ACTA: The SAGA Continues

Panos K. Chrysanthis Krithi Ramamritham
Dept. of Computer Science Dept. of Computer Science
University of Pittsburgh University of Massachusetts
Pittsburgh, PA 15260 Amherst, MA 01003
Abstract

ACTA is a comprehensive transaction framework that permits a trans-
action modeler to specify the effects of eztended transactions on each other
and on objects in the database. ACTA allows the specification of (1) the in-
teractions between transactions in terms of relationships between significant
(transaction management) events, such as begin, commit, abort, delegate, split,
and join, pertaining to different transactions and (2) transactions’ effects on
objects’ state and concurrency status (i.e., synchronization state).

Various extended traditional models have been proposed to deal with
applications that involve reactive (endless), open-ended (long-lived) and col-
laborative (interactive) activities. One such model is Sagas [GS87] A Saga is
a set of relatively independent (component) transactions Ty, T%,..., T, which
can interleave in any way with component transactions of other Sagas. Com-
ponents can commit even before the Saga commits. However, if the Saga sub-
sequently aborts, effects of the committed components are nullified through
the invocation of compensating transactions.

After giving a brief introduction to the modeling primitives of ACTA,
we illustrate their use by giving a complete formal characterization of Sagas.
Subsequently, the reasoning power of ACTA is shown by proving properties
of Sagas. Finally, the flexibility of ACTA is displayed through a series of
variations to the original model of Sagas, each variation coming out of changes
to the formal characterization of Sagas.

This is a reprint of Chapter 10 of “Transactions Models for Advanced Database
Applications,” edited by A. K. Elmagarmid of Purdue University and published by
Morgan Kaufmann (1992)

This material is based upon work supported by the N.S.F. under grant CDA-8922572.
E-mail: panos@cs.pitt.edu, krithi@cs.umass.edu.

i

Panos K. Chrysanthis
Krithi Ramamritham

2 Chapter 10. ACTA: The SAGA Continues

10.1
Introduction

Transactions in database systems are defined in terms of several impor-
tant notions such as: visibility, referring to the ability of one transaction to see
the results of another transaction while it is executing; consistency, referring
to the correctness of the state of the database that a committed transaction
produces; recovery, referring to the ability, in the event of failure, to take the
database to some state that is considered correct; and permanence, referring
to the ability of a transaction to record its results in the database. The flexi-
bility of a given transaction model depends on the way these four notions are
combined.

Although powerful, the transaction model [EGLT76, Gra81] found in
traditional database systems is found lacking in functionality and performance
when used for applications that involve reactive (endless), open-ended (long-
lived) and collaborative (interactive) activities. Hence, various extensions
to the traditional model have been proposed, referred to herein as eztended
transactions [Mos81, VRS86, BKK85, PKH88, KL.S90, GGKT91, BHMC90,
FZ89, SZ89, Elm91]. Compared to the traditional transaction model, these
models associate “broader” interpretations with the four transaction notions
mentioned above to provide enhanced functionality while increasing the po-
tential for improved performance. Upon examining these ad hoc extensions
to the traditional transaction model, one is prompted to seek answers to the
following questions:

e What properties does a model possess vis a vis visibility, consistency, re-
covery, and permanence? (For example, traditional transactions guaran-
tee failure atomicity, serializability, and durability.) What added func-
tionality does a model provide?

e In what respects is a model similar to traditional transactions? In what
respects is it dissimilar? More generally, how does one transaction model
differ from another? Can two models be used in conjunction?

In attempting to answer these questions, we found a need for a common frame-
work within which one can specify and reason about the nature of interactions
between transactions in a particular model. This motivated the development
of a comprehensive transaction framework, called A CTA!, which characterizes
the effects of transactions as per the taxonomy of Figure 10.1.

LACTA means actions in Latin.

10.2 The Formal ACTA Framework 3

T
T

FIGURE 10.1
Dimensions of the ACTA Framework

After giving a brief introduction to the modeling primitives of ACTA,
we illustrate its use by giving a complete formal characterization of Sagas,
an extended transaction model developed to support long-lived activities. A
Saga is a set of relatively independent (component) transactions which can in-
terleave in any way with component transactions of other Sagas. Components
can commit even before the Saga commits. However, if the Saga subsequently
aborts, effects of the committed components are nullified through the invoca-
tion of compensating transactions.

The reasoning power of ACTA is shown by proving properties of Sagas.
Finally, the flexibility of ACTA is displayed through a series of variations to
the original model of Sagas, each variation coming out of changes to the formal
characterization of Sagas. This will show the use of ACTA for “inventing” new
transaction models by methodically varying the definition of existing models.

10.2
The Formal ACTA Framework

This section attempts to provide a concise yet complete introduction to
ACTA. Subsection 10.2.1 provides some of the preliminary concepts underly-
ing the ACTA formalism.

ACTA allows the specification of the effects of transactions on other
transactions and also their effect on objects. Inter-transaction dependencies,

4 Chapter 10. ACTA: The SAGA Continues

discussed in Subsection 10.2.2, form the basis for the former while visibility
of and conflicts between operations on objects, discussed in Subsection 10.2.3
form the basis for the latter.

We would like to point out that with the evolution of ACTA, some
aspects of ACTA introduced in earlier papers have changed. For example,
the notion of view set introduced in [CR90] has been replaced in the current
version by the notions of view and conflict set (see Subsection 10.2.3).

10.2.1 Preliminaries

Objects Events

A database is the entity that contains all the shared objects in a sys-
tem. A transaction accesses and manipulates the objects in the database by
invoking operations specific to individual objects. The state of an object is
represented by its contents. Each object has a type, which defines a set of
operations that provide the only means to create, change and examine the
state of an object of that type. It is assumed that an operation always pro-
duces an output (return value), that is, it has an outcome (condition code)
or a result. The result of an operation on an object depends on the state of
the object. For a given state s of an object, we use return(s, p) to denote the
output produced by operation p, and state(s, p) to denote the state produced
after the execution of p.

DEFINITION

Invocation of an operation on an object is termed an object event. The
type of an object defines the operations and thus, the object events that
pertain to it. We use pi[ob] to denote the object eveni corresponding to
the invocation of the operation p on object ob by transaction t and OE;
to denote the set of object events that can be invoked® by transaction t
(i.e., pt[ob] € OE,).

The effects of an operation on an object are not made permanent at the
time of the execution of the operation. They need to be explicitly committed
or aborted.

2We will use “invoke an event” to mean “cause an event to occur.” One of the meanings

of the word “invoke” is “to bring about.”

10.2 The Formal ACTA Framework 5

DEFINITION

The effects of an operation p invoked by a transaction t on an object ob
are made permanent in the database when p;[ob] is commiited.

DEFINITION

The effects of an operation p invoked by a transaction t on an object ob
are obliterated when the p[ob] is aborted.

Depending on the semantics of the operations and on the object’s recovery
properties, aborting an operation may force the abortion of other operations
as well.

Commit and Abort operations are defined on every object for every
operation. Invoked operations that have neither committed nor aborted are
termed in progress operations. Typically, an operation is committed only
if the invoking transaction commits and it is aborted only if the invoking
transaction aborts. However, it is conceivable that an extended transaction
may commit only a subset of its operations on an object while aborting the
rest. Furthermore, through delegation (see Subsection 10.2.3), a transaction
other than the event-invoker, i.e., the transaction that invoked an operation,
can be granted the responsibility to commit or abort the operation.

Significant Events

In addition to the invocation of operations on objects, transactions in-
voke transaction management primitives. For example, atomic transactions
are associated with three transaction management primitives: Begin, Commit
and Abort. The specific primitives and their semantics depend on the specifics
of a transaction model. For instance, whereas the Commit by an atomic trans-
action implies that it is terminating successfully and that all of its effects on
the objects should be made permanent in the database, the Commit of a sub-
transaction of a nested transaction implies that all of its effects on the objects
should be made persistent and visible with respect to its parent and sibling

3. Other transaction management primitives include Spawn,

subtransactions
found in the nested transaction model, and Split and Join, found in the split

transaction model [PKH88|.

3 As shown in Subsection 10.2.3, in ACTA, the ability of a nested subtransaction to make

its effect visible to its parent is specified by means of the notion of delegation.

6 Chapter 10. ACTA: The SAGA Continues

DEFINITION

Invocation of a transaction management primitive is termed a significant
event. A transaction model defines the significant events that pertain to
transactions adhering to that model. SE; denotes the set of significant
events that is relevant to transaction t.

ACTA does not a prior: assume a given set of significant events nor
does it associate any semantics with the significant events, but it provides the
means by which significant events and their semantics can be specified.

It is useful to distinguish, given the set of significant events associated
with a transaction ¢, between events that are relevant to the initiation of ¢
and those that are relevant to the termination of ¢.

DEFINITION

Initiation events, denoted by IE;, is a set of significant events that can
be invoked to initiate the execution of transaction t. IE; C SE;.

DEFINITION

Termination events, denoted by TE;, is a set of significant events that
can be invoked to terminate the execution of transaction t. TE, C SE;.

For example, in the split transaction model, Begin and Split are transaction
initiation events whereas Commit, Abort and Join are transaction termination
events.

A transaction is in progress if it has been initiated by some initiation
event and it has not yet executed one of the termination events associated
with it. A transaction terminates when it executes a termination event.

Histories and Conditions on Event Occurrences

Fundamental to ACTA is the notion of history [BHG87] which repre-
sents the concurrent execution of a set of transactions 7. ACTA captures
the effects of transactions on other transactions and also their effects on ob-
jects through constraints on histories. This leads to definitions of transaction
models in terms of a set of azioms which are either invariant assertions about
the histories generated by the transactions adhering to the particular model

10.2 The Formal ACTA Framework 7

or explicit preconditions or postconditions of operations or transaction man-
agement primitives. Also, the correctness properties of different transaction
models can be expressed in terms of the properties of the histories produced
by these models.

