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Abstract

Whereas serializability captures database consistency requirements and transaction cor-
rectness properties via a single notion, recent research has attempted to come up with
correctness criteria that view these two types of requirements independently. The search
for more flexible correctness criteria is partly motivated by the introduction of new trans-
action models that extend the traditional atomic transaction model. These extensions
came about because the atomic transaction model in conjunction with serializability is
found to be very constraining when applied in advanced applications, such as, design
databases, that function in distributed, cooperative, and heterogeneous environments.

In this paper, we develop a taxonomy of various correctness criteria that focus
on database consistency requirements and transaction correctness properties from the
viewpoint of what the different dimensions of these two are. This taxonomy allows us
to categorize correctness criteria that have been proposed in the literature. To help in
this categorization, we have applied a uniform specification technique, based on ACTA,
to express the various criteria. Such a categorization helps shed light on the similarities
and differences between different criteria and to place them in perspective.

1This material is based upon work supported by the National Science Foundation under grant IRI-
9109210.
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1 Introduction

Database consistency requirements capture correctness from the perspective of objects in
the database — as transactions perform operations on the objects. On the other hand,
transaction correctness properties capture correctness from the perspective of the structure
and behavior of transactions. That is, they deal, for example, with the results of trans-
actions and the interactions between transactions. Serializability [14] captures database
consistency requirements and transaction correctness properties via a single notion: (1)
The state of the database at the end of a set of concurrent transactions is the same as the
one resulting from some serial execution of the same set of transactions; (2) The results
of transactions and the interactions among the set of transactions are the same as the
results and interactions, had the transactions executed one after another in this serial
order. As applications using databases become more complex, the correctness criteria
that are acceptable to the application become more complex and hence harder to capture
using a single correctness notion.

Recent research has attempted to come up with correctness criteria, or acceptability
criteria, that view these two types of requirements independently. The search for more
flexible correctness requirements is also motivated by the introduction of new transaction
models that extend the traditional atomic transaction model. (See [13] for a descrip-
tion of some of the eztended transaction models.) These extensions came about because
the atomic transaction model in conjunction with serializability is found to be very con-
straining when applied in advanced applications such as design databases that function
in distributed, cooperative, and heterogeneous environments.

Proposed correctness criteria range from the standard serializability notion to even-
tual consistency [40]. Quasi-serializability [12], predicate-wise serializability [25], etc., are
points that lie within this range. Eventual consistency can be viewed as a “catch-all” term
with different connotations: For example, requiring consistency “at a specific real-time”,
“within some time” or “after a certain amount of change to some data”, or enforcing

consistency “after a certain value of the data is reached”, etc. Whereas serializability and



its relaxations are, in general, application and transaction model independent criteria,
eventual consistency, as the examples above show, are application and transaction model
specific. It is not difficult to see that these relaxed correctness requirements are useful
within a single database as well as in multi-database environments.

In this paper we examine database consistency constraints and transaction correct-
ness properties from the viewpoint of what the different dimensions of these two types of
correctness are. This taxonomy allows us to categorize existing proposals thereby shed-
ding some light on the similarities and differences between the proposals and to place them
in perspective. The categorization also helps us determine whether or not a correctness
notion is transaction model specific or application specific. We will see that even though
some of the correctness notions were motivated by specific transaction models or specific
applications, they have broader applicability.

To help in this categorization, we apply a uniform specification technique to express
the various correctness criteria that have been proposed. The technique is based on the
ACTA formalism (7, 8] which heretofore has been used for the specification of and for
reasoning about extended transactions. One of the key ingredients of ACTA is the idea
of constraining the occurrence of significant events associated with transactions, Begin,
Abort, and Split, for example. These constraints are expressed in terms of necessary and
sufficient conditions for events to occur. These, in turn, relate to the ordering of events and
the validity of relevant conditions. Such constraints can also facilitate the specification
of database consistency requirements and transaction correctness properties. The ACTA
formalism is introduced in Section 3.

The rest of the paper is structured as follows: Subsection 2.1 provides a taxonomy
of database consistency requirements while 2.2 provides a taxonomy of transaction cor-
rectness properties. A specification of existing proposals as well as their categorization
(based on the taxonomy) is the subject of Section 4. Section 5 concludes the paper with

some discussions of the next step in this work.



