
Analyzing a Quantitative Coordination
Relationship 1

Keith Decker and Victor Lesser
Computer and Information Science Department

University of Massachusetts

UMass Computer Science Technical Report 91–83
May 10, 1993

Abstract

Coordination is a crucial behavior in cooperative distributed problem solving (CDPS).
Analyzing coordination requires an understanding of the interplay between the agents,
their problem, and their environment. The core behaviors of distributed coordination
in CDPS systems are the coherent specification and scheduling of tasks over the set of
distributed agents working on sets of interrelated problems. The complexity of, and
uncertainty about, the problem interrelationships make distributed task coordination
difficult. This paper describes a causal model of this process that links the interre-
lationships, called coordination relationships, to the local scheduling constraints of
distributed agents. Besides coordination relationships, environmental uncertainty
and the lack of infinite computational resources also make distributed coordination
difficult.

It is not only the presence or absence of a coordination relationship that is im-
portant, but its quantitative properties: how likely is it to appear, how significant is
its effect, etc. These aspects determine the usefulness of a particular coordination
relationship in the context defined by an environment, a problem to be solved, and an
agent architecture. This paper discusses the analysis of coordination relationships,
using as an example our abstract model for the facilitates relationship. We detail
the derivation and assumptions of this model and apply it to the the design of a gen-
eralized coordination module that is separate from, and interfaces cleanly with, the
local scheduler of a CDPS agent. A set of simulation experiments is described that
test our assumptions and design process in the coordination of a group of real-time
problem-solving agents.

1To appear in the journal Group Decision and Negotiation, in 1993. This work was
supported by DARPA contract N00014-92-J-1698, and partly by the Office of Naval Research
contract N00014-92-J-1450, and NSF contract CDA 8922572. The content of the informa-
tion does not necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

0

1 Introduction

The core of the distributed coordination problem in Cooperative Distributed Problem
Solving (CDPS) systems [9, 17] is the coherent specification and scheduling of tasks
over the set of distributed agents working on sets of interrelated problems. From
a purely computational standpoint, coordination allows better use of computational
resources by intelligent scheduling, e.g., reducing needless redundancy, scheduling
the arrival of needed results, and load balancing. From a problem-solving perspective,
it also allows the detection (and thus the potential for resolution) of some kinds of
uncertainties and inconsistencies.

The partial global planning (PGP) approach to distributed coordination [11] in-
creased the coordination of agents in a network by such methods as providing predic-
tive results, avoiding redundant activities, shifting tasks to idle nodes, and indicating
goal compatibility. It achieved this by recognizing certain coordination relationships
among tasks in the Distributed Vehicle Monitoring Testbed (DVMT) environment and
producing the appropriate scheduling constraints. In fact, because the local scheduler
was so simple, the PGP mechanism supplanted it, recording and responding to many
of the appropriate scheduling constraints itself. This work has identified coordination
techniques that are helpful, but did not provide a deep analysis of when and why they
are appropriate. We believe that the right way to think about coordination is through
abstractions of these coordination relationships, defined in a domain-independent way.
These relationships need to be quantified, not just identified. Earlier work [8, 10] has
shown that a weakly qualitative approach to answering questions about coordination
can lead to unsatisfying answers—that different coordination algorithms (organiza-
tions, communication patterns, etc.) are better or worse depending on the situation.
These experiences and the large parameter spaces involved have led us to a more quan-
titative approach. It is the quantified features of the relationships that determine their
usefulness in the context of a particular environment, problem, and agent architec-
ture. A more complex view of coordination is necessary to develop general theories
for the application of coordination algorithms in different environments. Quantitative
coordination relationships are a step toward a theory of coordination in cooperative
distributed problem solving. After developing a quantitative theory, qualitative state-
ments may be derived from it.

We are now focusing on generalizing the partial global planning mechanism. This
process involves identifying the types of coordination relationships that are used by the
basic PGP algorithm and that exist but that are not used [6], developing a conceptual
model that clearly specifies the roles of a PGP-style coordination algorithm as identify-
ing coordination relationships and producing behaviors (primarily the creation and re-
finement of local scheduling constraints), and generalizing the partial global planning
algorithm itself (GPGP) [6]. Our current approach views the coordination mechanism
as modulating local control, not supplanting it—a two level process that makes a clear
distinction between coordination behavior and local scheduling [3]. By concentrating
on the creation of local scheduling constraints, we avoid the sequentiality of scheduling
in partial global planning that occurs when there are multiple plans. By separating co-
ordination from local scheduling, we can also take advantage of advances in real-time
scheduling algorithms to produce CDPS systems that respond to real-time deadlines.
We define these coordination relationships in a domain-independent manner; for ex-
ample, one task may provide results to another task that facilitate the second task

1

by allowing the second task to exploit the provided result to increase the quality or
reduce the duration of the second task. It is not only the presence or absence of a
coordination relationship that is important, but its quantitative properties: how likely
is it to appear, how hard is it to detect, how significant is its effect, etc. It is these
aspects that determine the usefulness of a particular coordination relationship in the
context of an environment, problem to be solved, and agent architecture.

This paper will focus on one coordination relationship, the facilitates relationship1.
This relationship (along with overlaps) was a major contributor to the results achieved
with partial global planning. We first discuss our conceptual model and develop a
detailed instantiation of it for the facilitates relationship. This more detailed model,
including such characteristics of the facilitates relationship as how likely is it to appear
and how significant is its effect, is then used to inform the design of the facilitates-
responding portion of the generalized partial global planning algorithm. Several hy-
potheses about our environmental assumptions and our design are articulated, and
experimental results are presented.

