each of the agents at sample values for the parameters water-flow-rate
and head over the entire range of possible values. The solutions were then plotted according
to their locally-calculated quality. For example, at the point (30,50) (points are of the form
(water-flow-rate,head)), there is both an excellent quality pump and an excellent quality heat
exchanger. A solution space plot is presented for four different experiment sets in which the solution
spaces were changed by changing the value of the required-capacity parameter.
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Figure 8: Solution Spaces for Experiment Set 300
Pumps (—) and heat exchangers (|) generated by PUMP AGENT and HEATX
AGENT respectively are superimposed on a shared space over the parame-
ters water-flow-rate and head. Each window represents components of a
particular quality: excellent, good, fair, and poor

4.1 Experimental Results

We ran four experiment sets: experiment-set-300 (Figure 4), experiment-set-500 (Figure 9), experiment-
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Figure 9: Solution Spaces for Experiment Set 500

set-700 (Figure 10), and experiment-set-900 (Figure 11). Each of these experiment sets is divided
into two search classes: random search and limited communication search.

In the random search sets, the only negotiated search strategies enabled are: generate-best-
proposal, generate-matching-proposal, and drop-quality-level. In the limited communication search
sets, generate-bounded-proposal is also enabled. The character of search in the random sets is that
conflict information is ignored. On each processing cycle, an agent either produces a new anchor
proposal or it produces a matching proposal for some other agent’s anchor design. Each new anchor
proposal will be distinct from any existing proposals, but will not take into account any responses

10



:114)

540 o

oMz

27

Excotiont Qualty: (= pusnp] (]| hoat =axchangor}

Good quality: {-

hoat =axchangor)

oDmx

810

540 -

270~

et

=

) 120 180 240 368
WATEF=FLON=RATE
Fair quafity: {~ pusmp) {] hoat -axobanger)

260

aze

58 120

Poor quality: {- pump)

169 230
UATER-FLOW=RATE
{{ hooat-exctiangar}

300 360

420

1
NRil

||Iii||l...mm

Camx

540 <

279 4

-] 60

120

3080

180 24¢
WRTEF-FLOK-RRTE

30

4z0

] 60 120

300 360

169 240
WA ER-FLOM-RATE

620

Figure 10: Solution Spaces for Experiment Set 700

from other agents to earlier proposals .

In the limited communication sets, agents will incorporate information from responses to earlier
proposals. The term “limited communication” signifies that an agent is able to incorporate commu-
nicated information into its local search structure. However, it cannot respond to the sending agent
about whether or not received information was successfully integrated. This response capability is
currently being implemented.

The results of the random and limited communication search experiments are reported in Ta-
ble 1.

4.2 Analysis of the Effect of Varying Negotiated Search Strategies

In Experiment Sets 300 and 500, the limited communication negotiation strategies did better than
the random search strategies, both in terms of the processing cycles required to produce at least
3 acceptable designs and in terms of the (globally-evaluated) cost of the solutions produced. In
Experiment Set 700, the number of processing cycles were the same for both search classes, but
the solutions were less costly in the limited communication case. In Experiment Set 900, the type
of search strategy used made no difference in either processing cycles or quality of solutions. These
results are explained below.

In Experiments Sets 300 and 500, the processing cycles were lower in the limited communication
class partially because there were constraints communicated from PUMP AGENT to HEATX AGENT
that helped to narrow HEATX AGENT’s search space. This resulted in fewer unacceptable solutions
being generated by HEATX AGENT. Since each unacceptable solution takes a processing cycle to
produce, there were fewer processing cycles used. In Experiment Set 300, this is the only factor that
differentiates the number of processing cycles. In Experiment Set 500, there is another factor that
will be discussed later. However, 27 of 33 solutions produced through limited communication in
Experiment Set 500 were acceptable, and this is primarily due to communicated information. The
reason the communication factor is more apparent in Experiment 500 than Experiment 300 is that it
takes several cycles of unacceptable solutions being generated for the appropriate constraints to be
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Figure 11: Solution Spaces for Experiment Set 900

Experiment Set 300
Random Search | Limited Communication
Processing cycles 8 6
Number of acceptable solutions 3 3
Solution costs: min, max, average 955 1017 996 955 1017 876
Pump final required quality level excellent excellent
Heatx final required quality level excellent excellent
Experiment Set 500
Random Search | Limited Communication
Processing cycles 41 33
Number of acceptable solutions 19 27
Solution costs: min, max, average | 1298 1703 1426 1219 1703 1379
Pump final required quality level fair fair
Heatx final required quality level good good
Experiment Set 700
Random Search | Limited Communication
Processing cycles 17 17
Number of acceptable solutions 5 7
Solution costs: min, max, average | 1760 1925 1855 1760 1924 1837
Pump final required quality level good good
Heatx final required quality level good good