2 A Taxonomy of Correctness Criteria

We study different dimensions of the two aspects of correctness, namely, consistency
of database state and correctness of transactions, in order to develop a taxonomy of

correctness criteria. For concreteness, we give examples as the taxonomy is developed.

2.1 Database Consistency Requirements

Database consistency requirements can be examined with respect to two issues with fur-

ther divisions of each as discussed below.
o Consistency Unit:

— Complete Database:
All the objects in the database have to be consistent locally as well as mutu-
ally consistent, i.e., they should satisfy all the database integrity constraints
typically specified in the form of predicates on the state of the objects.

Ezample: Traditional serializability (SR) applied to atomic transactions [4].
— Subsets of the objects in the database:

* Location-independent subsets:
The database is viewed as being made up of subsets of objects. The subsets
are not necessarily disjoint. Each object in the database is expected to be
consistent locally but mutual consistency is required only for objects that
are within the same subset.
Ezample: Set-wise serializability (SSR) applied to compound transactions
[39] and Predicate-wise serializability (PSR) applied to cooperative trans-
actions [22].

* Location-dependent subsets:

Each subset corresponds to one of the sites of a (distributed / heteroge-

neous) database. In addition to mutual consistency among objects in a



subset (i.e., site), consistency among subsets is also required depending on
which parts of a database are accessed by a transaction.
Ezample: Quasi-serializability (QSR) [12] and its generalization [30] applied

to distributed transactions.

— Individual Objects:
Each object in the database is expected to be consistent locally.
Ezample: Linearizability [20] applied to objects accessed by concurrent pro-

cesses.

o Consistency Maintenance:
This is related to the issues of when a consistency requirement is expected to hold

and how consistency is restored if it does not hold.

— When is a consistency requirement ezpected to hold?

* At activity boundaries: (An activity denotes a unit of work)

- When an operation completes:
When an operation on an object completes, the necessary consistency
specifications must hold.
Ezample: Concurrent processes accessing shared objects.
- When a set of operations completes:
When a set of operations performed by a transaction completes, the
necessary consistency is expected to hold.
Ezample: Semantic atomicity [15] and multilevel atomicity [27]
- When a transaction completes:
Consistency is expected to hold upon a transaction’s completion.

Ezample: Atomic transactions.

- When a set of transactions completes:
Consistency is expected to hold not when individual transactions com-

plete but when a set of transactions completes.



Ezample: Cooperative transactions [25).
* At specific points of time:
Consistency is required only at/after specific points in time. This is an
example of temporal consistency [40].
Ezample: A bank account is expected to be made consistent, with respect to

the debits and credits that occur on a given day, upon closing of business.

*x At specific states:
Objects may be required to be mutually consistent only when a certain
number of updates have been made to one of the objects or a state satis-
fying a certain predicate is reached.
Ezample: A centralized database of a department store chain may require
updates only upon the completion of 100 sales at a particular store. Such

requirements are referred to as spatial consistency in [40].

— If a consistency requirement does not hold at a point it is supposed to, how is

it restored!

* Restored immediately:
This applies when the consistency requirement is required to hold at activ-
ity boundaries. The activity is allowed to complete only if the requirement
holds, i.e., completion is delayed until consistency holds.
Ezample: SR, PSR, QSR, and cooperative serializability (CS'R), applied to
atomic, nested, and distributed transactions.

* Restored in a deferred manner:
This typically applies when consistency is expected in certain states or at
certain times. When it is applied to consistency that is expected at an
activity boundary, the activity is allowed to complete and restoration is
begun subsequently.

- Eventually:

Consistency between objects must be restored eventually.



Ezample: If mutual consistency is required between two objects and one
is changed by a transaction, another can be triggered to make changes
in the other object.
- By a certain time:

A deadline may be imposed on the time by which consistency is re-
stored.

Ezample: In real-time systems, the state of the controlled environment
should be reflected in the internal state of the controlling system within

a certain time so that appropriate and timely control can be exercised.

