”

Can Too Much Perspective Spoil
the View? A Case Study in 2D
Affine Versus 3D Perspective
Model Matching

J.R. Beveridge and E. Riseman
COINS TR91-86

November 1991

Can Too Much Perspective Spoil the View?
A Case Study in 2D Affine Versus 3D Perspective Model Matching

J. Ross Beveridge E. M. Riseman

Computer and Information Science Department
University of Massachusetts at Amherst
Amherst, MA. 01003 *

November 6, 1991

Abstract

At issue is the importance of fully accounting for 3D perspective in 3D model-based
robot navigation. A probabilistic combinatorial optimization algorithm searches for
an optimal match between landmark and image features by initiating an iterative
generate-and-test procedure from a randomly selected set of correspondence mappings.
The 2D-to-2D version of this algorithm approximates full 3D perspective with a 2D
affine transform - rotation, translation and scale - applied to a 2D projection of the
3D landmark model. A 3D-to-2D version recomputes the robot’s 3D pose relative to
the model and reprojects the model during matching. In tests, the 3D-to-2D version
reliably recovers the robot’s true position. The 2D-to-2D version does equally well
when initial errors do not introduce perspective distortion, and does so in roughly one
fifth the time. However, it fails on some cases where perspective effects are pronounced.

"This work was supported by the Defense Advanced Research Projects Agency (via TACOM) under
contract DAAE07-91-C-R035 and by the National Science Foundation under grant CDA-8922572.
1

1 Introduction

The problem of matching 3D models to 2D image features arises in many domains. Here
we consider problems associated with robot navigation. A robot moving through known
surroundings tracks its progress using vision, and moving down a hallway it acquires images
such as those shown in Figures 1 and 2. It must test and update its position estimate based
upon the appearance of known landmarks. To illustrate, Figures 3A and B show a robot in
two possible positions. If the robot believes it is at position A, when it is really at position

B, then it should correct this error through landmark recognition.

Figure 1: Image 1 taken at Position A

Recognition involves identifying prominent 3D features in an image. In this case, the
landmark is a simple, partial, 3D wire frame model of some distinctive features in a hallway.
The model can be seen in Figure 3. The image features are 2D line segments extracted from
the images using the Burns algorithm [Bur86]. Perspective effects are pronounced in this
domain, as Figure 4 illustrates. Figure 4 shows the landmark as it appears to the robot

from each of the nine poses shown in Figure 3C. Pose refers to the robot’s 3D position and

2

L0

Figure 2: Image 2 taken at Position B

orientation relative to the landmark.

At issue is the importance of accounting for 3D perspective while matching landmark
features to image features. In side-by-side tests on a set of example problems, the perfor-
mance of two versions of an otherwise identical matching algorithm will be compared. The

resultant match found by each system is used to estimate the robot’s true pose using an

algorithm developed by R. Kumar [Kum89; Kum90].

The two versions of the matching algorithm are called the 2D-to-2D system and the
3D-to-2D system. In the 2D-to-2D system, a restricted 2D affine transformation - rotation,
translation, and scale in the image plane - is used to account for differences between the
landmark’s estimated and true appearance. This system matches 2D data to a 2D projection
of the model generated from the initial pose estimate. We’ve described this basic approach

previously in [Bev90; Fen90].

In the 3D-to-2D system, the landmark model is repeatedly reprojected into the 2D image

iliili
% VO

QeE

A B

Figure 3: A) Robot in position for Image 1, B) Robot in position for Image 2, C) Nine
positions from which to solve for the true position. The 10 3D line segments that make up
the landmark are visible in all three examples.

'//

/[W/ N[
NG
/ lL/ |k/ \

Figure 4: Nine views of landmarks as seen from nine different positions around a nominal
location. The relative orientation of the baseboards and the door frame change as the robot’s
position estimate shifts laterally.

plane based upon incrementally updated 3D pose estimates. This system uses Kumar’s

iterative pose algorithm [Kum89; Kum90] during matching.