DEFINITION

The ezecution of a transaction t is e partial order of events E; with

ordering relation <; where

1. E;C (OFE; U SE;); and

2. < denotes the temporal order in which the related events invoked
by t occur.

In words, F; contains events which are either object events allowed to be
invoked by ¢ or significant events related to ¢.

DEFINITION

A history H of the concurrent ezecution of a set of transactions T con-
tains all the events associated with the transactions in T and indicates
the (partial) order in which these events occur. He (the current history)
is used to denote the history of events that occur until a point in time.

The partial order of the operations in a history pertaining to 7' is consis-
tent with the partial order <; of the events associated with each individual
transaction ¢ in 7.

The occurrence of an event in a history can be affected in one of three
ways: (1) An event € can be constrained to occur only after another event €';
(2) An event € can occur only if a condition c is true; and (3) a condition ¢
can require the occurrence of an event e.

DEFINITION

The predicate € — €' is true if event € precedes event €' in history H. It
is false, otherwise. (Thus, € — ¢ implies thate € H and ¢ € H.)

8 Chapter 10. ACTA: The SAGA Continues

DEFINITION

(¢ € H) = Conditiony, where = denotes implication, specifies that
the event € can belong to history H only if Conditiong is satisfied. In
other words, Conditiony is necessary for € to be in H. Conditiony is
a predicate involving the events in H.

Consider (¢/ € H) = (¢ — €'). This states that the event ¢ can belong to the
history H only if event € occurs before ¢’

DEFINITION

Conditiong = (¢ € H) specifies that if Conditiong holds, € should be
in the history H. In other words, Conditiony is sufficient for ¢ to be
in H.

Consider (¢ — €') = (« € H). This states that if event € occurs before €' then
event o belongs to the history.

In specifying conditions over histories, we will find it useful to de-
fine the projection of a history H according to a given criterion gp, denoted
Projection(H, p). For instance, Projection(H,t), the projection of a history
H on a specific transaction ¢ yields the order of events related to ¢, denoted by
H?; whereas Projection(H, ob), the projection of the history H on a specific
object ob yields the history of operation invocations on the object, denoted

by H(),

10.2.2 Effects of Transactions on Other
Transactions

Dependencies provide a convenient way to specify and reason about the
behavior of concurrent transactions and can be precisely expressed in terms
of the significant events associated with the transactions.

DEFINITION

Dependency set, denoted by DepSet, is a set of inter-transaction depen-
dencies developed during the concurrent ezecution of a set of transactions
T. Thus, DepSet is relative to a history H. DepSet. (the current de-
pendency set) is used to denote the set of dependencies until a point in
time and hence, it is relative to H..

10.2 The Formal ACTA Framework 9

In the rest of this section, after formally specifying different types of
dependencies, we identify the source of these dependencies.

Types of Dependencies

Let ¢; and ¢; be two extended transactions and H be a finite history
which contains all the events pertaining to ¢; and ¢;.

Commit Dependency (t; ¢D t;): if both transactions ¢; and ¢; commit then
the commitment of ¢; precedes the commitment of £;; i.e.,
(Commit;; € H) = ((Commit;, € H) = (Commit;;, — Commit,,)).

Strong-Commit Dependency (t; SCD t;): if transaction t; commits then t;
commits; i.e., (Commit;, € H) = (Commit;; € H).

Abort Dependency (t; AD t;): if t; aborts then ¢; aborts; i.e.,
(Abort;, € H) = (Abort;, € H).

Weak-Abort Dependency (t; WD t;): if t; aborts and ¢; has not yet com-
mitted, then ¢; aborts. In other words, if ¢; commits and ¢; aborts then
the commitment of ¢; precedes the abortion of #; in a history; i.e.,
(Abort;; € H) = (—(Commit;; — Abort;,) = (Abort;; € H)).

Termination Dependency (t; 7P t;): t; cannot commit or abort until ¢;
either commits or aborts; i.e., (¢ € H) = (e — ¢€)
where € € {Commit;,, Abort;.}, and €' € {Commit;_, Abort;}.

Exclusion Dependency (t; £D t;): if t; commits and ¢; has begun executing,
then t; aborts (both t; and t; cannot commit); i.e.,
(Commit,, € H) = ((Begin,, € H) => (Abort; € H)).

Force-Commit-on-Abort Dependency (t; CMD t;): if t; aborts, t; commits;
i.e., (Abort;, € H) = (Committj € H).

Begin Dependency (t; BD t;): transaction t; cannot begin executing until
transaction ¢; has begun; i.e., (Begin,, € H) = (Begin,, — Begin,).

Serial Dependency (t; SD t;): transaction ¢; cannot begin executing until ¢;
either commits or aborts; i.e.,
(Begin,, € H) = (¢ — Begin,) where ¢ € {Commit,,, Abort, }.

Begin-on-Commit Dependency (t; BCD t;): transaction t; cannot begin ex-
ecuting until ¢; commits; i.e., (Begin,, € H) = (Commit;; — Begin,).

10 Chapter 10. ACTA: The SAGA Continues

Begin-on-Abort Dependency (t; BAD t;): transaction t; cannot begin exe-
cuting until ¢; aborts; i.e., (Begin,, € H) = (Abort;; — Begin,).

Weak-begin-on-Commit Dependency (t; WcD t;): if ¢; commits, ¢; can
begin executing after ¢; commits; i.e.,
(Begin,, € H) = ((Commit,; € H) = (Commit;; — Begin,_)).

The formal definitions of weak-abort dependency and abort dependency clearly
reflect that weak-abort dependency is weaker than abort dependency. Weak-
abort dependency is useful, for example, in specifying and reasoning about
the properties of nested transactions [Mos81]. Begin-on-commit dependency,
begin-on-abort dependency and force-commit-on-abort dependency are useful
for compensating transactions [KLS90] and contingency transactions [BHMC90].
Begin-on-commit dependency and begin-on-abort dependency are special cases
of serial dependency. The important difference between exclusion dependency
and force-commit-on-abort dependency is that exclusion dependency allows
both transactions to abort whereas force-commit-on-abort dependency does
not.

We would like to note that this list of dependencies is not exhaustive.
Other dependencies that involve significant events besides the Begin, Commit
and Abort events, can be defined. As we will see in Section 10.5.4, when new
significant events are associated with extended transactions, new dependencies
may be specified in a similar manner. In this sense, ACTA is an open-ended
framework.

Source of Dependencies

Dependencies between transactions may be a direct result of the struc-
tural properties of transactions, or may indirectly develop as a result of inter-
actions of transactions over shared objects. These are elaborated below.

Dependencies due to Structure

The structure of an extended transaction defines its component trans-
actions and the relationships between them. Dependencies can express these
relationships and thus, can specify the links in the structure. For example,
in hierarchically-structured nested transactions, the parent/child relationship
is established at the time the child is spawned. This is expressed by a child
transaction t. establishing a weak-abort dependency on its parent t, ((t. WP
t5)) and a parent establishing a commit dependency on its child ((¢, cD t.)).

10.2 The Formal ACTA Framework 11

Specifically, this is specified in terms of the postcondition of the Spawn event
(post(Spawn,_[t.])):

post(SpawntP [te]) = (((te WD tp) € DepSete)A((tp ¢D t.) € DepSete)).

The weak-abort dependency guarantees the abortion of an uncommitted child
if its parent aborts. Note that this does not prevent the child from committing
and making its effects on objects visible to its parent and siblings. (In nested
transactions, when a child transaction commits, its effects are not made per-
manent in the database. They are just made visible to its parent. See [Chr91]
for a precise formal definition of nested transactions.) The commit depen-
dency of the parent on its child is preserved if (1) the parent does not commit
before its child terminates, or (2) the child aborts in case its parent commits
first. The weak-abort dependency together with the commit dependency says
that an orphan, i.e., a child transaction whose parent has terminated, will not
commit.

Other hierarchically-structured transactions may define various relation-
ships between a parent and its child transactions. For example, in the trans-
action model proposed in [BHMC90, GGKT91] a parent can commit only if
its vital children commit, i.e., a parent transaction has an abort dependency
on its witel children t, (¢, AD t,) (see Section 10.5.2). Child transactions
may also have different dependencies with their parents if the transaction
model supports various spawning or coupling modes [DHL90]. Sibling trans-
actions may also be interrelated in several ways. For example, components of
a saga [GS8T] can be paired according to a compensated-for/compensating re-
lationship [KLS90]. Relations between a compensated-for and compensating
transactions as well as those between them and the saga can be specified via
begin-on-commit dependency BcD, begin-on-abort dependency BAD, force-
commit-on-abort dependency cmMD and strong-commit dependency ScD (see
Figure 10.5). In a similar fashion dependencies that occur in the presence of
alternative transactions and contingency transactions [BHMC90] can also be
specified (see Section 10.5.3).

Dependencies due to Behavior

Dependencies formed by the interactions of transactions over a shared
object are determined by the object’s synchronization properties. Broadly
speaking, two operations conflict if the order of their execution matters. For
example, in the traditional framework, a compatibility table [BHG87] of an

12 Chapter 10. ACTA: The SAGA Continues

object ob expresses simple relations between conflicting operations. A conflict
relation has the form

(pti[Ob] — G, [Ob]) = (t]' D ti)

indicating that if transaction £; invokes an operation p and later a transac-
tion ¢; invokes an operation g on the same object ob, then ¢; should develop
a dependency of type D on t;. As we will see in the next section, ACTA
allows conflict relations to be complex expressions involving different types of
dependencies, operation arguments, and results, as well as operations on the
same or different objects.

