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Abstract

This paper addresses the problem of effectively matching a single 2D image of a poten-
tially cluttered scene to a library containing multiple polyhedral objects. In our approach to
recognition, the search for matches to 3D objects from a multiple object library is optimized
by generating descriptions of the projections of the objects from expected views, organizing all
the descriptions into a single network representation, and then, during the recognition phase,
finding matches between the resulting view description network and the input image. Our
design for the recognition phase process is presented and demonstrated on images containing
multiple objects and outdoor scenes. The efficiency of the system and the general approach
are discussed.

*This research was supported by the Defense Advanced Research Projects Agency (via TACOM) under
contract DAAEQ7-91-C-R035.



1. Introduction

Our research objective is a system capable of recognizing modelled polyhedra from 2D
images of cluttered scenes. The system is presented with a library containing multiple
objects and an image of a scene that may contain any combination of the objects in arbitrary
positions with respect to the viewer. The goal of the system is to find the correct 3D matches
to all objects in the scene for which there is sufficient evidence in the image, where a 3D
match is an assignment of model features to image features and the estimated coordinate
transformation between model and camera (pose) that best aligns the assigned features. The
recognition system must be designed to find the correct 3D matches in an efficient manner.
A 3D match is completed and verified by the potentially costly process of searching for image
data that comprise sufficient evidence for the match (13]. In addition, the number of possible
3D matches can be very large; for the images and objects studied in this paper, there are
tens of billions. Therefore, it is essential for the efficiency of the system that the number of
3D matches selected for completion be minimized.

In our approach, the search for matches to 3D objects from a multiple ob Jject library is
optimized by generating descriptions of the projections of the ob Jjects from expected views,
organizing all the descriptions into a single network representation, and finding matches
between the resulting view description network and the input image. The contributions of
our research have been in the automatic compilation of network descriptions of object views
[6, 8] and the analysis of the usefulness of 2D features for 3D object discrimination under
view variation [7, 8].

In the latter work, a study of invariants with respect to view position is presented. The



recognition of 3D objects from a single, unknown view can be facilitated by the use of image
features that are invariant; our study concerned invariants that are functions of projected 3D
point sets. View invariants exist for special classes of ob jects (3D point sets), such as those
constrained to planes, and these functions have been used in recognition research (18, 19].
However, we have shown that there does not exist a function that is view-invariant for
arbitrary 3D point sets of size n, for any n, and recognition systems for the unrestricted
problem cannot be expected to be as effective as the special-case schemes. This analysis and
conclusion is consistent with subsequent work on affine invariants [9]. Since view invariants
cannot be guaranteed to exist or be useful for any given recognition problem (i.e., collection
of 3D objects), it is imperative that systems be developed that are capable of utilizing view-
varying features as well. For example, features such as relative orientation and length of
projected line segments in arbitrary positions can be useful for the discrimination of many
objects, from most of their views (3, 8]. Because features crucial for recognition may vary
with view, their probability distributions may be non-trivial. Systems developed to use these
features must effectively model the distributions and apply probabilistic means of evaluating
the matches {2, 3, 8].

In this paper, we present the recognition phase of our matching system; this phase involves
the search for matches between a compiled view description network and the input image.
Issues include the effective evaluation of partial matches generated during the search and
the control of the search process. Our design for the recognition phase process is discussed
and demonstrated on images containing multiple objects and outdoor scenes. The efficiency

of the system and the general approach are discussed.
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Figure 1: Objects used to demonstrate the system.

2. The description network approach to object recognition

Objects in a library, such as in Fig. 1, will typically have a variety of similarities and
differences which must be considered while optimizing the selection of the correct matches.
In general, objects can be differentiated using combinations of two types of features: metric
and structural. A metric feature is any function that can be defined for a set of projected
elements in the image; examples of this are the affine coordinates (18], which are view
invariant for planar objects under weak perspective projection. Clearly, this type of feature
can be useful for discrimination; however, it is important to note that non-invariant (view
varying) metric features should also be considered for discrimination purposes. For example,
the two triangular prisms in Fig. 1 cannot be discriminated by affine coordinates or other view
invariants, since they are identical up to an affine transformation (they are affine equivalent).
Yet, these two prisms do have different proportions. This differentiating property can be
measured in terms of the length ratio of the bold line segments labelled 2 and 5, which

is actually capable of distinguishing the two prisms for the great majority of their views



[7, 8]. In addition, some view-varying features are potentially more tolerant of image noise
than other features: the angle between two line segments depends only on the estimated
orientation of the detected lines, not on the exact position of the four endpoints, as required
by affine coordinates.

