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Abstract

In this paper we study quantitative as well as qualitative properties of Fork/Join Queue-
ing Networks with Blocking (FIQN/B’s). Specifically, we prove results regarding the equiv-
alence of the behavior of a FIQN/B and that of its duals and a strongly connected marked
graph. In addition, we obtain general conditions that must be satisfied by the service times
to guarantee the existence of a long-term throughput and its independence on the initial
configuration. We also establish conditions under which the reverse of a FIQN/B has the
same throughput as the original network. By combining the equivalence result for duals and
the reversibility result, we establish a symmetry property for the throughput of a FIQN/B.
Last, we establish that the throughput is a concave function of the buffer sizes and the initial
marking, provided that the service times are mutually independent random variables be-
longing to the class of PERT distributions that includes the Erlang distributions. This last
result, coupled with the symmetry property, can be used to identify the initial configuration
that maximizes the long-term throughput in closed series-parallel networks.
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1 Introduction

A Fork/Join Queueing Network with Blocking (FJQN/B) is a queueing network consisting of
a set of servers and a set of buffers such that each buffer has exactly one upstream server
and one downstream server. On the other hand, each server may have several input buffers
and/or several oui:put buffers. Some servers may have no input buffers or no output buffers.
Such servers are referred to as sources and sinks, respectively. All of the buffers have finite
capacity. A server is allowed to start service whenever there is at least one job in each of its
input buffers and space for at least one job in each of its output buffers, i.e., the server is neither
starved nor blocked. Sources are never starved and sinks are never blocked. Upon completion
of service, one job is removed from each of the input buffers and one job is added to each of
the output buffers. The FJQN/B, as described above, was first introduced by Ammar and
Gershwin [1]. Note that the blocking mechanism in a FIQN/B corresponds to the so-called
blocking-before-service mechanism [33].

A FIQN/B is structurally characterized by a graph representing the links between the set of
servers and the set of finite-capacity buffers. Moreover, the behavior of a FJQN/B in general
depends on an initial marking, which is defined as the number of jobs present in each buffer
at the initial instant. Finally, since we are mainly interested in the quantitative behavior, a
FJQN/B is further characterized by the durations of service times which are random variables
(r.v.%s).

In this paper we focus on five aspects of FIQN/B’s, 1) their equivalence properties, including
duality, 2) the existence and uniqueness properties of their throughput, 3) their reversibility
properties, 4) their symmetry properties, and 5) the concavity of the throughput with respect
to the buffer sizes and to the initial marking.

Equivalence Properties. The first equivalence property that we study is that of duality.
The duality property of FIQN/B’s is related to the concept of job/hole duality introduced by
Gordon and Newell [21] within the context of closed tandem queueing networks, and earlier
observed by Sevast’yonov [37]. Here a hole corresponds to space for one job in a buffer. The
idea is that the movement of jobs in one direction is equivalent to the movement of holes in the
opposite direction. This duality concept was generalized to FJQN/B’s by Ammar and Gershwin
[1]. A dual FIQN/B is obtained by reversing the direction of the flow in a subset of buffers
and changing the corresponding initial marking to the number of holes initially present in these
buffers. The full dual is a dual FJQN/B for which all of the flows have been reversed. We
show that any dual FIQN/B, in particular the full dual, has exactly the same behavior as the
original FJQN/B. As a consequence, a FJQN/B and its dual have the same throughput and
stationary marking (with markings replaced by holes when the flow of the corresponding edges is
changed) distribution, provided that these quantities exist. These results were already obtained
by Ammar and Gershwin [1] in the special case of exponentially distributed service times. We
also introduce a canonical form for FJQN/B’s where there exists, at most, one buffer between



two servers. We show that for any FJQN/B, there exists a FIQN/B in canonical form that
exhibits an equivalent behavior. Last, we show the equivalence between the class of FIQN/B’s
and the class of Strongly Connected Marked Graphs (SCMG’s) (13, 26].

Existence and Uniqueness Properties. We prove the existence of the throughput of a
FJQN/B under very general conditions on the service times. Specifically, we require that the
service times of the servers be jointly stationary and ergodic, and be integrable (i.e., have
finite means). This existence property was first proved by Baccelli [4] within the context of
SCMG’s. Our primary new result concerning this part of the problem is that the throughputs
of a FJQN/B under two different initial markings are equal, provided that these two markings
are reachable from each other and the service times of different servers are independent of each
other. Because of the equivalence of FIQN/B’s and SCMG’s, this result also holds for SCMG’s
thus proving a basic assumption made in [5] for deriving stability conditions of marked graphs.

Reversibility Properties. For any FJQN/B with an initial marking, we define the reverse
FJQN/B to be the network obtained by reversing the flows of jobs while keeping the same
initial marking. We show that the reverse FIQN/B has the same throughput as the original
FJQN/B provided that the service times form jointly stationary reversible ergodic sequences
of integrable random variables. Transient results are also derived. These generalize the results
established in [15] for closed tandem queueing networks. As an application of these results, one
can also obtain the reversibility property for open tandem queueing systems with finite buffers
and blocking-after-service mechanism, and relax the statistical assumption of independent iden-
tically distributed (i.i.d.) service times made in [25, 27, 39).

Symmetry Properties. We establish a symmetry property of the throughput of a FJQN/B.
We consider a FJQN/B with a given initial marking and the same FJQN/B with the symmetrical
initial marking, i.e., the initial marking with jobs replaced by holes at each buffer. We show
that these two FJQN/B’s have the same throughput by combining the results on reversibility
and duality. Such a symmetry property was first conjectured by Onvural and Perros [31]
for closed tandem queueing networks with blocking before service mechanism and exponential
distributions of service times, and first proved by Dallery and Towsley [15] under the assumption
that service times have phase type distributions.

Note that the assumptions required for obtaining the throughput, reversibility, and symmetry
properties allow the sequences of i.i.d. service times as a special case.

Concavity Properties. Finally, we establish that the throughput of a FJQN/B is a concave
function of the buffer sizes and the initial markings, provided that the service times are mutually
independent r.v.’s coming from a subclass of log-concave distributions called PERT distributions
(8], which includes Erlang distributions as a special case. The concavity of the throughput with
respect to the buffer sizes can also be obtained by a result of Baccelli and Liu [8] which states
that the throughput is a concave function of the initial marking in a Marked Graph (MG)
when the holding times have PERT distributions. Our new contribution is the concavity with



respect to the initial marking. Our results generalize those of Shanthikumar and Yao [36] on
the concavity of the throughput with respect to the number of jobs in closed tandem queueing
networks and the results of Meester and Shanthikumar [24] and Anantharam and Tsoucas [2]
on the concavity of the throughput with respect to the buffer sizes in open tandem geueuing
networks, all of which were established under the assumption of exponential service times.

FJQN/B’s are of interest because they are particularly suited to the modeling and performance
evaluation of manufacturing systems, computer systems and communication networks. In the
case of manufacturing, forking corresponds to the process of splitting a component into two
or more subcomponents, joining corresponds to the assembly of two or more subcomponents
into a single component. Examples of the study of fork/join queueing networks (also called
assembly/disassembly networks) in manufacturing can be found in [17, 20]. The FIQN/B
also captures the behavior of parallel programming constructs such as the fork-join primitive
available in many parallel programming languages (3, 22, 34]. Some of the many papers that
have been devoted to the study of such behavior include [6, 9, 10, 28]). Most of these studies
assume infinite buffering. Last, FIQN/B’s have been used to model problems in error control
[11, 12] and flow control [18] in communication networks.