10.2.3 Objects and the Effects of Transactions on
Objects

In order to better understand the effects of transactions on objects, we
need to first understand the effects of the operations invoked by the transac-
tions.

Conflicts between Operations and the Induced
Dependencies

A history H(?) of operation invocations on an object ob, H(®®) = p; o
P20...0Dp, indicates both the order of execution of the operations, (p; precedes
Pi+1), as well as the functional composition of operations. Thus, a state s of
an object produced by a sequence of operations equals the state produced by
applying the history H(°) corresponding to the sequence of operations on the
object’s initial state so (s = state(so, H(°®)). For brevity, we will use H(°?)
to denote the state of an object produced by H(°®), implicitly assuming initial
state sg.

DEFINITION
Two operations p and g conflict in a state produced by H(°), denoted by
conflict(H(°®), p, q), iff

(state(H® op, q) # state(H) ogq, p))
(return(H®), q) # (return(HY op, q))
(return(H®), p) # (return(H® oq, p)).

\%
\%

Two operations that do not conflict are compatible.

10.2 The Formal ACTA Framework 13

Thus, two operations conflict if their effects on the state of an object or
their return values are not independent of their execution order. Since state
changes are observed only via return values, the semantics of the return values
can be considered in dealing with conflicting operations.

DEFINITION

Given conflict(H(®), p,q), return-value-independent(H(°®),p,q) is true
if the return value of q is independent of whether p precedes q, i.e.,
return(H(%) o p, q) = return(H(%), q); otherwise q is return-value de-
pendent on p (return-value-dependent(H(°®), p,q)).

Given a history H in which p;;[ob] and g;,[0b] occur, the state of ob when
pe; 1s executed is known from where p;; occurs in the history. Hence, from
now on, we drop the first argument in conflict, return-value-independent, and
return-velue-dependent when it is implicit from the context.

Interactions between conflicting operations can cause dependencies of
different types between the invoking transactions. The type of interactions
induced by conflicting operations depends on whether the effects of opera-
tions on objects are immediate or deferred. An operation has an immediate
effect on an object only if it changes the state of the object as it executes
and the new state is visible to subsequent operations. Thus, an operation p
operates on the (most recent) state of the object, i.e., the state produced by
the operation immediately preceding p. For example, effects are immediate in
objects which perform in-place updates and employ logs for recovery. Effects
of operations are deferred if operations are not allowed to change the state of
an object as soon as they occur but, instead, the changes are effected only
upon commitment of the operations. In this case, operations performed by a
transaction are maintained in intentions lists.

In the rest of the paper, we will consider the situation when the effects
are immediate. In this case, when an operation ¢ follows operation p and ¢
is return-value dependent on p, the transaction ¢; invoking the operation ¢
must abort ¢ if for some reason the transaction ¢; aborts p.

(return-value-dependent(p, ¢) A (ps;[0b] — gs;[0b])) =
((Aborts,[p:;[ob]] € H) = (Aborts,[g:;[0b]] € H)).

This dependency ensures the correct behavior of objects in the presence of
failure.

14 Chapter 10. ACTA: The SAGA Continues

Motivated by this, in ACTA, the concurrency properties of an object
are formally expressed in terms of conflict relations of the form:

(pt,[0b] — g4, [0b]) = Conditiong,

where Conditiong is typically a dependency relationship involving the trans-
actions ?; and t; invoking conflicting operations p and ¢ on an object ob.
Obviously, the absence of a conflict relation between two operations defined
on an object indicates that the operations are compatible and do not induce
any dependency?*.

This generality allows ACTA to encompass both object-specific and
transaction-specific semantic information. First consider some object-specific
semantics. Commutativity does not distinguish between return-value depen-
dent and independent conflicts. It treats both the same and uses abort de-
pendency for both:

(p1:[0b] — g1;[0b]) = (t; AD t:).

Recoverability [BR90] avoids the unnecessary development of an abort depen-
dency for return-value independent conflicts. Thus, recoverability induces the
following conflict relations:

return-value-independent(p, q) A (p:;[0b] — g1;[0b]) = (t; CD t:);
return-value-dependent(p, q) A (p:;[0b] — gs;[0b]) = (t; AD t;).

We introduce transaction-specific semantics through an example. Con-
sider a page object with the standard read and write operations, where read
and write operations conflict. A read is return-value dependent on write,
whereas a write is return-value independent of a read or another write. In
addition, consider transactions which have the ability to reconcile potential
read-write conflicts: When a transaction ¢; reads a page # and another trans-
action t; subsequently writes z, £; and ¢; can commit in any order. However,

4Clearly, when an invoked operation conflicts with an operation in progress, a dependency,
e.g., an abort or commit dependency, will be formed if the invoked operation is allowed
to execute. That is, this may induce an abortion or a specific commit ordering. One way
to avoid this is to force the invoking transaction to (a) wait until the conflicting operation
terminates (this is what the traditional “no” entry in a compatibility table means) or (b)
abort. In either case, conflict relationships between operations imply that the transaction
management system must keep track of in-progress operations and of dependencies that
have been induced by the conflict. A commonly used synchronization mechanism for keeping

track of in-progress operations and dependencies is based on (logical) locks.

10.2 The Formal ACTA Framework 15

if t; commits before ¢; commits, £; must reread = in order to commit. This is
captured by the following conflict relation:

(read:;[z] — writes,;[z]) = ((Commit;; — Commit;;) = (Commit;; — read:;[z]))).

This conflict relation cannot be derived solely from the object-specific seman-
tics of the page. Clearly, transaction specific concurrency control might not
achieve serializability but still preserves consistency.

In the example, ¢; has to reread the page z when, subsequent to the first
read, the page is written and committed by ¢;. In general, ¢; may need to
invoke an operation on the same or a different object. For instance, instead of
z, t; may have to read a scratch-pad object which ¢; and t; use to determine
and reconcile potential conflicts. Thus, ACTA allows the specification of
operations that need to be controlled to produce correct histories as well as
the specification of operations that have to occur in correct histories. These
correspond to conflicts and patierns in [Ska91].

The Conditiong in a conflict relation may include other significant
events defined by the various transaction models. As an example, consider
the significant event Notify, related to the notion of notification useful in a
cooperative environment [FZ89]. For instance, the condition Notify, [(t; cD
t;)] will cause a commit dependency to be established from transaction t; to
t; as well as notify t; about the development of the commit dependency. Such
compound conditions can be used to define a recoverability-based table in a
cooperative environment. Transaction ¢; can use the information about the
existence of the commit dependency to postpone the invocation of another
operation that causes a commit dependency of £; on %;, and thus postpone
the formation of a circular commit dependency.

The generality of the conflict relations allows ACTA to capture dif-
ferent types of type-specific concurrency control discussed in the literature
[SS84, HW88, Wei88, BR90, CRR91], and even to tailor them for cooperative
environments.

16 Chapter 10. ACTA: The SAGA Continues
Controlling Object Visibility

Visibility and Conflicts

As defined earlier, visibility refers to the ability of one transaction to see
the effects of another transaction on objects while they are executing. ACTA
allows finer control over the visibility of objects by associating two entities,
namely, view and conflict set, with every transaction.

DEFINITION

The view of a transaction, denoted by View,, specifies the state of objects
vistble to transaction t at a point in time.

View; is formally specified to be a subhistory derived by projecting events in
Hct:

View; = Projection(H., Predicate(t, He, DepSete)).

In other words, the subhistory is constructed by eliminating any events in H,
that do not satisfy the given Predicate. Predicate depends on ¢, events in
H.; and inter-transaction dependencies DepSet ;. For example, the view of a
subtransaction ¢, in the nested transaction model is defined to be the current
history, i.e., View;, = H, allowing t. to view the most recent state of objects
in the database.

For a more elaborate example, suppose that a subtransaction t. is re-
stricted to operate only on those objects that have been accessed by its parent
t, and is allowed to notice the changes done to them by its parent. The view
of such a subtransaction ¢, is defined as following form.

View,, = Projection{H,p:[0b]|(t =t VI =1,V
(CommittedTr(t) A dq (g, [0b] € Hct)))}.

The predicate CommittedTr(t) is true if transaction ¢ has committed. Thus,
t. can see the changes done by committed transactions on the objects accessed
by its parent.

DEFINITION

The conflict set of a transaction t, denoted by ConflictSet;, contains
those in-progress operations with respect to which conflicts have to be
determined.

10.2 The Formal ACTA Framework 17

The composition of Con flictSet; is determined by the particular trans-
action model. It is specified via a predicate which can involve events invoked
by ¢ and any other transaction ¢;, events in H.;, and dependencies in DepSet.;:

ConflictSet, = {p;,[0ob] | Predicate(t,t;, Het, DepSetct)}.

A transaction £; can invoke an operation on an object without conflicting with
another transaction ¢; if the operations in progress performed by ¢; on the same
object are in the view of £; but are not included in the conflict set of ¢;. Let
us illustrate this by considering nested transactions. In nested transactions,
a subtransaction ¢. can access without conflicts any object currently accessed
by one of its ancestors t,. This is captured by

ConflictSet;, = {ps;[0b] | ti # tc,ti & Ancestor(t.), Inprogress(p:,;[ob])};
Ancestor(t.) is the set of ancestors of ¢..
Inprogress(p:,[ob]) is true with respect to current history H if p;,[ob] has
been performed but has neither committed nor aborted yet; i.e.,
Inprogress(p:,[ob]) = ((pe;[ob] € Het) A
((Committi [pti[Ob]] € HCt) A (Abortti [pti[Ob]] € Hct)))'

This states that any operation invoked by an ancestor of . is not contained
in ConflictSet,,. For this reason, a transaction . can invoke an operation
that conflicts with another in progress, invoked by its ancestor £,, without
forming a dependency.

