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Abstract

We examine the size complexity of the symmetric boolean func-
tions in two circuit models containing threshold gates: the d-perceptron
model [BRS, ABFR] (a single threshold function of constant-depth
AN D/OR circuits) and the parity-threshold model studied by Bruck
[Br] (a single threshold function of exclusive-ORs). These models are
intermediate between the well-understood model of constant-depth
AN D/OR circuits and the still mysterious model of general constant-
depth threshold circuits. In the d-perceptron model, we give an if and
only if condition for a symmetric boolean function to be computable
by a quasi-polynomial size d-perceptron: we show that a symmet-
ric boolean function can be computed by a quasi-polynomial size d-
perceptron iff it has only poly-log many sign changes, .e. the number
of times the function changes output value as the number of inputs
on varies from zero through n ( we call this parameter the degree of
the symmetric function) is bounded above by log®n for some ¢. This
extends the work of Fagin et al. [FKPS] which gave a very nice char-
acterization of symmetric functions computable by AC? circuits. An
interesting consequence of our result is that a recent construction of



Beigel [Be] is optimal. In the parity-threshold model, we find a sim-
ilar parameter as a measure of size complexity, the odd-even degree,
or number of output value changes as the number of inputs on varies
through the odd numbers from 0 through n and then through the even
numbers. We observe that poly-log odd-even degree implies quasi-
polynomial size, conjecture the converse, and prove the converse in
the presence of a certain technical condition on the function’s Fourier
coefficients. In particular, we prove that the modulo-g function for
any constant ¢ > 2 has more than quasi-polynomial size.

1 Introduction

1.1 Perceptron-Like Models

The power of constant-depth circuits of unbounded fan-in AND and OR
gates (i.e. the well-known AC? circuits) is by now fairly well understood
[FSS, Aj, Ha, Ya]. One of the major open problems of complexity theory is
to place any non-trivial bounds on the computing power of constant depth
circuits of unbounded fan-in threshold or MAJORITY gates. The class
T(C°, of languages recognized by polynomial-size families of such circuits,
might be equal to NP for all we can prove. A natural approach to bridging
the gap between AND/OR circuits and threshold circuits is to consider
models which combine the two kinds of gates.

One very old example of such a model is the perceptron of Minsky and
Papert [MP], which can be viewed as a MAJORITY gate whose inputs are
AN Ds of the input variables. These original perceptrons are rather limited
and their computing power is well understood. But recently, perceptrons have
been revived in a new form [BRS]. Along with a probabilistic version, there
has emerged what we will call the d-perceptron, a constant-depth unbounded
fan-in circuit which has AN D and OR gates except for a single MAJORITY
gate at the output. It has been shown that such circuits require exponential
size (exponentially many gates) to compute the MOD, function [Gr], to
approximate the MOD, function [ABFR], or to compute or approximate
the MOD, function for any constant ¢ [BS]. These d-perceptrons are closely



linked to a model of computation which is interesting in its own right, where
one evaluates a multilinear polynomial in the input variables, with coefficients
in the integers or the reals, and outputs the sign of the result. (This can be
extended to polynomials over the complex numbers, using an ad hoc notion
of “sign” [BS].) Furthermore, the d-perceptron model is robust, in that other
circuit models with a limited use of threshold gates can be mapped into it
[BRS, ABFR, Be].

Another circuit model which can be placed in this framework is that
used by Bruck [Br|, which we will call the parity-threshold model. In this
model a function with domain {—1,1}" and range {—1,1} is computed by
evaluating a polynomial in the n input variables and taking its sign. A
polynomial threshold function is one where this polynomial has only n°(™")
nonzero coefficients. This model corresponds fairly closely to a circuit where
the inputs are fed into MOD, gates (because multiplication in the {—1,1}
domain corresponds to addition modulo 2) and the outputs of these gates
are fed into a single MAJORITY gate. The correspondence is exact if
the coefficients are constrained to be integers bounded in absolute value by
n°(). Bruck studied this model using a form of harmonic analysis on boolean
functions, which allowed him to show that certain natural functions are not
polynomial threshold functions. This and other work place a geometrical
structure on the boolean functions, so that a distance between functions can
be defined. Linial et al. [LMN] used this geometry to show that any AC®
function (any function computable by a poly-size constant-depth AND/OR
circuit) can be closely approximated by a low-degree polynomial, a result

which has consequences for the learnability of AC° functions.

1.2 Complexity of Symmetric Functions

The symmetric boolean functions are those which are invariant under any
permutation of the inputs. We can describe a symmetric boolean function
by giving its spectrum, which is the sequence (f(0),..., f(n)), where each
f(2) is the value of the function when 7 of the n inputs are one. All sym-
metric functions are in T'C?, because they have linear-size depth-2 threshold

circuits. In any model the complexity theory of the symmetric functions



forms a subtheory of that of all boolean functions, and in some models this
theory can be interesting and beautiful.

For example, consider the well-understood model of constant-depth un-
bounded fan-in AND/OR circuits. A theorem of Fagin et al. [FKPS], using
the exponential lower bound for PARITY due to Yao [Ya, Ha|, gives an
elegant characterization of the symmetric functions which have polynomial
size in this model (are in the class AC?). These functions are those whose
spectra are constant except for a poly-log section at either end. That is,
there is some function g(n) = log®® n such that for each n, f(7) is constant
in the range g(n) < i < n — g(n). Our principal question is whether similar

characterizations hold in the other models we consider.

1.3 Lower and Upper Bounds
In the d-perceptron model we add a single M AJORITY gate to the AND/OR

circuit, and thus we immediately allow new symmetric functions, such as
MAJORITY itself, to be computed. In previous work in this model [ABFR],
two key parameters of a boolean function have proven to be its strong degree
and weak degree. These are based on a space of polynomials over the real
numbers, where the boolean domain is again taken to be {—1,1}. The strong
degree is the minimal degree of a polynomial whose sign always agrees with
the target boolean function. The weak degree is the minimal degree of a
polynomial, not identically zero, whose sign agrees with the target boolean
function whenever the polynomial is nonzero. For symmetric functions, these
two degrees are equal [ABFR), and furthermore are equal to the number of
stgn changes of the spectrum (the number of 7 for which f(7) # f(i+1)). This
equivalence strongly suggests this parameter of symmetric functions (which
we will call simply “degree”) may be an important one.