Our results also have application to the optimization of FIQN/B’s. For example, we can iden-
tify, on the basis of the symmetry and concavity properties, the initial marking that maximizes
the throughput for a subclass of FJQN/B’s that includes the closed tandem queueing net-

work. For this last example, the throughput is maximized by setting the the number of jobs
in the network to one-half of the sum of the buffer sizes when the service times form mutually
independent sequences of i.i.d. r.v.’s with PERT type distributions.

The paper is organized as follows. The formal definition of FJQN/B’s is given in Section 2.
The equivalence properties of FIQN/B’s are described in Section 3. Sections 4 and 5 contain
the results pertaining to the qualitative and throughput behaviors of FJQN/B’s, respectively.
Reversibility, symmetry, and concavity properties are presented in Sections 6, 7 and 8, respec-
tively. Applications of these results to modeling, performance evaluation and optimization of
computer systems, communication networks, and manufacturing systems (including those with
buffers of infinite capacity and those with servers prone to failures) are provided in Section 9.
Finally, conclusions are given in Section 10.

2 Fork/Join Queueing Networks with Blocking

A Fork/Join Queueing Network with Blocking (FJQN/B) is generally represented as a bipartite
graph satisfying certain constraints. Let

N= (V.anaE:B)

be a FIQN/B where V, is a set of n, servers, V, is a set of ny buffers, EC V, x V4 + V; x V,
is a set of directed edges indicating the flow of jobs from servers to buffers and from buffers to



servers !. Here E is required to satisfy the constraint that Vk € Vy: [{(i,k) € E :i€ V,}| =1
and |[{(k,i) € E :i € V,}| = 1, i.e., each buffer has one incoming and one outgoing edge.
The buffers are of finite capacity with sizes given by B = (B, -, By,,) where By € IN* is the
capacity of buffer k € V}. It is convenient to refer to the underlying graph, G = (V = V,+ W, E)

which is assumed to be connected. We will abuse notation for sake of readability by labeling
the servers i =1,---,n, and the buffers as k = 1,---, ns.

Define the set of immediate buffer predecessors (or, the upstream buffers) of server i € V,, py(3),
to be the set of buffers that has a direct link to i,

po(2) = {k € Vi|(k,?) € E}

and the set of immediate buffer successors (or, the downstream buffers) of server i € V,, s3(2),
to be the set of buffers to which 7 has direct links,

s(2) = {k € V3|(3, k) € E}.

Define the set of immediate server predecessors of server i € V,, p,(i), to be the set of servers
that can reach ¢ without passing through any other server,

p()={j eV, |3k eVy: (j,k),(k,i)€ E}

and the set of immediate server successors of server i € V,, s,(i), to be the set of servers to
which ¢ can reach without passing through any other servers,

ss(t)={jeV,|kecVy: (ik),(kj)€ E}.

The FIQN/B behaves in the following manner. Server i initiates a service period whenever
there resides at least one job in each of the buffers in py(¢) and there is space for at least one
job in each of the buffers in s,(2). Server 7 is said to be starved if at least one of the immediate
upstream buffers is empty and blocked if at least one of the immediate downstream buffers
is full. Note that the server can simultaneously be starved and blocked. Jobs remain in the
buffers in py(2) throughout the service period, i.e., there is no space associated with the servers
for storing jobs. At the completion of the service period, a job is removed from each of the
buffers in p,(2) and a job is immediately placed in each of the buffers in s,(i). Observe that
the blocking mechanism described above corresponds to what is referred to as blocking before
service in the literature [33]. Note that a FJQN/B thus defined allows no routing choices.

There may be some servers for which there are no incoming edges. Each such server is referred
to as a source, and it is assumed that there are an infinite number of jobs available to the source
so that it is never starved. There may be other servers for which there are no outgoing edges.
Each such server is referred to as a sink, and is assumed to never be blocked. Each job that
completes at a sink leaves the system immediately.

!When A and B are sets, A+ B= AU B and A-B={a:a€ A,a &B}
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Figure 1: Example of a FJQN/B.
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Figure 2: An open tandem queueing network.

An example of a FJQN/B is given in Figure 1 (servers are represented by circles and buffers
by rectangles). This FJQN/B has 10 servers and 12 buffers. Servers 1 and 6 are sources and
server § is a sink. Two special cases of FIQN/B’s that have received much attention are open
tandem queueing networks (see Figure 2) and closed tandem queueing networks (see Figure
3). Another special class of FJ QN/B’s which is of interest corresponds to closed series-parallel
fork-join networks. An example of such a network is given in Figure 4.

We introduce some terminology from graph theory related to the underlying graph, G. A path
from node {; to node i; both in V is a sequence of contiguous edges, (i1, 12), (i2,3), - - -, (£5-1, i;)
that arein E. A circuit, C, is a path with i; = ij. A chainis a sequence of undirected contiguous
edges, (i1,13), (iz,13),- - *,(£j-1,1;) such that either (t1,4141) € E or (i141,41) € E. A cycle, C,
is a chain with i) = i;. We refer to the set of edges associated with either a circuit or cycle C
as E(C) C E. Throughout the paper we will only consider elementary circuits and cycles, i.e.,
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Figure 3: A closed tandem queueing network.
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Figure 4: A closed series-parallel fork-join network
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Figure 5: Example of a circuit-free FIQN/B.

those containing no subcircuits or subcycles. For simplicity we will use the terms circuit and
cycles to mean elementary circuits and elementary cycles. Note that all paths are chains and
all circuits are cycles. The reader should be careful to remember the definitions of these terms

as they are not always consistent with their definitions sometimes introduced in the theory of
queueing networks.

In the FIQN/B of Figure 1, there is a single circuit and several cycles. The circuit consists
of the set of edges {(7,8),(8,9),(9,10),(10,7)} and a cycle is, for instance, defined by the set
of edges {(2,3),(3,5),(5,4),(4,2)}. An open tandem queueing network has no cycle, while a
closed tandem queueing network is a FJQN/B which consists of a single circuit.

A FIQN/B is circuit-free (also called acyclic in the queueing literature [10]) if it contains no
circuit. It is cycle-free (also referred to as tree in the literature [20]) if it contains no cycle. A
circuit-free FJQN/B and a cycle-free FIQN/B are illustrated in Figures 5 and 6, respectively.
Note that an open tandem queueing network (see Figure 2) is a special case of a cycle-free

FIJQN/B.

Let m(t) = (my(t), - -,mn,(t)) be the marking of the system at time ¢ > 0 where my(t) denotes
the number of jobs in buffer k € V; at time ¢. The initial marking at time ¢t = 0 is assumed ‘to be
m(0) = M = (My,---,M,,), M; € {0,1,---, Bx}; k € V;. Note that B, — my(t) is the number
of holes in buffer £ at time ¢. In general, the qualitative, as well as quantitative, behavior of a
FJQN/B is related to its initial marking. Hence, we introduce the notation

§=(N,M)

7
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Figure 6: Example of a cycle-free FJQN/B.

to denote the FJQN/B A associated with the initial marking M.

The durations of the service periods at server i are given by a sequence of non-negative service
times, {a;,n}nZh 1 € V,. We note that service times may take value zero. The introduction of
servers whose service periods are of zero length is useful for modeling synchronization mecha-
nisms. In addition, there is an initial timing condition ¥ = (Y1,---,Y,,), ¥ > 0, after which
the i-th server can begin its first service period, i € V,. In other words, server i does not become
available to provide service to any job until time ¥;. The introduction of these initial timing
conditions proves useful in proving the independence of the asymptotic throughput (defined
below) with respect to the initial marking of the network. In additicn, there are a number of
applications where it is useful to include different initial timing conditions, e.g., the modeling
of distributed computing systems in which the clocks are not synchronized at system startup.

Denote by
T=(SY)

the FIQN/B S coupled with the initial timing condition Y. Note that this timing condition
need not be independent of the service times.