At any given time, the current history H. and current dependency set
DepSet.; exist. The axiomatic definition of a transaction model specifies the
View; and ConflictSet; of each transaction £ in that model. These determine
if a new event can be invoked. Specifically, the preconditions of the event
derived from the axiomatic definition of its invoking transaction are evaluated
with respect to H.; and DepSet.; using the View; and ConflictSet;. If its
preconditions are satisfied, the new event is invoked and appended to the H,
reflecting its occurrence.

The axiomatic definitions also specify how the dependency set is modi-
fied when a significant event is invoked. As we saw earlier, if an event is an
object event, the operation semantics may also induce new dependencies to
be added to DepSet.;.

The degree of visibility allowed by a transaction model depends on the
width of the views of the transactions in the model and on the size of their
conflict sets. By width we mean the length of the subhistory specifying the
view. A larger width makes more operations visible while a smaller size leads

18 Chapter 10. ACTA: The SAGA Continues

to fewer conflicts permitting more operations to be performed without con-
flicting.

Delegation

DEFINITION

ResponstbleTr(p:,[ob]) identifies the transaction responsible for commit-
ting or aborting the operation p;,[ob] with respect to the current history
H.

In general, a transaction may delegate some of its responsibilities to another
transaction. More precisely,

DEFINITION

Delegate,, [t;, py;[0b]] denotes that t; delegates tot; the responsibility for
committing or aborting operation p; [ob].

More generally, Delegatey,[t;, DelegateSet] denotes that t; delegates to
t; the responsibility for committing or aborting each operation p,[ob] in
the DelegateSet.

Delegation has the following ramifications which are formally stated in [Chr91]:

e ResponsibleTr(p:,[ob]) is t;, the event-invoker, unless t; delegates p:,[ob]
to another transaction, say t;, at which point it will become #;. If
subsequently ¢; delegates p,,[ob] to another transaction, say t,
ResponstbleTr(p, [ob]) becomes ty.

e The precondition for the event Delegate;, [ty, p;;[0b]] is that
ResponsibleTr(p;,[ob]) is t;. The postcondition will imply that
ResponsibleTr(p:,[ob]) is tx.

e A precondition for the event Abort;,[p;;[ob]] is that ResponsibleTr(p;,[ob])
is ¢;. Similarly, a precondition for the event Commit;, [p;,[ob]] is that
ResponsibleTr(p;,[ob]) is t;. Hence, from now on, unless essential, we
will drop the suscript, e.g., ¢;, associated with the operation abort and
commit events.

10.2 The Formal ACTA Framework 19

e Delegation cannot occur in the event that the delegatee has already
committed or aborted, and has no effect if the delegated operations
have already been committed or aborted.

e Delegation redirects the dependencies induced by delegated operations
from the delegator to the delegatee — dependencies are sort of respon-
sibilities.

Note that delegation broadens the visibility of the delegatee and is useful
in selectively making tentative or partial results as well as hints, such as,
coordination information, accessible to other transactions.

In controlling visibility, we will find it useful to associate each transaction
with an access set.

DEFINITION
AccessSet; = {p;,[ob]| ResponsibleTr(ps,[0b]) = t}; Le.,

AccessSet; contains all the operations for which ¢ is responsible.

In nested transactions, when the root commits, its effects are made
permanent in the database, whereas when a subtransaction commits, via in-
heritance, its effects are made visible to its parent transaction. The notion of
inheritance used in nested transactions is an instance of delegation. Specifi-
cally, when a child transaction ¢, commits, ¢. delegates to its parent £, all the
operations that it is responsible for

(Commity, € H) & (Delegate;,[tp, AccessSety] € H).

Delegation need not occur only upon commit or abort but a transaction can
delegate any of the operations in its access set to another transaction at any
point during its execution. This is the case for Co-Transactions and Reporting
Transactions described in [CR91, Chr91].

Delegation can be used not only in controlling the visibility of objects,
but also to specify the recovery properties of a transaction model. For in-
stance, if a subset of the effects of a transaction should not be obliterated
when the transaction aborts while at the same time they should not be made
permanent, the Abort event associated with the transaction can be defined to
delegate these effects to the appropriate transaction. In this way, the effects
of the delegated operations performed by the delegator on objects are not lost
even if the delegator aborts. Instead, the delegatee has the responsibility for
committing or aborting these operations.

20 Chapter 10. ACTA: The SAGA Continues

In cooperative environments, transactions cooperate by having intersect-
ing views, by allowing the effects of other’s operations to be visible without
producing conflicts, by delegating operations to each other, or by notifying
each other of their behavior. By being able to capture these aspects of trans-
actions, the ACTA framework is applicable to cooperative environments.

10.3
Characterization of Atomic Transactions

Since the building blocks for a Saga are atomic transactions, we now
give a formal characterization of atomic transactions.

Atomic transactions combine the properties of serializability and failure
atomicity. These properties ensure that concurrent transactions execute with-
out any interference as though they executed in some serial order, and that
either all or none of a transaction’s operations are performed.

Let us first define the correctness properties of objects within formal
ACTA, starting with the serializability correctness criterion.

DEFINITION

Let C be a binary relation on transactions, and t; and t; be transactions.
(t:Ct;), ti # t; if
Job 3p, q (conflict(p;,[0b], q;,[0b]) A (pe;[0b] — g4,[0b]))

DEFINITION

Let C* be the transitive-closure of C; t.e.,
(tiC*tk) if [(tiCtk) vV Ht]' (tiCt]- A t]-C*tk)].

DEFINITION

A set of transactions T is (conflict preserving) serializable iff
Vi € T —(tC*t)

10.3 Characterization of Atomic Transactions 21

DEFINITION

An object ob behaves correctly iff
Vti, tj,t: # tj, Vb, q
(return-value-dependent(p,q)A(p:;[0b] — g:;[0b])) =
((Abort[py,[ob]] € H(°M) = (Abort[g:; [ob]] € H?)).

This definition implies that for an object to behave correctly it must ensure
that when an operation aborts, any return-value dependent operation that
follows it must also be aborted. It is not necessary for it to exhibit serial
behavior, i.e., it is not necessary for the order in which the operations are
executed by different transactions to be serializable. This definition ensures
the correct behavior of objects in the presence of failures assuming immediate
effects of operations on objects. Similarly, such dependencies can be defined
for deferred effects.

DEFINITION

An object ob behaves serializably iff
Vt,t; Vp (Commity,[ps[ob]] € H(°Y) = —(tC*t).

This definition states that the serializable behavior of an object is ensured by
preventing transactions from forming cyclic C relationships.

DEFINITION

An object ob is atomic if ob behaves correctly and serializably.

DEFINITION

Transaction t is failure atomic if
1. Job Ip (Commit,[pi[od]] € H) =
Vob' Vq ((g:[ob'] € H) = (Commit[gq[ob']] € H)),
2. Job Jp (Abort:[p[ob]] € H) =
Vob' Vq ((g:[ob'] € H) = (Abort:[q:[ob']] € H)),

As mentioned earlier, failure atomicity implies that all or none of a
transaction’s operations are executed. In the above definition, the “all” clause
is captured by condition 1 which states that if an operation invoked by a

22 Chapter 10. ACTA: The SAGA Continues

transaction ¢ is committed on an object, all the operations invoked by ¢ are
committed by ¢. The “none” clause is captured by condition 2 which states
that if an operation invoked by a transaction ¢ is aborted on an object, all the
operations invoked by ¢ are aborted by ¢.

In the same way that serializability and failure atomicity were expressed
above, other correctness properties of extended transactions such as quast se-
rializability [DE89], predicatewise serializability [KS88| and quas: failure atom-
icity [Chr91], can be expressed in ACTA [Chr91].

Recall that each transaction model defines a set of significant events that
transactions adhering to that model can invoke in addition to the invocation
of operations on objects. A transaction is always associated with a set of
initiation significant events that can be invoked to initiate the execution of
the transaction, and a set of termination significant events that can be invoked
to terminate the execution of the transaction. A set of Fundamental Azioms
which is applicable to all transaction models specifies the relationship between
significant events of the same or different type, and between significant events
and operations on objects.

DEFINITION

FUNDAMENTAL AXIOMS OF TRANSACTIONS

Let t be a transaction and H' the projection of the history H
with respect to t.

I. Va € IE; (e € HY) = 28 € IE; (a —)

II. V6 € TE; Ja € IE; (6 € H?) = (o — §)

IV. Vob¥p, (pi[ob] € H) =
(3o € IE; (@ — pi[ob])) A (Fy € TE; (pe[0d] — 7)))

Axiom I prevents a transaction from being initiated by two different events.
Axiom II states that if a transaction has terminated, it must have been pre-
viously initiated. Axiom III prevents a transaction from being terminated by
two different termination events. The last axiom, Axiom IV, states that only
in-progress transactions can invoke operations on objects.

10.3 Characterization of Atomic Transactions 23

Now let us express in ACTA the basic properties of atomic transactions
with a set of axioms.

DEFINITION

AX10MATIC DEFINITION OF ATOMIC TRANSACTIONS
t denotes an atomic transaction.