2 Conceptual Model and Environmental Assumptions

Our approach to distributed task coordination rests on a conceptual, causal model of
the generalized PGP-style distributed coordination process (see Figure 1). Informa-
tion flows from the environment through the agent’s coordination mechanism and local
scheduling mechanism, eventually influencing performance. First, a given environ-
ment and/or task domain, in conjunction with an agent’s architecture, induces certain
coordination relationships (CRs) between tasks in that environment. An agent follows
some coordination algorithm that detects or hypothesizes CRs and reacts accordingly—
the algorithm produces certain behaviors, for instance the creation and refinement of
local scheduling constraints (other possible behaviors include communication, negoti-
ation, and the creation of internal data structures). We can relate how the behavior
of the coordination algorithm (creating and refining constraints) affects the agent’s
scheduling behavior by basing our analysis on certain properties of the local schedul-
ing mechanism. Finally, the scheduling behavior affects the performance of the agent
and any organization of which it is a part not only by ordering and executing tasks but
also through incurring costs, such as communication and time.

The primary interruption to the flow of information just described is uncertainty.
Uncertainty also flows from the environment (the open systems concept[15]), and
through the above mechanisms to create local scheduling uncertainty. Less uncer-
tainty in the environment means less uncertainty in the existence and extent of the
CRs, less uncertainty in local scheduling, and therefore less complex coordination be-
havior (communication, negotiation, partial plans, etc) is needed (for example, one can
have cooperation without communication [14]). Even given complete certainty, the
lack of infinite computational resources/time results in the necessity of satisficing, not
optimal, behaviors. Even if agents had instant access to the complete state of the com-
posite system it does not mean that the environment provides sufficient computational
resources or time to the agents to exploit that voluminous information2.

1Other potential coordination relationships include inhibits, cancels, constrains, causes,
enables, and subgoal [6].

2Our description of the coordination process is consistent with social views of organiza-

2

Agent Y Agent X

Environment

Y X

Coordination
Module Coordination

Module

Local
Scheduler Local

Scheduler

1 2 4

3

5

3 1 2

4

5

 f
acilit

ate
s

 o

ve
rla

ps

Scheduling
Constraints

Scheduling
Constraints

X
Y

 facilitates

(overlaps)
n

Task in the environment

Representation of another agent's task

Representation of a local task and
scheduling order

X Y

Fig. 1: Conceptual view of the distributed coordination process

For example, the abstract domain of distributed search contains several potentially
uncertain coordination relationships [17]. The primary uncertainty lies in the subgoal
relationship: how a particular task relates to the problem as a whole. Will this task
be a part of a final solution? Are there multiple paths to the goal? How much effort
will it take? A secondary uncertainty lies in the presence of a facilitates relationship:
whether the amount of processing is greatly affected by the order in which goals are
solved. Ignoring these relationships will affect the amount of resources the agents use
through undesirable redundant processing, idleness, and distraction.

2.1 Environmental Assumptions

To build a model of coordination, we have made several assumptions about generic
CDPS environments. We assume that the agents share a common language for com-
municating results, as well as other information such as abstract goals needed for
coordination. We also assume, as the original PGP algorithm did, that there is a
global utility function shared by the agents. The interesting problems arise when
agents do not have equal or up-to-date access to all the necessary information. Other
than having a common language, the agents may be heterogeneous and have different
capabilities and responsibilities.

We are developing a formal model of task environment structures for CDPS and
single-agent scheduling tasks [5]. This model has three levels: the objective level,
describing a particular problem solving instance; the subjective level, describing what
objective level information is available when and at what cost to agents; and the

tional coordination mechanisms or behaviors: the use of rules, regulations, and standards; the
creation of supervisory and decision-making hierarchies; and specialization or departmental-
ization. Organizational structure should be viewed as part of the coordination algorithm.

3

generative level, describing statistical characteristics of the other two levels across
particular instances of a domain.

The objective level describes the essential structure of a particular problem-solving
situation or instance over time. It focuses on how task interrelationships dynamically
affect the quality and duration of each task. Briefly, the basic model is that task groups

occur in the environment at some frequency, and induce tasks to be executed by
the agents under study. Task groups are independent of one another, but tasks within
a single task group have interrelationships. Each task group has a deadline .
The quality of the execution or result of each task influences the quality of the task
group result in a precise way [5]. These quantities, deadline and quality, can be
used to evaluate the performance of a system.

An individual task that has no subtasks is called a method and is the small-
est schedulable chunk of work (though some scheduling algorithms will allow some
methods to be preempted, and some schedulers will schedule at multiple levels of
abstraction). There may be more than one method to accomplish a task, and each
method will take some amount of time or other resources and produce a result of some
quality. The term quality in the model summarizes several possible properties of ac-
tions or results in a real system: certainty, precision, and completeness of a result,
for example[7]. Quality of an agent’s performance on an individual task is a function
of the timing and choice of agent actions (‘local effects’), and possibly previous task
executions (‘non-local effects’). When local or non-local effects exist between tasks that
are known by more than one agent, we call them coordination relationships.

The environment is also characterized at the subjective level by a mapping from
objective structures in the environment to subjective structures available to the agents.
Subjective level characteristics include the distribution of tasks to agents, and the cost
of detecting a coordination relationship. The subjective level can also characterize the
uncertainty an agent has over the presence of tasks, their duration, quality, and so
forth, but we will not use these features in this paper.

The generative level characterizes a generic CDPS environment by statistically
characterizing such objective and subjective level features as the frequency of occur-
rence of a class of tasks, how pressed for time that class of tasks typically is (a relative
measure based on the average deadline), and how amenable it is to trading off time
for quality (the particular mix of methods available to each task, each with its own
average duration and result quality; c.f., approximate processing algorithms [7], any-
time algorithms [1]). There may also be a biased task class/agent distribution (certain
agents tend to receive certain classes of tasks); a priori likelihoods for the presence
of a CR (such as facilitates); costs for detecting a CR; and, in this case, the estimated
effect of a facilitates relationship on the facilitated task’s duration and quality.

Agents themselves are also part of the environment. Agents have local scheduling
algorithms about which we want to make certain limited, explicit assumptions dealing
with how the local scheduler responds to particular constraints (see Section 2.3). A
final assumption is that each agent has the same coordination algorithm.