The performance measure of greatest interest to us is the system throughput. Let D,-:n(T)

denote the time of the n-th service completion at server i in S under initial timing condition
Y. Let

D,,(Y:) = {%a-vf D;a(T).



Denote by 6;(7) the (asymptotic) throughput of server i € V, and 6(7) the (asymptotic)
throughput of § with initial timing condition Y. More precisely,

om) = [ BPnDN™ iy, (2.1)
oT) = [nli’%o M]_l (2.2)

provided the limits exist. We will give conditions for the existence of these limits and inde-
pendence with respect to initial conditions (i.e., M and Y') in Section 5. We will use 6(S) to
denote the throughput when it is independent of Y.

3 Equivalence Properties

In this section we define the dual of a FJQN/B and prove the equivalence of a FIQN/B and
its duals. We also establish the equivalence between the general class of FIQN/B’s and the
class of FJQN/B’s in canonical form. Last, we establish the equivalence between the class of
FJQN/B’s and the class of SCMG's.

3.1 Duality Properties of FIQN/B’s

Consider 2 FIQN/B S = (N, M). Let A be an arbitrary set of buffers, i.e., A C V;. We define
the A-dual of S to be the FJQN/B created from S by reversing the job flow through the buffers
in A and switching the initial markings with the holes at those buffers.

Definition 3.1 LetS = (M, M) be a FJQN/B and let A C V;. The FIQN/B 8¢ = (N4, M?)
is the A-dual of S if

vE =V,
v'bd=v.ln
B = B,

E® = E-{(i,k) € Elk € A} + {(k,d)|(5,k) € E,k € A}
—{(k,j) € E|k € A} + {(J, k)l(k,j) € E, k € A},

M = By, — My, k€A,
k My, otherwise.

Note that if S is cycle-free, then any A-dual of S is also cycle free. Of special interest is the
Vi-dual of S. We shall refer to this as the full dual of S and denote it as Sf. Thus, the full

9
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Figure 7: Full Dual of the FIQN/B in Figure 1.

v

dual of a FIQN/B is the FJQN/B obtained by reversing the job flow through all the buffers

and switching the initial markings with the holes. The full dual of the FIQN/B illustrated in
Figure 1 is illustrated in Figure 7.

The main result of this section is the equivalence between the FJQN/B S and a A-dual
8%, Let 8¢ = ((Vi, Vs, B%, B), M) be the A-dual of § = ((V,, Vi, E, B), M). Let mt) =

(ma(t), - -+, mn,(t)) and m(t) = (m(t),---,me,(t)) be the markings of S and S¢ at time
t>0.

Theorem 3.1 Let S and S° be duals as defined above. If the service times and initial timing
conditions are the same in both systems, i.e., a;-’_ﬂ =0in, 1€V, n=12,---, and Yid =Y,
1 € V,, then for all t > 0,

my(t), EdA,
B:— my(t), kE€A. (3.1)

{ mg(t)

mi(t)

Proof. Let us first note that it is sufficient to prove the theorem in the case where A consists
of a single buffer. Indeed, the equivalence for any subset of buffers can then be obtained by con-
structing a sequence of FJQN/B’s such that each FJQN/B in the sequence is obtained from the
preceding one by reversing the job flow through a single buffer. So, let & be the buffer for which
the job flow is reversed, i.e., A = {k}. Let i and j be the upstream and downstream servers of

.

10



buffer k in S, respectively, i.e., (z,k),(k,7) € E. Note that i and j are the downstream and up-
stream servers of buffer k in S9, respectively, i.e., (, k), (k,i) € E4. The occupancy of a buffer
affects the behavior of a FJQN/B by precluding its upstream (resp. downstream) server from
performing an operation whenever the buffer is currently full (resp. empty). Thus, serveriin S
(resp. 8¢) is precluded from performing an operation at time t if buffer k is full (resp. empty),
i.e., mg(t) = By (resp. m¥(t) = 0). In a similar way, server j in S (resp. S%) is precluded
from performing an operation at time ¢ if buffer k is empty (resp. full), i.e., my(t) = 0 (resp.
mg(t) = By). Now, as long as blocking or starvation of servers i or j does not occur in either §
or §9, the sample-path behavior of these two FIQN/B is identical in the sense that servers initi-
ate and complete their operations at the same instants in both networks. (Remember that both
networks are assumed to have the same initial timing condition as well as the same sequences
of service times.) Moreover, any time the occupancy of buffer k increases (resp. decreases) by

one in S, that of buffer k € §¢ decreases (resp. increases) by one. During this period of time,

we thus have mg(t) = By — mg(t). As a result, a blocking of server i in S will occur exactly at

the same instant and last exactly the same time as a starvation of server ¢ in S%. Similarly, a
starvation of server 7 in § will occur exactly at the same instant and last exactly the same time

as a blocking of server i in S¢. Thus, both networks will have identical sample-path behaviors. il

In words, there is a one-to-one correspondence between jobs in the buffers within A in the
original FJQN/B S and the holes within the same buffers in the A-dual S¢ and vice versa.
Movement of jobs on those links in one FJQN/B corresponds to movement of holes in the other
FJQN/B. In addition, there is a one-to-one correspondence between jobs in buffers not in A in

both FIQN/B’s. We note that this equivalence is an equivalence in terms of sample-path from
which the following results can be obtained.

Corollary 3.1 Whenever the throughput ezists for S, the throughput ezists for S% and is iden-
tical to that of S, i.e. :
8(S,Y) = 0(8%,Y)

for all initial timing conditions Y .

Corollary 3.2 Whenever the stationary distribution for the system marking exists (the distri-
bution of m(t) ast — o) for S, then the stationary distribution for the system marking ezists
for 8¢ and is related to that of S by (3.1).

Remark. General conditions for the existence of the stationary marking distribution of S are
found in Baccelli and Liu (4, 7). In particular, a stationary marking distribution exists when the
service times at each server form mutually independent sequences of i.i.d. r.v.’s having infinite
support. Hence, the above corollary extends the results of Ammar and Gershwin [1] developed
under the assumption of exponential service times at each server.

11



The duality property provides some insight on the behavior of FJQN/B’s. First, it shows
that there is no fundamental difference between starvation and blocking (recall that we assume
blocking before service). Indeed, duality switches around starvation and blocking events. For
instance, the starvation of a server due to the empty state of a buffer in the original FIQN/B
corresponds to the blocking of the same server due to the full state of the same buffer in the
dual FJQN/B.

Second, duality shows that there is no fundamental difference between circuits and cycles that
are not circuits. Indeed, it is always possible to transform a circuit into a cycle that is not a
circuit using duality. At first glance, one might think that a circuit-free FJQN/B is in some
respect simpler than a general FJQN/B. This is, however, not true; and by appropriately
choosing a set of buffers, A C V4, it is possible to construct a A-dual of any FIQN/B that is
circuit-free. For example, A can be taken as the set of buffers where the index of the upstream
server of a buffer in A is larger than that of its downstream server.

3.2 FJQN/B’s in Canonical Form

We present in this subsection an alternate and simpler canonical representation of a FJQN/B.
Most of the paper deals with such a FIQN/B.

Definition 3.2 A FIQN/B S = ((V,, W), E, B, M) is said to be in canonical form if there is,
at most, one buffer between every pair of servers:
Vi,jeV,: [{k € V5|(i, k), (k, 5) € E or (j, k), (k,i) € E} < 1.

We prove the equivalence between the classes of arbitrary FJQN/B’s and FJQN/B’s in canonical
form.

Theorem 3.2 For any FJQN/BS = ((V,, W), E, B, M), there is a FIQN/B 8¢ = ((V£, V¥), E¢, B°, M¢)
in canonical form with
Vi=V,, VWCW, E°CE,

such that for any k € V4, there are k' € V¢ and two integers ty, 0y € Z:
VtE>0: mi(t) = mp(t) + @k, Br — mp(t) = Bf — mi(t) + v,
provided that the initial timing conditions and the service times are the same in both systems,

ie,Y =Y oin=05,, i€V, n=1,2,---

Proof. See Appendix A.