Using a simple construction, we can show that any symmetric boolean
function of poly-log degree can be computed by a quasi-polynomial size d-
perceptron. We prove that the converse of this statement is also true — that
if a symmetric boolean function has more than poly-log degree, it cannot be
computed by a quasi-polynomial size d-perceptron. Before this work, only a

few lower bounds on d-perceptron size were known, with very specific target
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functions such as PARITY [Gr, ABFR] or MOD, [BS], of linear degree.

In the parity-threshold model the linear-degree parity function is easy, so
we need a different parameter if we are to get a similar result. The one we
have in mind we call the odd-even degree, which we obtain by viewing the
restrictions of the symmetric function to odd and even numbers of on-inputs
respectively, and summing the two degrees (number of sign changes) of these
restrictions. Equivalently, the odd-even degree is the number of ¢ for which
£ # £ +2)

In the parity-threshold model, we can show that a function with poly-
log odd-even degree has quasi-polynomial size in the parity-threshold model
(in Bruck’s language, it would be a “quasi-polynomial threshold function”).
We conjecture the converse of this result is true — that if the odd-even
degree is greater than poly-log, there is no parity-threshold circuit of quasi-
polynomial size. Prior to this work Bruck had given a criterion for expo-
nential (hence super-quasi-polynomial) parity-threshold size, based on the
size of a function’s Fourier coefficients. He gave a single example, the “com-
plete quadratic” function, which has exponential size (this is very similar to
the function proved not to have depth-2 threshold circuits by Hajnal et al.
[HMPST]). We extend Bruck’s work to allow some of the coeflicients to be
large, as long as the sum of the large ones is significantly bounded below
one. This extension, Bruck’s work, and our analysis of the Fourier coeffi-
cients of the M OD, functions, let us prove that M OD, requires exponential
parity-threshold size for any constant » > 2. For general symmetric boolean
functions of greater than poly-log odd-even degree, we can prove more that
quasi-polynomial size in the presence of a certain technical condition — that
the sum of the Fourier coefficients of sets of either poly-log size or more
than n minus poly-log size is bounded significantly below one, and that the

coeflicients of all sets of other sizes are small.



2 Preliminaries

2.1 Symmetric Functions, Sign Change Spectra and
Strong/Weak Representations

We will consider functions from {—1,1}" to the reals R (with boolean func-
tions being the special case with range {—1,1}) as multilinear polynomials
over R with input variables {zi,...,z,}. The size of a polynomial is the
number of nonzero coefficients, and the degree is the maximal number of
variables appearing in a term with nonzero coefficient. We use [n] to denote
the set {1,2,...,n}, and by || we mean the number of —1’s in z (in general
we think of —1 as “true” and 1 as “false”).

A symmetric boolean function is a boolean function whose value only
depends on |z|. It can be proved that, over the reals, we can regard a
symmetric boolean function as a function of z = |z|. Hence, in this way, we
convert a n-variable symmetric boolean function f(z), where z € {—1,1}"
into a univariate real function f'(z), where z = |z| such that deg(f) =
deg(f'). In the sequel, we will use f to denote f(z) and f'(z) interchangeably.
Let 7 € [n], we say 7 is a sign change of a symmetric function f if f(z) #
f(z+ 1). The number of sign changes of f is equal to the cardinality of the
set {z|f(7) # f(z + 1)}. We will call (f(0), f(1),..., f(n)) the sign change
spectrum of f.

Following [ABFR], we define strong and weak representations of boolean
functions as follows.

Definition 1 We say a polynomial F(z) over the reals R strongly represents
a boolean function f(z) if sgn(F(z)) = f(z) for all z € {—1,1}" where
sgn(F(z)) =14 F(z) > 0 and sgn(F(z)) = —1 if F(z) < 0.

And we say a polynomial F(z) over the reals R weakly represents a
boolean function f(z) if F'(z) is not identically zero and for all z € {—1,1}"
such that F(z) # 0, sgn(F(z)) = f(z).

Definition 2 Let f(z) be a boolean function, the strong degree of f(z) (de-

noted d,(f)) is the minimum degree among all polynomials strongly repre-



senting f(z), and the weak degree of f(z) (denoted w,(f)) is the minimum

degree among all polynomials weakly representing f(z).

Notice that in general the weak degree of a boolean function may well be
smaller than its strong degree. However, the following fact as first observed
in [ABFR] says that for symmetric boolean functions, the two degrees are
exactly the same, and equal to the number of sign changes of the symmetric
boolean functions. We call this quantity the degree of a symmetric boolean

function.

Lemma 1 ([ABFRY]) Let f(z) be a symmetric boolean function with k sign
changes, then d,(f) = du(f) = k.

The above lemma was proved in [ABFR] by exploring the duality re-
lationship of certain function spaces. We note that it has a simpler proof
using the symmetrization technique [MP]: Let F(z) be a strong or weak rep-
resentation of a symmetric boolean function f(z). Note that F(z) is not
necessarily symmetric itself; however, we can easily use F/(z) to construct a
symmetric function G(z). Formally, G(z) = Y ,cs, F7(z), where S, is the
nth symmetric group and F7(z) = F(z7) = F(2o1), ..., Zo(n)). Obviously
G(z) strongly (weakly) represents f(z) if F'(z) strongly (weakly) represents
f(z), and G(z) has the same degree as F(z). Since G(z) is symmetric, G(z)
can be written as a univariate real function of |z|. Therefore the degree of
G(z) is at least the number of sign changes of f(z), and thus that of F(z).
But it is easy to construct a real polynomial strongly representing f(z) such
that its degree equals the number of sign changes of f(z).

A variation of the degree concepts introduced above is the odd-even de-
gree, which turns out to be a key parameter in our investigation of the parity-
threshold model. The odd-even degree of a boolean symmetric function is the
sum of number of sign chnages of the function when restricting to odd and

even numbers of on-inputs respectively. Equivalently, the odd-even degree 1s

the number of 7 for which f(i) # f(i + 2).

2.2 d-Perceptron Model and Parity-Threshold Model
We first define the d-perceptron model as introduced in [ABFR, BRS].
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Definition 3 A d-perceptron is a circuit with a MAJORITY gate at the
top and depth-d AND/OR subcircuits feeding into the MAJORITY gate.