Experiment Set 300

Random Search | Limited Communication
Processing cycles 6 6
Number of acceptable solutions 3 3
Solution costs: min, max, average | 2510 3036 2688 2510 3036 2688
Pump final required quality level excellent excellent
Heatx final required quality level fair fair

Table 1: Experimental Results: Varying Available Search Strategies
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communicated. For example, a conflict may occur over water-flow-rate and a pertinent constraint
is communicated. However, once this constraint is incorporated, another conflict occurs over head
and now pertinent head constraints must be communicated. There is a tradeoff here between
sending all constraints and sending only those constraints that are directly relevant to the current
conflict with the caveat that further constraint communication may be required later. TEAM
agents communicate only directly relevant constraints on the principle that irrelevant information
adds significant overhead, both for the sending agent and the receiving agent. Relevant constraints
are quickly identified through iterative generation of anchor designs and, once the constraints are
known, they are used in the generation of all ensuing proposals. This means that there is some
“setup” time at the beginning of a run in which problematic constraints are exchanged. In short
runs, like those in Experiment Set 300, the benefits of the limited communication strategy are less
pronounced than in longer runs.

Experiment Set 700 resulted in the same number of processing cycles for each search class, but
better solutions in the limited communication class. Looking at Figure 10, no ezcellent quality
solutions are available to HEATX AGENT at this required-capacity value. However, at the good
level, there are many solutions and a large overlap with the pump solutions. Better solutions were
found because the communication of constraints resulted in limiting the local search space of HEATX
AGENT, as described for Experiment Sets 300 and 500. The number of processing cycles is the same,
however, because many of the matching proposals that were produced by PUMP AGENT had quality
level good. These proposals were not acceptable at the time they were produced since the starting
required quality level of PUMP AGENT was ezcellent. Once PUMP AGENT dropped its quality level
to good (as explained in Section 4.3), all of the previously developed matching solutions became
acceptable. Processing stopped at that point because more than 3 mutually-acceptable designs now
existed. It was necessary in both the random search and limited communication sets for the PUMP
AGENT quality to drop before solutions were found.

Experiment Set 900 is interesting because almost all of HEATX AGENT’s solutions lie in the fair
class (see Figure 11). That class has a very large overlap with ezcellent pump components. Once
HEATX AGENT has dropped its quality level to fair, because it couldn’t find any more highly-rated
solutions, this experiment set degenerates to an “easier” set than Experiment Set 300. Even random
search performs well because the overlap between the ezcellent pumps and fair heat exchangers
covers many possible combinations, making it easy to find mutually-acceptable solutions.

4.3 Dropping the Required Quality Level of an Agent

In Experiment Set 300, the final required quality level of both PUMP AGENT and HEATX AGENT
are ezcellent, meaning that neither agent had to drop its required quality level at all. Looking at
Figure 4, it is apparent that there is a fairly large overlap of excellent quality solutions between
PUMP AGENT and HEATX AGENT. Dropping the required quality level in this situation would be
misguided, since the result would be to miss excellent solutions. In contrast, Figure 9 shows that
there is no overlap in excellent quality components between HEATX AGENT and PUMP AGENT in
Experiment Set 500. At least one agent must drop its required quality level to reach any mutually-
acceptable solution.

The representation of the shared solution spaces in Figures 4-11 makes it easy to see the
potential overlap of local solutions. This information is invaluable in making control decisions
about when it is necessary to relax local requirements. Unfortunately, an agent can’t generate its
entire solution space during problem solving since this is prohibitively expensive. However, each
time an agent performs a local search some information about its local space is developed and
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each time it receives information from other agents, some information about the shared space can
be inferred. By collecting data from local searches and communicated information, a dynamic
characterization of the local and shared solution spaces can be incrementally produced. Salient
attributes of this characterization include the size, density, uniformity of both local and shared
solution spaces and overlap of local spaces in the shared space. The characterization can be used
to guide the invocation of heuristic control policies for negotiated search strategies, resulting in an
increasingly appropriate set of control decisions as problem-solving progresses. We have not yet
implemented the mechanisms required to use this information as part of the control process and
instead use a much less sophisticated decision process. However, this dynamic characterization
capability is one of the long-range goals of the project.

Currently, the relaxation control policy is dictated by a parameter at each agent that controls the
number of anchor proposals that should be produced at the current quality level before dropping the
level. Anchor proposals are those that used as starting points for designs, as opposed to matching
proposals, that are produced in response to a specific set of attributes of an existing design. An agent
produces an anchor proposal either through generate-best-proposal or generate-bounded-proposal.