—
N

e e B

SE; = {Begin, Commit, Abort}

IE; = {Begin}

TE; = {Commit, Abort}

t satisfies the fundamental Axioms I to IV

View; = Hy

ConflictSet; = {py[ob] | t' # t, Inprogress(p: [ob])}

Vob Jp (p:[ob] € H) = (ob is atomic)

(Commit, € H) = —(tC*t).

Job Ip (Commit,[pi[odb]] € H) = (Commit, € H)

(Commit, € H) = VYob Vp ((pt[ob] € H) = (Commit,[p:[ob]] € H))
Jdob p (Abort:[p[ob]] € H) = (Abort, € H)

(Abort, € H) = Yob Vp ((p:[ob] € H) = (Abort,[p[ob]] € H))

Axiom 1 states that atomic transactions are associated with the three
significant events: Begin, Commit and Abort. Axiom 2 specifies that Begin is
the initiation event for atomic transactions. Axiom 3 indicates that Commit
and Abort are the termination events associated with atomic transactions.

Axiom 4 states that atomic transactions satisfy the fundamental axioms.
With respect to the significant events of atomic transactions, the fundamental
axioms mean the following:

1. the Begin event can be invoked at most once by a transaction
((Begin, € H) = —(Begin, — Begin,)) [Axiom IJ,

2. only an initiated transaction can commit or abort
((Commit, € H) = (Begin, —» Commit;), and
(Abort, ¢ H) = (Begin, — Abort;)) [Axiom II], and

3. an atomic transaction cannot be committed after it has been aborted
((Commit; € H) = ((Abort; ¢ H) A =(Commit; — Commit,))),

and vice versa
((Abort; € H) = ((Commit; ¢ H) A =(Abort; — Abort;))) [Axiom III].

24 Chapter 10. ACTA: The SAGA Continues

Axiom 5 specifies that a transaction sees the current state of the objects
in the database. Axiom 6 states that conflicts have to be considered against
all in-progress operations performed by different transactions. Axiom 7 spec-
ifies that all objects upon which an atomic transaction invokes an operation
are atomic objects. That is, they detect conflicts and induce the appropriate
dependencies. Axiom 8 states that an atomic transaction can commit only
if it is not part of a cycle of C relations developed through the invocation
of conflicting operations. Note that the atomicity property local to individ-
ual objects is not sufficient to guarantee serializable execution of concurrent
transactions across all objects [Wei84]. Axiom 9 states that if an operation
is committed on an object, the invoking transaction must commit, and Ax-
iom 10 states that if a transaction commits, all the operations invoked by the
transaction are committed.

Axioms 8, 9 and 10 define the semantics of the Commit event of atomic
transactions in terms of the Commit operation defined on objects. Similarly,
Axioms 11 and 12 define the semantics of the Abort event in terms of the Abort
operation defined on objects. Axiom 11 states that if an operation is aborted
on an object, the invoking transaction must abort, and Axiom 12 states that if
a transaction aborts, all the operations invoked by the transaction are aborted.

Based on the above axioms, the failure atomicity and serializability prop-
erties of atomic transactions can be shown (see [Chr91]).

10.4
Characterization of Sagas

Sagas have been proposed as a transaction model for long lived activities.
A saga is a set of relatively independent (component) transactions T4, 7%, ...,
T, which can interleave in any way with component transactions of other
sagas. Component transactions within a saga execute in a predefined order
which, in the simplest case, is either sequential or parallel (no order).

Each component transaction 7; (0 < ¢ < n) is associated with a com-
pensating transaction CT;. A compensating transaction C7; undoes, from a
semantic point of view, any effects of T;, but does not necessarily restore the
database to the state that existed when 7; began executing.

Both component and compensating transactions behave like atomic trans-
actions in the sense that they have the ACIDS properties. However, their

5 ACID properties are Atomicity (or failure atomicity), Consistency, Isolation (or serializ-
ability) and Durability (or permanence).

10.4 Characterization of Sagas 25

behavior is constrained by certain dependencies. For example, a compensat-
ing transaction can commit only if its corresponding component transaction
commits but the saga to which it belongs aborts.

Component transactions can commit without waiting for any other com-
ponent transactions or the saga to commit. For this reason, sagas do not
require a commit protocol as opposed, for example, to nested transactions.
Due to their ACID properties, component transactions make their changes to
objects effective in the database at their commitment times. Thus, isolation
is limited to the component transaction level and sagas may view the par-
tial results of other sagas. This means that each component transaction does
not have to observe the same consistent database state produced by commit-
ted component transactions belonging to the same saga. Clearly, in sagas,
consistency is not based on serializable executions.

A saga commits, i.e., successfully terminates, if all its component trans-
actions commit in the prescribed order. Under sequential execution, the cor-
rect execution of a committed saga is:

T Ty T,

A saga is not failure atomic but neither can it execute partially. Thus,
when a saga aborts, it has to compensate for the committed components
by executing their corresponding compensating transactions. Compensating
transactions are executed in the reverse order of commitment of the com-
ponent transactions. Thus, in the sequential case, the correct execution of
an aborted saga after the commitment of its k** component transaction, T}
(1<k<n),is:

"Iy - T, CTy, CTy,—, -~ CTY

Note that the commitment of 7;, implies the commitment of the whole saga
and hence, T, is not associated with a compensating transaction CT,.

Now, let us express the basic properties of sagas with a set of axioms.
Without loss of generality, let us focus on sagas whose components execute
sequentially. As it will become clear below, the axiomatic definitions of sagas
with different execution orders differ only in Axiom 18 which specifies the
execution order. We will use pre(e) and post(e) to denote the preconditions
and postconditions of an operation or a transaction management primitive e
respectively.

26 Chapter 10. ACTA: The SAGA Continues

DEFINITION

AXIOMATIC DEFINITION OF SAGAS

S denotes a saga with n component transactions.

T; denotes a component transaction.

CT; denotes a compensating transaction of T;.
t denotes either a T; or CT;.

I T O S Sy
o ~J O UL b W N

19.

20.

21.

B o ©®®NoUh W e

SEs = {Begin, Commit, Abort}
IEs = {Begin}
TEs = {Commit, Abort}
SE; = {Begin, Commit, Abort}
IE; = {Begin}
TE; = {Commit, Abort}
t satisfies the fundamental Axioms I to IV
Viewg = ¢
View; = Hy
ConflictSets = ¢
ConflictSet, = {py[ob] | t' # t,Inprogress(p:[ob])}
Job Ip (Commit,[pi[odb]] € H) = (Commit, € H)
(Commit, € H) = Vob Vp ((pt[ob] € H) = (Commit,[p[ob]] € H))
Jdob Ip (Abort,[p:[ob]] € H) = (Abort; € H)
(Abort, € H) = Vob Vp ((p[ob] € H) = (Abort,[p:[ob]] € H))
Vob Jp (p:[ob] € H) = (ob is atomic)
(Commit, € H) = —(tC*t)
post(Beging) = (((T; BcD T;_1) € DepSete) A
((CT; wep CTjyq) € DepSetey) A
((CTn-1 BAD S) € DepSet))
where 1 <i<n,and 1<j<n—1
post(Beging.) = (((S AD T;) € DepSet.;) A
((T; wp S) € DepSets) A
((CT; Bcp T;) € DepSet.,))
where 1 <i<n
post(Commitr,) = (((CT; cmD S) € DepSete) A
((CT; BAD S) € DepSet.:))
where 1 <i<n
post(Beging) = ((S s¢D T,) € DepSet.;)

A transaction structure which conforms to a saga transaction model

consists of three types of transactions, namely, saga transaction, component

10.4 Characterization of Sagas 27

transactions and compensating transactions. Axioms 1 and 4 state that each
type of transaction is associated with the significant events Begin, Commit
and Abort. Axioms 7, 9 and 11-17 capture the fact that component and
compensating transactions have semantics similar to atomic transactions.

Saga transactions cannot directly operate on objects in the database
[Axiom 8] — saga transactions may execute local operations that do not
involve access to the database, e.g., test the outcome and return values of
their component transactions® — this is the reason for the presence of a saga
node, e.g., in Figure 10.3.

Axiom 18 specifies the execution order of the component transactions
and their associated compensating transactions. A sequential (total) order
is specified by establishing a begin-on-commit dependency BCD between ev-
ery pair of component transactions. In a similar way, partial orders may be
defined. Clearly, in the case of a parallel execution, Axiom 18 will be absent.

Axioms 19 specifies the relationship between a saga transaction and
the component transactions. The composition relationship is captured by
an abort dependency AD of the saga transaction on each of the component
transactions and weak-abort dependencies WD of each component transaction
on the saga transaction. This is induced at the time a component transaction
begins its execution. The special relationship between a saga transaction
and the last component 7, is captured by Axiom 21 in terms of a strong-
commit dependency SCD. A saga transaction’s strong-commit dependency on
T, ensures that if 7,, commits, the whole saga commits.

Axioms 19 and 20 pair component and compensating transactions ac-
cording to a compensated-for/compensating relationship. This relationship is
reflected by a begin-on-commit dependency BCD of the compensating transac-
tion on its associated component transaction [Axiom 19] and a force-commit-
on-abort dependency ¢ MD and a begin-on-abort dependency BAD of the com-
pensating transaction on the saga transaction [Axiom 20]. If a component
transaction aborts and rolls back, there is no meaning for its compensating
transaction to execute. On the other hand, if a component transaction com-
mits, the compensating transaction gives the saga the ability to semantically
undo its effects by inducing force-commit-on-abort and begin-on-abort depen-
dencies between the compensating transaction and the saga transaction. The
correct execution order of the compensating transactions is ensured by the
weak-begin-on-commit dependency WcD between every pair of compensating
transactions [Axiom 18]. The begin-on-abort dependency BAD of CT,,_; on

6Saga transactions may also handle the interface to the environment, e.g., users.