Structural features represent how elements that make up an ob Ject, such as straight line
segments, are connected or otherwise organized. For example, in Fig. 1, some objects have
line segments assembled into triangles and others into pentagons or parallelograms, and
these assemblages themselves are connected into larger structures. Clearly, the identification
or detection of these structural features can help in the discrimination of the ob jects. The
identification of structural features in the image is important in another way: matched
structural descriptions provide a context in which metric features can be measured and
meaningfully used for discrimination. For example, the length ratios considered useful in
Fig. 1 are meaningless if we do not know which pair of image segments are to be measured.
There may be an enormous number of ordered pairs of line segments in a cluttered image,
and each pair produces its own length ratio. The image segment pair whose ratio provides
the discriminating length-to-width proportion must be identified, and this can be done by
first matching a structural description.

The importance of structural features for discrimination must be stressed, for their use
has a fundamental effect on the design of a multi-object recognition system. Since identi-
fying structural features in the image means searching for matches to non-trivial structural
descriptions, an important part of the object discrimination process is an optimized search

for these matches. Organizing the structural descriptions is an important step towards op-



timizing this search, an approach stressed in this study and related work (1, 4, 10].

In our design, object information is organized into description networks where parts
or geometric aspects shared by objects are explicitly represented as nodes in a network,
with direct or indirect links to all the objects characterized by them. Objects are then
recognized via the network by a process referred to here as recursive indezing. In this
strategy, indexing of object information takes place in stages; each indexing step identifies
important substructures (parts) in the image which are in turn used as structural features
to index more complex descriptions, until descriptions to specific objects are indexed and
successfully matched.

This approach to recognition is in contrast to two other important recognition strategies
that have recently seen increased development: the single-level, geometric hashing methods
9, 18, 19, 22, 24], and the use of interpretation trees (12, 15, 23].

Lamdan et al [19] have demonstrated by simulation studies that the voting (indexing)
step of their geometric hashing algorithm produces a significant improvement over exhaustive
testing by 3D pose determination, even in the presence of noise. However, recursive indexing
could be a further improvement over the unstructured, or single-level, hashing methods. In
single-level systems, simple image feature combinations are used to directly index the objects
in the library. In [22], experiments using real image data were performed to estimate the
time complexity with respect to object library size for a single-level system. As indicated by
these experiments, the object-specificity of the features greatly affects the number of objects
retrieved, and the simple combinations of features used in their system were not sufficient to

avoid a saturation effect (where the number of objects retrieved grows at least linearly with



the size of the object library). The specificity problem may become more manageable using a
recursive, multilevel procedure, primarily because combinations of structural parts identified
in earlier steps could provide the system with a rich set of composite features for indexing
at the next step. This is consistent with the analysis of object indexing complexity made by
Clemens and Jacobs (9], in which they observe that indexing is of very limited benefit unless
a process is incorporated that can extract a relatively small number of interesting feature sets
that each contain a large number of features. They recommend a feature grouping process.
A recursive indexing design that incorporates perceptual organization heuristics can also
achieve this behavior; such a system is presented in Section 4.

It is also important to distinguish the recursive indexing of descriptions in a network
from the use of interpretation trees. An interpretation tree search when clutter is present in
the image may be prohibitively inefficient [12]. The recursive indexing strategy supported
by networks, however, has a fundamentally different behavior that may mean much greater
efficiency. Instead of methodically searching a large portion of a tree for possible interpre-
tations, the evidence from matches to multiple parts and the convergent structure of the
description network are used together to provide a potentially focused search for the correct
interpretation. The experiments in cluttered images presented in this paper provide some

demonstration of this.