As a result of the above equivalence, we restrict our attention to FJIQN/B’s in canonical form
in the remainder of the paper. In this case, the FJQN/B can simply be represented by N =

12
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Figure 8: Canonical Representation of the FIQN/B in Figure 1.

(Vi) E, B), where V, is a set of servers and E C V, X V, is a set of directed edges indicating the
flow of jobs from servers to servers. In this formulation, the buffers are associated with the edges,
i.e., there is a mapping 7 from edges to buffers, 7 : E — V,. The vector B retains its original
meaning although it is sometimes convenient to refer to the edge, i.e., B;; = B(;,5)- Similarly,
the initial marking of the buffer associated with edge (i,7) € E is denoted by M;; = Mq(; ;). It
remains convenient to refer to the underlying graph, G = (V = V,, E). Similar definitions for
the sets of immediate server predecessors and immediate server successors to server i € V, can
be given. We will use this simpler representation in the remainder of the paper. Note that the

FJQN/B given in Figure 1 is in canonical form. Its simplified representation is given in Figure
8.

3.3 Equivalence of FIQN/B’s and SCMG’s

We show in this subsection that the class of FJQN/B’s is related to the class of SCMG’s. A
Marked Graph (MG) [13] is a special case of a Petri Net [32] in which each place has only one
input and one output transition. Stochastic MG’s have recently been analyzed by Baccelli et
al. [4, 5]. Formally, a (canonical) MG, T is a triple I' = (©,1I, A) where

o O is the set of transitions,

e II is the set of places, where a place is denoted by (i,j), i,7 € ©, with the assumption
that (¢,7) € I, Vi € O.

¢ A;; € IN is the initial marking of place (i,7) € II, with the assumption that A =1,
Vi€ O.

13



In addition, a;,, € R* is the holding time of the n-th firing of transitioni,n =1,2,---, Vi € ©.
Observe that underlying graph (©,1II) is a directed graph. A MG is a strongly connected MG
(SCMG), if the underlying directed graph is strongly connected.

The behavior of the MG is characterized by the flow of tokens, which stay at places and are
consumed and created by transitions. A transition ¢ is enabled to fire when there is at least
one token in each of the places (7,7) € II. A firing takes place as soon as it is enabled. At the
end of the firing, a token is consumed at each of the places (j,) € I, and a token is created in
each of the places (4,5) € Il. To be consistent with our discussion of FJQN/B’s, we also need

to introduce an initial timing condition Z € R™* IOI’ after which the transitions can begin their
first firings. Let p; ;(t) denote the number of tokens at place (i,j) € II at time ¢ > 0.

Theorem 3.3 For every SCMGT = (0,11, A), there ezists a FIQN/B S = ((V,, E, B), M)
with
Vi = 6,

Bij = M= Y A(i,j)+1, (i,5)€E,
(i.4)en

Mi,j = A(la])a (z’]) € E1
such that, if Z =Y and a;p = 0y, Vi€ O, n=1,2,--, then

pij(t)=m;(t), t>0, (i,j)€E.

Proof. Observe that in a FJQN/B, any service consumes a job at each of the upstream buffers
and creates a job at each of the downstream buffers, so that the number of jobs in a circuit is
a constant at all time ¢t > 0 (c¢f. Lemma 4.1 below). Hence, the number of jobs in any circuit
of § is not larger than M — 1. Since I is strongly connected, for all transitions ¢ € ©, there is
a non-trivial circuit C # (i,1) of (®,II) such that i € C. Therefore, every server i € V, isina
circuit of (V,, E). As every buffer has capacity M in S, there is no blocking in S.

In comparing the evolution of I and S, it is easy to prove by induction on the events of transition
firings that

¢ a transition ¢ € O can fire if and only if the server i € V, can serve, and that

o p;;i(t) = m; j(t) holds for all ¢ > 0 and (4,5) € E.

The detailed proof is omitted. |
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Theorem 3.4 For every canonical FJQN/B S = ((V,, E, B), M) there exists a SCMGT =
(0,11, A) with

0 = I/M
I = E+{(5,5)|jeVs}+{(57)] (4,9 € E},
Mi,j: (7'3])6 E)
A(zg]) = Bi,j - Mi,j) (J) Z) € Ea
1, 7:=j€ Vpu

such that, if Y = Z and 0, = i, Vi€ V,, n=1,2,---, then

m;;(t) = pi;(t), t>0, (i,j)€E.

Proof. Observe that the resulting graph, (©,II) is strongly connected as the graph (V;, E) is
connected.

Again, one can prove by induction on the events of service periods that

e aserver ¢ € V, can serve if and only if the transition i € © can fire, and that

o forallt >0 and all (4,5) € E:
myj(t) = pi,j(t) and  Bij; —my;(t) = p;:(t).

The detailed proof is omitted. |

This equivalence between FIQN/B’s and SCMG's is of interest for several reasons. On the one
hand, it means that all the results presented in this paper can readily be applied to SCMG’s.
On the other hand, some results can be borrowed from the theory of MG’s and adapted to
FJQN/B’s. This is especially true for qualitative properties presented in the next section.

4 Qualitative Behavior of FIQN/B’s

In this section we present some qualitative properties of FIQN/B’s. Some of these properties
are similar to those obtained in the framework of marked graphs [13]. Consider a FIQN/B
S = (N, M) that is in canonical form. Let C be a cycle in N. Let us define an arbitrary
orientation of this cycle. The set of edges E(C) can be partitioned into two subsets with
respect to this reference orientation. Let E+(C) be the subset of edges oriented according to
the reference orientation and E~(C) be the subset of edges oriented in the reverse direction. We

have E*(C) + E~(C) = E(C). Note that if the reverse orientation is chosen as the reference,
then the two subsets are switched around. Also, if C is a circuit, the natural orientation leads
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to E¥(C) = E(C) and E~(C) = 0. This partition gives rise to a partition of the set of buffers
of cycle C : V3(C) = V,H(C) + V;~(C).

We define the quantities I} (M) (I5 (M), respectively) to be the total number of jobs (holes,
respectively) in all buffers corresponding to the reference direction plus the total number of
holes (jobs, respectively) in all buffers corresponding to the reverse direction,

M) = Y M+ D> (Bi- M)
keVH(C) kev, (C)

IG(M) = Y M+ ), (Be- M)
K€V, (C) kevi(c)

Note that
IZ(M)+Iz(M)=Bc= Y Bi, I}M)=I;(B-M).
keVy(C)

We have the following invariance property satisfied by every cycle in a FJQN/B independently
of the service times and initial timing conditions.

Lemma 4.1 Let C be an arbitrary cycle in N'. The markings in this cycle satisfy the following
relation,

> om)+ Y (Bu-m(n) = IZ(M), V>0, (41)
kevi(c) kev,(C)

or equivalently
Y (Be—-mi(t)+ Y. mu(t)=Iz(M), Vt>0, (4.2)
kevt(C) kevy(C)

independently of the service times and initial timing conditions.

Proof. It is easy to check that a service completion at any server belonging to this cycle does
not change the above quantities and thus they are invariant and equal to those corresponding
to the initial marking. [ |

Henceforth we will refer to I} (M) and I (M) as the invariants of cycle C. Note that in the
special case where C is a circuit, the above lemma states that the total number of jobs along this
circuit is an invariant, as is the total number of holes. For a closed tandem queueing network

this simply means that the total number of jobs in the network is a constant, usually referred
to as the population of the network.