2.2 The Facilitates coordination relationship

Informally, the facilitates coordination relationship is defined so that Task A facilitates
Task B if the result of Task A can be used to increase the local utility of B. This can
occur because the two tasks are interdependent. The measure of utility is often some

4

trade-off between increased quality and decreased time to solution. The facilitates
relationship, therefore, has two parameters (called power parameters) d and q, that
indicate the effect on duration and quality respectively. The effect varies not only
through the power parameters, but also through the quality of the facilitating task
available when work on the facilitated task starts. Let facilitate with some
duration power d (let q 0 for this example). If is completed with maximal
quality, and the result is received before is started, then the duration will be
decreased by a percentage equal to the duration power d of the facilitates relationship.
If the result received is of less than maximal quality, d is reduced proportionately:

d
quality received
maximal quality

This model assumes that the proportional reduction is linear. Communication after
the start of processing has no effect; the effect on quality when q 0 is computed
analogously. A fuller treatment of the mathematical details can be found in [5]3.

Two tasks can be mutually facilitating; either there will be a clear preference
for one over the other via the shared global utility function, or they are co-routining—
iteratively exchanging results while executing in parallel. A side effect of the facilitates
relationship can be that the existence of a facilitates relationship from A to B increases
the likelihood that task B will produce results that contribute to a final or otherwise
usable solution (called “goal compatibility”).

When faced with A facilitates B, the partial global planning algorithm makes sure
that the result of A is communicated to the agent performing B, and delays the start
of B until after A is completed. The generalization of this is that the detection of
this relationship affects the local schedulers of the two agents by adding or refining
constraints on what approximations touse, deadlines, ready times, expected durations,
and even what tasks to schedule.

2.3 Local Scheduling

How can we say anything useful about the effect of a generalized partial global plan-
ning (GPGP) algorithm on performance without knowing the details of the agent’s
local scheduling algorithm? The key is to make any claims contingent on properties of
the local scheduling mechanism. In our case, we call these claims admissibility and
bounded rationality properties.

We have chosen our particular approach for two reasons. First, it allows us to draw
a clear line between the “coordination” part of an agent architecture and the rest of the
agent. This validates our claim that we are examining general issues of coordination
and the effect of environmental factors on coordination, while still allowing us to
ground experiments in real, implemented agent architectures. It also is appealing
from an asynchronous, layered subsumption architecture point of view [2]. Secondly,
it allows us to take advantage of the advances currently being made in planning and
scheduling. The original PGP mechanisms had to deal with a rather unsophisticated
local scheduling mechanism; to do so, it often kept track of and enforced constraints

3Note, for example, that we can represent the cases where d and/or q are negative, resulting
in ‘negative facilitation’. Such a relationship may be useful for modeling the phenomena of
distraction [3].

5

on its own. More sophisticated “real-time” schedulers actually make the coordination
task easier by directly interpreting most of the needed coordination behaviors (in the
form of scheduling constraints) [4].

Scheduling constraints may be hard or soft. Admissibility refers to hard con-
straints. A local scheduling algorithm is admissible with respect to a hard constraint
if it always produces a feasible schedule if that is possible. Rationality refers to utility-
maximizing behavior of the local scheduler with respect to soft constraints (assume
each constraint has some utility associated with it). In many systems, perceived utility
is represented by an objective function or evaluation function.

For some combinations of simple constraints and utility functions, there exist well-
behaved local scheduling algorithms. For example, if is a hard ready (start)
time constraint on task , and is a soft deadline constraint on task , and

(“any task that starts later than task has a deadline
later than task ’s deadline”), and the objective function is to minimize the number of
tardy jobs (those that miss their deadlines) then there exists a 2 local scheduling
algorithm that is admissible (with respect to ready times) and rational (with respect
to soft deadlines) [16]. As a designer of a coordination algorithm, we now have some
powerful information for designing coordination algorithms.

For many scheduling problems a useful (i.e., non-exponential) local scheduling
algorithm cannot be proven to be rational. Often heuristic methods are used to come
up with a schedule; for example, the original PGP mechanisms included a hill-climbing
scheduler. In such cases, the scheduler often satisfices (searches to a prespecified
aspiration level), rather than optimizes, and the local scheduler can be considered to
be (informally) boundedly rational. Instead of assuming that any soft constraint the
coordination algorithm adds is always obeyed, the coordination algorithm can instead
depend on an event being signaled if the constraint is or will be violated.

It is the uncertainty in the environment that makes the agents unable to “pre-
program” all of their behaviors in advance and thus requires the dynamic recognition of
and reaction to coordination relationships. A local scheduler usually has considerable
uncertainty over the constraints that it uses to schedule, and about whether it has all
the constraints that it needs. Without uncertainty there is little need to detect and
communicate CRs at runtime. For example, the facilitates relationship can affect the
local scheduler ’s beliefs in what the proper deadlines and ready times for tasks are,
what level of quality (approximation) is appropriate, task durations, and even what
tasks to schedule. Different CRs will affect different constraints, and we may be able
to prove that in certain environments we do not need to detect certain coordination
relationships because they are subsumed by others or are too weak.

3 Design of a CoordinationModule for Facilitates

Our conceptual model of coordination leads to the design of a coordination module
to handle, for example, the facilitates relationship. Similar types of analysis will
occur for other relationships. This paper does not discuss how to relax constraints
in overconstrained situations resulting from many different relationships, but the
discussion at the end of this section on breaking commitments indicates the direction
of our thoughts. According to our causal model, a coordination module has three
basic decisions to make: when to detect and communicate about the CR, what local

6

scheduling constraints to add when it is detected, and what to do when an error occurs.
For different environments, this results in a design that is more or less complex. In
some environments, the facilitates relationship does not exist or is never useful to
detect. In others, it is a useful constraint but not worth the trouble of negotiating or
rescheduling when a problem occurs. In still others, the relationship affects problem
solving so significantly as to make it worthwhile to expend considerable effort into
achieving the scheduling commitments that it entails. A key point is that coordination
relationships are abstractly defined in a domain-independent way, so we can catalogue
coordination strategies and characterize them by potential features of an environment
and task.