3. View description networks

View description is an important approach to recognizing 3D objects in 2D images. In

this method, prior to recognition, descriptions of the projections of each ob Jject from distinct
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Figure 2: View description network for objects in Fig. 1. (a) Each 2D model node in the
network is represented in the figure by a line-segment example that satisfies the
2D model. Dashed lines connecting line segments indicate metric features that
are functions of the pair of specified line segments. (b) The feature probability
densities given the different 2D models discriminated by them. Each density
function is stored in the appropriate 2D model node and is inherited by all of
its successors in the network.



views are generated; then, during recognition, these 2D expectations are matched to the
image. A view description may be valid for the object’s projection over a range of views, as
long as there is a description associated with each view and the descriptions of each object
are distinct from those of other objects. This method is useful since it does not depend on
reliable 3D scene reconstruction. It also facilitates the use of image information sufficient for
recognition (3, 7] and ﬁhe efficient matching of multiple 3D objects to cluttered 2D images
through the organization of the view descriptions into networks. Similar approaches can be
found in (2, 10, 11], and also in [15], though the system of Ikeuchi is not for single intensity
images.

In our system, a view description is a relational graph that represents the discriminating
features for some object and range of view. Each distinct element in the graph represents a
line segment, and the relations (arcs) are features defined over the associated line segments.
The relation stores the feature type, such as line segment length ratio s or relative orientation
a, and the probability densities of the feature given the associated pair of object line segments
and a uniform sampling across the range of view.

The view descriptions are organized into a network, where each terminal node corresponds
to an object-specific view description. The view descriptions are recursively built up from
smaller, simpler relational graphs associated with intermediate nodes in the network via
combination and specialization links. We will refer to the information stored in any node
as a 2D model. Fig. 2 shows a network automatically constructed to recognize the ob jects
in Fig. 1. The combination link specifies how a set of part descriptions are combined into

more complex, object-specific ones; currently, combinations are formed of pairs of parts.
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For example, in Fig. 2(a), the model 2D-PRISM is represented as a combination of 2D
models TRIANGLE and PARALLELOGRAM, which are isomorphic to two of its subgraphs.
Specialization links between a 2D model node and its network successors specify the addition
of new relations to the 2D model; in other words, new features (see Fig. 2a, dashed labelled
arcs) and their probability density functions given the object associated with each successor
node (see Fig. 2b). For example, the 2D-PRISM model is associated with two objects (short-
prism and {all-prism), and each is assigned a successor containing a new relation: the feature
s for element pair (2, 5) and its density function for the relevant object. (New relations can
also be added during combination, see Fig. 2b.) Discrimination of the objects based on the
stored probability information is discussed below in Section 4.2.

It is important to note that, even though our compilation process generates view de-
scriptions for rigid 3D objects, the view description network and the recognition phase of
the system are based on relational graphs. They can thus be readily used to represent and

match information about non-rigid objects. This adaptability to non-rigid domains is a key

property of our system.

4. Matching images to view description networks

Given a view description network, the goal of the recognition phase of the system is to
identify objects in images by efficiently searching for matches between image line segments
and object view descriptions (2D model nodes) stored in the network. It was argued above
that recursive indezing is an effective way to recognize using a description network. This

approach is best understood as recursive 2D match extension followed by 3D match com-
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Figure 3: An example of match extension. (a) Relevant portion of Fig. 2. (b) Matches to
TRIANGLE and PARALLELOGRAM. (c) A match to their common succes-
sor 2D-PRISM, created by (d) composing each predecessor node match with
the model-to-model maps specified in the network and then merging the two

resulting maps.
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pletion and verification. Match eztension is the creation of a match to a 2D model (a 2D
match) from matches to its predecessors in the network, where a 2D match is the assignment
of the line elements in the 2D model to line segments detected in the image. For example,
given the network in Figs. 2(a) and 3(a), matches to TRIANGLE and PARALLELOGRAM
( Fig. 3b) can be combined into a match to 2D-PRISM ( Fig. 3c).

The design of the recognition system follows naturally from the recursive nature of match-
ing to view description networks. The process is initialized by detecting line segments in
the image and generating promising matches to the initial, simple 2D model nodes in the
network. The system then searches for correct matches to the more complex 2D models, and
eventually to the 3D models, by iteratively executing the following three steps:

1. Eztend or verify the selected 2D matches, depending on the type of match.

(a) Matches to 2D model nodes in the terminal portions of the network are associated
with 3D objects; when selected, the system attempts to verify them by computing
the 3D match.

(b) Otherwise, the system attempts to extend the match to a more complex 2D model
node match.