We define the equivalence relation between markings.
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Definition 4.1 Let N contain ezactly n. distinct elementary cycles Cy,---,Cy,. Let

Then markings M and M' are equivalent (written M ~ M') iff I(M) = I(M').

Let M be a marking, then R(N, M) denotes the set of markings equivalent to M, i.e.,
R(N,M) = {M' : M ~ M'}. Marking M’ is said to be reachable from marking M with
respect to N if there exists some sequence of service completions (where timing constraints are
ignored) such that A can transit from M to M'. It has been established for untimed marked
graphs that marking reachability and marking equivalence, as defined above are the same (see
[13]). Hence, M and M’ are reachable from each other, in the absence of timing constraints,
iff M ~ M’'. 1t follows from Lemma 4.1 that, in the presence of timing constraints, a necessary
condition for a marking M' to be reachable from a marking M is that it belong to R(N, M).
Note however that because of timing constraints, it is not, in general, a sufficient condition.
In the special case of a cycle-free FJQN/B, since there is no cycle, all markings belong to the

same class. For a closed tandem queueing network, all markings corresponding to the same
population of the network belong to the same class.

Definition 4.2 A FJIQN/B S = (N, M) is said to be deadlocked if it is impossible for any
server to commence a service period, i.e., every server is either starved, blocked, or both. The
FJQN/B S is said to be deadlock-free if R(N, M) does not contain any marking M' such that
(N, M) is deadlocked.

The following property can easily be obtained from a similar result pertaining to SCMG’s [13]
using the equivalence between FIQN/B’s and SCMG’s.

Theorem 4.1 A FJQN/B with initial marking M is deadlock-free iff the following relation is
satisfied,

IZ(M) > 0 and I; (M) > 0,

or equivalently
0< I}(M)< Bg

for all cycles C in N.

Note that if C is a circuit in a deadlock-free FJQN/B, the above condition states that there is
at least one job and at least one hole along the circuit.

The following result was obtained in the context of MG’s (Theorem 6 in [13]) and thus also
holds for FIQN/B’s.
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Lemma 4.2 For any sequence of service completions such that the final marking is the same
as the initial marking, the number of service completions is the same for all servers.

Finally, we establish the following result that will be useful in the next section for proving the
independence of the throughput with respect to the initial marking. The proof of this result
can be found in Appendix B.

Theorem 4.2 Let S! = (N, M!?) and S? = (N, M?) be two deadlock-free FIQN/B’s that
differ only in their initial markings, i.e., M' # M?2. If M' ~ M?, then by forbidding an
arbitrary server i in N from ever initiating a service period, i.e., Y; = 0o, 8* and 82 reach the
same marking M where every server other than i is either blocked, starved, or both.

5 Throughput

In this section, we focus on the existence of the asymptotic throughput of an arbitrary FJIQN/B
and the equivalences, in term of throughput, between the FIQN/B’s with different initial timing
conditions and markings.

Before establishing the main results of this section, we associate a precedence graph with the
canonical FIQN/B. Let § = ((V,, E, B), M) be an arbitrary deadlock-free FJQN/B. Consider
a relation <s between the pairs (i,n), where 1 € V,, n > 1.

Definition 5.1 The pairs (i,n) and (j,m) have the relation (i,n) <s (j,m) iff one of the
following relations is satisfied,

n=m-— Mi’j, i G pg(j)) (5'1)
n=m-1, i1=17, (5.2)
n=m~ (Bj; — Mj;), i€ s,(j). (5.3)

Definition 5.2 The graph Gs = (V, £) is the precedence graph associated with S if

V = {(i,n) [n21,i€eV,}
€ {(i,n) = (4,m) | (i,n),(5,m) €V, (i,n)<s (j,m)}

As we shall see later on, the edges in this graph indicate the ordering in which service periods
may begin in S. The edge corresponding to relation (5.1) carries the meaning that the m-th
service period at server j cannot begin before the completion of the (m ~ M; ;)-th service period
at server i € p,(j), i.e., buffer (%, 7) must be nonempty (because there must be a job in each of
the upstream buffers before the server can begin a service period). The edge corresponding to

18



relation (5.2) carries the meaning that the m-th service period at server j cannot begin before
the completion of the previous service period at that server (because only one job can be served
at once). The edge corresponding to relation (5.3) carries the meaning that the m-th service
period at server j cannot begin before the completion of the (m ~ (Bj,; — Mj;;))-th service period
at server i € s,(j), i.e., buffer (¢, j) must be nonempty (because there must be space in each of
the downstream buffers before the server can begin service).

Lemma 5.1 If S is deadlock-free, then the precedence graph Gs is circuit-free.

Proof. Suppose there is a circuit
C = (41,m1) = (i2,n2) = -+ - (Zk, k) — (21,71)
in Gs, k > 1. According to relations (5.1)-(5.3),
npSnp <---<my <y,

which implies that
Ny =MnN2 == Ny,

which further implies that 4;,%,, -, 4 are distinct and form a circuit in N. Let ix41 = i;.
Using now the definition of G5, we obtain that for j = 1,-- -, k, either

i; € pa(ij+l)a and Mij,ij+1 =0,

or

1; € s,(zj+1), and Mi,-“.i,- = B,"-“,;j.

Theorem 4.1 can now be applied to show that S is not deadlock-free. Therefore, Gs is circuit-
free. |

We now study the behavior of the throughput of S. The existence of the limit in equation
(2.2) will be shown in Theorem 5.1 below. We establish first the evolution equations of S that
capture the synchronization mechanisms (e.g., starvation and blocking) of S.

Lemma 5.2 If S is deadlock-free, then the evolution equations are:

D;1(S,Y) = o;1+ Y:, Dj;i-m;.(S8,Y),
.1( ) 0i1 ma'x( Jg;',a"‘zs) 2l M),n( ) kren;a;é)

Dk,l-(B.-‘k— .‘,k)(S’Y))I (5'4)

-Din S:Y = i,n Din— SsYs n—M; ;\©) ) n—(B; . —M; ) )
oS,%) = it 5 Dins(S, ), 8% Dine (S V), 138 D108 v)

VieV, n>2, (5.5)

where, by convention, D; ,(S,Y) =0, n<0.
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Proof. Consider first equation (5.5). This equation simply states that the time of the n-th
service completion of server ¢ is equal to the time of the beginning of the n-th service activity
plus the duration time of the n-th service activity, that is o;,. Now, there are three conditions

that must be satisfied for the n-th service activity to begin: 1) the server must be available; 2)
the server must not be starved; and 3) the server must not be blocked. The first condition is
satisfied when server i has completed its (n — 1)-th service activity, which occurs at time D; 1.
The second condition is satisfied when each of the upstream servers of server ¢, j € p,(7), has
completed its (n — M;;)-th service activity, which occurs at time Djn_ps;;. The third condi-
tion is satisfied when each of the downstream servers of server ¢, k € s,(%), has completed its
(n — (Bik — M;x))-th service activity, which occurs at time Dy n_(B;,-n;,)- The second term
in the right-hand side of equation (5.5) is the time at which all these conditions are satisfied
and, thus, at which the n-th service activity can begin. Equation (5.4) is obtained in a similar
way, except that the availability of the server is given by the initial timing condition Y;. [ |

Based on these evolution equations, we can express the departure times in S by the lengths of
paths in Gs. Let P(i,n) be the set of all paths that end at node (,n) € V.

Lemma 5.3

k
Yy + ) Cipnns Vi€V, n>1. (56)
h=1

D;n(S8,Y) =

max
P=((i1m1)—--—(ikme)=(in))EP (iin)

Proof. The proof can be carried out by simple induction on the vertices of Gs in using Lemma.
5.2. |

We are now in a position to show the existence of the throughput.