This relaxation control policy implements the general tenant that if no mutually-acceptable
solutions can be found after some reasonable amount of search, it may be that there are noncom-
municable constraints on some agent’s solutions that cannot be fulfilled. If that is the case, further
search at that level will not be productive. For example, in Figure 9, HEATX AGENT has some
ezcellent solutions and PUMP AGENT has some ezcellent solutions. However, they are not over-
lapping. HEATX AGENT does not know the boundaries of the area in which its excellent solutions
lie due to the nature of its knowledge representation. It cannot determine that there is no over-
lap, and since PUMP AGENT has no information about HEATX AGENT’s search space, PUMP AGENT
cannot determine this either. Therefore, there must be some heuristic control policy that curtails
non-productive search at a particular quality level.

Quality level can be relaxed either in response to not finding mutually-acceptable solutions or
because no local solutions can be found. For example, if HEATX AGENT is executing the negotiated
search strategy generate-best-proposal and finds that it cannot generate a proposal at the current
quality level, it will immediately drop that level in order to produce a proposal (as in Figure 3).

4.3.1 Varying the Control of Relaxation at an Agent

We have run experiments under five different relaxation classes that vary according to the number
of anchor proposals allowed to be generated at a particular level by each agent. A relaxation class
is represented as (pump-anchor-designs,heatx-anchor-designs) where pump-anchor-designs
represents the number of anchor designs produced by PUMP AGENT before dropping its required
quality level and heatx-anchor-designs represents the HEATX AGENT designs. The five represen-
tative classes are (5,2),(2,5), (5,5), (8,20), and (20,20). Table 2 shows the results from the different
relaxation classes. For the analysis of negotiated search strategies in Section 4.2 as summarized
in Table 1, we used the results from Class 4: (8,20). This class biases the experiments in favor
of HEATX AGENT: HEATX AGENT will go through 20 processing cycles before agreeing to drop its
quality level, whereas PUMP AGENT will go through only 8. Under this structure, HEATX AGENT is
more likely to end up with high-quality components than PUMP AGENT. In the two-agent exper-
iments presented here, the heat-exchanger component represents a significantly larger proportion
of the total cost of a condenser than a pump component, therefore, it is better (from a cost per-
spective) for PUMP AGENT to drop its required quality level. In experiments with three or more
agents, pump components have a larger ripple effect on other components which tends to balance
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Class 1 | Class 2 | Class 3 | Class 4 | Class 5
(2,5) (5,2) (5,5) (8,20) | (20,20)
Experimcnt Set 300: Random Search
Processing cycles 8 6 8 8 8
Number of acceptable solutions 3 3 3 3 3
Average solution cost 996 1045 996 996 996
Experiment Set 300: Limited Communication Search
Processing cycles 6 6 6 6 6
Number of acceptable solutions 3 4 3 3 3
Average solution cost _ 976 1098 976 976 976
E;periment Set 500: Random Search
Processing cycles 11 8 11 41 41
Number of acceptable solutions 5 3 4 19 19
Average solution cost 1439 1475 1474 1426 1483
Experiment Set 500: Limited Communication Search
Processing cycles 11 6 11 33 41
Number of acceptable solutions 5 3 4 27 20
Average solution cost 1439 1566 1474 1379 1470
Experiment Set 700: Random Search
Processing cycles 9 8 11 17 41
Number of acceptable solutions 3 3 [} 5 23
Average solution cost 2007 2092 1994 1855 1981
Experiment Set 700: Limited Communication Search
Processing cycles 8 8 11 17 36
Number of acceptable solutions 3 3 8 7 3
Average solution cost 1817 2092 1945 1837 1857
Experiment Set 800: Random Search
Processing cycles 6 5 6 6 6
Number of acceptable solutions 3 3 3 3 3
Average solution cost 2688 3112 2688 2688 2688
Experiment Set 800: Limited Communication Search
Processing cycles 6 5 6 6 6
Number of acceptable solutions 3 3 3 3 3
Average solution cost 2688 3112 2688 2688 2688

Table 2: Experimental Results: Varying Relaxation Classes

the cost of the heat exchanger component. Notice that both Class 1 and Class 4 tend to perform
well and that Class 2 performs poorly. These results can be attributed to the bias of those classes
toward high-quality components for a particular agent. They indicate that quality biases should be
considered when putting together agent sets since they have a large effect. There is some potential
for agents to “learn” appropriate biases based on feedback from the global evaluations of different
agents’ designs.

