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Abstract

Define the M O D,,-degree of a boolean function F to be the degree of the smallest de-
gree polynomial P, over the ring of integers modulo m, such that for all 0-1 assignments
Z, F(£) = 0 iff P(€) = 0. We obtain the unexpected result that the M OD,,-degree
of the OR of N variables is O(¥/N), where r is the number of distinct prime factors
of m. This is optimal in the case of representation by purely symmetric polynomials.
The M OD,, function is 0 if the number of input ones is a multiple of » and is 1 other-
wise. We show that the M OD,;-degree of both the MOD,, and ~MOD,, functions is
N®(1) exactly when there is a prime dividing n but not m. The M OD,,-degree of the
MOD,, function is 1; we show that the M OD,,-degree of ~M O Dy, is N®) if m is not
a power of a prime, O(1) otherwise. A corollary is that there exists an oracle relative
to which the MOD,,P classes (such as ®P) have the following structure: MOD,,P is
closed under complement and union iff m is a prime power, and MOD,P is a subset of
MOD,,P iff all primes dividing n also divide m.

1 Introduction

Lower bounds in circuit complexity are currently hindered by what at first glance appears
to be a small technical point. It is known that ACP circuits which also allow mod-p gates
for some fixed prime, p, can’t compute the mod-¢ function for any q which is not a power
of p [18, 19]. In contrast, it is not known if AC® circuits which also allow mod-6 gates
can compute every function in NP. It is conjectured that (as with the case of mod-p)
AC® with mod-m gates for any integer m can’t compute the mod-n function when there
is a prime dividing n but not m [19]. Indeed, it might be that some slight extension of
the Razborov-Smolensky techniques will prove the conjecture. But there is also the very
interesting possibility that mod-6 gates really are more powerful than mod-p gates! If this
were true, it would pinpoint why mod-6 lower bounds are not forthcoming.

How could mod-6 be computationally different from mod-p? In this paper, we study this
question in the polynomial model of computation. We say that a polynomial P over Z,
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represents a boolean function F if for all 0-1 valued assignments &, F(&) = 0 iff P(£) = 0. In
other words, we interpret the output of P to be the boolean value 1 if P(%) # 0 mod m, and
0 otherwise. This is very similar to the standard definition of a mod-m gate which outputs
1 iff the number of input 1s is non-zero modulo m [18, 19, 3]. The MO Dy,-degree of F,
denoted §(F,m), is the degree of the lowest degree polynomial which represents it. This
model of boolean function complexity has been well explored in the case where m is a prime
power [19, 8, 11, 10]. It is known that for the OR of N variables §(OR, p) = [v/(p—1)] [19].
It is also known that §(mod-n,p) = Q(N) when n is not a power of p [19].

In the case of composite moduli, there have been no results in this model. The obvious
reason for this technical gap is that the techniques in the case of a prime modulus, p, have
heavily relied on the fact that Z, is a field. We prove results, modulo a composite m, which
shed light on the essential similarities and differences between working mod-p and working
mod-m.

A natural conjecture is that §(OR, m) = [v/(m — 1)], just as in the prime case [8]. We
prove that §(OR, m) = O({/v) where r is the number of distinct prime factors of m. We
find this surprising. It gives a natural computational setting where mod-6 really is more
powerful than mod-p. Furthermore, our construction uses only symmetric polynomials.
Our upper bound is the best possible if only symmetric polynomials are allowed. We leave
open the tantalizing possibility that for non-symmetric polynomials the degree of O R might
be as low as an almost constant function (such as inverse Ackerman) [6]. We show that a
low degree or sparse sub-linear degree polynomial for OR would have as a consequence the
existence of small, low-depth mod-m circuits for the AN D function.

Define the N-variable boolean function MO D, to be 0 only when the number of input
ones is a multiple of n, and 1 otherwise. We extend what is known to a composite modulus:
for any integer m, §(MOD,,m) = N™1) and §(~MOD,,m) = N9Q1) when n has a prime
divisor that is not a divisor of m. In the case of a square free m, we have §(~MOD,,m) =
Q(N). For all m it is obvious that §(MODp,m) = 1. If m is a prime power then it is
known that §(-~MOD,,,m) = O(1). In contrast, if m is not a prime power, we show that
§(~MO Dy, m) = N (Q(N) is m is square free).