Theorem 5.1 Let S be an arbitrary deadlock free FIQN/B. Assume that the service times
Jorm jointly stationary and ergodic sequences of integrable r.v.’s. Then there ezisis a constant
i that is independent of the initial timing condition Y such that

071(S)=p = lim Da(5,Y) = lim w a.s. VY € RT™. (5.7)

n—oo n n—00 n

Proof. Let P denote the set of all paths in Gs. For all 1 < m < n, define

k
Xonn = max o;
P=((i1,n1)—""_'(ik!nk))ep’ n1=m, ny=n hz_:l ThTih

It is easy to check that forall1 <m << m,

Xm,n < Xm,l + Xl+1,n
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Therefore X, is a subadditive process. Since the service times are jointly stationary, the
process X, , is stationary. Due to the fact that

n
Xm,n S Z Z Oi.h
h=m i€V,

the integrability of the service times entails that X, ,, is integrable. Using Kingman'’s theorem
on stationary ergodic subadditive processes (c.f. [23]), we obtain

p= lim Kin _ lim EX1n) a.s. (5.8)
n—oo N n—oo n
Observe that
Xl,n S Dn(87 Y) S Z + Xl,m
where Z = max;ev, Y;, we get immediately (5.7). | |

Remark. The proof of the above theorem is similar to the proof of the existence of the
throughput in SCMG’s due to Baccelli [4]. In fact, Theorem 5.1 can also be obtained by using
the result of [4] and the equivalence between the class of FIQN/B’s and that the SCMG’s.
However, the notion of precedence graph and the evolution equations in Lemmas 5.2 and 5.3
are useful in the remainder of the paper.

The above theorem shows that, under the stationary and ergodic assumptions, the throughput
exists and is independent of the initial timing constraints. The existence of the throughput
does not require any independence of the service times, and trivially holds for i.i.d. r.v.’.

The computation of the throughput is quite difficult in general. Exact results are available only
in the case of deterministic service times [35]. Various bounds, based on stochastic ordering
techniques, are obtained by Baccelli and Liu [8]. If the service times can be represented by
phase type distributions [29, 38}, then the system can be modeled by a Markov chain which is
amenable to numerical solution (provided that the state space is not too large). Approximations

have been proposed for the case of tandem and closed networks (see [14] for references), and
cycle-free FJQN/B’s [17, 20).

As a consequence of Lemma 4.2 and Theorem 5.1, we obtain

Corollary 5.1 Let S be an arbitrary deadlock free FIQN/B. The throughputs associated with
each server are identical, 6;(S,Y) = 0(S5,Y) =6(S),i=1,---,n,.

We now establish that the throughput of a FJQN/B is independent of the initial markings,
provided these initial markings are equivalent (cf. Definition 4.1).
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Theorem 5.2 Let N = (V,, E, B) and let S* = (N, M?) and §? = (N, M?) be two FIQN/B’s
with the same joint distribution of the sequences of service times. Assume that the service times
form jointly stationary and ergodic sequences of integrable r.v.’s, and that the sequences of

service times at different servers are mutually independent. If M ~ M2, then the throughputs
of these two networks are identical:

6(S?) = 6(S?).

Proof. See Appendix C.

Remark. The above theorem shows that one of the basic assumptions made in [5] for
deriving stability conditions for marked graphs holds when the sequences of the service times
are mutually independent. However, the service times at each server need not be independent
of each other.

The following simple counterexample illustrates the necessity that service times at the different
servers be independent. Consider a closed tandem network with two servers, two jobs, and buffer
capacities greater than two (the actual values are not important in this example). Assume that
Oin = Oan = On, n = 1,2,--- and that {o,} is a sequence of i.i.d. exponential r.v.’s with
parameter A. Consider two initial markings, one with both jobs in the same buffer and the
other with the two jobs in different buffers. In the first case, it is not difficult to show that
the throughput is 2A/3; whereas in the second case, the jobs commence and complete service
simultaneously and the throughput is A.

6 Reversibility

In this section we formally define the reverse FJQN/B, 87, of a FIQN/B S and show that,
given the same initial marking, they exhibit identical throughput. We begin with the definition
of the reverse of a FJQN/B.

Definition 6.1 Let S = (V,,E,B, M) be a (canonical) FJQN/B. The reverse of S, S" =
(Vs ET, BT, M™), conlains the same servers, buffers, buffer sizes, and the initial marking as S
but the reverse of all of the edges in S: E™ = {(4,5)|(4,i) € E}, B; = Bj; and M]; = Mj;,
(j,1) € E.

Note that B™ and B are really the same as are M™ and M. However, we introduce different
symbols to account for the difference in the direction of the edges in S and S”. Note that the

reverse, S™, of S has the same structure as its full dual, S/, i.e., N7 = N/, They only differ
by their initial marking: M"™ = M while M? = B — M. Note also that there is a one-to-one

correspondence between cycles/circuits in S and S”. This allows us to establish the following
result regarding the deadlock-freeness of S and S7.
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Lemma 6.1 A FIQN/B S is deadlock-free iff its reverse ST is deadlock-free.

Proof. Let C be a cycle in § and let C™ be the corresponding cycle in 8™. Let the arbitrary
orientation of C” be the reverse of that of C. Then, it is immediate that I}, (M") = I (M)
and I, (M") = I (M). Since there is a one-to-one correspondence between cycles in S and

ST, each satisfying this relationship, it follows from Theorem 4.1 that S is deadlock-free iff S”
is deadlock-free. |

The main results of this section are:

Theorem 6.1 Consider a FIQN/B S and iis reverse 8T with the same (joint distribution of
the) sequences of service times. If these sequences are jointly reversible, then for all n > 1, the
service completion times D,(S,0) and D,(ST,0) have the same distribution.

Proof. See Appendix D. |

As a consequence of Theorems 6.1 and 5.1, we obtain

Theorem 6.2 Let S be an arbitrary deadlock-free FIQN/B, and ST be its reverse with the
same (joint distribution of the) sequences of service times. If the service times form jointly
reversible, stationary and ergodic sequences of integrable r.v.’s, then

8(S) = 0(57). (6.1)

Note that the joint reversibility of the sequences {; ,}n, i € V,, which indicates that, for all n >
1, the joint distribution of {01, 05,2, * -, Oi,n}iev, is identical to that of {oi n, Oi 1, -+, 011 biev,,
implies the joint stationarity of the sequences, which indicates that for all m,n > 1, the joint
distribution of {03 m+1,%im+2,**; Timentiev, is identical to that of {0;1,0i2, -, Ginticv,-
When the service times are mutually independent and are i.i.d. at each server, all the assump-
tions made in Theorem 6.2 are fulfilled.

7 Symmetry Properties

In this section we show that the throughput of a FJIQN/B with a given initial marking is
identical to the throughput of the same FIQN/B with symmetrical initial marking. This result
is obtained by combining the reversibility and duality properties of FIQN/B’s.

Definition 7.1 LetS = (V,, E, B, M) be a (canonical) FIQN/B. The symmetrical FJQN/Bof
S, 8° =(V,,E,B,M*), is the same as S ezcept that the initial marking is symmetrical to that
of §: M* = (B - M).
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Note that the initial marking of jobs in §* corresponds to the initial marking of holes in §
and vice versa. Thus, S’ can be obtained from & by applying the reverse and the full-dual
transformations in any order, i.e., S® is the reverse of the full dual of S, or equivalently, S? is

the full dual of the reverse of S. This observation allows us to combine the results of Sections
3.1 and 6 and to obtain the following theorems. Actually, Theorem 7.1 follows from Theorems

3.1 and 6.1, whereas Theorem 7.2 follows from Theorem 3.1, Corollary 3.1, and Theorem 6.2.

Theorem 7.1 Assume that the sequences of the service times are jointly reversible. Then for
all n > 1, the service completion times D,,(S*,0) and D,(S,0) have the same distribution.