When should an agent test for a relationship? An agent can potentially test for
the presence of the facilitates relationship between any new local task and the tasks
it knows about from other agents. The costs per task here include the processing cost
of testing for the relationship between two tasks and the cost of communication to get
more information if the test result is too uncertain (detect). Note that the test itself is
domain specific, even though the facilitates relationship is general. If the relationship
is present, the benefits include some increased utility (reduction in time, increase
in quality of the facilitated task) (fac). The benefits will accrue fully only if the
scheduling constraints implied by the new detected relationship can be incorporated,
and only if the facilitating task is accomplished.4 Costs are also incurred when the
relationship is present, including the direct costs of communicating the result, adding
the scheduling constraints, and updating the models of each others’ tasks, and the
indirect costs of delaying some tasks (fac). Using the a priori likelihood Prfac of a
facilitates relationship from the environmental model, we can build an expression for
the form of the expected utility of the relationship, Prfac fac fac detect. In many
environments, such as the DVMT, this expression will be relatively static, with detect
relatively constant and with fac and fac depending on many environmental factors,
including the task at hand, the current system utilization, etc. (see the experiments
in Section 4.2). If detect is not relatively constant, then it is beneficial to consider
separately the decision to detect a relationship and the decision to communicate about
it.

When a relationship is received from another agent, what should be done?
There are four basic cases:

Need more communication: In this case the other agent was not certain enough
about the presence of the relationship to make any commitments and has re-
quested more information. The second agent can use the task information from
the first agent to make more detailed tests, at deeper levels of detail, than the
first agent could. The second agent can then verify the presence or absence of the
relationship, and if it is present appropriately inform the first agent, updating
its model, and continuing with one of the other cases below [21]. By communicat-
ing only when potentially necessary, and at successively greater levels of detail,
overall communication is reduced [6, 10].

4For some relationships, there is also a chance the benefit will accrue serendipitously without
the detection of the relationship. When possible, tasks can be structured to take advantage of
this fact, which may reduce coordination costs considerably.

7

Other agent task A facilitates local task B: Delay the start of task B to the com-
mitted completion time of task A. Update the predicted duration of B. May also
increase the belief that B is part of some solution (goal compatibility).

Local task A facilitates other task B: Commit to a communication deadline for the
result of task A (based on any deadline information known about task B) and
commit to a certain level of quality (approximation) for task A.

Mutual Facilitation: Either the benefits clearly imply a winning order for the two
tasks or the two tasks should really co-routine. In the second case the tasks
should be constrained to execute concurrently and micro-scheduled to exchange
partial results with one another while executing.

How do we compute how long to delay a task B that is facilitated by a task A? For
example (see Figure 2), if

utility is a function of result quality only (as opposed to a function of both quality
and missed deadlines)

the local scheduler does not assure the minimal quality of a task result

facilitates affects only the durations of tasks directly

then agents must attempt to produce their highest quality solutions. Suppose there
are several different tasks such that facilitates each . If we estimate the latest
start time for each task in order to produce a highest quality solution, and estimate
the finish time for task , then all tasks with latest start times after the estimated
finish of (2 and 3 in the figure) should be delayed to the minimum latest start
time of those tasks (2 in Figure 2; times must be calculated taking communication
time into account if it is substantial). If the local scheduler were boundedly rational
with respect to quality constraints, then the estimate of the latest start time of B could
be modified by (made later by) the estimated effect of the facilitates relationship for
the maximally assured minimal quality of the result of task A.

What should be done when something goeswrong? One key to handling errors
is keeping track of the benefit derived from the commitments currently made. The
other key is to keep track of when handling an error is worthwhile. Error handling
is also where the most complex decision making occurs. If there are no errors, the
coordination behaviors can easily be shown to have a positive effect on system perfor-
mance. There are three basic causes of errors in the coordination behaviors involved
with the facilitates relationship, although the basic question always comes down to
“when should I break a commitment”?:

Scheduling problems: Given that A facilitates B, either the agent with A cannot
commit to the scheduling constraints on A needed to accomplish B, or B cannot be
delayed to the committed completion of A. The first thing to note is that fixing this may
be more expensive in processing time than letting the agents act in an “uncoordinated”
manner. If the benefit is clearly worthwhile, then in the second case (where B cannot
be delayed) there can be a one-shot negotiation where the agent with B proposes the
latest start time for B (given that the result from A is received). If this fails, and in the
first case, it may be possible to reduce the quality of the result of A, or deliver a partial
result early, and still save time or increase the quality of the result of B. Finally, the
only option left is to break an existing commitment, as discussed below.

8

B1

A

B3

B2

Task Deadline
Task A Estimated Finish Time (max quality)

Task Latest Start Time (max quality)
Minimum Latest Start Time

Extra Time (slack)

Delay

Fig. 2: Calculating Delays

Task failure: In the same situation, what happens if task A fails? The agent with
A can possibly still fulfill its original commitment by trying another method. If this
is not possible, then the agent with A must notify the agent with task B that it was
unable to keep its commitment. The ‘failure’ will in some domains still produce some
partial result that may help with task B. If such a partial result is not available or
not useful, the second agent can (if it is still worthwhile) try to delay B further so
that A can be completed. If this fails then the only option left is to break an existing
commitment.

Non-intentional break in a commitment: This could occur for many exter-
nal reasons, but the primary local manifestation is that the boundedly rational local
scheduler has broken a commitment because it did not have enough time to come up
with another schedule. Again, the affected agent must decide if it is worthwhile to
pursue the matter, and if so, the only recourse is for some other commitment to be
(intentionally) broken.