The size of a d-perceptron is the number of gates in the circuat.

We will be interested in d-perceptrons of polynomial and of quasipolynomzal
(2l°g0(1)”) size. Note that by [FKPS], ordinary constant-depth AND/OR
circuits of quasipolynomial size can compute no more symmetric functions
than can circuits of polynomial size. For more on quasipolynomial size circuit
classes, see [Ba].

Consider a polynomial strongly representing a boolean function on {0, 1}
such that the coefficients are positive integers bounded by a quasipolynomial
in n It is easy to see that such a polynomial corresponds to a quasipolynomial
size 1-perceptron whose gates on the first level are poly-log fan-in AN Ds.
In the following lem we show that any symmetric boolean function with
only poly-log degree (i.e. sign changes) has such a low degree polynomial

representation, and hence can be computed by such 1-perceptrons.

Lemma 2 Any symmetric boolean function with only poly-log degree can be
computed by a quasipolynomaal size 1-perceptron with AN Ds of poly-log fan-

m.

Proof: Let 0 <¢; <ey <...< ¢ <n be the positions of the sign changes
of f(z), where k = log®® n. Then the following function

5T 1 & 0 if f(0)>0
F(z) =(-1) Z:1_[1(cZ + ) —;mi), where § = { 1 if £(0) <0
agrees with f(z) in sign (note here z € {0,1}").

F(z) is a poly-log degree polynomial with rational coefficients, but we can
easily make F(z) a polynomial with integer coeflicients (without changing
its sign) by multiplying it by an appropriate positive constant.

The problem left now is to convert the polynomial into one with only
positive coefficients. Reversing the procedure used in [MP] to prove the
Positive Normal Form Theorem, we can eliminate all the negative coefficients
without blowing up either the degree or the size of the coefficients. n



Parity-threshold circuit is a depth-2 circuit with a M AJORITY gate at
the top level and PARITY gates at the bottom level. The study of this
model is inspired by the work of Bruck [Br| where he defined the polynomial
threshold functions. Since we are considering functions defined on {—1,1}",
each monomial [];cg #; corresponds to a PARITY gate with input restricted
to S. Clearly, the set of monomials [[;cgz;, S C [n] forms a basis for func-
tions defined on {—1,1}". We will denote the monomial [[;cs5#; by xs. A

polynomial threshold function can be formally defined as follows.

Definition 4 Let f(z) be a boolean function, we say f(z) is a polynomial
threshold function if there is a real polynomial F(z) such that

f(z) = sgn(F(z)) for allz € {—1,1}" and F(z) = Z wsXs
S¢[n]

and the cardinality of the set S = {S C [n]|lws # 0} is bounded above by a
polynomaal in n.

Similarly, we say a boolean function f(z) is a quasi-polynomial threshold
function if the cardinality of S is bounded above by log”!n

Clearly, if the coefficients wg in the above definition are integers bounded
above by quasi-polynomial, the strong representation corresponds to a quasi-
polynomial size parity-threshold circuit; Conversely, any quasi-polynomial
size parity-threshold circuit yields a quasi-polynomial size representation of
the boolean function it computes.

Analogous to the d-perceptron model, we have a similar upper bounds
for symmetric boolean functions with poly-log odd-even degree in the parity-

threshold models.

Theorem 3 Let f(z) be a symmetric boolean function with odd-even-degree
logo(l) n, then f(z) can be computed by a quasi-polynomial size parity-threshold

circuit.



Proof: Let 0 < ¢y < ¢y <...< ear < n be the positions of sign changes at

|z| even, where cy;’s are even, k = logo(l)n, then the following function
k 1 0 if £(0)>0
Fe'ven = (-1 Beven % a h even — .
(@) = (-1 T ex+  ~lel), where S = { | 10> 0

agrees with f(z) in sign when |z| is even.

Similarly, let 1 < ¢; < ¢3 < ... < ¢9i41 < n be the positions of sign

changes at |z| odd, where ¢y;11’s are odd, I = logo(l)n, then the following
function
! 1 0 if £(0)>0
Fo =(-1 8oaa i ~ , h 60 = .
aa(z) = (—1) g(CZ 11+ 5 — |z), where 8o { 1 £(0) <0

agrees with f(z) in sign when |z| is odd.

Therefore F(z) = (1 4 X[n)(2))Feven(z) + (1 — Xin(2)) Foda(z) strongly
represents f(z). Moreover, since Feyen and Foqq are of degree logo(l)n, we
can rewrite F(z) as F'(z) = > gcs wsXs, where wg # 0 for § € S, such that
IS| = 9log”n, Therefore, f(z) can be computed by a quasi-polynomial size

parity-threshold circuit. "

2.3 Fourier Transform For Symmetric Functions

Harmonic Analysis has been applied to the study of boolean functions under
various complexity measures and models and many interesting results have
been obtained (see, e.g. [Br, KKL, LMN]). The essence of Harmonic Analysis
is to find an orthonormal basis for the function space in question. We will
follow the notations® used in [LMN]. For the space of functions defined on
{—1,1}", it is not hard to see that the set of 2" functions xg, S C [n] forms
an orthonormal basis.

The inner product defined on this function space is:

<fig>=2"" >, f(z)y(z)

ze{-1,1}"

In [Br], Bruck used a different set of notations, which are more suitable in talking
about polynomial threshold functions. However, for consistency’s sake, we will use LMN’s
notations throughout the paper.
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As usual, the Ly norm of a function is defined as || f ||2= +/< f, f >. For
any S C [n], the Fourier coefficient f(S) (or fg) of a function f(z) is defined

as

.f(S) =< f7 Xs >
Hence, f(z) = X5 f(S)Xs-

The L, norm of a function and its Fourier coeflicients are related by the

following famous identity.

Fact 1 Parseval’s identity
£ 13= > £(5)
5C[n]

The Fourier transform on the boolean functions can also be succinctly
expressed in a matrix form. Let f™ denote the vector of the 2" values of a
boolean function f(z) and 1 denote the vector of the 2" Fourier coefficients
of f(z). Then 1 and f™ are related by the so-called Sylvester type Hadamard

matrix as illustrated below:

Fact 2

- 1
fIl — —Hznfn
211
where the Sylvester type Hadamard matriz is defined recursively for all 2%,
k >0 as follows

]_ ]_ sz sz
H — ]_ H — H 1 =
1=l H l 1 —1 l 2 l Hy —Hy l

As we are mostly interested in symmetric functions, we will develop a Fourier
Transform for symmetric boolean functions and show that the vector of
Fourier coefficients and the sign change spectrum of a symmetric boolean
function are related by a matrix which processes many interesting proper-
ties.