2.2 Transaction Correctness Properties

As was mentioned in the introduction, serializability suffices as a correctness criterion
for traditional atomic transactions since once individual transactions are guaranteed to
take one consistent database state to another consistent state, serializability guarantees
that a set of concurrent transactions when started in a consistent state take the database
to another consistent state. So the only transaction correctness property of interest is:
Each transaction when executed by itself must maintain database consistency. From
this it follows that, under serializability, the output of a transaction reflects a consistent
database state. However, more elaborate correctness properties have been proposed in
the context of additional application requirements and newer transaction models. These

transaction correctness properties can be discussed with respect to three criteria:

e Correctness of transaction results:

— Absolute:
The output of transactions must reflect a consistent database state.

Ezample: SR applied to atomic transactions, QSR applied to distributed trans-

actions.

~ Relative:

Outputs of a transaction are considered correct even if they do not reflect a



consistent state of the object, as long as they are within a certain bound of the
result that corresponds to the consistent state.
Ezample: Epsilon-serializability (ESR) [35] applied to Epsilon-transactions, ap-

proximate query processing [21].

o Correctness of transaction structure:
Correctness depends on the (structural) relationship between transactions. This
typically translates into commit, abort, begin, and other types of dependencies [8]

between transactions.

Ezample: Sagas [17], multi-level serializability [26].
e Correctness of transaction behavior:

— Data access related behavior:
Transactions are required to perform operations on objects in a certain manner

to be considered correct.

Ezample: patterns [41].

— Temporal behavior:

Transactions have start time and completion time (deadline) constraints.

Ezample: Transactions in real-time systems.

The taxonomy just presented shows how the various weakened versions of serial-
izability can be viewed from the perspectives of database comsistency and transaction
correctness. We revisit these notions in Section 4.1 where they are formally specified and
categorized along the different dimensions of the taxonomy. Sections 4.2 and 4.3 deal with
the formal specification of more general correctness criteria that are not directly related
to serializability but deal, for example, with transaction structure and behavior, specific

states of objects, or specific times.



3 A Quick Introduction to the ACTA Formalism

ACTA is a first-order logic based formalism. As mentioned earlier, the idea of signiﬁéa.nt
events underlies ACTA’s specifications. Section 3.1 discusses these events. Specifications
involve constraints on the occurrence of individual significant events as well as on the
history of occurrence of these events. Hence the notion of history and the necessary and
sufficient conditions for the occurrence of significant events are introduced in Section 3.2.
Finally, Section 3.3 shows how sharing of objects leads to transaction inter-relationships

which in turn induces certain dependencies between concurrent transactions.

3.1 Significant Events Associated with Transactions

During the course of their execution, transactions invoke operations on objects. Also,
they invoke transaction management primitives. For example, atomic transactions are
associated with three transaction management primitives: Begin, Commit and Abort. The
specific primitives and their semantics depend on the specifics of a transaction model [8].
For instance, whereas the Commit by an atomic transaction implies that it is terminating
successfully and that all of its effects on the objects should be made permanent in the
database, the Commit of a subtransaction of a nested transaction implies that all of its
effects on the objects should be made persistent and visible with respect to its parent and
sibling subtransactions. Other transaction management primitives include Spawn, found
in the nested transaction model [31], Split, found in the split transaction model [34], and

Join, a transaction termination event also found in the split transaction model.

DEFINITION 3.1: Invocation of a transaction management primitive is termed a
significant event. A transaction model defines the significant events that transactions

adhering to that model can invoke.

The set of events invoked by a transaction ¢ is a partial order with ordering relation <

where <; denotes the temporal order in which the related events occur.



ts(e) gives the time of occurrence of event € according to a globally synchronized
clock?. Clearly, £s(8) will be larger than ¢s(a) if @ appears earlier in the partial order.
Further, no two significant events that relate to the same transaction can occur with the

same ts value.

3.2 History, Projection of the History, and Constraints on
Event Occurrences

The concurrent execution of a set of transactions T' is represented by the history [4] of the
events invoked by the transactions in the set T' and indicates the (partial) order in which
these events occur. The partial order of the operations in a history is consistent with the
partial order of the events of each individual transaction ¢ in T.

The projection of a history H is a subhistory that satisfies a given criterion. For

instance,

o The projection of a history H with respect to a specific transaction ¢ yields a sub-

history with just the events invoked by ¢. This is denoted by H,.

o The projection of a history H with respect to a specific time interval [i, j| yields the
subhistory with the the events which occurred between i and j (inclusive) and is

denoted by HUWl,

When i = system initiation time, we drop the first element of the pair. Thus HV =

Hleystem_init_time,j] denotes all the events that occur until time J.