How does an agent decide what commitment should be broken, if it arrives at this
decision? Breaking a commitment is complex because each commitment may be part
of a web of commitments spreading across many agents, following the network of CRs
that tie together the interdependent subproblems. An agent without a global view may
not be fully aware of this web of commitments. Balancing this view of an agent unsure
of what constraint to remove or weaken for fear of everything collapsing all around
it is the inherent resiliency of the satisficing local scheduler that will try to complete
tasks without exploiting the CR. While it is possible for a break in a commitment to
impact many other unknown agents, a break in the commitment of least benefit is
not liable to have this effect due to the slack and resiliency of each successive local
scheduler. Slack has long been viewed as a coordination behavior and as such should
be an organizational parameter [8].

This treatment does not give full justice to the analysis of this particular problem,
to which we will have to devote a future analysis of its own.

9

4 Hypotheses and Experiments

As we flesh out our conceptual model to a set of analytic components by making various
assumptions, we develop a number of hypotheses about these components that can be
experimentally verified. This section will concentrate on two quantitative properties
of the facilitates relationship: how likely it is to appear and how significant is its effect.
This paper does not deal with the third property, how hard the CR is to detect. We
would like to experimentally verify our formulations. To do so we are taking a tack
somewhat between the analytical but perhaps too simplified approach of Malone [18]
and the non-analytical but probably too specialized approach of the DVMT, by using a
statistical simulation of a large class of CDPS environments.

4.1 The Simulation

The simulation is driven by the environment, task, and agent characteristics we dis-
cussed in Section 2.1; the tasks represent abstract computations. In the experiments
below, there were two abstract task classes. One class of tasks had a mean time be-
tween arrivals of 40% less than the other. Each task arrives uniformly randomly at an
agent. Facilitation relationships are generated between tasks with a base probability
that decreases linearly with the difference between task arrivals5. For example, if
there are 642 tasks generated, and a base probability of 0.5, interrelated tasks are
grouped into clusters approximately distributed as in the histogram in Figure 3. If A
facilitates B and C, and C facilitates D, that cluster is of size 4. This gives an indication
of the webs of commitment that may potentially exist.6

Each agent uses a sophisticated “design-to-time” (DTT) real-time local scheduler
based on the concept of approximate processing[7, 12]. The DTT scheduler will choose
a method for a task based on the amount of time available for that task and the
other tasks currently on the agenda. The DTT scheduler may change the method
being used during execution at a task monitoring point; in the experiments described
here 50% of the work done before changing methods is lost. The DTT scheduler is
boundedly rational for deadline constraints, and was modified to be boundedly rational
for delay constraints (delaying the start of a task until the result of another task is
received). Each class of tasks had 5 methods of varying quality and duration; each
task execution was monitored by the DTT scheduler three times. The actual duration
and quality values for each method for each task are randomly generated from normal
distributions with means equal to the estimated values and variances as specified

5An experiment not reported here showed that in an environment where the probability of
a facilitates relationship drops off exponentially instead of linearly, the system response char-
acteristics are similar to a linear environment with the same number of detected relationships.

6The total number of ways to distribute tasks to agents is . The number of ways to
distribute tasks to agents where each agent gets at least 1 task (surjections) is ! ,
where are the Stirling numbers of the second kind. So the expected number of n total
agents that are involved in a k-cluster is:

1

!

10

Cluster Size

N
u
m
b
er

 o
f

C
lu

st
er

s

160

140

 40

 20

 0
1 2 3

Fig. 3: Histogram of sizes of task clusters for Prfac 0 5, 642.

for the method/task combination. The shared global utility function by which agents
are judged is the total quality of their individual task solutions. The design-to-time
scheduling algorithm used by each agent ensures that under normal circumstances (a
required utilization (system load) of less than 3) less than 2% of the tasks ever miss a
deadline. This is a property of the existence of low cost/low quality approximations.

Observations in the experiments that follow are made from average responses over
5 statistically generated runs of 1000 simulated world time units. The number of
tasks that are actually generated depends on their arrival rate, which was varied.
We also varied the a priori likelihood (Prfac) of a facilitates relationship between two
tasks of the same class and the significance of the effect it has on the time of the
facilitated tasks (called the power of the CR and measured by the percent reduction in
time facilitated).

Each run consists of two sets of 4 agents. Each of the two agent-sets receives
exactly the same set of tasks at exactly the same times—one agent-set uses the orig-
inal DTT scheduling algorithm and no communication, the other agent-set uses the
DTT scheduling algorithm modified to be boundedly rational with respect to delay
constraints and to always detect and communicate coordination relationships. Each
of the four agents in each agent-set receives precisely the same set of tasks as its coun-
terpart in the other agent-set. The coordinating agents calculate delays as described
in Figure 2, and handle the potential errors as described in Section 3. The coordinat-
ing agents do not enter into negotiation, however, but rather simply break the failed
commitment.

The primary performance metric in the experiments presented here is the percent-
age increase in quality between each pair of agents that received the same task set (a
paired response), and then averaged across the agent pairs. This metric is indicated
in the figures by APQI (average percent quality increase). The other variable that was
manipulated was the mean time between arrivals of the tasks; we can then compare
relative increases in quality based on the average utilization required by that set of
tasks. When the average required utilization is greater than 1, it means that it is

11

impossible to complete all tasks without approximating some of them.
There are three characterizations of this simulated environment that make it dif-

ferent from the actual environment of a system such as the DVMT:

In interpretation environments like the DVMT, not all tasks need to be done, but
in our simulation they do.

Our simulation assumes that approximating a result has only a local effect on
quality, as opposed to reducing the quality of a whole group of related tasks.

Our simulation does not contain a model of the relationship between the fact that
a task does or doesn’t need to be done, and the fact that a facilitates relationship
does or doesn’t exist (goal compatibility).

On the other hand, our measurements are against a real-time scheduling algorithm
that likewise does not take these factors into account. The addition of these extra char-
acteristics to the task structure requires the addition of new coordination relationships
(especially subgoal).