For S C [n] and t € [n], we define ¥5(t) = > |,=s xs(z). The following
properties of ¥s(t) can be easily checked.

11



Fact 3 1s(t) has the following properties
1) For S5,5' C [n] such that |S| = |S'| = s, and for t € [n], we have

min(s,t)

PYs(t) = psi(t) = b (_1)i(3) (7:::)

i=max(s+t—n,0) i
Hence, we will use the lower case letter s in g(t) for all S with |S| = s.
2) pa(t) = (=1)"¢a(n — 1)
3) %a(t) = (—1)"9pn-a(t)

For 0 < s < n, let o,(z) denote the sth elementary symmetric function

on {—1,1}", d.e. o,(z) = E|sgn] xs(z). o, has very similar properties as v,

which reveals some kind of duality between o, and ;.

Fact 4 o,(z) has the following properties
1) Let ¢ € {—1,1}", t = |z| € [n], then

min(s,t)

os(z) = o4(t) = Z (_1)1(15) (n — t)

i=max(s+t—n,0)
2) 05(t) = (—1)°cs(n —t) for0 <t <mn
3) 05(t) = (—1) on_s(?)

Using o, and 1,, we can write any symmetric boolean function f(z) as
F(@) = S0 furu(a) where f. = fs = 27 Sy f(U(t) for any S C n
with |S| = s, since f(z) is symmetric. Obviously, {o,(z)|0 < s < n} forms
a basis for the space of all symmetric functions on {—1,1}". Viewing these
symmetric functions as univariate functions of z = |z| € [n], the induced
inner product on this function space can then be defined via the original
inner product.

Let f(z) and g(z) be two symmetric functions on {—1,1}"

n

<ha>=53 (1) f0e)

t=0
The orthonormality of {xs(z)|S C [n|} under the original inner product leads
to the orthogonality of {o,|0 < s < n} under this induced inner product.

12



Fact 5

0 when s # s
< 04,04 >= n ,
(s) when s5=35

os(t)’s are the so-called Krawtchouk polynomials, please refer to [MS] for
other interesting properties.

For any symmetric boolean function f(z), the relationship between its
sign change spectrum and its Fourier coefficients is stated in the following

theorem

Theorem 4 For any symmetric boolean function f(z), let fn = [fg, fin, fn]t,
the vector of its Fourier coefficients and £ = [£(0), f(1),..., f(n)]t, the sign
change spectrum of f(z) on ¢ € {—1,1}". Then

fr = 2inT"-fn

where T™ is an (n + 1) by (n + 1) matriz defined as

T™ = [¢a(t)]
i.e. the (s,t) entry T, of T™ is 1,(t), 0 < s,t <n. We call T" the nth order

8

Fourier Transform Matriz for symmetric functions.

Proof: The relationship follows directly from the relationship between f;
and 9,(t). n

T™ enjoys many interesting properties. For example, by the properties of
¥4(t), we see T™ has many symmetries: for 0 < s,¢t <n, T7, = (—1)*T;,, _, =
(D) T2y = (“D)TL e And (T3] < |Tg| = |T7) = (7). Also
observe that, by the duality between v, and oy, the rows of T™ correspond
to 1, and columns to o;. The orthogonality of o; yields that 7™ is almost
self-inverse, that is, we have (T™)™' = ZT™

Though T™ has many nice properties, the construction of 7™ appears
to be formidable. This actually is not the case: we can construct T™ from
T™ ! in a Pascal-Triangle-like way (more precisely, we are building a Pascal

Pyramid), as demonstrated in the following theorem.
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Theorem 5 Forn > 1, we have

1. For0<s<n,1<t<n-—1,
T:t = T:t_—ll + T:t_laT% = 17T:n =Tyt = (_1)8

8 sn—1 —

2. For1<t<n-—1,
o = Tl Tt T =1, T = T = (=1

n,t— nt »-n0— rtnn nn—1 —

3. For1<s<n,1<t<n-—1,
T7, = —Tr5h s + TP Ty = 1,17, = —Ti5h,y = (1)

4. For1<t<mn-—1,
To: = T(ft__ll + 771 Too = 1,15, = T(f;il =1

st

Proof: The above identities are very easy to prove by using the identity

(T) = (T__ll) + (mr_l) and the properties of 1,(t). u
Examples
1 3 1
1 2 1
mo |t , T*°=|1 0 -1, T*= b=l ,
1 -1 5 1 1 -1 -1 1
1 -3 3 -1
o4 6 41 (1 5 10 10 5 1
L 2 0 2 1 1 3 2 -2 -3 -1
1 1 -2 =2 1
=11 0 -2 0 1|, T°= 1 1 9 5 REE
1 -2 2 -1
) 2 L1 1 -3 2 2 -3 1
- 1 -5 10 -10 -5 -1
1 6 15 20 15 6 1]
1 4 5 0 -5 —4 -1
1 2 -1 -4 -1 2 1
=11 0 -3 0 3 0 -1
1 -2 -1 4 -1 -2 1
1 -4 5 0 -5 4 -1
1 -6 15 —-20 15 —6 1 |




One application of the matrix 7™ is the estimation of Fourier coefficients
for certain symmetric boolean functions. For example, by using T™, we can
obtain the following estimation for the modular functions, we leave the de-

tailed proof in the appendix.

Theorem 6 For any p prime bigger than 2, the Fourier coefficients of MO D,(z),
when repersented as a function from {—1,1}" to {—1,1}, have the following

properties:
There exists € > 0 such that
. p—2 1 p—1
fo = ——=£0 < —
° p (26”) p
. 1
Ifs] = 0(2:) when s £ 0

3 Lower Bounds in the d-Perceptron Model

In this section, we will prove that any symmetric boolean function with more
than poly-log sign changes cannot be computed by any quasi-polynomial size
d-perceptron. Together with Theorem 2 in section 3, we have an if and only
if condition for a symmetric boolean function to be computed by a quasi-
polynomial size d-perceptron. The proof makes use of some key observations
by Linial, et al [LMN], and uses the very technique of random restriction, first
introduced in [FSS] and refined in [Ya, Ha|, that gave the first exponential
lower bound for AND/OR circuits.