The discrete search space of possible feature mappings is the same for each side-by-side
test. The size of these spaces is staggering. To see this, let M be the set of 3D line segments
in the landmark model, let D be the set of 2D data line segments in the image, and let S

be the set of model-data pairs which are candidate matches.
SCMxD (1)

In landmark recognition, the initial pose estimate usually constrains the possible pairings

between model and data segments, and S is considerably smaller than the complete space
of pairs, M x D.

It is not prudent to assume that the correct correspondence between model and data
features is one-to-one. The process of extracting image features can lead to fragmentation
and accretion. We therefore consider many-to-many mappings, and hence the discrete space

of possible correspondences C is the powerset of S.
C =2° (2)
Often S contains 50, 100 or more model-data pairs.

The matching algorithm which searches C is a local search algorithm specifically adapted
to model matching [Bev89; Bev90]. In general, a local search algorithm moves from an
initial solution, via transformations, to one that is locally optimal [Ker72; Lin73; Pap82]. It
is certainly not guaranteed to find the globally optimal match. However, if local search is
initiated from independently chosen random starting points, the probability of missing the
optimum can be made arbitrarily small by sufficiently increasing the number of trials. This

random sampling strategy is employed here to find an optimal match.

Optimality is defined in terms of a match error. The optimal match, ¢*, minimizes this
error function:

Ematch(c’) < Ematen(c) Veel (3)
6

The match error, E 4t is a combination of two terms.

Ematen(c) = Egi(c) + Eom(c) (4)

The first, Eg;, is a residual squared error obtained by first fitting the model to the corre-
sponding data. The second, Egm, penalizes matches which omit portions of the model from

the match. These two forms of error are discussed below.

The experiments presented here test both the importance and associated cost of ac-
counting for perspective during matching. In experiment 1, both the 2D-to-2D and 3D-
to-2D approaches are used to estimate the true position of the robot, position A shown in
Figure 3A, from each of the nine initial pose estimates shown in Figure 3C. Experiment 2

tests the ability of each system to recover from a confusion between position A and position

B.

2 Landmark Matching and Local Search

In our previous work on landmark-based navigation, [Bev90; Fen90], matching was com-

pletely separated from 3D pose recovery [Kum89]. The basic scenario was:

1. Project the 3D landmark model features into the image plane using an initial esti-

mate of the robot’s pose. Initial estimates are generated by a navigation/planning

module [Fen90].

2. Use a rough estimate of the uncertainty in the initial pose to determine a set of can-

didate model-data pairs, S defined in equation 1.

3. Use the 2D-to-2D matching algorithm to find an optimal correspondence, c*, between
model and data features [Bev90).

4. Use the corresponding landmark and image features in ¢” to recover the 3D pose of the
robot relative to the landmark. This is done with the iterative algorithm developed by
Kumar [Kum89).

The strength of this approach is that it reduces a 3D-to-2D matching problem to a com-
paratively simpler 2D-to-2D matching problem. The potential weakness is that rotation,
translation and scaling in the plane may be insufficient to recover from an initial error in
robot position that produces perspective distortion in the projected 2D model. In hallways,
where the side walls come toward the camera, perspective effects associated with lateral
position error can be dramatic. Figure 4 illustrates the effect. Note the change in relative

angle between the baseboards and the doorway.

For 2D-to-2D matching, a model is fit to corresponding data by solving for the rotation,
translation and scale which minimizes the integrated, squared, perpendicular distance be-
tween 2D data line segments and infinitely extended 2D model lines. Eg; is a normalized
function of the residual point-to-line squared error after fitting. The best fit 2D pose has a

closed form solution involving a simple quadratic equation [Bev90].

The omission error is a function of the percentage of 2D model line segments not covered
by data line segments. Coverage is defined in terms of the perpendicular projection of data
segments onto model lines. A point on a model line segment is covered when a point on

a data segment projects onto it. A more detailed discussion of the omission error appears
in [Bev90].

In extending this approach to 3D-to-2D matching, the 2D-to-2D closed form pose
computation is replaced by an iterative 3D-t0-2D pose computation developed by R. Ku-
mar [Kum89; Kum90]. This algorithm solves for the 3D position and orientation of the
camera relative to a model by minimizing a sum of squared 3D point to plane distances.
The points are the endpoints of the 3D model line segments. The planes are defined by
the two endpoints of a data line segment and the focal point of the camera. Thus, for the
3D-to-2D system, Eg; is a normalized function of the residual point-to-plane squared error

after the best fit 3D-to-2D pose has been determined.