2. Evaluate and incorporate the resulting 3D or 2D matches into the current state of the
system.

(a) All new 2D matches are added to the pool of matches that may be extended or
verified in future cycles.

(b) If a 3D match is verified, it is output from the system, and competing 2D model
matches are eliminated. A match is competing if it assigns the same image seg-
ments.

3. Select the best 2D matches for extension and verification in the next cycle.

In the experiments, the process was made to terminate on discovery of all the correct

3D matches. The 3D matches were not required to be complete, but the matched image
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segments had to be close to the estimated projected segments in position and extent.

The organization of the system into the above three steps naturally structures the dis-
cussion into three parts: 2D match eztension, evaluation and selection. Verification by 3D
match completion is also clearly important, but is outside the scope of this paper; further
discussion of match completion and pose analysis can be found in (13, 14, 16, 17]. An im-
plementation of the 3D pose algorithm of Kumar [16, 17] was used in the demonstrations

presented in this paper.

4.1 Match extension

As discussed above, the matching of descriptions organized into networks assumes the
form of recursive extension. Given a pair of existing 2D matches, their extension has two
steps: retrieve 2D models to which they can be extended, and then, compute the line segment
assignments for the new, extended match as in Fig. 3.

Complications can occur when key parts of an object’s projection, or important rela-
tionships between the parts, are poorly represented in the image. The network contains
an idealized description of the object projections, with ideal parts and relations between
these parts. If the actual representation of a part in the image is poor, then a simple,
step-by-step, recursive extension could be difficult and the extension process must be made
more adaptable. The matching of a house image in Fig. 4(a) provides an example of this.
(See Fig. 7 for the digital image.) Given the network in Figs. 2(a) and 4(b), a 2D-HOUSE
model is made up of two parts, PENTAGON and PARALLELOGRAM, which are in turn
made up of the simpler models, U-SHAPE, C-SHAPE and CORNER. The extension of the

14
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U-SHAPE match in Fig. 4(a) to a match of its direct successor, PARALLELOGRAM, via
combination with CORNER is not possible since the image frame excludes the part of the
projection associated with the desired CORNER match. Without the evidence associated
with this CORNER match, there is no way to know whether the U-SHAPE match should be
interpreted as part of a PARALLELOGRAM or PENTAGON match, both being successors
of U-SHAPE (see Fig. 4b). However, a viable, unambiguous extension to the indirect succes-
sor 2D-HOUSE is possible by combining the U-SHAPE match with the available C-SHAPE
match shown in Fig. 4(a). The importance of indirect predecessor extension for matching
can be appreciated in the application of the recognition system to cluttered and corrupted
images as demonstrated later in this paper. To support indirect predecessor extension, our
system is designed to index 2D models given pairs of matches to their fragments, that is,
their indirect predecessors. During the compilation phase of the system, 2D models and
potentially useful pairs of their indirect predecessors are hashed into an extension table for
rapid indexing during the recognition phase. In addition, to facilitate the extension oper-
ation, the compilation phase process also pre-computes and stores the model line segment

mappings between the 2D models and useful indirect predecessors.

4.2 The evaluation of matches to 2D model nodes

Once a 2D match has been generated, its priority for extension or 3D verification needs
to be determined for effective control. An important factor in assessing this priority is the
probability that the match is correct, which is estimated in two steps. First, all of the metric

and structural features represented in the 2D model are measured; then, the values of the
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Figure 5: An example of line segment reconstruction during 2D model matching. Bold
lines: line segments detected in an image of a tall prism. Dashed lines: recon-
struction of the projection given a 2D-PRISM match.

measured features and the conditional density functions stored in the models are used to

estimate the posterior probability of the match.
The metric and structural features used in the match evaluation are measured with

respect to an approximate reconstruction of the object’s projection consistent with the match.
Fig. 5 shows an example of this. The structural features in the 2D model specify how
the matched line segments should be connected together. The reconstruction enforces the
specified segment connectivity, while minimizing the error between the detected fragments
and reconstructed lines [8]. Since the errors reflect the degree of actual connectivity of the
detected line segments, they are used as measurements (indications) of the structural features
for match evaluation. The metric features, such as line segment length ratio s or relative
orientation «, are measured with respect to the reconstructed lines.