Theorem 7.2 If the service times form jointly reversible, stationary, and ergodic sequences of
integrable r.v.’s, then the throughput of a FJQN/B with initial marking B — M 1is the same as
with initial marking M, i.e. :

8(S*) = 6(S). (7.1)

When Theorem 7.2 is applied to some particular classes of FIQN /B, various results of practical
interest can be obtained. For example, consider the class of a closed tandem queueing network
(cf. Figure 3). According to Theorem 5.2, when the service times at different servers are
independent, the throughput is a function of the population N of the network, i.e., the total
number of jobs present in the network, and is independent of the precise initial marking. The
throughput can thus be denoted by (N, N).

Corollary 7.1 Assume that the service times form jointly reversible, stationary, and ergodic
sequences of integrable r.v.’s, and that the sequences of service times at different servers are
mutually independent. Then a closed tandem network FIQN/B with total buffer size B and
population N has the same throughput as with total buffer size B and population B — N :

O(N,B-N)=6(N,N), 1<N<B-1

This result was conjectured by Onvural and Perros [31] for exponentially distributed service
times, and first proved by Dallery and Towsley [15] under the assumption that service times
are characterized by phase type distributions.

This last result can be generalized to closed networks with series parallel fork-join mechanisms
(see Figure 4). However, some restrictions must be made so that the symmetry property of
Theorem 7.2 can be interpreted in terms of a symmetry property with respect to the population
of the network. Let us consider a subclass of closed series-parallel fork-join network, referred
to as uniform closed series-parallel FIQN/B’s, where the sum of the buffer sizes in all circuits
is identical, and the total number of jobs in all circuits is also identical. In such networks, the
sum of the buffer sizes in a circuit is called the buffer size of the network, and the total number
of jobs in a circuit is called the population of the network. It is not difficult to verify that

24



all the initial markings with the same population in a uniform closed series-parallel FJQN/B
are equivalent (i.e., reachable). Owing to Theorem 5.2, if the service times at different servers
are independent, the throughput is a function of the population N of the network, and is

independent of the precise initial marking. Thus, as in the case of closed tandem network, the
throughput can be denoted by 8(N, N).

Corollary 7.2 Assume that the service times form joinily reversible, stationary, and ergodic
sequences of integrable r.v.’s, and that the sequences of service times at different servers are
mutually independent. Then a uniform closed series-parallel FIQN/B with buffer size B and
population N has the same throughput as one with buffer size B and population B — N:

6(N,B - N)=6(N,N), 1< N<B-1

It is easy to check that the closed series-parallel FIQN/B of Figure 4 is uniform if B; + B3 =
By + Bs + Bg, Bg+ Byo = By + B12 = B1a + Big, and My + Mz = My + Ms + Mg, Mg + My =
My, + My = Myz + M.

There are other FIQN/B’s for which Theorem 7.2 can be interpreted as a symmetry property
with respect to population of jobs, by using Theorem 5.2. For example, Corollary 7.2 can be
extended to the class of generalized uniform closed series-parallel FJQN/B’s:

Definition 7.2 A FIQN/B S = (V,E,B, M) is a generalized uniform closed series-parallel
FJQN/B if the network obtained from S by removing all the servers and all the buffers that do
not belong to a cycle is a uniform closed series-parallel FIQN/B.

Again owing to Theorem 5.2, we know that the throughput of such a generalized uniform closed
series-parallel FJQN/B is independent of the initial marking of the buffers that do not belong
to a cycle. Thus, under the assumptions of Corollary 7.2, the throughput of S depends only

on the population, N, and the buffer size, B, of the underlying uniform closed series-parallel
subnetwork of S Moreover, we have:

8(N,N)=6(N,B - N).

8 Concavity

In this section we establish that the throughput of a FIQN/B is a concave function of the
buffer sizes, B, and the initial marking, M, provided that the service times form mutually
independent sequences of i.i.d. r.v.’s having PERT type distributions. The concavity of the
throughput, with respect to the buffer sizes, can also be derived by Theorem 3.4 and a result
by Baccelli and Liu [8] which states that the throughput is a concave function of the initial
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marking in a MG when the holding times have PERT distributions. Our new contribution is
the concavity with respect to the initial marking.

Similar to [8], we will begin by proving the result for the case of exponential service times,
and then extend the concavity result to the class of PERT type distributions which was first
introduced in [8].

Consider a FJQN/B S = (V,, E, B, M) with initial timing condition Y = 0. Let Q;(t) denote
the number of service completions in S at server ¢ by time ¢t > 0, ¢ € V,. The throughput of
server ¢ can be expressed as

6:(5) = lim ) _ i Bl (8.1)

t—oo ¢ t—oo t
where the a.s. convergence follows from Theorem 5.1 (see (8] for a proof). Recall that we know
from Corollary 5.1 that the throughputs at all the servers are identical, i.e., 8;(S) = 6(S),Vi €

Vs.

Lemma 8.1 LetS = (V,, E, B, M) be a FIQN/B. If the service times {0;,}22, are mutually
independent sequences of i.i.d. exponential r.v.’s with parameter X;, i € V,, then 6(S) is a
concave function of the buffer sizes B and the initial marking M.

Proof. Owing to the memorylessness of the exponential r.v.’s, we can consider a FJQN/B
§' = (V,, E, B, M) where all the servers are continually serving jobs. The initial timing of S’ is
0. Server i € V, serves (fictitious) jobs at rate A;. When a (virtual) service completion occurs
at server i € V,, if the server is neither blocked nor starved, then this completion corresponds
to a real service completion so that one job is removed from each of the upstream buffers and
one job is created at each of the downstream buffers. Otherwise, no job movement takes place
at this virtual service completion. It is clear that the evolution of this network is identical in
law to the original FJQB/B S with initial timing 0.

Observe that the behavior of 8! can be described as a continuous time Markov chain. We can
uniformize this chain with a Poisson process having parameter » = Y ;cy, Ai. Let N(t) denote

the number of transitions in this Poisson process by timet > 0and 0 =Ty < 1 < T < --- <
Tm,- - - be the transition times. Define a r.v. U,,, m = 1,2, .-, that is uniformly distributed in
the interval (0, 1] and that is independent of N(t) and let U;,, be the indicator function

Uim = Lisni-ty cpucsy ap 1€V m=1,2,---.

=1

Here U; ,, takes on value one if the m-th transition corresponds to a virtual service completion

at server 7 and zero otherwise. A real service completion takes place only if the server is neither
blocked nor starved at T,.

Let Q! = Qi(T\») be the number (real) service completions at server i in S’ by time T}}. For

any buffer (i,j) € E and at any time, due to the starvation constraint, the number of jobs
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removed by server j cannot be strictly greater than that created by server ¢ plus M; ;; and due
to the blocking constraint, the number of jobs created by server j cannot be strictly greater
than that removed by server ¢ plus B; ; — M; ;. Therefore, for alli € V,,

:'.,m < min {jep'.l(li)(Q;'m + Mj,i),jg:i‘ﬁ)(%,m + Bij- Mi,j)} y m=0,1,2,---. (8.2)

When the equality holds in (8.2), server i is either blocked or starved at time T}, which implies
that

‘ = Q!,, =mi i tm + M), mi “m+ Bij— M;;
fmt1 im = mMin {jg%)(cz : i) jgfl(li)(QJ, g -J)}

min {Qi,m + Uiim+1, jgl,inl(li)(Qg,m + Mj;), jgi.l(li)(QQ-_m + Bij — Mi.j)} :
Otherwise, when the inequality of (8.2) is strict, the server 7 is serving real jobs, so that
Qi,m-l-l = Qi,‘m + U;,m-[-l S min .min. (Q,"’,m + Mj'i)’ .m'in. (Q,"i,m + Bi:J - Mi)j) *
J€pa(i) J€s.(i)

Hence,

tmt1 =mind Q-+ Uiy, min (Q5, + Mj;), min (Q}., + Bij — Mij) ¢ -
JePs(l Je"'(’)

Therefore, for all 7 € V,,

Q::vm'{'l = min{Qé,m + Uinm+17 jg;j.l(]i)(Q;,m + Mj;i)3 J.IEI:‘E?;.)(Q;,'"! + Bi’j - Mi,j)} b m= 0, 1) 2, ¢
(8.3)

It follows from (8.3) that @/ .., is a concave function of B, M and @}, ¢ € V,. An induction
argument leads us to conclude that for all i € V, and all m > 0, @}, is a concave function of
B and M (noting that @} = 0).