MOD,,,P is defined to generalize the definition of ®P. A language L belongs to MO D,,,P
if there exists a nondeterministic polynomial-time machine M such that € L <= the
number of accepting paths of M(z) is non-zero modulo m (1, 23, 21] Using our lower bounds
we construct an oracle such that: MOD,P is closed under complement and union iff n is a
prime power, and MOD,P ¢ MOD,,P iff n has a prime divisor that is not a divisor of m
This oracle is consistent with the known structure of these classes.

A MOD,, polynomial of degree d has an associated MOD,, circuit consisting of an
unbounded fan-in MO D,, gate at the root where each wire leading into it is a function of
no more than d of the input variables. Such circuits could be thought of as the MODy,
versions of perceptrons [17]. Our upper bound for the O R function shows that such circuits
can be more powerful than expected. Our lower bound proves that, when m is not a prime
power, natural complexity classes based on these circuits are not closed under complement.
Thus, definitions which were robust for prime powers fail to be for other numbers. We
suggest a more robust definition: A(F, m) = the degree of the lowest degree polynomial P
over Z,, such that F(Z) = 0 and F(§) = 1 implies P(Z) # P(J). In the section on open
problems, we propose the A measure as the correct next step.



2 Computing OR modulo a composite m

2.1 Background

It is natural to expect that it is difficult to compute the AND or OR function with compo-
nents which can only sum their inputs modulo a constant. In the setting of constant-depth
unbounded fan-in circuits, this intuition leads to the conjecture that exponential size is
needed [16], in particular that AND is not in the polynomial size class called variously
CC° [16] or “pure ACC” (24, 11]. Progress towards proving this conjecture has been very
limited, as we shall see.

The same intuition also says that the M O D,,-degree of the OR function should be large,
because simply summing modulo m should not be able to convert any number of small AND
or OR operations into a large one. It is not hard to construct a polynomial of degree [-'-rl%
representing the N-variable OR function, or to prove that this degree is optimal in the case
where m is a prime or prime power. But for general non-prime-power m, the best lower
bound known on the m-degree of OR is a nonconstant but very slowly-growing function
arising from a Ramsey argument [6]!

This and related questions came up in the study of permutation branching programs,
or non-uniform automata over groups (see, e.g., [4, 7, 6] for background). This model of
computation is closely related both to polynomials over finite rings and to circuits of MO Dy,
gates [5, 8]. It was here, in the study of width three permutation branching programs (2],
that an important distinction was noticed. With MOD,, calculations, it is difficult or
impossible to force a computation to always give one of two output values (e.g., compute
the characteristic function of a set) rather than any of m values (e.g., “representing” a set
in our current terminology). Later the nonconstant bound on the MO D,-degree of OR
showed that OR cannot be computed in any size by non-uniform automata over nilpotent
groups, which correspond to a restricted case of MO Dy, circuits [6].

Thérien posed the question of the MO D,, degree of OR, and the related question of how
large a collection of linear polynomials modulo m is needed for the collection to represent
OR, in the sense that the inputs are all zero iff all the polynomials are zero. Any lower
bound in the latter case gives a corresponding lower bound on the size of MO D,, circuits
for AND or OR, of any depth. Smolensky [20] had previously shown an Q(logn) lower
bound on this size by a different argument. Then Barrington [8] showed an Q(n/logn)
lower bound in the course of a general investigation of both these questions, and finally
Thérien gave an (n) lower bound [22] by the methods of [6]. This result would be implied
by a linear lower bound on the MOD,, degree of OR, but not vice versa. (Krause and
Waack [15] have exponential size lower bounds for a different but somewhat related model.)

2.2 A Surprising Upper Bound

In fact the MOD,, degree of OR for non-prime-power m is less than linear, and there is
even a symmetric function that witnesses that fact. To see this, we need some notation
dealing with symmetric functions. For simplicity, let m = p;...p. with » > 1 be a square-
free composite number. Define the n'? elementary symmetric function s,(#) to be the sum
of all monomials of degree n in the N input variables. If j of the input variables are on,
the value of s,(Z) is ( ,") mod-m, independently of N — we will write this as sn(j). We
may think of the s, as being single polynomals over infinitely many variables, noting that



their value is well-defined whenever only finitely many of the inputs are 1. A symmetric
polynomial of degree d is simply a linear combination of s, 31, . . ., 84

It is not hard to show that for prime p, the function s,(j) mod-p = ( :) mod-p is
periodic, with period the least power of p such that n < p. Furthermore, the polynomials
80,...,8pe—1 are linearly independent modulo p, so that they are a basis of the vector space
of symmetric functions with period p*. If N < p%, the OR of N variables is represented
mod p by the function f(j) with f(j) = 0 for j = 0 mod-p® and f(j) = 1 otherwise. This
function has degree at most p® — 1.