In the following discussion, the Class 2 results are ignored for two reasons. First, it is believed
that the biasing effect is the primary factor in solution cost for Class 2. Secondly, the results
cannot be directly compared to any of the other classes since this is the only experiment in which
PUMP AGENT is dominant. When comparing results, the most pertinent comparisons are pairwise
between Classes 1 and 4 (HEATX AGENT is dominant) and Classes 2 and 5 (no agent is dominant).

In Experiment Sets 300 and 900, there are no differnces in results between relaxation classes
(ignoring Class 2) for either random or limited communication search. These two experiment
sets can be classified as “easy” problems (once HEATX AGENT’s required quality level is adjusted
in Experiment Set 900 as explained in Section 4.2). An easy problem is one in which there are
many mutually-acceptable solutions and no quality level adjustment that is attributable to lack
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of mutual satisfiability is needed by any agent. When mutually-acceptable solutions are readily
available, relaxation strategies should not be a factor in problem-solving, and indeed, our results
support this.

In Experiment Sets 500 and 700, we see the general trend that requiring more search before
dropping quality level results in better solutions. Table 2 is somewhat misleading because solution
costs are not directly comparable. For example the average solution cost in Experiment Set 500,
random search, is 1474 for Class 3 and 1483 for Class 5. However, the Class 3 average is over 4
acceptable solutions and the Class 5 average is over 19 solutions. A more direct comparison of
solution costs is shown in Table 3. Here, it is seen that the Class 3 average over 4 solutions above
is 1474, but the Class 5 average over the 4 best solutions (rather than all 19 solutions) is 1334,
showing great improvement.

Class1 | Class 4 | Class 3 | Class §
(2,5) (8,20) (5,8) [ (20,20)

Experiment Set 500: Random Search

Average solution cost (over 4 best solutions) | 1373 | 1318 [ 1474 | 1334
Experiment Set 500: Limited Communication Search
Average solution cost (over 4 best solutions) | 1373 | 1258 | 1474 | 1298
Experiment Set 700: Random Search
Average solution cost (over 3 best solutions) | 2007 | 1809 | 1994 | 1789

Experiment Set 700: Limited Communication Search
Average solution cost (over 3 best solutions) | 1817 | 1803 | 1803 | 1857

Table 3: Experimental Results: Direct Comparisons between Relaxation Classes

The anomaly in Experiment Set 700, limited communication, where the Class 5 result is higher
than the Class 3 result, occurs because 3 solutions are found in Class 5 before PUMP AGENT drops
it required quality level. HEATX AGENT has dropped its level unilaterally because it could not find
any ezcellent solutions. Actually several solutions had already been found that had lower costs
but were not acceptable to PUMP AGENT. If problem solving had continued until the required
pump quality dropped to good, the average solution cost over the 3 best designs would have been
<= 1786, as calculated by looking at all solutions, rather than just the acceptable solutions.

Although it is reasonable to expect that more search at a given level would result in better
solutions (as we see in the results), it is also expected that there is a break-even point where more
search will not significantly improve solutions. The tradeoff between processing time and solution
quality becomes more critical as search progresses. We believe that it is possible to use a dynamic
characterization of local and global search spaces to enable an agent to change its relaxation policies
responsively as the problem-solving picture evolves.

5 Conclusions

Negotiated search is a comprehensive model of multi-agent cooperation. This model views conflict
resolution as an integral part of agent cooperation and clarifies the role of conflict resolution in
terms of how the local and composite search spaces of agents are changed. This perspective on
cooperative multi-agent search also provides intuition about how to answer the questions of what
type and when conflict resolution strategies should be applied. The applicability of this model has
been described and evaluated in the context of a multi-agent system testbed, TEAM, configured for

16



the design of steam condensers. In TEAM, we have framed the negotiated search model in terms
of a centralized framework monitor that holds and integrates the proposals of agents. However, we
feel that distributed protocols can be developed to implement the framework monitor thus making
our model of agent interaction completely asynchronous and distributed.

Experimental results are presented that show communication among agents about their local
search results and the causes of conflict improves both processing time and quality of solutions.
We believe that more abstract information about the local and composite search spaces can be
valuable in deciding how to control negotiated search. QOur next step is to try to extract this
information, both statically at system initialization time and dynamically at run time, to guide
control decisions. Additionally, we plan on expanding our framework to allow for more dialogue
among agents in deciding which agent in a conflict should relax constraints and deciding the number
of alternative designs that are actively pursued. The experiments presented here have only dealt
with two agents. The framework supports multi-agent cooperation however, and future work will
present issues that arise when more agents are involved in the cooperative search.
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