28 Chapter 10. ACTA: The SAGA Continues

FIGURE 10.2
Dependencies relevant to Sagas

10.4 Characterization of Sagas 29

the saga transaction ensures that the compensating transactions do not exe-
cute prematurely and concurrently with the component transactions [Axiom
18]. By being the first on the chain of compensating transactions, CT,,_1’s
outcome need to be considered first for the rest of the compensating transac-
tions to execute.

Figure 10.2 shows the graph representation of the dependencies relevant
to sagas. Figures 10.3-10.7 show five snapshots of the evolution of the struc-
ture of a saga (dynamics of intra-dependencies): (a) after a saga transaction
has invoked begin, (b) when the first component transaction 77 is in progress,
(c) after 77 commits, (d) when the second component T3 is in progress and
(e) when the last component T), is in progress and consequently before the
commitment of the saga. In these, a shaded node corresponds to a committed
transaction.

This axiomatic definition captures the intended behavior of sagas. We
now show some of the properties of the saga model using the axioms.

LEMMA 10.1 Commitment of a Saga

Let H be a history of a saga S with n component transactions.

(Commits € H) = Vi,1 < i < n (Commitr,_, — Commitz;)
Informally, this lemma states the history in which all component transactions
commit in the required order.

PROOF

1. If S commits, T; (1 < ¢ < n) must also have committed because of
the abort dependency of S on T; [Axiom 19] and the Fundamental
Axiom IIT which states that a transaction has to either commit or
abort [Axiom 7]:

Vi,1 < i< n,((Abortr; € H) = (Aborts € H)) &
((Commits € H) = (Commitr, € H)).

2. Given T;’s (1 < % < n) begin-on-commit dependency on 7;_1

[Axiom 18]:

Vi, 1 < i< n ((Beging, € H) = (Commitr,_, — Beging,)),
the Fundamental Axiom II:

¥i,1 <i < n ((Commity, € H) = (Beging, — Commitr,)),
and the semantics of the precedence relation,
if T; commits, then T; commits after T;_; commits:

Vi, 1 < i < n ((Commity, € H) = (Commitr,_, — Commitr,))

30 Chapter 10. ACTA: The SAGA Continues

(-
O (O
(OO

FIGURE 10.3
Structure of a just initiated Saga

Lo

FIGURE 10.4
Structure of a Saga when component 7} in progress

10.4 Characterization of Sagas 31

FIGURE 10.5
Structure of a Saga after component 77 commits

FIGURE 10.6
Structure of a Saga when component 7, in progress

32 Chapter 10. ACTA: The SAGA Continues

OO O

FIGURE 10.7
Structure of a Saga when component T, in progress

3. Thus, from (1) and (2),

(Commits € H) = Vi,1 < i < n (Commitr,_, — Commitz;)

LEMMA 10.2 Abortion of a Saga

Let H be a history of a saga S with n component transactions.
(Aborts € H) =
k,1<k<nV¥il<i<h—1

(((Abort,,, € H) A (Commitr,
(Commity, _, — Commitcr,_,) A (Commitcr; — Commiter;_,)) V
IW1<k<nVil<i<k

((Commitr,

_, — Commitr;) A

_, — Commitr;) A

(Commity, — Commiter,) A (Commitcr, — Commitcr;_,)))

Informally, this expresses the history in which for all committed components,

10.4 Characterization of Sagas 33

their compensating transactions commit in the required order. The first clause
corresponds to the case in which a saga aborts while one of its components
is in progress whereas the second clause corresponds to the case in which the
saga aborts in between the execution of two of its components, i.e., after one
of its components has committed and before the next one in order begins
executing.

PROOF

Let us first consider the simple case of & = 1.

Case 1: If S aborts and 7 has begun but not yet committed, 73 is
aborted due to the weak-abort dependency of T} on S [Axiom 19]. Since
CT; has a begin-on-commit dependency on Ty [Axiom 19], CT; never
executes. This is the trivial case of an aborted saga:

(Aborts € H) = (Abort;, € H)

Case 2:

1. If S aborts after 77 commits and before T, begins, then CT} must
commit due to the force-commit-on-abort dependency of CT; on S
[Axiom 20]:

(Aborts € H) = (Commitcr, € H).

2. Given the begin-on-commit dependency of CTj on Ti, if CT; com-

mits, then 77 must have also committed (see Step 2 of lemma 10.1):
(Commitcr, € H) = (Commity, — Commitcr,)

Thus, from (1) and (2), (Aborts € H) = (Commity, — Commiter,).
Now let us consider the general case of 1 < k < n.

Case 3:

3. If S aborts while T} is in progress, Ty aborts, because of the weak-
abort dependency of Ty on S. Consequently, CT} is never initiated
because of its begin-on-commit dependency on T 1:

(Aborts € H) = (Aborty, € H)).
This also follows, if T} aborts which causes S to abort due to its
abort dependency on Tj.

4. If Ty is in progress, T; (1 < j < k) has committed in the spec-
ified order because of the begin-on-commit dependency between

34 Chapter 10. ACTA: The SAGA Continues

the components:
Vi,1 <i<k—1(Commit,

%

—:—~Commity, -

5. Given that T; (1 < j < k) have committed, CT; has a force-commit-
on-abort dependency on S. If S aborts, CT; commits according to
force-commit-on-abort dependency:

(Aborts € H) = Vj,1 < j < k (Commitcr; € H).

6. Given the weak-begin-on-commit dependency of CT; on CTj4q [Ax-
iom 18], if both C'T; and CT};; commit, CT; commits after CTj4
has committed (similar to (2)):

(Commitc;rj €H)=> (CommitchJr1 — Commitc;rj).

From (3), (4), (5) and (86),
(Aborts € H) = 3k, 1 <k<nVil<i<k-1
((Abort,, € H) A (Commity;_, — Commitr;) A
(Commity,_, — Commitcr,_,) A (Commitcr; — Commitcz;_,))

Case 4: The other general case in which S aborts after 7} commits and
before Ty 1 begins is similar to Case 3 without the step (3).

THEOREM 10.1

The component transactions of a saga produce one of the following com-

matted histories:

1. Vi, 1<i<n (Commitr,_, — Commitr,)

2. Fk,1<k<nVil<i<k ((Commitr,_, — Commity,) A
(Commity, — Commiter,) A (Commiter, — Commiter,_,))

PROOF

This theorem follows from lemmas 10.1 and 10.2 and the committed
projection of the history. .

10.4.1 A Special Case of Sagas
A special case of sagas is a saga whose transaction structure does not
have a saga transaction. The first component transaction 77 marks the be-
ginning of the saga as if it issues the Beging significant event, and the last
transaction 7, commits the saga as if it issues the Commatg significant event.

10.4 Characterization of Sagas 35

Here is the axiomatic definition of the special Sagas.

DEFINITION

t denotes either a T;, a component transaction, or a CT;, a compensating
transaction of T;.

[—
w N

14.
15.

m O © N3 Uk W

SE; = {Begin, Commit, Abort}
IE; = {Begin}
TE; = {Commit, Abort}
t satisfies the fundamental Axioms I to IV
View; = Hy
ConflictSet; = {py[ob] | t' # t,Inprogress(p:[ob])}
Job Ip (Commit,[pi[odb]] € H) = (Commit, € H)
(Commit, € H) = Vob Vp ((pt[ob] € H) = (Commit,[p[ob]] € H))
Jdob Ip (Abort,[p:[ob]] € H) = (Abort; € H)
(Abort, € H) = Yob Vp ((p:[ob] € H) = (Abort,[p[ob]] € H))
Vob Jp (pi[ob] € H) = (ob is atomic)
(Commit, € H) = —(tC*t)
post(Beging) = (((T: B¢D T;_1) € DepSetc) A
((CT; wep CTjyq) € DepSety)) A
((CTn-1 BAD T,,) € DepSete)
where 1<i<nand 1<j<n-1
post(Beging,) = ((CT; BcD T;) € DepSet.;), where 1 <i<n
post(Commitr,) = (((CT; cmD T;11) € DepSete) A
((CT; emDp T,,) € DepSetet)
where 1 <1< n

Beyond the obvious difference arising from discarding the axioms re-
lated to the saga transaction type — Axioms 1-3, 8 and 21, the substantive
differences between this axiomatic definition and the original one are:

(a) The Beging, event replaces the Beging event in all relevant axioms.

(b) Axiom 13 which replaces Axiom 18 of the original definition, substitutes
S with T,,.

(¢) Axiom 15 which corresponds to Axiom 20 of the original definition, in-
duces an additional force-commit-on-abort dependency ¢ MD of the com-
pensating transaction C7T; on the component transaction 7;,; — the

component that executes after C'T;’s corresponding component transac-
tion T;.

36 Chapter 10. ACTA: The SAGA Continues

D OO
Lo o

FIGURE 10.8
Structure of a special Saga before component 7} commits

(Do

FIGURE 10.9
Structure of a special Saga after component 77 commits

10.5 Variations of the Sagas Model 37

These differences reflect the fact that, in the special saga, 7} and 7,, carry the
control role of the saga transaction, respectively, initiating and terminating
the saga.

Figures 10.8 and 10.9 show snapshots of the structure of the special saga
before and after the commitment of T7;.

Using these axioms, it is not hard to show that lemmas and theorem
similar to lemmas 10.1 and 10.2 and theorem 10.1 hold for the special saga.