4.2 When to detect and communicate facilitates

The first suite of experiments (Figures 4 and 5) involves the effect of the two quantita-
tive properties of facilitates, likelihood (Prfac) and duration power (d). Our hypothesis
is that the simple expected utility model given in Section 3 can be instantiated as a
decision rule for each agent as to whether or not that agent should detect, communi-
cate, and react to the facilitates relationship. The alternative is that the simple linear
relationship is in fact not linear, or is drowned out by secondary characteristics such
as the cluster size of the facilitates relationship or scheduler errors which cause the
benefits of the facilitation relationship fac to become non-linear with respect to the
power of the relationship.

To test this hypothesis, we first gathered raw data from 90 paired-response sim-
ulations of 4 agents that never detect, communicate, or react to the facilitates CR,
and 4 agents that always detect, communicate, and react—5 simulations at each of 6
different duration powers and 3 different likelihoods (Figure 4). Each data point in
the figure is the average of 20 computed percent quality increases (5 experiments of 4
paired agents each). All 90 experiments were simulated with the same frequency of
task arrival (an average required utilization of 1.5—too high to allow all tasks to be
completed at maximum quality without communication, but not so high as to saturate
the DTT scheduler). Direct communication costs and detection costs were fixed at 0.
Examining Figure 4, we find that below a power of 10%, in this example, exploiting
the facilitates relationship costs more in indirect costs than it is worth. The indi-
rect costs arise primarily from agent’s delaying tasks and rearranging their schedules
unnecessarily.

In Section 3 we postulated the form of the expected utility of detecting, communi-
cating, and reacting to the CR as Prfac fac fac detect. To instantiate this model
for this experiment, we let detect 0, make the benefits proportional to the duration
power (fac d) and the costs constant (since the arrival rate was held constant)
(fac = c). Applying linear regression we achieve a fit that explains 98% of the observed
variance 2 (1 013, 17 03, both parameters are significant at the 0 01

12

-10

0

10

20

30

40

50

60

70

0 20 40 60 80 100

0.25

0.5

1

POWER

Av
er
ag
e
P e
rc
en

ta
ge

 Q
ua

lit
y
I n
cr
ea
se

Likelihood

Fig. 4: The effect of the power of the facilitates relationship on relative quality at
different likelihoods

level). Thus this formula could be used as a decision rule by each agent to decide if it
is worthwhile to detect, communicate, and react to the coordination relationship.

Figure 5 is a depiction of the surface defined by the three curves in Figure 4, via
cubic interpolation. It succinctly shows how the positive effect of duration power grows
with the likelihood. Note the flattening at the high end of the power and likelihood
scales, caused by a ceiling effect since in this region all tasks are being accomplished
at maximum quality (and so one cannot do any better).

4.3 Facilitating Real-time Performance

The second suite of experiments (Figure 6) shows that the average relative increase
in quality in the results of communicating agents versus non-communicating agents
grows with the required utilization of the system (load). The harder the task set
is, the more important detecting the facilitates CR is, even at low power. The left
side of Figure 6 shows duration power versus the relative quality increase for several
required utilizations (system loads)7. The right side of Figure 6 shows the effect of
required utilization on relative quality for duration powers of 25% and 50%. The a
priori likelihood of the presence of the CR was fixed at 0.5 for Figure 6. We would
expect both the benefits and costs to change when the required utilization changes;
the question is how much. The data from these experiments is not enough to disprove
that the increase in quality grows linearly.

These figures show the increase in quality, but just as important is the decrease
in missed deadlines (not shown here), which is similar. At high loads (high required
utilization) the non-coordinated agent set reaches an asymptotic quality performance
(which is less than maximum quality across loads; see Figure 7), and an unbounded
number of missed deadlines. This figure depicts the absolute quality response of a
single agent system over approximately 250 runs. The response has three major com-

7Two data points on the utilization = 6 line, (power = 75, APQI = 555) and (power = 100,
APQI = 1010), were left out for clarity.

13

0
20

40
60

80
100

Power
0.4

0.6

0.8

1

Likelihood

0
20
40
60

APQI

0
20

40
60

80
100

Power
0.4

0.6

0.8

1

Likeli

0
20
40
0

Fig. 5: The effect of the power of the facilitates relationship on relative quality at
different likelihoods

-50

0

50

100

150

200

250

300

0 20 40 60 80 100

0.75

1.5

3

6

Required U
tilization

POWER

Av
er
ag
e
Pe
rc
en

ta
ge

 Q
ua

lit
y
In
cr
ea
se

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

50

25

Pow
er

Required System Utilization

Av
er
ag
e
Pe
rc
en

ta
ge

 Q
ua

lit
y
In
cr
ea
se

Fig. 6: The effect of power and required utilization (system loads) on relative quality

14

ponents: up to around a utilization of 1, absolute quality grows quickly as the number
of tasks increases—each task is usually done at maximum quality; from around 1 to
around 5, the DTT scheduler begins to trade off low quality, fast approximations for
maximum quality, slow methods to avoid missing deadlines; above 5, every task is
scheduled with the fastest method (resulting in asymptotic quality performance) and
missed deadlines grow without bound.

•

• •

•
•

•
••

• •
•

•
•
• •

• •• • •

•

•

•

•
• ••

• •

•
•

•
•

• • • •• • •

•

•

•

• •• • • •
•

•
• •

• •
• ••• •

•

•

•
•
• ••

• •• •

•
•

•
• • • • • •

•

•

•

• •• • • • •

•
• • • •

• • • • •

•

•

• • •
• •

••
•

• ••

• •
•

•
• • •

•

•

•

• • •

•

•
• • •

•• ••
••

• ••

•

•

• •

• • • • •
•

• •
•

•
•• • • • •

•

•

•

•
•

• •• •

• • •

• •• •
• • • •

•

•

•
•• • •

•
•

•
• •

• •
•• • • ••

•

•

• • • ••
• •

•
• •

• •
• • • • ••

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

A
bs
ol
ut
e
Q
ua

lit
y

Required System Utilization

Fig. 7: Effect of system load on the absolute quality for a one agent system

The effect of detecting, communicating about, and reacting to the facilitates CR is
to move this curve upward. Even though the indirect costs of delaying tasks due to
exploiting facilitation may increase under heavy loads, the average relative quality
increase remains at 0 (rather than becoming negative) because the communicating
agents can do no worse than the non-communicating agents, who are continuously
executing tasks with the fastest, minimal quality method. The indirect costs can
show up in more missed deadlines before the non-communicating schedulers become
saturated near a utilization of 5. Figure 8 shows that while the relative performance of
the coordinating agents grew in Figure 6, the absolute performance actually levels-off
(note that the ‘max-quality’ line represents all tasks being completed at maximum
quality, which is an impossible ideal to ever achieve for a required utilization greater
than one).