The omission error is measured in a manner similar to that used by the 2D-to-2D system.

However, it is based upon the projection of the updated model after the best fit 3D-to-2D

pose is generated. The omission is measured relative to the new 2D projections of the 3D

model segments.

Two additional points about the implementation of the 3D-to-2D pose algorithm are
worth mentioning. First, for a small percentage of cases, the iterative Quasi-Newton method
fails to converge to the optimal 3D pose. To overcome this weakness, we use the Levenberg-
Marquardt method suggested by David Lowe [Low91]. For a clear summary of this method
see [Pre88|, pages 542 — 544. Second, to save computation, Kumar’s algorithm has been
reformulated in terms of state variables associated with each model-data pair, s € S. The
sum of these state variables for all s in a particular correspondence ¢ determines the pose.
This allows the contribution from a model-data pair s to be added/subtracted from the
current sum if s is added/deleted from the current match. This saves considerable amounts
of computation during matching, since it removes the the need to loop over the complete set

of pairs in c.

3 Inertial-Descent Local Search

The local search matching algorithm employed is a variation of the steepest-descent
strategy described in [Bev90]. We call the algorithm inertial-descent, and is best explained
by example. Figures 5 and 6 illustrate inertial-descent. The matching problem itself is drawn
from experiment 2, in which positions A and B are confused (Figure 3). The model and data
line segments are shown on the right hand side of Figure 5. The model line segments are
shown projected into the image plane as they would appear from position A. The data line
segments are derived from the image in Figure 2, acquired at position B . Model line segments

are labeled with capital letters, data line segments by number.

Figure 5 also shows a complete trace of two independent runs of the local search algo-
rithm. Each successive row indicates a successively better match. A filled-in square indicates

that the associated model-data pair is an element of ¢. Hence, for example, the first row of

84.48
10.21

0.77
0.66
0.59
0.49
0.41

217.67
85.81
10.72

&8.10
5.49
1.61
0.89
0.70
0.55
0.51
0.50
0.48
0.41

A B C
wofi13]14]17] (3 [6 o [12[1s[ie[18]1s] [s 7]s 2] |1]
[mEm [H W
] OO p
T = = lish
) CIC] 3 ||
Res JEESEE B i |
DI
] LI E|F
L] L] | [|
Local Search from Random Start, Example 1 i
J
A B c | [D] \
w[nf131sf17| 3 s Jo [12[1sfae[relie] [sTrTe] [2Ts
| I [] [] L]
1. . W [m | [
N N] L] L]
| /| L] L]
L] L] |
L /| L]
| | I [
e A
L]
]
o n
. %
[] L] .
Local Search from Random Start, Example 2 x

Figure 5: Search space and examples of local search for experiment 2

10

= = |5
\;;|L N/ L
ANN N ANN N
84.48 10.21 2.94 0.77
- ‘L —) L
N\ N AN AN
0.66 0.59 0.49 0.41

Figure 6: Successive 3D-to-2D pose estimates computed during local search

the first table indicates a match, ¢jp;¢, selected at random.

cnit = {(4,13),(4,14),(A4,17),(B,186),
(C,7),(D,2),(D,4),(E,35), (5)
(E,8),(F2),(1,1),(4,0)}
The importance of choosing initial matches at random will be discussed shortly. The match

error, B .. p, for each successive match is shown to the left. For the initial match in example

1, Ematch(Cinit) = 8448

Each correspondence ¢ may be represented by a bit string. To illustrate, ¢;n;¢ from

equation 5 may represented as:
Ccipnit = 00111 00000100 010 11 11 1 1 1 (6)

Spacing is maintained to clarify the relation between the columns in Figure 5 and the bits

in equation 6.

Toggling a bit in this string adds or removes a feature pair from the current match.