10.5
Variations of the Sagas Model

Since serializability and failure atomicity are not associated with a saga,
a saga has no notion of commitment control beyond transaction boundaries.
However, the commitment of a saga is dependent on the commitment of its
components. A failure of a component forces the whole saga to abort. In this
respect, sagas do not have the flexibility, e.g., of nested transactions, in being
able to retry an aborted component, or to try an alternative component, or
even to ignore a failed component.

In the following subsections, we show how sagas can be transformed to
exhibit these properties by changing the dependencies defined in the original
version of sagas. For the sake of brevity, we focus on the concepts and less
on the formal aspects of the transformed sagas model. Where appropriate,
we give the new (version of) axioms that formalize the properties of the new
model.

10.5.1 Sagas with no Special Relation with Last
Component

The original sagas call for a special relationship between a saga trans-
action and the last component transaction T,, because if T;, succeeds in com-
mitting then the saga commits as well. A saga thus lacks the flexibility of
aborting after its last component has committed. Aborting a saga is easy and
efficient as long as the information needed by the compensating transactions
is available and easily accessible in the database. By committing a saga, this
information is removed from the system.

To provide sagas with this flexibility, available, for example, in nested
transactions, it is sufficient to treat the last component transaction as any
other component. This means, first of all, that 7;, needs to be associated with

38 Chapter 10. ACTA: The SAGA Continues

O~
OO (O
(OO (O

FIGURE 10.10
Structure of a Saga without special relation with 7,,

a compensating transaction C7,. The axiomatic definition of such a saga
can be derived from the original axiomatic definition of sagas by dropping
the last axiom, Axiom 21, and modifying Axioms 18 and 20 to include T,,.
Figure 10.10 shows the structure of such a saga resulting from the modified
Axiom 18. This corresponds to Figure 10.3 that represents the structure of
the original saga.

10.5.2 Sagas with Vital Components

The relation between the saga and its component transactions is reflected, as
stated by Axiom 19, by abort dependencies of the saga transaction on each
of the component transactions and weak-abort dependencies of each of the
component transactions on the saga.

Let us consider the case of a saga transaction that has no abort depen-
dency on the first component transaction Tj (see Figure 10.11). Since the
abort dependencies of a saga transaction on the component transactions are
the only constraints on the completion of a saga, 77 can abort without pre-
venting the saga from committing. In other words, the saga can ignore T; if
it aborts (see Figure 10.12. Dotted nodes correspond to aborted transactions
and transactions that cannot begin). This is not the case with the rest of the
component transactions. Thus, the semantics of the relationship between a
saga transaction and the component transactions changes with the removal

10.5 Variations of the Sagas Model

Po
g)«@ OO

(OO

39

FIGURE 10.11
Structure of a Saga when non-vital component 7} in progress

weun
. LN
o

.
........

FIGURE 10.12
Structure of a Saga after non-vital component 77 aborts

40 Chapter 10. ACTA: The SAGA Continues

of the abort dependency. Specifically, there can be two types of relationships
between sagas and its component transactions, namely, a vital relation and
a non-vital relation. Consequently, component transactions can be distin-
guished as wvital and non-vitel transactions. A saga can commit only if its
vital children commit. In the above case T3 is not vital.

There is also a different relationship between vital and non-vital com-
ponents which is captured by a serial dependency SP of a vital component on
a non-vital component. The relationship between vital components remains
the same as in the original saga captured by a begin-on-commit dependency.

The axiomatic definition of such a saga is the same as the original ax-
iomatic definition except for Axioms 18 and 19 which need to be replaced by:

VITALs = {T1}
post(Beging) =
(((Ti-1 € VITALs) = ((T; Bcp T;_1) € DepSete)) A
((Ti-y ¢ VITALs) = ((T; 8D Ti—1) € DepSete;)) A
((CT; wep CTjyq) € DepSetey) A
((CTyh-1 BAD T,,) € DepSetet))
where 1 <i<n,and 1<j<n-—1
3. post(Begint,) = ((S AD T;) € DepSet,)
where 1 <i<nandT; ¢ VITAL
4. post(Begint,) = (((T; wp S) € DepSetet) A
((CT; Bcp T) € DepSet,y))

N =

where 1 <i<n

and corresponds to the axiomatic definition of the transaction model proposed
in [BHMC90, GGK191].

Using the above modified set of axioms, the correct committed histories
of such a saga can be shown in a similar fashion as in Theorem 10.1.

THEOREM 10.2

The component transactions of a sage whose first component is a non-
vital transaction produce one of the following committed histories:

1. All component transactions commit in the required order:
Vi, 1 < ¢ < n (Commity,_, — Commitr,)

2. All vital component transactions commit in the required order:
Vi, 2 < i < n (Commity,_, — Commitr,)

10.5 Variations of the Sagas Model 41

FIGURE 10.13
Saga structure when nested saga component 7 in-progress

3. For all committed components, their compensating transactions com-
mit in the required order:
Jk,1<k<nVil<i<k
((Commity,_, — Commitr,) A
(Commity, — Commiter,) A (Commiter, — Commiter,_,))

10.5.3 Sagas of Sagas

The need for a more flexible transaction model created the concept of
sagas. However, as we have already mentioned, sagas lack the flexibility to
retry an aborted component, or to try an alternative component or even to
ignore a failed component transaction. In the previous section, we saw that,
by distinguishing between vital and non-vital transactions, a saga is able to

42 Chapter 10. ACTA: The SAGA Continues

FIGURE 10.14
Saga structure after nested saga component 77 commits

ignore a failed component. This was achieved fairly easily since the vitality of
a component was manifested by the presence of an abort dependency of the
saga transaction on the component transactions. Unfortunately, this is not
sufficient when alternative transactions [BHMC90, ELLR90] and contingency
transactions [BHMC90] are considered. For example, if two components exist
where one is an alternative of the other, then both of them have to commit in
order for the saga to commit. This contradicts the at-most-one semantics of
alternative transactions — both alternatives cannot commit. This observation
points to the concept of nested sagas’ which are component transactions of
sagas (Figures 10.13 and 10.14).

Dependencies between a nested saga transaction and the components
of the nested saga are different from those of a (top) saga transaction on its

"Nested Sagas corresponds to a class of sagas with complex structure and hence, it is
different from the nested saga model proposed in [GGK191].

10.5 Variations of the Sagas Model 43

associated components. A nested saga is similar to a saga with non-vital
components in the sense that a nested saga can commit even if some of its
components abort. However, a nested saga has to abort if all of its component
abort. This is captured through a set-abort dependency of the nested saga
transaction on its associated component transactions:

Set-Abort Dependency (t; SAD {t;]1 < ¢ < k}): if all ¢; (1 < ¢ < k) abort
then t; aborts; i.e., (A, ;. (Abort;, € H)) = (Abort;; € H).

In Figure 10.13, set-abort dependency corresponds to an arrow with multi-
ple heads. Set-abort dependency brings out the fact that dependencies may
involve more than two transactions.

Each component transaction of a nested saga has a weak-abort depen-
dency WD on the nested saga transaction. As in the original saga, the weak-
abort dependency ensures that if the nested saga aborts while its component
transactions are still executing, its component transactions are also aborted.

A nested saga with this structure can exhibit different behaviors depend-
ing on the dependencies between its component transactions. In the simplest
case, where no dependencies exist between the component transactions, nested
sagas exhibit at-least-one semantics.

An ezclusion dependency €D between the component transactions 77
and Tj.; of a nested saga T3, as in Figure 10.13, captures the properties of
alternative transactions. In particular, alternative transactions execute con-
currently while the exclusion dependency ensures the at-most-one semantics.

Note that due to the semantics of the exclusion dependency 771 cannot
commit until 73 5 aborts. This implies that 7 5 is the preferable alternative.
A second exclusion dependency from T3 3 to T7.; will make both alternatives
equally preferable.

Contingency transactions are a special case of alternative transactions
in that they cannot execute concurrently. The sequential order of execution
of contingency transactions is specified by means of begin-on-abort dependen-
cies. Exclusion dependencies between the contingency transactions ensure the
at-most-one semantics.

By being a component of a saga, a nested saga must be associated with a
compensating transaction. In some special cases, a compensating transaction
may be sufficient to compensate for any alternative or contingency transac-
tion of a nested saga. It is often the case, however, that different transac-
tions will need different compensating transactions. For this reason, a nested
saga may be associated with a compensating saga whose components are the

44 Chapter 10. ACTA: The SAGA Continues

compensating transactions of the component transactions of the nested saga.
Begin-on-commit dependencies pair nested and compensating saga transac-
tions and their associated component transactions (see Figure 10.13) reflecting
their compensated-for/compensating relationship. If a component transaction
aborts and rolls back, there is no meaning for its compensating transaction to
execute. On the other hand, if a component transaction commits, a strong-
commit dependency of a component transaction of a compensating saga on
the compensating saga transaction propagates the effects of the force-commit-
on-abort dependency of the compensating saga transaction on to the top saga
transaction.

10.5.4 Sagas with Non-Compensatable
Components

Sagas are built on the assumption that all their component transactions
can be compensated for. There are many cases of component transaction
that cannot be compensated for. There are even more cases of component
transactions whose effects on objects can be compensated, but they involve
real actions such as messages that cannot be semantically undone. In atomic
transactions such actions are deferred until the commit time of the trans-
action. Since in sagas component transactions commit independently this
approach is not directly applicable and hence sagas, as originally defined, are
not applicable in such situations.

There are three different ways in which sagas can be extended to include
non-compensatable component transactions. Each method is suitable for dif-
ferent situations and allows different levels of concurrency. The first method
is applicable for sagas whose non-compensatable components execute con-
currently. In such a situation, the weak-abort dependency of the component
transaction on the saga transaction can be replaced with an abort-dependency
coupling in this way the commitment of the saga with the commitment of the
non-compensatable transactions. Thus, real actions are deferred until the
saga commits.