A random restriction is a random mapping of the input variables to 0,
1 and * according to some probability distribution. The function obtained
from f(zi1,...,2,) by applying a random restriction p is denoted by f*,
and its variables are those z; for which p(z;) = *. For our purpose, we
will assume that p assigns values to each input variable independently and
Pr[0] = Pr1] = =2

A simple observation is that any random restriction of a symmetric boolean
function is still symmetric; furthermore, its sign change spectrum is a subin-

terval of that of the original function.
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Recall that a manterm of a boolean function is a set of variables such that a
partial assignment to the variables in the set makes the function identically
1, but no partial assignment to any subset of the set makes the function
identically 1. Similarly, a mazterm is a set of variables such that a partial
assignment to the variables in the set makes the function identically 0, but
no partial assignment to a subset of the set makes the function identically
0. Linial, et al [LMN] observed that if a boolean function has both small
size minterms and maxterms, then all of its high degree Fourier coefficients
vanish, and hence it can be represented by a low degree polynomial over the

reals. More formally, we have

Lemma 7 ([LMN]) If all the minterms and the mazterms of a boolean
function f have size at most t, then for any subset S with |S| > t?, the
Fourier coefficient of f on S, f(S) 1s equal to 0.
Therefore,
f= > f(Sxs

5C[n],|S|<¢?

The above lemma is proved by using decision trees. The following fact
was independently discovered in [BI,HH, Ta], and explicitly stated in [LMN].
A relevant fact was observed in [Ha|, and our proof is a simple adaptation of

the proof there.

Lemma 8 If all the minterms and mazterms of a boolean function f have
size at most s and t respectively, then f can be evaluated by a decision tree
of depth at most st.

Proof: Observe first that any minterm has a nonempty intersection with any
maxterm, and vice versa (this follows easily from the definitions of minterms
and maxterms). Now we prove the lemma by induction on ¢.

When ¢t = 1, then there exists an S C [n] such that |S| < s and f =
[l;cs z:. Obviously f has a decision tree of depth at most s.

Suppose the lemma is true for functions with maxterm size at most ¢ — 1.
Let § be a minterm of f, consider all possible assignments to §. Let 8 be

such an assignment, denote by fz the resulting function. Since § intersects
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any maxterm of f nonemptily, any maxterm of fg is of size at most £ — 1.
By the inductive hypothesis, fg has a decision tree of depth at most s(t — 1)
for all 3. But assignments to § correspond to decision trees of depth |§] < s.
Adjoining these decision trees together, we have a decision tree for f of depth
at most s + s(t — 1) = st. n

Proof of Lemma 7: By Lemma 8, we see that f has a decision tree of
depth t2. Let T be a decision tree for f of depth at most ¢> and let S be a
set of size larger than t2. Since the path to any leaf depends on at most ¢?
variables, there is a variable in S not queried along this path, hence exactly
half of the inputs that end in the leaf agree with xs. Since the leaves induce
a partition of the inputs, the function computed by 7' agrees with xs on
exactly half of the inputs. Therefore, the correlation between T' and xg is

zero, and the lemma follows. "

It is well-known that with high probability, a random restriction of an
AC"® function will have small minterm size and maxterm size. This can be
proved by a repeated applications of Hastad’s switching lemma [BoS, LMN].
We state this fact formally as follows.

Lemma 9 ([LMN]) Let f be a boolean function computed by an AND/OR
circuit of size M and depth d. Then

Pr[f? has a minterm or a mazterm of size >t] < M27*
where p is random restriction such that Pr[x] = 1/(10t)?.

Theorem 10 Let f be a symmetric boolean function on n variables. Suppose
f can be computed by a d-perceptron such that the fan-in of the MAJORITY
gate is N, the size of each AC® subcircuit is at most M, and the depth is
at most d, where N, M < 2t='. Then for a positive fraction of the random
restrictions p in a distribution with Pr[x]..., f? is a function of at least
np = (1(7)1—t)d variables, the number of sign changes of f* is at most O(t?), and
the sign change spectrum of f* is a subinterval at most O(1/n) off the center
of the sign change spectrum of f.
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Proof: Let p be a random restriction with Pr[x] = p = (1(}—t)d' Denote by f;,

1 <1 < N, the subfunctions computed by the AND/OR subcircuits, and by
ff, 1 <1< N, the functions obtained by the random restriction. Applying

Lemma 9 to each f;, we have
Pr[f? has a minterm or maxterm of size > 2¢] < M2 %,

Hence,

N
Pr[\ ff has only minterms and maxterms of size < 2t]
=1
N
> 1—Y Pr[ff has a minterm or maxterm of size > 2¢]

=1

Z 1— NM2—2t Z 1— 22t—22—2t Z

NN

On the other hand, the expected number of variables assigned * is np =
(1(7)1—t)d' By the normal approximation to binomial distribution, for n large, we
see that with probability at least %, p will assign *’s to at least np variables
and an almost equal number of 0 and 1’s to the rest of the input variables.

Therefore, there must be a p such that f* = MAJORITY (f7,...,fx)
is a function on at least np variables, and each f/ has both minterms and
maxterms of size < 2t. By Lemma 7, it follows that f’ can be represented by
a (—1,1)-valued real function of degree at most 4¢2, hence g* = YN f/ — >
is a strong representation of f”. Since g has degree at most 4t2, f* can have
at most 4t? sign changes. u

o(1)

Remark: If we choose t = log~'"/ n, then f? can have only poly-log many

sign changes. Therefore for the original function f, there must exist a subin-

terval of length at least (1’5)0[ =

spectrum of f, such that f has at most poly-log many sign changes in that

logo’h)n, near the center of the sign change

interval.
To prove the result that any symmetric function of more than poly-log
sign changes cannot be computed by any quasipolynomial size d-perceptron,

we need to use a shifting technique to locate an interval in the sign change
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spectrum of the function such that we can apply the above lemma to obtain

a contradiction.