A match is an assignment of 2D model lines to segments in the image, and this assign-

ment is one possible interpretation of the image segments among many. These alternative
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interpretations are classes, and the problem of estimating the probability that a given match

is correct can be treated as a problem in Bayesian classification:

o | w))P(wr)
5 27 | 07)P(wy)

P(wllf)=z

where w, is the class associated with the 2D model match being evaluated, the w;,j > 1 are

alternative interpretation classes, and f is the vector of measured features. This formulation
is useful and straight-forward; however, it requires the determination of the alternative
interpretation classes w;,j > 1, and, for all classes wj,J = 1, the class priors P(w;) and the
conditional density functions p(f | w;).

For a given match, there can be a very large number of alternative interpretations of the
same set of image line segments; however, these interpretations can be usefully organized
into a small number of classes. For each alternative class, the actual match being evaluated
is considered incorrect, and in our formulation, each alternative interpretation class is associ-
ated with a different type of matching mistake that could have produced the incorrect match.
The match being evaluated is generated by extending a pair of other matches, say M; and
M3, and this implies the following classes of alternative interpretations (matching mistakes):
(1) M, and M, are both correct but the given extension is not (i.e., some other extension is);
(2) My and M, are correct but they cannot be combined into any valid extension; (3) M, is
itself incorrect; (4) M, is incorrect; and (5) both M; and M, are in correct. These distinct
classes have different priors and class conditional densities for the features.

The priors assigned to each class are derived from view analysis and estimates of match

error rates. Assuming a uniform distribution for views, the prior probabilities for the given 2D
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match and classes of type (1) are a function of the visibility of the different 2D models; i.e., the
fraction of views for which they are valid. The alternative interpretation classes associated
with the other matching mistakes (2-5) are assigned priors that reflect the expected rate at
which these mistakes occur. These error rates have not been rigorously estimated; however,
this does not seem to have caused serious problems in the experiments.

Estimating the probability that a 2D match is correct also requires the conditional density
functions for the features given each of the interpretation classes defined above. For all the
classes considered, the features are assumed to be independent. As discussed in Section 3,
the density functions for the metric features given a correct match to the 2D model are
represented with the model (see Fig. 2b). The structural features are measured in terms
of the reconstruction fit errors. Given that the 2D model match is correct, the error in
the fit is strictly a function of the inaccuracies of the detected image segments, and the
associated detection error density function is assumed to be a Gaussian with zero mean.
When the match is incorrect, structural features (fit errors) are largely due to the incorrect
model line assignments, and the associated assignment error density function is a much
wider Gaussian. For some of the alternative interpretation classes defined above, not all of
the match is considered incorrect, and thus not all of the associated reconstruction fit errors
are modelled as assignment errors. For example, in class (3), the part of the match extended
from M, is considered incorrect but not the part from Af,. The probability densities of the
fit errors for these two different parts of the match thus reflect assignment and detection

errors respectively. A more complete treatment can be found in (8]
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4.3 Control: Selecting 2D matches for extension and verification

As discussed above, the overall form of the matching system is that of a search for
correct 3D matches by iterative 2D match extension and verification. Therefore, the system’s
behavior is controlled by the selection of matches to extend or verify during each iteration.
While verification is the transformation of a single 2D match into its 3D counterpart, match
extension involves the combination of pairs of matches. It is computationally prohibitive to
select them by evaluating and assigning a priority to every pair of existing matches. Thus,
for each iteration, the selection proceeds in two steps: (1) select a set of individual matches,
each with a high likelihood of leading to the correct interpretation, and (2) for each selected
match that is to be extended, retrieve partner matches for combination.

Given the above process, it is clear that not all of the possible combinations of a match
are attempted when it is selected for extension. Even if the combinations tried seem the
most promising, the correct one may have been excluded. It is thus desirable to be able to

re-select a match in another iteration, and retrieve a new set of partners to combine with it.

4.3.1 Selecting individual matches to extend or verify.

The set of individual matches selected during each iteration should satisfy some combi-
nation of the following two criteria: the matches must be promising candidates for extension
or verification, and the selected set must be distributed about the image in a way that is
advantageous for recursive matching to view description networks.