Clearly, this method is not applicable for sequential executions because
a non-compensatable component transaction 7' will block the execution of
any component transaction which has a begin-on-commit dependency on 7.
In the second method, a new significant event, e.g., Finish, can be associated
with non-compensatable transactions and a new dependency can be defined
that relates the Begin and Finish events. (Recall that this is possible in ACTA

10.5 Variations of the Sagas Model 45

because ACTA is an open-ended framework allowing the introduction of new
dependency relations.) Finish can be invoked by a transaction to terminate its
access to shared objects in the database. However, Finish does not commit the
operations invoked by a transaction on the shared objects. Thus, Finish does
not replace Commit which is still needed to make the changes of a transaction
effective in the database.

Defining begin-on-finish dependency (t; BFD t;) is straight forward:
transaction ; cannot begin execution until transaction ¢; finishes; i.e.,

(Begin,, € H) => (Finish:; — Begin,).

Thus, in this second method, if a component transaction 7; is non-

compensatable,

1. Ty, BFD T},
2. (Finishy, € H) = Zp Aob (Finishy, — pr,[0b])
3. T; can invoke Commit only after invoking Finish:
(Commity, € H) = (Finishy, — Commitr,),
4. if the saga aborts, T; aborts after the components that execute
following T; have been compensated:
(Aborts € H) = Vj,i < j < n (Commitcr; — Abortr;), and
5. the saga commits iff 7; commits:
(Commits € H) < (Commitr, € H).

The third method does not require any additional significant events or
any new dependencies. It simply structures non-compensatable transactions
as subtransactions (e ld nested transactions) which at commit time delegate all
the operations in their AccessSet, i.e., the operations that non-compensatable
transactions have performed, to the saga.

Thus, in this last method, if T; is a non-compensatable component of a
saga S:

(Commity, € H) & (Delegater,[S, AccessSetr,] € H).

If the saga aborts, all the effects of the operations in its Access Set are rolled
back.

Subsection 10.5.1 through 10.5.4 discussed four different extensions to
the original saga model and showed how their definitions are mutations of the
original definition. Of course, it is possible to conceive of a model for sagas
which combines two or more of these extensions. One can fairly easily develop
the axiomatic definitions for such combined models given our discussions here.
One such combination is a model similar to that of S-Transactions [VE91].

46 Chapter 10. ACTA: The SAGA Continues

10.6
Conclusions

This paper shows how ACTA captures the (extended) functionality of a
transaction model (1) by allowing the specification of significant events beyond
commit and abort, (2) by allowing the specification of arbitrary transaction
structures in terms of dependencies involving any significant event, (3) by
supporting finer grain visibility for objects in the database by associating a
view and a conflict set with each transaction and the notion of delegation,
(4) and by facilitating object-specific and transaction-specific semantic-based
concurrency control.

The application of ACTA to specify the properties of sagas revealed a
number of possible variations to the saga model that are of practical interest.
These involve (1) permitting a saga to commit even if a (non-vital) subset
of the components of a saga aborted; (2) considering the compensatability
of a saga component; (3) incorporating the notion of nested sagas within
the saga model; and (4) combining alternative and contingency transaction
model with the saga model. The ease with which it was possible to consider
these variations, once the original Sagas model was characterized, speaks to
the modeling capabilities of ACTA. Further, just as it was possible to show
the correctness properties of original sagas model, it is possible to specify
the correctness requirements of the extended Sagas and show the correctness
given the characterizations of these extensions.

Bibliography

[BHG87] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley,
Reading, MA, 1987.

[BHMC90] Buchmann, A., Hornick, M., Markatos, E., and Chronaki, C.
Specification of a Transaction Mechanism for a Distributed Ac-
tive Object System. In Proceedings of the OOPSLA/ECOOP 90
Workshop on Transactions and Objects, pages 1-9, 1990.

[BKK85] Bancilhon, F., Kim, W., and Korth, H. A model of CAD Trans-
actions. In Proceedings of the 11th International Conference on
VLDB, pages 25-33, 1985.

[BR9O]

[Chr91]

[CR90]

[CR91]

[CR91b]

[CRR91]

[DE89]

[DHL90]

[EGLT76]

10.6 Bibliography 47

Badrinath, B. and Ramamritham, K. Performance Evaluation
of Semantics-based Multilevel Concurrency Control Protocols. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 163-172, 1990.

Chrysanthis, P. K. ACTA, A Framework for Modeling and Rea-
soning about Ertended Transactions. PhD thesis, Department of
Computer and Information Science, University of Massachusetts,
Ambherst, Massachusetts, 1991.

Chrysanthis, P. K. and Ramamritham, K. ACTA: A Framework
for Specifying and Reasoning about Transaction Structure and Be-
havior. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 194-203, 1990.

Chrysanthis, P. K. and Ramamritham, K. A Unifying Framework
for Transactions in Competitive and Cooperative Environments.
IEEE Bulletin on Office and Knowledge Engineering, 4(1):3-21,
1991.

Chrysanthis, P. K. and Ramamritham, K. A Formalism for Ex-
tended Transaction Models. Proceedings of the 17th International
Conference on VLDB, 1991.

Chrysanthis, P. K., Raghuram, S., and Ramamritham, K. Ex-
tracting Concurrency from Objects: A Methodology. In Pro-
ceedings of the 1991 ACM SIGMOD International Conference on
Management of Data, 1991.

Du, W. and Elmagarmid, A. K. Quasi Serializability: a Correct-
ness Criterion for Global Concurrency Control in InterBase. In
Proceedings of the 15th International Conference on VLDB, pages
347-355, 1989.

Dayal, U., Hsu, M., and Ladin, R. Organizing Long-Running
Activities with Triggers and Transactions. In Proceedings of
the ACM SIGMOD International Conference on Management of
Data, pages 204-214, 1990.

Eswaran, K., Gray, J., Lorie, R., and Traiger, I. The Notion of
Consistency and Predicate Locks in a Database System. Commu-
nications of the ACM, 19(11):624-633, 1976.

48 Chapter 10. ACTA: The SAGA Continues

[ELLR90]

[Elm91]

[FZ89]

[GGK*91]

[Gra81]

[GS87]

[HWS8S]

[KLS90]

[KS88]

[Mos81]

Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M. A
Multidatabase Transaction Model for InterBase. In Proceedings
of the 16th International Conference on VLDB, pages 507-518,
1990.

Elmagarmid A. (Issue Editor). Special Issue on Unconventional
Transaction Management. Bulletin of the IEEE Technical Com-
mittee on Data Engineering, 14(1), 1991.

Fernandez, M. and Zdonik, S. Transaction Groups: A Model for
Controlling Cooperative Transactions. In Proceedings of the Work-
shop on Persistent Object Systems: Their Design, Implementation
and Use, pages 128-138, 1989.

Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and
Salem, K. Modeling Long-Running Activities as Nested Sagas.
Bulletin of the IEEE Technical Commitiee on Data Engineering,
14(1):14-18, 1991.

Gray, J. The Transaction Concept: Virtues and Limitations. In
Proceedings of the Tth International Conference on VLDB, pages
144-154, 1981.

Garcia-Molina, H. and Salem, K. SAGAS. In Proceedings of
the ACM SIGMOD International Conference on Management of
Data, pages 249-259, 1987.

Herlihy, M. P. and Weihl, W. Hybrid concurrency control for
abstract data types. In Proceedings of the Tth ACM symposium
on Principles of Database Systems, pages 201-210, 1988.

Korth, H. F., Levy, E., and Silberschatz, A. Compensating Trans-
actions: A New Recovery Paradigm. In Proceedings of the the 16th
VLDB Conference, pages 95-106, 1990.

Korth, H. F. and Speegle, G. Formal Models of Correctness with-
out Serializability. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 379-386, 1988.

Moss, J. E. B. Nested Transactions: An approach to reliable dis-
tributed computing. PhD thesis, Massachusetts Institute of Tech-
nology, 1981.

[PKHS8S]

[Ska91]

[5S84]

[SZ89]

[VE91]

[VRS86]

[Wei84]

[Wei88]

10.6 Bibliography 49

Pu, C., Kaiser, G., and Hutchinson, N. Split-Transactions for
Open-Ended activities. In Proceedings of the 14/th International
Conference on VLDB, pages 26-37, 1988.

Skarra, A. Localized Correctness Specifications for Cooperating
Transactions in an Object-Oriented Database. IEEE Bulletin on
Office and Knowledge Engineering, 4(1):79-106, 1991.

Schwarz, P. M. and Spector, A. Z. Synchronizing Shared Abstract
Data Types. ACM Transactions on Computer Systems, 2(3):223—
250, 1984.

Skarra, A. and Zdonik, S. Concurrency Control and Object-
Oriented Databases. In Object-Oriented Concepts, Databases, and
Applications, pages 395-421. ACM Press, 1989.

Veijalaine, J. and Eliassen, F. The S—transaction Model. Bulletin
of the IEEE Technical Committee on Data Engineering, 14(1):55—
59, 1991.

Vinter, S., Ramamritham, K., and Stemple, D. Recoverable Ac-
tions in Gutenberg. In Proceedings of the 6th International Con-
ference on Distributed Computing Systems, pages 242-249, 1986.

Weihl, W. Specification and Implementation of Atomic Data
Types. PhD thesis, Massachusetts Institute of Technology, 545
Technology Square, Cambridge, MA, 1984.

Weihl, W. Commutativity-Based concurrency control for abstract
data types. IEEE Transactions on Computers, 37(12):1488-1505,
1988.