Theorem 11 If f is a symmetric boolean function of more than poly-log sign
changes, then f cannot be computed by a quasipolynomial size d-perceptron

for any constant d.

Proof: Suppose the opposite is true: there exists a quasipolynomial size
d-perceptron for some constant d. Let ¢ be such that N, M < 21°6°7~1 where
N, M are as in Theorem 10. Let s(n) be the sign change function of f, by
the hypothesis s(n) = log®M n.

Consider the interval [sz(n),n — s2(n)] of the sign change spectrum of
f, the number of sign changes in this interval is Q(s(n)). Without loss
of generality, we assume that there are Q(s(n)) sign changes in [s(n)%, 31
Partition this interval into k intervals of the form [2s2(n), 207152 (n)], where
0<:<k—1and k=logn — logs(n) — 1= O(logn).

We further partition each of the intervals [2¢s2 (n), 20152 (n)] into & subin-
tervals of length @ﬂ where § = (10¢)% and t = log®n, i.e. § = (10log®n)? =
O(log®n). We contend that one of the subintervals must have w(¢?) sign
changes, since otherwise, the total number of sign changes in [s%(n), 3] is at
most 3¥°2 O(t2)8 = O(t26k) = log® P n, a conltradiction. Therefore for some
1, 0 <7 < k — 1, a subinterval of length @ﬂ = log“) n has w(t?) sign
changes.

By an appropriate partial assignment to the input variables, we obtain
from f a function f’, of 2".5%(11) variables, whose sign change spectrum is
identical to an interval of the sign change spectrum of f which contains the
aforementioned subinterval at center. Note that the circuit for f induces a
circuit for f' of size at most that for f and thus its N’, M’ are bounded by
2t-1 = 2log"n—1  Therefore, applying Theorem 10 to f', we have that there
exists a random restriction p such that f'” contains the subinterval as its sign
change spectrum. However, f’” can have only O(t*) = logo(l)n many sign

changes, hence we arrive at a contradiction. n

We conclude this section with a consequence of Theorem 11 — the opti-

mality of a recent construction of Beigel [Be].
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Beigel shows that d-perceptrons serve as a normal form for AND/OR
circuit s augmented by a small number of MAJORITY gates. In particular,
a circuit of unbounded fan-in, quasipolynomially many AN D, OR, and NOT
gates, and poly-log many MAJORITY gates can be converted into a d-
perceptron of quasipolynomial size. We can now show there is no general
way to eliminate more than poly-log many M AJORITY s in this way.

Corollary 12 Letm = log“’(l)n. There exists a symmetric boolean function
computable by circuits of O(m) MAJORITY gates (with no other gates) but

not computable by any d-perceptron family of quasipolynomaal size.

Proof: By Theorem 11, any symmetric function with exactly m sign changes
will do. u

4 Lower Bounds in the Parity-Threshold Model

Our conjecture is that any symmetric boolean function with greater than
poly-log odd-even degree needs more than quasi-polynomial size in the parity-
thresholdmodel. We have some small steps toward such a result, extending
the earlier work of Bruck [Br].

Bruck’s main theorem gives a criterion to test when a boolean function is
a polynomial threshold functions based on the size of the Fourier coefficients
of a boolean function — the size is at least the inverse of the largest Fourier
coefficient. This result can be easily translated into a size lower bound in
parity-threshold model.

Theorem 13 (Bruck’s Theorem) Fiz any € > 0. Let f(z) be a boolean
function of n variables. If |fs| < 27" for all S C [n], then f(z) is not a
polynomaal threshold function.

In particular, Bruck defined the Complete Quadratic function CQ(z) as fol-

lows
1 |z =0o0r 1mod4

CQ(z) ={ 4

otherwise
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and showed that when n is even, all Fourier coefficients fg of CQ(z)is £272;
when n is odd, all Fourier coefficients are either zero or 2-("~1)/2. Hence,
CQ(z) is not a polynomial threshold function, i.e. any parity-threshold
circuit computing CQ(z) has exponential size.

We extend Bruck’s theorem to allow ourselves to ignore some large Fourier
coefficients, as long as they do not come close to summing to one. Recall,
however, that the sum of all the Fourier coefficients might be as high as
27/2. Limited though it is, this extension and our analysis of the Fourier
coeflicients of the M OD functions give us some significant results. Before we

give the proof of the extension, let us first cite two useful lemmas from [Br].

Lemma 14 Let F(z) = Y gc[, wsXxs- strongly represents a boolean function

f(z). Define S = {S C [n]jws # 0}, then

Y. [F()=2") wsxs

ze{-1,1}» SeS

Lemma 15 Let F(z) and f(z) be as in Lemma 13. For all S € S

Plws| < D |F(2)]

ze{-1,1}"

Hence,

lws| < Y wsfs

SeS

The following theorem is an extension of Bruck’s main theorem.

Theorem 16 Suppose F(z) = Y gcimjwsxs strongly represents a boolean
function f(z). As before, let S = {S C [n]||ws # 0}. For a fized constant e,
0<e<1, define T, R CS as follows:

T ={S e€S||fs| <2™} and R = S\T
IfT # 0 and Y gcr |fs| < & for some constant §,0 < § < 1, then |S| = 277,

Before we prove Theorem 16, we need a lemma.
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Lemma 17 Let S, T and R be defined as in Theorem 17, and let |ws,| =
maxse {[ws]}, then

|w5| —n¢ -1
<1 — |f5 L<o™(1 - 6)Y
Tser w3 PN

Proof: By Lemma 15, we have Y g |ws]||fs| > |ws, |, hence,

> lwsllfs| + D lws|lfs| > [ws,|

SeT SeR

Note that for § € T, |f5| < 27 therefore

(3 lws))2™ > Y wsl|fs| > |ws,| — Y |wsl|fs]

ScT ScT ScR

> |ws,| = (X 1fsDlws| > lws, (L= Y |fs])

SeR SeR

Thus the lemma follows. n

Proof of Theorem 16: Again by Lemma 15, we have
lws, | < D wsfs < > ws|| fs]

SeS SeS

Then X
S ses lws| < 1S|(Sses lwsllfsl)
SI(Eser [wsl|fs| + Xser |ws|fs])

ZSGT |'w5| <
<

Hence

. AL -1
S| > (ESET lwsl|fs| + Xser |w5||fs|)
N 2 oSeT [ws|
But since N N
Y seT lwsllfsl+> s m lwsllfs]
seT |w5|
(EseT lws|)2=™ +lwsy (3 ger |F51)
Y oseT lwsl

n¢ |w 0|
<27 + S ;stl (ESGR |w5|)

<2n _|_2n1
<2 (1 — §)

é
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Therefore
S| > 2™ (1 - 9)

Remark Instead of requiring § be a constant < 1, it is enough to have
§<1— 0(2_”0(1)), say § <1—n"or § <1— 218" for some constant c.
In other words, we only need to bound Y gcg |fs| significantly away from 1

(i.e. more than an exponential fraction away from 1).