4.4 Delay

We ran a final suite of experiments to validate the effect of the delay time on per-
formance. Assume again that task facilitates tasks as shown in Figure 9. The
possible amounts by which to delay a task are bounded below (number 1 in Figure 9)
by task ’s estimated finish time for some quality, and bounded above (number 3 in
Figure 9) by the minimum latest start time of all tasks that can be started after

finishes calculated to include the predicted effect of receiving the maximum quality
result of task . For example, since the result of task will reduce the amount of time
required for tasks , each task’s latest start time would increase (move to the right)
in Figure 2. Our choice, to delay to the minimum latest start time computed as if the
result of A will not be received, is somewhere in between (number 2 in Figure 9).

We would like to show how this choice has the highest expected utility for the
agent pair. Given an environment where power d = 50%, likelihood Prfac = 0.5, and

15

10

30

50

70

0 1 3 5

achieved quality

max quality
A

bs
ol

ut
e

Q
ua

lit
y

Required System Utilization

Fig. 8: Effect of system load on the absolute quality

B1

A

B3

B2

Task Deadline
Task A Estimated Finish Time (max quality)

Task Latest Start Time (max quality)

Extra Time (slack)
Delay

Task Latest Start Time (if facilitative result is recieved)

1 32

Fig. 9: Other ways of calculating delays.

16

a mean time between arrivals of 2.5, we achieve the following average percentage
quality increases:

Shortest Delay (1) Normal Delay (2) Longest Delay (3)
APQI 19.1 26.4 22.9

When an agent commits to finishing task A early, it does so with a soft deadline—
the task is scheduled to finish at the soft deadline time but monitoring will not switch
to a faster, lower quality method unless the hard deadline is threatened. To commit
to a hard deadline in order to take advantage of a facilitates relationship would be a
complex decision, as the agent would have to weigh the cost of a potential local loss
of quality with the potential gain in quality (through reduced duration) at the remote
node. In general, shortening the delay hurts quality because often the facilitating
task A does not quite finish on time (it does not have a hard deadline) and so the
facilitated task begins without A’s result. Lengthening the delay can also hurt quality
because sometimes task A does not complete with the required quality (remember, the
current scheduler is not boundedly-rational with respect to minimum needed quality),
and so the quality of any delayed task B suffers. Delay time is similar to the slack
time that was investigated in Durfee and Lesser ’s predictability vs. responsiveness
experiments[8].

5 Discussion and Conclusion

These experiments show that abstract simulations can produce interesting phenomena
and can be used to validate hypothesis about coordination strategies. Our simulations
lead us to believe that relatively simple models may be sufficient to explain and predict
many observed coordination behavior characteristics in real environments. Such mod-
els can then be used both to design coordination algorithms for specific environments,
and to build more sophisticated agents that can better analyze and apply the range of
coordination behaviors available to them in a particular situation.

There are several short term directions we are currently pursuing with respect to
this work. The first is in verifying our model of the expected utility of communicating
the facilitates relationship, and the second is building a low-level model for the neces-
sary task delay times to analytically explain our experimental observations. We need
to modify the DTT real-time scheduler to handle quality constraints, and to exploit
information about tasks arriving in the future (as did the original DVMT approximate
processing scheduler [4, 12]).

The task environment model used for the experiments in this paper has a very
simple view of task interactions (see the characteristics mentioned in Section 4.1, for
example), but we believe decision rules of the form described in this paper will be useful
in more complex environments. We have developed a much more comprehensive model
(introduced in [5]) of task environments that allows a mathematical specification of
task interactions for either analysis or simulation. We are using this model to analyze
problems in CDPS, parallel scheduling, and real-time scheduling. For example, we are
building a much more detailed model of distributed sensor network task environments,
and are using this model to predict the effect of various agent organizations and show
precisely when meta-level communication can improve performance.

17

Les Gasser and Michael Huhns, in the front matter of the 1989 collection Dis-
tributed Artificial Intelligence, Vol. II, include in a list of issues requiring further
research [13]:

Deep Theories of Coordination: Researchers in DAI have developed several weak
and highly constrained theories of coordination, which provide guidance and some
techniques for designing DAI systems. In general, these are still too specialized
and project-specific. We still have no broadly useful definitions of terms such as
coordination, cooperation, or interaction. To be sure, we do have the “cooperation
without communication”, “rational deal-making”, and “probabilistic interaction”
theories of Rosenschein, Genesereth, Breese, and Ginsberg [20, 14, 19], but these
are bound by highly restrictive assumptions. The promising “metalevel control”
and “partial global planning” techniques of Lesser and his colleagues [3, 11] have
not yet become full-fledged coordination theories that can guide us to other new
practical coordination techniques.

This paper outlines a methodological approach toward building a theory of coordi-
nation. We have discussed our conceptual model of coordination, how it can be applied
to the design of a coordination algorithm, and experiments that begin to verify and
concretize that model. Among the key ideas presented here is the environmental anal-
ysis of CDPS systems that characterizes the features of the external environment,
the problems being solved, and the architectures of the agents so that they can be
used to design effective coordination algorithms. Also key is the separation and flow
of information from the coordination relationships in the environment through the
coordination algorithm to the local scheduler by means of additional or strengthened
scheduling constraints.