A steepest-descent matching algorithm [Bev90] computes Ep .4, for all n correspondences
11

Match Improvements in Descending Order
84.48 | (D, 4)(D,2)(E,5)(I,1)(J,0)(B,15)(B,12)...
10.21 1 ((C, 7)(4,0)(1,1)(E, 5)(B, 12)(B, 15)(4, 11))
2.94 | ((D,2)(E,5)(E,8)(A,11)(B,12)(5B,15))
0.77 | (D, 4)(A, 13)(A, 14)(E, 8)(A, 17)(B, 15)(B, 16))
0.41 ()

Table 1: The improvement lists generated by the inertial-descent algorithm each time it tests
adding/removing a single pair. The highlighted pairs, applied in sequence, lead to improved

matches.

which differ from the current ¢ by one bit, i.e. it tests each single bit toggle. It then
applies the best single toggle to the current match yielding a new match ¢. After each
move, steepest-descent revaluates all n possible toggles. It terminates when no toggle yields
improvement. In example 1, (Figure 5), the pair yielding the greatest improvement from the

initial match c;p;4 1s (D, 4).

Inertial-descent, like steepest-descent, begins by testing all n single bit toggles. Unlike
steepest-descent, rather than just applying the single toggle yielding the greatest improve-
ment, inertial-descent builds a sorted list of all toggles yielding improvement. It then works
down this list sequentially toggling successive pairs until either: the list is exhausted, or a

toggle is found which no longer produces an improvement.

Table 3 illustrates the improvement lists generated by the inertial-descent algorithm
for example 1 (Figure 5). The highlighted pairs at the head of the lists actually lead to
improved matches. For the first three matches, inertial-descent didn’t save any computation
relative to steepest-descent. From the new match obtained by toggling the first pair on the
list, the second pair no longer improved the match, and therefore all n toggles were again
tested. However, for the fourth match, the list allowed the algorithm to apply four toggles
In succession without expending effort testing alternatives. In general, inertial-descent tests

far fewer matches than steepest-descent.

12

As already mentioned, each time the local search algorithm tests a new correspondence
¢, it must compute E ;1 (¢c). To emphasis that new 3D poses are generated for each match
tested by the 3D-to-2D system, Figure 6 shows the projection of the landmark from these

updated poses for the successively better matches found in example 1, Figure 5.

The local search algorithm just illustrated may not find the globally optimal match c¢-.
However, by running multiple trials from randomly selected initial matches, and then taking
the best match found in the series of trials, a local search procedure with a relatively small
probability of finding the globally optimal match on a single trial may be used to find the
global optimum with very high probability.

Formally, let P, be the probability of successfully finding the global optimum on a single
trial. The conjunctive probability of failing to find the global optimum in ¢ independent
trials is Qj:

Qs = P Py =1-F, (7)

Therefore, the number of trials required to find the global optimum with probability Q,, using
a local search algorithm with probability of success P,, is given by the following equation.

t = [logp, Qs] Qr=1-0Q, (8)

To illustrate, if P, = 0.10 then 29 trials are required to find the optimum with probability
Q. =0.95. If P, = 0.5 then only 5 trials are required to reach the same confidence level.

Empirical trials on the landmark recognition problems presented below are used to
estimate the true probability of success, P,, and hence the number trials, ¢,, required to

obtain the optimal match with confidence 95% or better. In general, 100 trials of local

search are used to generate estimates 15, and £,.

The estimate P, is subject to one important qualification: it may not be based not upon
the true globally optimal match ¢, but instead upon what we’ll call the optimal match, the
best match found in a series of empirical trials. By visual inspection one can often conclude

that the optimal match and the globally optimal match are the same. However, this is not
13

always the case.

4 Experiment 1

The task is to recover the true position of the robot from each of the nine pose estimates
shown in Figure 3C. ! The true position, position A, is 41.3 feet from the doorway and 4
feet from each of the two side walls. The nine test positions were obtained by translating
the true position estimate forward and backward and side-to-side. Estimates 1 — 3 are 5.3
feet forward of position 4. Estimates 4 — 6 are 1.3 feet forward of A, and estimates 7 — 9
are 3.7 feet back of A. Estimates 1, 4 and 7 are 2 feet to the left of A. Estimates 3, 6 and 9
are 2 feet to the right of A. The landmark model as it appears from these nine positions has

already been shown in Figure 4.