The first factor, selecting candidates for extension or verification with high likelihoods

of leading to the correct 3D interpretation, is clearly a function of the probability that the
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2D match itself is correct. However, for those matches selected for extension, this likelihood
is also a function of whether or not the match can be successfully combined with another
match. From the above discussion, it is clear that a match may have already been selected
in an earlier iteration, and thus some of the most promising combinations with it will have
been attempted already. It seems reasonable to assume that the chance that the correct
combination has yet to be generated goes down each time a match is re-selected for exi;ension.
The priority assigned to a match is a product of the probability that it is correct and the
probability that it can yet be successfully combined.

The second factor, matching an image to an object represented by a view description
network, is best satisfied if the match extension activity is distributed over the projection
of the scene object. Ix{ this way, matches to different parts of the projection will have a
greater chance of being available for important combinations at roughly the same time. The
following is the method used for distributing the selected matches: (a) initialize the matching
system by generating primitive 2D model node matches in different portions of the image;
and (b) for subsequent iterations, select the highest priority match in the neighborhood of

each of the matches last extended. In our system, the neighborhood of 2 match includes itself

and all matches related to it through extension.

4.3.2 Selecting match combination partners

Once a match is selected for extension, the system searches for other matches that pro-
vide promising combinations. Each time a match is re-selected for extension, a new set

is sought for combination, in order of most promising sets first. A pair of matches is a
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Figure 6: Different pairs of CORNER matches demonstrating three perceptual organi-
zation factors important for assessing the potential usefulness of a match pair
as a combination. For each example, line segments associated with one match
are shown in black, those with the other, in gray, and those with both, in al-
ternating black/gray. The factors exemplified are (a) connectedness (segment
sharing), (b) good continuity (collinearity), and (c) proximity.

promising combination if the resulting extension to a new 2D match has a high probability
of being correct. In a cluttered image, it is easy to select a pair of matches whose individual
probabilities are high, but their combination has a low probability of being correct; thus, it
is important to be able to rank candidate pairs based on how they combine. An important
set of heuristics for ranking combinations in order of their probability of being correct can
be found in psychological studies of perceptual organization [21]. Generally, image features
exhibit compelling perceptual organization if they appear to the viewer as parts of the same
object. Perceptual organization heuristics have already been successfully incorporated into
object recognition systems [9, 20, 24], and the effect of perceptually organizing, or grouping,
image data on the time complexity of object indexing has been experimentally demonstrated
by Clemens and Jacobs [9]. The contribution of our research has been the incorporation of

perceptual organization processes into a recursive indexing design.
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The three perceptual organization factors exemplified in Fig. 6, connectedness, good
continuity, and proximity, are important for assessing match combinations and have been in-
corporated into our recognition system. Connectednessis exhibited when two matches share
the same image line segment. If these two matches are correct, there is a high probability
that they are of the same object’s projection. Two matches exhibit good continuity if a pair
of image line segments, one from each match, are close and approximately collinear. Given
good continuity, the visual organization is very compelling, though not with the strength of
connectedness. Finally, two matches are considered proximate if their associated image line
segments are close. Proximate matches do appear more likely to be parts of the same object
than more distant pairs, but this factor is clearly not as compelling as the others.

The combinations o\f a given match are generated in order of the compellingness of the
grouping heuristic involved: all combinations exhibiting connectedness are of highest priority,
then those with good continuity, and for subsequent passes, the rest are ordered by proximity.
Given this scheme, the extensions of a match are attempted in roughly best-first order. In
addition, the retrieval of the desired match combinations, given each of the factors, can be

made efficient by suitable image and match data base organization, as has been implemented

in our system.

5. Matching experiments

Our matching system has been applied to the recognition of objects in real, digital images.
For each image, the same initialization procedure was followed. F irst, lines were detected

[5] and filtered by length (> 10 pixels) and intensity contrast (> 5 gray levels). Next, all
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Figure T: Images of scenes containing multiple objects and an outdoor scene. Images:
8 ]
(a) separated-objects, (b) top-scene, (c) side-scene and (d) outdoor-scene
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from the 3D pose estimated by the algorithm of Kumar, given the segment
assignments shown.
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matches to CORNER with low gap error (< 12.5% of line length) and low overshoot of the
intersection (< 3.5%) were found. Finally, redundant CORNER matches due to redundantly
represented object edges were removed by the following filter: if a line segment is matched
to CORNER multiple times, and the other segments in these multiple CORNER matches
are next to and parallel with each other, then select only the best one.