Consistency requirements imposed on concurrent transactions executing on a database
can be expressed in terms of the properties of the resulting histories.

The occurrence of an event in a history can be constrained in one of three ways: (1)
An event € can be constrained to occur only after another event ¢; (2) An event € can

occur only ifa condition c is true; and (3) a condition ¢ can require the occurrence of an

event e.

2This is obviously as abstraction ~ the effects of realizing this by a set of closely synchronized clocks
on individual nodes in a distributed system will not be discussed here.



DEFINITION 3.2: The predicate € — € is true if event € precedes event € in history
H. 1t is false, otherwise. (Thus, ¢ — ¢ implies that e € H and ¢’ € H.)

DEFINITION 3.3: (e € H) = Conditionyg, where = denotes implication, specifies
that the event € can belong to history H only if Conditiong is satisfied. In other
words, Conditiony is necessary for € to be in H. Conditiony is a predicate involving

the events in H.

Consider (¢' € H) = (¢ — €'). This states that the event ¢ can belong to the history H

only if event € occurs before €.

DEFINITION 3.4: Conditiong = (e € H) specifies that if Conditiony holds, € should
be in the history H. In other words, Conditiony is sufficient for € to be in H.

We now describe some common types of constraints.

L. (Commit,; € H) = ((Commit,, € H) = (Commit;, — Commit,))). This says
that if both transactions ¢; and ¢; commit then the commitment of ¢; precedes the
commitment of ;. This Commit-Dependency is indicated by (t; ¢D ¢;). In general,

((Commit,; € H) = condition) specifies that condition should hold for ¢; to commit.

2. (Aborty, € H) = (Aborty; € H) i.e., if t; aborts then ¢; aborts, states the Abort-
Dependency of ¢; on t; (¢; AD t;). In general, (condition = (Abort,, € H)) specifies
that if condition holds t; aborts.

3. (Begin,; € H) = (Begin,, — Begin,;) states that transaction ¢; cannot begin exe-

cuting until transaction ¢; has begun.

3.3 Objects, Operations, and Conflicts

A transaction accesses and manipulates the objects in the database by invoking operations
specific to individual objects. It is assumed that an operation always produces an output

(return value), that is, it has an outcome (condition code) or a result. The result of an

10



operation on an object depends on the current state of the object. For a given state
s of an object, we use return(s,p) to denote the output produced by operation p, and

state(s,p) to denote the state produced after the execution of p.

DEFINITION 3.5: Invocation of an operation on an object is termed an object event.
The type of an object defines the object events that pertain to it. We use p[ob] to
denote the object event corresponding to the invocation of the operation p on object

ob by transaction . Object events are also part of the history H.

DEFINITION 3.6: Let H(®®) denote the projection of the history with respect to the

operation invocations on ob. Two operations p and ¢ conflict in a state produced by

H(®) | denoted by conflict( H(*®), p, q), iff

(state(H® op, q) # state(H™ ogq, p) V
(return(H(""), q) # (’I‘eturn(H(Ob) op, q)) V
(return(H (ob) p) # (return(H ) o 4, p))

Two operations that do not conflict are compatible.

(o denotes functional composition; H o p appends p to history H.) Thus, two operations
conflict if their effects on the state of an object or their return values are not independent

of their execution order. From now on, we drop the first parameter of conflict, namely,

H(),

4 Specification and Categorization of Correctness
Criteria

In this section, we study various database consistency requirements and transaction cor-
rectness properties that have been proposed and place them in perspective, given the tax-
onomy of the previous section. Broadly speaking, Section 4.1 deals with transaction model

and application independent correctness criteria (even though, as we will see, those who
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proposed them may have had a specific transaction model or application in mind), Section
4.2 discusses transaction model dependent but application independent criteria, and Sec-
tion 4.3 examines transaction and application dependent consistency requirements. (For

a complete axiomatic semantics of the various extended transaction models, the reader is

referred to [8].)

4.1 Transaction and Application Independent Criteria

In general, transaction and application independent correctness criteria are extensions to
serializability. In this section, we specify some of these extensions using the formalism

described in the previous section.