In addition to varying the initial pose estimates, this experiment considers both ‘directed’
and ‘undirected’ model segments. A directed segment specifies the sign of the intensity gra-
dient across the edge. By experimenting with search spaces generated both with and without
directed segments we show that using directed segments saves computation. However, at
least for the 3D-to-2D system, the quality of the final match and the associated updated

pose estimate is the same in each case.

The final pose estimates generated by the 3D-to-2D system are within 0.1 feet of the
true pose for all nine initial estimates and for both the directed and undirected search spaces.
Essentially the same match is found in all cases, which explains the consistently good final

pose estimate. The full 3D perspective approach appears to be very robust.

Figure 8 shows the model and data line segments. The model is projected from the true

position. The optimal match, ¢*, found by the 3D-to-2D system for the directed search space

In this experiment we only consider the position portion of the pose estimate associated with a match.

14

=S B
=l <~
1 1

X Distance from door
w
4 8

w
()}
1

Y Distance from left wall

Z Distance off floor

-=-- True W Initial Estimate 2D Undirected

Figure 7: Bar chart of position estimates recovered with 2D-to-2D matching. Position is
shown along each of the three dimensions for the best matches. Results for the directed and

the undirected search spaces are shown.

15

| ¢ = {(4,32
(D, 12
(H,9

), (4,33),(B,30),(C,15),
), (E,14),(F, 11), (G, 10), (9)
,9),(1,7),(4,0)}

7 N7 N

Figure 8: Labeled landmark and data line segments for Image 1

The final pose estimates for the 2D-to-2D system are presented in Figure 7. For cases 2,
5 and 8, for both the directed and undirected search spaces, the 2D-to-2D system recovers the
robot’s true position essentially as well as the 3D-to-2D system. This is to be expected, since
forward and backward error primarily changes the expected scale of the landmark model.
However, for the other cases the recovered pose estimates are not as good. For the directed
search space the final position is always better than the initial estimate. However, for the
undirected search space this is not always the case. In particular, for cases 3, 6 and 9 the

recovered Y position is worse than the initial estimate.

The first step in generating these results was to determine the set of candidate pairs S.
The selection of candidate pairs depends upon the placement of the 2D projection of a model

line m in the image. For the case of directed model segments, a pair s = (m,d) € M x D

16

Initial Pose Estimate
1| 2 3| 4] 5| 6 71 8 9
[Sq| | 41136 |42 |45(37 |42 | 53|43 | 54
|Su| | 87 | 75|89 |94 |77 |94 11292 112

Table 2: The number of candidate pairs for each of the nine initial pose estimates and using

directed, S4, and undirected, S, model segments.

1s an element of Sy if:

1 d is within 30 degrees of m.
2 d is within 128 pixels of m.
3 dis at least 1/4 the length of m.

4 d and m have the same sign of contrast.

For the undirected case, S,, the sign of contrast test is omitted. These bounds are picked
based on experience with the domain. In particular, 128 pixels is one quarter the distance
across the full 512 by 512 image and is adequate to ensure the correct match is contained in
the resultant search space. The number of candidate pairs in Sq and S, for each of the nine

pose estimates are summarized in Table 4.

We tested two alternative ways of generating the initial random correspondences used as
starting points by the local search algorithm. In one case, an initial correspondence ¢;p;; was
selected uniformly from the complete search space C. In the other, we biased the selection

to favor choices of ¢;pi¢ with roughly 2 data segments bound to each model segment.
This is done by defining a binding probability, Pg(s), such that a pair s = (m,d) is
included in an initial correspondence cj;; with probability Pg(s). Choosing Pg = 0.5 for

all pairs yields the uniform sampling mentioned above. Defining Pg(s) as follows biases

selection. Let k,, be the number of pairs in S which include model feature m, and then

17

define
Pgp(s) = max(0.5,2/k(m)) (10)

The maximum of 0.5 is desirable because it randomizes cases where there are only 1, 2 or 3

candidate pairs for a model segment.

Results comparing uniform random versus biased random selection are presented in
Figure 9. These results are for the directed search space. Both systems were run 100 times
for each of the nine position estimates. Figure 9 shows the number of times the optimal
match was found in each case. These outcomes suggest the true probability of success, P,, is
higher for biased random selection, and that biased selection is superior to uniform selection.