Corollary 18 Let f(z) be a boolean function. If any strong representation
F(z) of f(z), where F(z) = Y gcimwsXs, satisfies the condition in The-
orem 16, then f(z) cannot be computed by a quasi-polynomial size parity-

threshold circust.

On the other hand, all quasi-polynomial threshold functions do not satisfy
the condition in Theorem 16, that is, the large Fourier coefficients must sum

up either very close to 1 or bigger than 1.

Theorem 19 Let f(z) = Y g fsxs be a boolean function, define R =
{S||f§1| = 0(21050(1))}. If f(z) can be computed by a quasi-polynomial size
parity-threshold circuit, then Y gcr |fs| > 1 — 27" for some € > 0.

Proof: Clearly, if for any S not in R, fs = 0, then the theorem is trivially
true, since 1 = Y gcn] |f§~ < Y sCm] |f5

Suppose there is an S’ not in R such that fs # 0. Let F(z) = > gcs wsXs,
where wg # 0 for all S € S, be a strong representation of f(z). It maybe
be the case that S’ ¢ R, in order to make use of Theorem 16, we construct
another polynomial that contains §’. Without loss of generality, we assume
wg’s are integers, hence |F(z)| > 1. Define F'(z) = Y gcswsxs + wsXxs

where |wgi| < I, it is easy to see that F’(z) is also strong representation

2
of f(z). Since f(z) can be computed by a quasi-polynomial size parity-

threshold circuit, applying Corollary 18, we prove the theorem.
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Corollary 20 For any prime p > 2, MOD, cannot be computed by a quasi-

polynomaal size parity-threshold circuat.

Proof: In the appendix, we will show that for any prime p > 2, MOD,(z)
has only one “large” coefficient, the Fourier coefficient of the constant term,
which is smaller than ’%; all other Fourier coefficients are exponentially
smaller than 1, hence by Theorem 19, MOD, cannot be computed by a

quasi-polynomial size parity-threshold circuit. "

Note that for any p and r such that p|r, if MOD, can be computed by a
quais-polynomial parity-threshold circuit, then so can MOD,(z). Therefore
we have shown that for any r # 2F for some k > 0, MOD,(z) cannot be
computed by a quasi-polynomial size parity-threshold circuit. By a reduction
from CQ(z) to MODy(z), where CQ(z) is the Complete Quadratic function
defined by Bruck, we can show that MOD, cannot be computed by a quasi-

polynomial size parity-threshold circuit, either.

Theorem 21 MOD,(z) cannot be computed by a quasi-polynomial size parity-

threshold circust.

Proof: By Kummar’s Lemma ([Kn|, Exercise 1.2.6-11), z = 0 mod 4 ff
z = 0 mod 2 and (’;) = 0 mod 2. Let F,,(z) and x[,(z) be the representation
of MOD4(z) and MODy(z) functions on the domain {—1,1}", we have

CQ(2) = —5(1 + xea(@)Fale) + (1 Xp@)) Fraa(z, 1)

Note that F,,(z) = —1 ¢ff |z = 0 mod 4 for z € {—1,1}", hence F,11(z,—1) =
—1 ¢ff |zg| =3 mod 4 for z € {—1,1}". Since CQ(z) cannot be computed by
a quasi-polynomial size parity-threshold circuit, neither is MO Dy(z). "

Combining Corollary 20 and Theorem 21, we have

Theorem 22 For any constant » > 2, MOD,(z) cannot be computed by a

quasi-polynomaal size parity-threshold circuit.
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Now we give a more general criterion for when a symmetric boolean func-
tion cannot be computed by a quasi-polynomial size parity-threshold circuit.
Recall that the odd-even-degree of a symmetric boolean function f(z) is sum
of the number of sign changes of f(z) when restricting |z| to even and odd

respcetively; equivalently, the odd-even degree of f(z) is the number of ¢ for

which f(2) # f(i +2).

Theorem 23 Let f(z) be a symmetric boolean function with odd-even-degree
log“’(l)n satisfying the following condition:
There exists t = O(logo(l)n), € > 0 and ¢ > 0 such that

1fs| P =2" forall S C[n], t<|S|<mn—t

and

A 1
> [fsl <1 = gem

5Cln]
|S|<t or |S|>n—t

Then f(z) cannot be computed by a quasi-polynomial size parity-threshold

circuit.

Proof: Let F(z) = > gcs wsXxs, where wg # 0 for § € S, be any polynomial
strongly representing f(z), we will show that |S| is exponentially large.
First notice that for any S C [n], xs(z) = (—1)2xg(z) where S is the
complement of S.
Suppose for any S € S, |S| <tor |S| >n—t, then

F(z) = > wsxs+ ) wsxs

SI<t |Sisn—t
= > (ws+ (—1)=wg)xs
SI<t

Without loss of genrality, we assume n is even, and f(z) has more than

poly-log sign changes when restricted to |z| even. Define

F'(z1,z,, . . S z2) = F(21,21,22,22,...,22,22)
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)

= Z (’LUS + wE)XS(mhml;mZ;mZ; s 715%7m
|S]<t

SIE]

It is not too hard to see that F'(zq,z,..., m%) strongly represents the
n/2 variable boolean function f'(z1, 22, ..., z2)=f(21, 21,22, 22,...,22,22),
which is obviously symmetric. Since f(z) has more than poly-log sign changes
when restricted to [z| even, f'(z1,2s,...,z=) has more than poly-log sign
changes on {z1,zs,...,z2} € {-1,1}%. However, since deg(F') = t =
logo(l)n, we arrive at a contradiction.