But now consider an arbitrary degree d and let g; be the greatest power of p; such
that ¢; — 1 < d. By the above, there is a degree-d symmetric polynomial fi such that
fi(j) = 0 mod-p; iff j = 0 mod-¢;. Using the Chinese Remainder Theorem, let f be the
unique polynomial mod m such that f = f; mod-p; for all i. Clearly f(j) = 0 mod-m iff
fi(7) = 0 mod-p; for all i iff j = 0 mod-g, where g is the product of the ¢;. This f thus
represents the OR of up to g — 1 variables. Since each g; is @(d), ¢ = ©(d") and so we have
that for square-free composite m, the MO D,, degree of the OR of m variables is O(nl/7).

In the case where m is not sqare-free but still not a prime power, the same result can
be proved similarly. First, consider the periodicity of the function s;(j) mod-p® for a single
prime p. One can show by induction that if i < p*, then s;(j + p°t*71) = 5;(j) mod-p°.
Furthermore, although the functions s; for ¢ < p* do not generate all functions of this
period, they do generate a function g satisfying g(j) = 0 mod-p° iff j = 0 mod-p*. This
means that the MOD,. degree of the OR of N variables is O(N), making the MODm
degree O(N/7) if m = p§ ...pgr. Summarizing, then, we have:

Theorem 1 The MOD,, degree of the OR of N variables is O(N/T), where r is the
number of distinct primes dividing m.

O

2.3 A Matching Lower Bound for Symmetric Polynomials

While we cannot rule out the possibility that some other polynomials of very slowly growing
degree represent OR, we can say that any symmetric polynomials do essentially no better
than our upper bound above:

Theorem 2 If a symmetric polynomial modulo m represents the OR of N variables, then
it has degree Q(nl/"), where v is the number of distinct primes dividing m.

Proof: We observed above that for any prime power p®, any symmetric function of
degree d satisfies f(j) = f(j +p°**~!) mod-p°, where z is such that p* = ©(d). This means
that any symmetric function modulo m is also periodic, with period O(d"). Thus unless
N = 0(d") (ie., d = Q(nl/r)), the symmetric function has f(j) = f(0) for some 0 < j < n
and cannot represent the OR function. O

2.4 Consequences

It is natural to see how this surprising upper bound might help us build mod-m circuits
for AND or OR. Suppose the MO D, degree of OR is d(N). With a single MODp, gate
we can reduce the N-way AND to at most (IZ ) d-way ANDs. We then have two choices
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— implement the d-way ANDs by depth-2 mod-m circuits each of size O(22), or apply
the construction recursively to the d-way ANDs. If we use our d = @(N!/*) construction
without recursion, we get a depth-3 mod-m circuit of size 20(N'/"16N)  The recursion
increases the depth without much reduction in the size. It is easy to construct depth-k, size
20(N*/=1) mod-m circuits for AND whenever m is not a prime power, so these circuits are
not too surprising.

If it were possible to reduce the degree further, however, there would be important
consequences. Getting a MO Dy, degree below polynomial (d = N°(!)), would yield subex-
ponential circuits of depth 3, and degree poly-log would yield quasi-polynomial size circuits.
This may be interpreted either to say that such small MO D,, circuits for AND and OR are
conceivable or that improving the degree bound is unlikely.

Even with degree N™(1), there would be interesting mod-m circuits if we could get a
polynomial with many fewer than (IX ) nonzero terms. By the recursive construction, a
representation of OR with degree d = n* (a < 1) and s terms would give a mod-m circuit
of depth O(loglogn) and size s!°819%8™, Of course, our symmetric polynomials have every
possible nonzero term of their degree.

3 Lower bounds for MOD, and the complement of MOD,,

In this section we present an N™1) lower bound (N denotes the number of Boolean
inputs) on the MOD,,-degree of the MOD,, function whenever there is a prime divisor of
n that is not a divisor of m. For composite m, this is the first progress on Smolensky’s
question [19] whether poly-size circuits of AND, OR, and mod-m gates can compute the
mod-p function for some prime p that is not a divisor of m.

We also present an N () lower bound on the MOD,,-degree of the -MOD,, function for
composite m. Our bounds contrast sharply with prior related results [14, 10, 11, 8, 19]. If
the set of prime divisors of n is contained in the set of prime divisors of m then the MOD,,-
degrees of ~-MOD,, and of MOD,, are also O(1). If m is prime then the MOD,,-degree of
the function ~-MODy, is O(1).