The biased selection defined by equation 10 is therefore used henceforth.

50
401

301

1 2

4] 6 7 8 9
B 2D Uniform

2D Biased 3D Uniform 3D Biased

Figure 9: Trials out of 100 yielding the optimal match for uniform verses biased selection of
initial feature bindings.

The true probability of success, P,, is a parameter of a binomial - success/failure -
process. The maximum likelihood estimate, P,, is just the ratio of the number of times the
optimal match is found over the total number of trials. Plugging P, into equation 8 yields
the estimated number of trials, f,, required to find the optimal match with confidence 95%

or better. The graph in Figure 10 compares ¢, for the 3D-to-2D and 2D-to-2D systems over
all nine initial pose estimates. These results are for the directed search space. Observe that

t, for the 2D-to-2D and 3D-to-2D systems are more similar for cases 2, 5 and 8. Also note
18

Trials for 95% Confidence
W
o

1 2 3 4 5 6 7 8 9
= 2D Ts Expected =+~ 3D Ts Expected

Figure 10: The number of trials required to find the optimal match with 95% confidence

200

0]
5 1001
Q
]
L
]
£
[

o -

1 2 3 4 5 6 7 8 9
Directed Search Space

Time (seconds)

1 2 3 4 5 6 7 8 9
Undirected Search Space

2D Te 3DTs 3D Te

Figure 11: Timing information in seconds for a TI Explorer II Lisp Machine. For both the
directed and undirected search spaces the 2D-to-2D system runs in roughly 1/5 the time
required by the 3D-to-2D system.

19

the 3D-to-2D system generally requires fewer trials.

The expected amount of time required to find an optimal match is the expected amount
of time to run a single trial times the expected number of required trials. Timing information
for the 2D-to-2D and 3D-to-2D systems is presented in Figure 11. All times are reported in
seconds and are for a TI Explorer II Lisp Machine. Two numbers are given for each case,
the first is the number of seconds required to run ¢, trials. The second number is a more
realistic estimate, based upon the time required to run a conservative number of trials, t.. A
conservative number is selected which essentially guarantees finding the optimal match with

confidence 95% across every one of the set of problems.

For the directed search space and the 2D-to-2D system, t. = 50 is chosen. Since P, is
consistently higher for the 3D-to-2D system, a value of ¢, = 25 is chosen for this system. For
the undirected space the 3D-to-2D system finds the optimal match less often, and ¢. = 50 is

necessary.

For the undirected space and the 2D-to-2D system the definition of success is extended
to include the best three matches found. This is necessary because for all but cases 2, 5
and 8 the probability of finding the single uniquely best match becomes very low. Making
this change, and running 300 trials, P, > 0.02. Under these conditions, t. = 150. To be

conservative, the worst pose generated by the top three matches was reported in Figure 7.

5 Experiment 2

Consider confusing position A with position B (Figure 3). For this problem, Table 3
shows the true positions, initial pose estimates, and recovered pose estimates. The 3D-to-2D
system recovers the true pose to within 1 foot in both cases. However, in recovering position
A from an initial estimate of position B, Est-B-True-A, the 3D-to-2D system found the best
match only once in 300 trials. The next best match was almost equally good, and was found

in five out of 300 trials. Success in this case is redefined as finding one of the two best

20

matches, P, = 0.02. The recovered pose for the two best 3D-t0-2D matches is shown for
this case. The 2D-to-2D system did less well, improving the initial estimate in each case,

but still missing the true position by several feet.

Est-A-True-B Est-B-True-A
X Y V4 A X Y y4 A
True 30.0 4.0 3.5 True 413 4.0 35
Estimate | 40.0 4.0 35 10.0 Estimate | 30.0 4.0 35 113
2D 27.0 5.1 2.8 33 2D 46.2 1.6 5.6 5.5
3D 30.3 3.7 3.9 0.6 3D 40.7 3.8 3.8 0.7
3D 41.1 36 39 06

Table 3: Pose results when positions A and B are confused. The 3D-to-2D system recovers
pose well, but in the Est-B-True-A case two almost equally good matches are found, noted
as 3D and 3D¢. The 2D-t0-2D system does less well.