Since Qi(t) = Q! for T, < t < T4y, we deduce that the variables Qi(t) are also con-
cave functions of B and M as T, does not depend on either of these vectors. Using the
equality in distribution between Q;(t) and Q!(t) we obtain that for all i € V, and all t > 0,
E[Qi(t)] = E[Q}(t)] is a concave function of B and M. Finally, concavity is preserved in the
limit, so that 6;(S) is also concave in B and M. n
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Definition 8.1 A stochastic PERT graph is a weighted directed acyclic graph where the weights
are r.v.’s associated with the vertices. The weight of the critical path of the stochastic PERT
graph is the mazimum of the weights of all of the paths in the graph.

Definition 8.2 Random variable X has a PERT type distribution if X can be ezpressed as
the weight of a critical path of a stochastic PERT graph G where the weights of the vertices
are mutually independent ezponential r.v.’s. The distribution will be denoted F(G, A1, -, Aiq)),

where Ay, - -, A|g| are the parameters of the ezponential distributions of the vertices of G.

Clearly the Erlang distribution belongs to the class of PERT type distributions. Baccelli and
Liu [8] have shown that all PERT type distributions are log concave.

Theorem 8.1 If the service times of FJQN/B S are mutually independent sequences of i.i.d.
r.v.’s having PERT type distributions, then 6(S) is a concave function of B and M.

Proof. The proof is similar to that of [8]. It consists in showing that it is possible to simulate
such a FIQN/B by another FJQN/B, &’ in which all service times are exponential r.v.’s and
applying the previous result. The detailed proof is found in Appendix E. |

9 Applications

In this section, we discuss several applications of the results to the modeling, performance
evaluation and optimization of computer, communication, and manufacturing systems. We
also illustrate how our results on FIQN/B’s can be applied to other blocking mechanisms and
to some other queueing models with buffers of infinite capacity or with unreliable servers.

9.1 Throughput maximization

The symmetry and concavity properties derived earlier can be used to determine the initial
markings that maximize the throughput for the class of generalized uniform closed series-

parallel FJQN/B’s. In particular, using the terminology introduced in the previous section,
we have the following result.

Theorem 9.1 If the service times are mutually independent i.i.d. sequences of r.v.’s having
PERT distributions, then the throughput of a generalized uniform series-parallel FIQN/B S is
mazimized by any initial marking that satisfies N' = |B'/2| or N' = [B'/2], where N’ and B’

are the population and the buffer size, respectively, of the largest uniform closed series-parallel
subnetwork of S.
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Proof. This follows from the symmetry and concavity property of this network. |

This result has both network and manufacturing applications. For example, in networks, win-
dow flow control is often modeled by a closed tandem queueing network where the number of
jobs corresponds to the window size. Hence the above theorem can be interpreted to mean that
in the case of finite buffer capacities, the window size should be one-half of the total buffer ca-
pacity in order to maximize throughput. Automated manufacturing lines where parts are fixed
onto pallets can also be modeled by a closed tandem queueing network [14]. The above result
implies that the number of pallets should be chosen to be one-half of the total storage capacity
of the manufacturing system. This result also applies to certain assembly and disassembly lines
that can be modeled by generalized uniform closed series-parallel FIQN/B’s.

9.2 Parallel processing applications

Consider the parallel processing system analyzed in Baccelli and Liu [6]. In such a system, there
are M > 1 processors and a sequence of parallel programs represented by the same directed
circuit-free graph, referred to as the task graph, G = (V, E). The vertices of V denote the tasks
in a parallel program and the edges represent the precedence constraints between the tasks:
(7,7) € E indicates that task j cannot be started before i is finished. The task running times are

random variables. The n-th program in the sequence is represented by the n-th instantiation
of the task graph.

It is assumed that the processors and/or the multiprocessor system have limited multiprogram-
ming degrees specified by dy,---,dpy and d, respectively, viz., at most d; (resp. d) programs
are allowed to have unfinished tasks on processor ¢ (resp. in the system). Furthermore, it is

assumed that there is an infinite supply of parallel programs and that whenever there is space
for a new one in the system, it is always available.

There is a static assignment identical for all parallel programs which, subject to the multipro-
gramming degrees, assigns tasks to the processors. Associated with the static assignment is a
static local scheduling which, subject to the precedence relations, orders the executions of the
tasks belonging to the same program that are assigned to the same processor. Let Go = (V, Ep)
be the resulting task graph after the application of the static assignment and local scheduling
(i.e., Eq is composed of E and the edges between the tasks on the same processors due to the
local scheduling). For all 1 < i < M, let b; (resp. e;) be the first (resp. last) task to be executed
on processor ¢ among those assigned to the same processor.

The above parallel processing system can readily be modeled by a FIQN/B S = (V, E’, B, M).
Assume that only the processors have the limited multiprogramming degree and not the system
(d = ). The other cases can be analyzed similarly. Then, E' = Eo + {(e;, b;)|1 < i < M},
the edges of E have buffers of size d = max; <i<M di, and initial marking 0, the edges (e;, b;),
1 < ¢ < M, have buffers of size d; and initial marking d;.
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Applying the reversibility property to such a parallel processing model implies that when the
task graph is reversed, the program completion times are the same in law as those of the original
task graph, so that the throughput is also the same. Moreover, if there is an optimal static
scheduler that minimizes the completion times or maximizes the throughput of a task graph,
then the same assignment and the reversed ordering is optimal for the reversed task graph
(when the task graph is a tree, such a result can be considered as the stochastic version of
the equivalence between the optimal scheduling of in-tree and out-tree for the minimization of
makespan). According to the concavity property, the throughput in terms of the programs is a
concave function of the multiprogramming degrees.

9.3 Application to systems with population constraints

The multiprogramming degrees in the above example is a population constraint. In some com-
munication networks and manufacturing systems, there are also such constraints. In general,
consider a FIQN/B S. Suppose one would like to add a restriction on the total number of jobs
that can be present between a pair of servers, say 7 and j. For sake of simplicity, we assume
that there is a single path between these two servers. Let By be the total buffer capacity among
all of the buffers on the path between servers ¢ and j. Server i is prevented from working if
the total number of jobs between ¢ and j is equal to a given value, say P, with P < By. This
population constraint can easily be modeled by adding a buffer between server ¢ and server j
having a capacity B;; = P. The initial marking of this buffer is equal to the sum of the initial

markings of the buffers between server ¢ and server j. Let S’ denote the resulting FTJQN/B.

Consider the reversibility property. Let S™ be the reverse of S. Let 8™/ be the network obtained
from 8™ by adding a population constraint of size P between server j and server 7 in the same
way as for S. Now, it is easy to check that S™’ is the reverse of S’ and as a result they have
the same throughput. So, 8™ with a population constraint in between servers j and ¢ has the
same throughput as S with the same population constraint between servers ¢ and j. Thus,
reversibility holds for FJQN/B’s with population constraints.

Consider now the symmetry property. Let S* be the symmetrical network of S. Let S*' be
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