The first three images in Fig. 7 are of scenes containing multiple objects. These were
matched to a network for the three objects in the scenes; it was identical to the one shown in
Fig. 2, without the house view descriptions. The system was also applied to the last image
in Fig. 7 of an outdoor house scene. The system searched for matches between this image
and all four objects shown in Fig. 7, using the view description network shown in Fig. 2. All
of the correct 3D matcl\xes~were found for each image; Fig. 8 shows the original hypothesized
3D matches as thick black lines and the resulting projection given the estimated 3D pose
in thick gray lines. The system also hypothesized and attempted to verify some incorrect
3D matches, shown in Fig. 9. Note that there were no incorrect 3D matches generated for
the images separated-objects, top-scene and outdoor-scene, and only six for side-scene. The
first four of the incorrect matches were due to false line-segment junctions and accidental
parallels in projection (or shadows), which produced erroneous small 2D matches of high

probability. In spite of such complications in the image, the matching system as a whole

seems effective.
Table 1 shows some useful statistics for each matching trial and the average across all of
them (last column). For the images and ob Jects studied here, a confident 3D match typically

requires the assignment of five model line segments, making the possible 3D matches per
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Images
Statistics || Separate-objects | Top-scene | Side-scene | Outdoor-scene Average
object library size 3 3 3 4 3.25
image segments 63 7 142 41 80.8
3D matches possible 2.5 x 107 7.1x 10° | 1.6 x 1011 3.6 x 10° 4.3 x 10*
3D matches generated 3 3 9 1 40
| 3D matches per correct match ' 1 1 3 1 1.6
number of match iterations 4 4 5 4 4.25
ave height of network 4.7 4.7 4.7 4.8 4.73
iterations per network level .86 .86 1.07 .83 91
3D and 2D matches generated 230 264 379 137 252.5
ave # line segs per match 2.6 2.5 2.3 1.9 237

Table 1: Statistics for matching experiments. Each column reports the statistics for a

different image, except for the last column which is the average over all runs.
The statistics are explained in the text.

image number in the tens of billions. In spite of this, the number of 3D matches actually hy-
pothesized is very small, averaging 1.6 per correct 3D match. Another illuminating statistic
is the number of iterations that the system runs before finding all of the correct matches. In-
cluding the initialization and final verification steps, the average number of iterations is 4.25.
In relation to the average height of the view description network, this is a good result. The
average height of the network roughly represents the number of steps in a network-directed
construction of the 3D match, starting from an unmatched set of image line segments. For
the network used in this study, the average height is 4.7, which is higher than the actual
average number of iterations used by the system to generate the correct 3D matches. In
part, this reflects the fact that the system sometimes performed match extensions to indirect
successors in the network and thus avoided some of the construction steps. It also reflects the
utility of the match combination approach in general. As argued in Section 2, the evidence

from matches to multiple parts and the convergent structure of the description network are
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used together to provide a potentially focused search for the correct interpretation. The
results presented here help demonstrate this potential.

The total number of 3D and 2D matches generated also seems reasonable. This is espe-
cially true when one considers the number of line segments in the image and the average size
of the matches (number of assigned model lines). In the trials presented here, matches to
the two simplest 2D models, LINE-SEGMENT and CORNER, make up the majority of the
total, and another large portion of the total is made up of matches to 2D models that are
almost as simple: the three-segment matches to U-SHAPE, C-SHAPE and TRIANGLE. For
the images tested, the system consistently converges on the correct interpretation without
generating many 2D or 3D matches of size greater than three segments - even though there

can be many initial matches to the smaller 2D models.

6. Summary and conclusions

In our approach to recognition, the search for matches to a multiple 3D object library
is optimized by matching view description networks that are automatically compiled from
the library. The contribution of the research described in this paper is the development of
effective strategies for the network matching process. The experiments show that a recog-
nition system based on view description networks is capable finding the correct matches to
3D objects in complex images with a potentially high level of efficiency.

It is important to note that, even though our compilation process generates view de-
scriptions for rigid 3D objects, the view description network and the recognition phase of

the system are based on relational graphs. They can thus be readily used to represent and

29



match information about non-rigid objects. This adaptability to non-rigid domains is a key

property of our syStem.
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