Lemma 3 Let ¢ be a polynomial in binary variables z,,...,2)y. Let m be a square-free
number whose largest prime divisor i3 pmax. Suppose that q satisfies:

g(z1,...,28)#0 (modm) ifz;=---=2zy=0
g(z1,...,2N) =0 (modm) if3,;<n2i is a power of a prime divisor of m.

Then the degree of q is at least N/(2Pmax)-

Proof:  The proof is by contradiction. Suppose that g satisfies our hypothesis and that
the degree of ¢ is less than N/(2pmax). Then the degree of g is less than N/(2p) for every
prime p that divides m.
Let p be any prime that divides m. Find the largest k such that 2p* — 1 < N. Let
n=2pF - 1. Let
r(21,...,2n) = ¢(21,-..,2n,0,...,0)



be obtained by setting 2nx_n41,...,25 to 0 in g. Note that the degree of = is less than or
equal to the degree of ¢ and that =(0,...,0) = ¢(0,---,0). Furthermore, r satisfies

r(21,...,2,) #0 (modm) ifzy=---=2,=0
r(21,...,2n) =0 (modm) if 2 1<i<n i i8 & power of a prime divisor of m.

Let S denote a subset of {z1,...,2,}. Let

- (1) ()

s = []=

®€S

We can write » in two ways:
P(21,...,80) = chws, (1)
S
(21,...,2n) = Z csms, (2)
S

where ¢s and c satisfy

cpg Z0 (mod m),
es =0 (modm) if|S|isa power of a prime divisor of m,

cs=0 if |S| > N/(2p).
Let
o = Y cs,
|S|=¢
o = ) cs.
|S|=i
Then
oo = Cp,
0; =0 (modm) ifiisa power of a prime divisor of m.
ol=0 if i > N/(2p).
We note that
cs = Z (_1)|S|—|T|CT.
TCS

Therefore,

ol = Z 2(_1)ISI-ITICT

|S|=i TCS

Z Z (-1)I51-Tlep

T |§|=i,52T

=YY T (-1)siTly

i |T|=j |S|=i,82T
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i-J

- £ % (121

J

- (0 (121
= (_1)‘2(’;:1:)(—1)1'0,..

Recall that n = 2p* — 1. Let i = p*, so that n — i = p* — 1. By Kummer’s theorem,

(n" ) £ 0 (modp),

-1

(n27)

{ = (-1) ((:jj)(—l)*ai ¥ (’;:2)(—1)%0) (mod p)

(-1)} ((—1)‘0,- + (nt i) cm) (mod p)  because gy = cy.

0 (modp) ifO0<j<i.

Therefore

S
n

But 0; =0 (mod m) because i = p*. Therefore

ol = (-1)} (ni i) cp (mod p).

Because k was chosen so that 2p*+! — 1 > N, it follows that i = p* > N/(2p), so ¢! = 0.
Since (,2,) #0 (mod p), it is necessary that ¢y = 0 (mod p). Therefore

9(0,...,0)=7(0,...,0) =¢cp =0 (mod p).

Since ¢(0, .. ., 0) is divisible by every prime p that divides m, and m is square-free, ¢(0, . .., 0)=
0 (mod m), a contradiction. O

It follows that the MOD,,-degree of the complement of the MOD,, predicate is Q(N) if
m is a square-free composite number.

Theorem 4 Let g be a polynomial in binary variables ,,...,znx. Let m be a square-free
composite number whose largest prime divisor 18 pmax. Suppose that g satisfies:

g(z1,...,28) =0 (mod m) < Z z; #0 (mod m).
1<i<N

Then the degree of q is at least N/(2pmax)-



Proof: ¢ satisfies the hypotheses of Lemma 3. O

Assume that m is a square-free number and p is not a divisor of m. We can show that the
MOD,,-degree of the complement of the MOD,, predicate is (N'), and the MOD,,,-degree
of the MOD,, predicate is Q(N1/(p-1)).

Theorem 5 Let g be a polynomial in binary variables z,,...,2n. Let m be a square-free
number whose largest prime divisor is pmax. Let p be any prime that is not a divisor of m.

1. Suppose that q satisfies:

g(21,...,eN) =0 (modm) <= > z;#0 (mod p).
1<iSN

Then the degree of q is at least N/(2pmax)-
2. Suppose that g satisfies:

¢(21,...,2N) =0 (modm) <= Y z;=0 (modp).
1<i<N

Then the degree of g is at least |(N — 1)/(p — 1))~ /(2Pmax(p — 1))-
Proof:
1. g satisfies the hypotheses of Lemma 3.