Hence, for any polynomial F(z) = Y gcs wsXxs strongly representing f(z),
S must contain an S such ¢ < |S| < n — ¢, by Corollary 18, the condition
in the theorem implies that f(z) cannot be computed by a quasi-polynomial

size parity-threshold circuit. "

In contrast to d-perceptron model, in this model currently we are not
able to match the upper and lower bounds, due to the technical condition in
Theorem 23. One might suspect that all symmetric boolean functions with
odd-even-degree log“(*) n satisfy the condition, since their Fourier coefficients
is very likely to spread out in the middle. However, this is not true, there
are symmetric boolean functions with odd-even-degree log“’(l) n violating the
condition in Theorem 23. MOD,(z) is such an example, as it can be proved
that |f0| + |fn| = 1, by using the Fourier Transform Matrix for symmetric
boolean function defined in section 2.3. We hope that more careful analysis of
Fourier coefficients of symmetric functions may allow us to prove the following

conjecture:

Conjecture 1 A symmetric boolean function f(z) is computable by a quasi-

polynomaal size parity-threshold circuit off its odd-even-degree is logo(l)n.

5 Conclusion and Open Problems

In this thesis, we studied two circuit models containing a single Majority
gate, the d-perceptron model and the parity-threshold model, using polyno-

mials over reals as methods of boolean function representation.
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In the d-perceptron case, we proved an if and only if condition for a
symmetric boolean function to be computable by a quasi-polynomial size d-
perceptron circuit. This work extends the line of an earlier work by Fagin,
et al [FKPS] where they gave an if and only if condition for a symmetric
function to be computable by a polynomial size AC°.

In the parity-threshold case, we conjectured an analogous if and only
if condition exists, but we were only able to partially resolve the problem
under a certain technical condition. One particular case of interest is that
for any constant p > 2, MOD, is not computable by any quasi-polynomial
size parity-threshold circuit.

The analysis of threshold computation by algebra over fields of character-
istic zero has proved somewhat fruitful. The computation of circuits of AND,
OR, and MOD, gates has been very well explained using algebra over fields
of characteristic p [Ra, Sm]. Is it possible to combine the two methods, or
otherwise place limits on the power of the following perceptron-like model:

a MAJORITY gate, whose inputs are constant-depth AND/OR/MOD,

circuits?
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A An Estimate of Fourier Coefficients of
MOD, Functions

In this appendix, we are going to prove Theorem 6, the proof utilizes the
property of the Fourier Transform Matrix for symmetric functions defined in

section 2.3.

Proof of Theorem 6: Let us first remark that the (s,t) entry 77, of
T", the nth order Fourier Transform Matrix for symmetric functions, is the
coeflicient of z* in the generating function (1 — z)*(1 + =)™ *.

Another useful fact is about the relationship between Fourier coefficients
of boolean functions on the ranges {1, —1} and {0, 1}. Let f(z) = Ysc fxs
be a boolean function from {—1,1}" to {—1,1}, and let f'(z) = Y gcpm fgxg
be the corresponding boolean function from {—1,1}" to {0, 1}, where fs and
fg are the Fourier coefficients of x s respectively. Note that here 0 corresponds

to 1, and 1 to —1. Then we have

fo=1-2f;
fo=—2f,  s#0
Now we proceed with computation of the Fourier coefficients of MOD,(z)
function, where p is a prime number bigger than 2. For notational simplicity,
let f(z) and f'(z) be representations of MOD,(z) from {—1,1}" to {—1,1}
and from {—1,1}" to {0, 1} respectively. .
Let w be the pth primitive root of 1, i.e. w = e%, by the Fourier

Transformation for f(z) and f'(z), we have

L L)

fo = on (_T:pk + T:pk-l—l +et T:pk-l—p—l)
k=0

A

/ 1 %]
fs = 2_11 Z Ts,pk

k=0

Note also that the relation
fo=1-2f;

A

fs:_z.f; ‘57&0

E?:O T(;—’;t =2
E?:O T:t = 0 S 7£ 0 (**)

is equivalent to
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For 1 <1 < p, we have that T}, is the coeflicient of (Wt in (1—wh)*(1+w!)ne.
1.€. .
(1— ) (14 = ZT&twt

t=0
Let us use a; denote the sum E,lﬁo T7 ni1, and use b denote the value (1 —
W) (1 4+ w72, for 0 < s <n and 0 < I < p. These relations together with
(x) above yield

g’:F(w)E’ for0<s<n

where @, = [a§,a,...,al_,]%, b, = [0, .. ,b:_4]* and F(w) is the p x p
Discrete Fourier Transform matrix, defined as F(w);; = w(~10~1),

Since F~Y(w) = ;7 - F(w™!), we can solve @* in terms of b*. In particular,

we have
= las B )= L ,,_11 e
ay = (bo + by + -+ p—l)_ [ ‘|‘Z( + ')
p p =1
8 1 8 0 8 11’_1 I\s IN\n—s
ag = —(bo—l—bl—l—---—l—bp_l):—Z(l—w)(l—l—w) s#0
p pl:l
Hence
" 1 p—2 2 122 .
f _ _ 0_—__-_ 1_|_w n
0 271.—1 0 P P 2nl:1( )
r 1 8 2 1p_1 8 n—s
fs = —2n_1a0:——-2—nZ(1—wl)(l—l-wl) S%O
p =1

The final task we need to complete is to find an estimate of |(1—w')*(1+w!)"|,
for 1 <I<p-—1and 0 < s <n. First notice that, for 1 <l <p—1,

oty = 3 1y (7)ot = - S (7wt =ty - a3 (7] sn 2720
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Observe that, for 1 <1 <p—1,

= omil
|Z(?)sinﬂ <

p

]
|
]
|

-

INgh

[
Il
Y

()<
J

|p§ (’7) cos 24 o 3 (’.’) = gp1

oo \J P izo \J

|
]
|

Let o be the largest of these 2(p — 1) numbers, then a < 2P71.
Suppose n = 2pn’ + k, s = 2ps’ +t, where 0 < k < 2p and 0 < t < 2p,
then
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Hence, for 0 < s < n, we have
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where e =1 — ;7(1 +loga) > 0, since n' < 2 and logar <p — 1.
Therefore, we conclude that, for some € > 0,
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