The estimated probability of success, P,, and required number of trials, ¢,, was deter-
mined for both systems on both problems. Based upon t,, a conservative number of trials
t. was selected, and finally the expected time required to run ¢, trials determined. These

results are presented in Table 5. As before, times were measured on a TI Explorer II Lisp

Machine.

Est-A-True-B Est-B-True-A
2D-t0-2D | 3D-to-2D | 2D-t0-2D | 3D-to-2D
P, 0.11 0.22 0.08 0.02
t, 26 13 36 150
te 50 150 50 150
seconds 10 585 35 1,710

Table 4: The estimated number of required trials, ¢, for Experiment 2. Also the conservative

number of trials, ¢, and the time required to run this many trials.

21

6 Conclusion

These experiments provide insight into the importance of perspective. We've compared
2D-t0-2D matching with 3D-to-2D matching under conditions where the 2D-to-2D approach
might be expected to fail. The results suggest that the 2D-to-2D approach is more useful
and reliable than one might at first expect. The results also suggest that the additional cost
of doing full 3D-to-2D matching is not prohibitive, and a prudent system might choose to
always employ 3D-to-2D matching.

Hybrid algorithms, which blend 2D-to-2D and 3D-to-2D matching, present intriguing
possibilities for the future. It is worth noting that the 2D-to-2D system usually improved
errorful pose estimates. Hybrid algorithms might well recover 3D-to-2D matches as reliably
as the full 3D-to-2D system used here, but with run times closer to those shown for the 2D-
to-2D system. One promising hybrid might use 2D-to-2D matching initially and switch to
3D-to-2D matching only after a 2D-to-2D optimal match has been found. Another variation
might use the comparatively cheaper 2D-t0-2D test to determine a next candidate move,

double checking the move by computing a new 3D pose and reprojecting the model.

References

(Bur86] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight lines. IEEE
Trans. on Pattern Analysis and Machine Intelligence, PAMI-8(4):425 - 456, July
1986.

[Bev89] J. Ross Beveridge, Rich Weiss, and Edward M. Riseman. Optimization of 2-
dimensional model matching. In Proceedings: Image Understanding Workshop,
pages 815 - 830, Los Altos, CA, June 1989. DARPA, Morgan Kaufmann Publish-
ers, Inc (Also a Tech. Report).

[Bev90] J. Ross Beveridge, Rich Weiss, and Edward M. Riseman. Combinatorial optimiza-

tion applied to variable scale 2D model matching. In Proceedings of the IEEE
22

[Fen90]

[Kum89]

[Kum90]

[Ker72]

[Lin73]

[Low91)

[Pre88]

[Pap82]

International Conference on Pattern Recognition 1990, Atlantic City, pages 18 -
23. IEEE, June 1990.

Claude Fennema, Allen Hanson, Edward Riseman, J. R. Beveridge, and R. Kumar.
Model-directed mobile robot navigation. IEEE Trans. on Syst., Man, Cybern.,
20(6):1352 - 1369, November/December 1990.

Rakesh Kumar and Allen Hanson. Robust estimation of camera location and
orientation from noisy data having outliers. In Proc. of IEEE Workshop on Inter-

pretation of 3D Scenes, pages 52 - 60, Austin, TX, 1989. IEEE.

Rakesh Kumar and Allen Hanson. Analysis of different robust methods for pose
refinement. In Proc. of IEEE Workshop on Robust Methods in Computer Vision,
pages 161 - 182, Seattle, WA, 1990. IEEE.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. Bell Systems Tech. Journal, 49:291 - 307, 1972.

S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling salesman

problem. Operations Research, 21:498 - 516, 1973.

David G. Lowe. Fitting parameterized three-dimensional models to images. JEEE

Trans. on Pattern Analysis and Machine Intelligence, 13(5):441 - 450, May 1991.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complezity, chapter Local Search, pages 454 — 480. Prentice-Hall,
Englewood Cliffs, NJ, 1982.

23

	TR91-86-1
	TR91-86-2.pdf