2. Let n = |((N -1)/(p—-1))/(?-1)|. Let £ = (p—1)nP~! Write (p—1)(21+ - -+ 2n)P?
as the sum of £ monomials, y; + - - - + ¥z, each with coefficient 1. Let r(zy,...,2,) =
a(v1,---,9,1,0,...,0). Then

?(21,-..,2,) =0 (modm) <= (p-1)( Y. z)P"'+1=0 (modp)

1<ikn
<= (), =)l '=1 (modp)
1<ikn
= Z z2; #0 (mod p),
1<ikn

by Fermat’s little theorem. By Theorem 4 above, the degree of = is at least |((N —
1)/(p — 1))Y/(P=1)| /(2pmax). Therefore, the degree of g is at least equal to |((N -
1)/(p = 1))/®=)]/(2Prax(p — 1))-
o
These results can be extended to general m via standard techniques (cf. [14, 10, 11]).

Theorem 6 Let m be any number and let p be a prime that is not a divisor of m. Then
the MODy, -degrees of the functions MOD,, -MOD,, and ~-MOD,,, are all N 0(1), o

This is very different from the behavior for prime moduli. If m is prime then the MOD,,-
degree of the ~MOD,, function is a constant, m — 1 by a folklore theorem [10, 14, 11, 8, 19].

Corollary 7 Let m and n be any two numbers such that the set of prime divisors of n is
not contained in the set of prime divisors of m. Then the MOD,,-degree of the functions
MOD,, and -MOD,, are both N%(1),



Proof: Let p be a prime divisor of n, but not of m. Observe that

Y 2i=0 (modp) <= Y. ) z;=0 (modn),

1<i<|N/p) 1<5<p 1<i<|N/p)

so the MOD,,-degree of the function MOD,(z1,...,zxN) is at least the MOD,,,-degree of
the function MODyp(z1,...,2|n1)). where N' = |[N/p|. O

On the other hand if n» and m have the same set of prime divisors then the MOD,,-degree
of the function MOD,, is O(1) by a folklore theorem [14, 10, 11, 8, 19].

4 An oracle for the conjectured relations among MOD,,P
classes

The class MOD,,P is a generalization of Papadimitrou and Zachos’s counting class ®P.
First developed by Cai and Hemachandra [12], these classes have since been studied by
many others [9, 10, 14, 1, 23, 21]. It is known that MOD,,P = MOD,,,,P where m' is the
product of all distinct prime divisors of m [14]; that MOD,P C MOD,,P if every prime
divisor of n is a divisor of m [14]; that MOD,,P is closed under polynomial-time Turing
reductions if m is a power of a prime [10]; that MOD,,P is closed under intersection for
all m [14]; and that MOD,,P is closed under union if and only if MOD,,,P is closed under
complementation [14).

By standard techniques [13] it is possible to take circuit lower bounds and construct
oracles that separate complexity classes. From our circuit lower bounds we can construct
an oracle relative to which no containment relations hold among MOD,,P classes, except
for the relations listed in the preceding paragraph.

Theorem 8 There ezists an oracle relative to which:
¢ MOD,P C MOD,,,P if and only if every prime divisor of n is a prime divisor of m.
e MOD,,P is closed under complementation if and only if m is a prime power.
e MOD,,,P is closed under union if and only if m is a prime power.

(]

5 Open Problems and Conclusions

Relative to the § measure, AN D has a different complexity from OR, and MO D,, has a dif-
ferent complexity from ~M O D,,,. This says that § does not provide a robust, well-behaved
measure for the purposes of boolean function complexity. This deficiency is alleviated by
proposing a measure which is robust in both these senses.

Deflnition 8 A(F,m) = the degree of the lowest degree polynomial P over Z,, such that
F(&) =0 and F(§) = 1 implies P(£) # P(%).



Our results concerning O R are robust in the sense that A(OR,m) = §(OR,m) for all
m. We ask if there is a degree N¢ mod m polynomial for the OR which has only a quasi-
polynomial number of non-zero terms. If this is possible, we have shown that there would
exist a small depth, small sized circuit for the AND (using only MO D, gates).

As far as we know A(MOD,,m) could be Q(§(MOD,,m)). We consider our lower
bounds for § to be a first step in getting good bounds for the A measure.
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