Other work has had the characteristic of showing coordination techniques that are
helpful, but not providing a deep analysis of when and why they are appropriate. We
think that the right way to think about coordination is through the general coordina-
tion relationships we have discussed. These relationships are a step toward a theory
of coordination in cooperative distributed problem solving.

Acknowledgments

The authors would like to thank Alan Garvey for his work on the real-time scheduler,
and for producing the histogram in Figure 3.

18

Endnotes

* This work was supported by DARPA contract N00014-92-J-1698, and partly by
the Office of Naval Research contract N00014-92-J-1450, and NSF contract CDA
8922572. The content of the information does not necessarily reflect the position
or the policy of the Government and no official endorsement should be inferred.

1 Other potential coordination relationships include inhibits, cancels, constrains,
causes, enables, and subgoal [6].

2 Our description of the coordination process is consistent with social views of
organizational coordination mechanisms or behaviors: the use of rules, regu-
lations, and standards; the creation of supervisory and decision-making hier-
archies; and specialization or departmentalization. Organizational structure
should be viewed as part of the coordination algorithm.

3 Note, for example, that we can represent the cases where d and/or q are neg-
ative, resulting in ‘negative facilitation’. Such a relationship may be useful for
modeling the phenomena of distraction [3].

4 For some relationships, there is also a chance the benefit will accrue serendip-
itously without the detection of the relationship. When possible, tasks can be
structured to take advantage of this fact, which may reduce coordination costs
considerably.

5 An experiment not reported here showed that in an environment where the
probability of a facilitates relationship drops off exponentially instead of linearly,
the system response characteristics are similar to a linear environment with the
same number of detected relationships.

6 The total number of ways to distribute tasks to agents is . The number
of ways to distribute tasks to agents where each agent gets at least 1 task
(surjections) is ! , where are the Stirling numbers of the second kind.
So the expected number of n total agents that are involved in a k-cluster is:

1

!

7 Two data points on the utilization = 6 line, (power = 75, APQI = 555) and (power
= 100, APQI = 1010), were left out for clarity.

References

[1] Mark Boddy and Thomas Dean. Solving time-dependent planning problems. In
Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence, August 1989.

[2] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1):14–23, March 1986.

19

[3] Daniel D. Corkill and Victor R. Lesser. The use of meta-level control for coordi-
nation in a distributed problem solving network. In Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, pages 748–755, August
1983.

[4] Keith Decker, Alan Garvey, Marty Humphrey, and Victor Lesser. A blackboard
system for real-time control of approximate processing. In Proceedings of the
25th Hawaii International Conference on System Sciences, January 1992. Ex-
tended version to appear in the International Journal of Pattern Recognition and
Artificial Intelligence 7(2) 1993.

[5] Keith S. Decker, Alan J. Garvey, Victor R. Lesser, and Marty A. Humphrey. An
approach to modeling environment and task characteristics for coordination. In
Charles J. Petrie, Jr., editor, Enterprise Integration Modeling: Proceedings of the
First International Conference. MIT Press, 1992.

[6] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning
algorithm. International Journal of Intelligent and Cooperative Information Sys-
tems, 1(2), June 1992.

[7] Keith S. Decker, Victor R. Lesser, and Robert C. Whitehair. Extending a black-
board architecture for approximate processing. The Journal ofReal-TimeSystems,
2(1/2):47–79, 1990.

[8] E. Durfee and V. Lesser. Predictability vs. responsiveness: Coordinating problem
solvers in dynamic domains. In Proceedings of the Seventh National Conference
on Artificial Intelligence, pages 66–71, August 1988.

[9] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Cooperative distributed problem
solving. In A. B. Barr, P. Cohen, and E. Feigenbaum, editors, The Handbook of
Artificial Intelligence, volume 4, pages 83–147. Addison Wesley, 1989.

[10] E. H. Durfee and T. A. Montgomery. Coordination as distributed search in a hier-
archical behavior space. IEEE Transactions on Systems, Man, and Cybernetics,
21(6):1363–1378, November 1991.

[11] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework
for distributed hypothesis formation. IEEE Transactions on Systems, Man, and
Cybernetics, 21(5):1167–1183, September 1991.

[12] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. IEEE Trans-
actions on Systems, Man, and Cybernetics, 23(6), 1993. Special Issue on Schedul-
ing, Planning, and Control.

[13] L. Gasser and M. N. Huhns, editors. Distributed Artificial Intelligence, Vol. II.
Morgan Kaufmann, 1989.

[14] M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein. Cooperation without
communication. In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 51–57, Philadelphia, PA., August 1986.

[15] Carl Hewitt. Open information systems semantics for distributed artificial intel-
ligence. Artificial Intelligence, 47(1):79–106, 1991.

20

[16] H. Kise. A solvable case of the one-machine scheduling problem with ready and
due times. Operations Research, 26(1), 1978.

[17] V. R. Lesser. A retrospective view of FA/C distributed problem solving. IEEE
Transactions on Systems, Man, and Cybernetics, 21(6):1347–1363, November
1991.

[18] Thomas W. Malone. Modeling coordination in organizations and markets. Man-
agement Science, 33:1317–1332, 1987.

[19] J. S. Rosenschein and J. S. Breese. Communication-free interactions among
rational agents: A probabilistic approach. In L. Gasser and M. N. Huhns, editors,
Distributed Artificial Intelligence, Vol. II. Pitman Publishing Ltd., 1989.

[20] J. S. Rosenschein and M. R. Genesereth. Deals among rational agents. In Proceed-
ings of the Ninth International Joint Conference on Artificial Intelligence, pages
91–99, August 1985.

[21] Frank v. Martial. Coordinating Plans of Autonomous Agents. Springer-Verlag,
Berlin, 1992. Lecture Notes in Artificial Intelligence no. 610.

21