DEFINITION 4.7: Let R be a binary relation on a set of transactions T, ¢;, ¢ € T,
t; # tp. R* is the transitive-closure of R; i.e.,

(t;’R*tk) if [(t,"R,tk) Vv Btj eT (t,"R,tj A t_,'R*tk)].

4.1.1 Serializability

In traditional databases, serializability and, in particular, conflict preserving serializabil-

ity, is the well-accepted criterion for concurrency control.

DEFINITION 4.8: Let C be a binary relation on T, ¢;,¢; € T.
(8:Ctj), ¢ # t; if ob 3p, q (conflict(p,[ob], qi;[0b]) A (pe; [0b] — q¢;[0b]))

DEFINITION 4.9: A set of transactions T is serializable iff Vt € T, -(tC*t).

To illustrate the practical implications of these definitions, let us consider the case where
all operations perform in-place updates. In this case, if transactions ¢; and t; have a C
relationship, i.e., they have invoked conflicting operations, a commit dependency (8] forms
between ¢; and ¢;. (Conflicting operations may also produce abort dependencies between

the invoking transactions; but an abort dependency implies a commit dependency.) The

12



commit order induced by the C relation corresponds to the serialization order. By requir-
ing that there be no cycles in the C relation, the above definition states that the commit
order, and hence the serialization order, must be acyclic.

With respect to the taxonomy of Section 2, for serializability, the consistency unit is
the complete database, consistency is required at transaction boundaries, and immediate
consistency restoration is required. Absolute correctness of transaction results is expected.
Atomic transactions and top-level transactions of nested transactions, for example, behave
according to the serializability correctness criterion.

The semantics of the operations on the objects (for e.g. see [2, 19, 33]) can be used
to define the conflict relationship between operations. Furthermore, different degrees of
consistency [18] can be ensured by ignoring some of the conflicts. The resulting inconsis-
tencies can be accommodated in applications that can cope with such inconsistencies or
when these are masked by the structuring of the objects used by the applications. The for-
mer is the case in [18] and with ESR [35] (see [37] for a formal characterization of ESR).
The latter is the case with abstract serializability — used in the context of multi-level

transactions (3, 32, 28, 2].

4.1.2 Predicatewise Serializability

Predicatewise serializability has been proposed in [22, 25| as the correctness criterion for
concurrency control in databases in which consistency constraints are in a conjunctive
normal form. In such cases, consistency constraints can be maintained by requiring seri-

alizability only with respect to objects which relate to a disjunctive clause.

DEFINITION 4.10: Let C = C; AC,...AC, be the database consistency constraint.
- Suppose the disjunctive clause Cj, relates to objects in D, C DB, where DB is the

database.

DEFINITION 4.11: Let C; be a binary relation on transactions in T,t; t;,eT.

(t:Cit;), t: # t; if Job € Dy Ip, q (conflict(py, [ob], qt,'[Ob]) A (pe;[ob] — q; [03]))

13



DEFINITION 4.12: A set of transactions T is predicatewise serializable iff
Vt € T VD, 1 <k <n —(tCit)

In [39], each Dy is said to be an atomic data set. With respect to the taxonomy,
for predicatewise serializability, an atomic data set [39] forms a consistency unit, con-
sistency is required at transaction boundaries, and immediate consistency restoration is
required. Absolute correctness of transaction results is expected. Compound transactions

[39] behave according to the predicatewise serializability correctness criterion.

4.1.3 Cooperative Serializability

We define cooperative serializability (CSR) with respect to a set of transactions which
maintain some consistency properties. Transactions in a set could be the components
of an extended transaction, or transactions collaborating over some objects while main-
taining the consistency of the objects. In such cases, consistency can be maintained if
other transactions which do not belong to the set are serialized with respect to all the
transactions in the set. In other words, the set of cooperative transactions becomes the

unit of serializability.

DEFINITION 4.13: T, be a set of cooperative transactions, T. C T. Let C. be a
binary relation on T, ¢;, ¢;, t, € T.
(t:Cet;), t; # tj, i & b, t; # b if
Job 3p, q ((t: € Te, ¢ & Te (conflict(py;[0b], qs;[0b]) A (pe;[0b] — g¢;[0b]))) v
(t: € Te,t; € Te, ta € T (conflict(py;[0b], gs, [0b]) A (ps;[0b] — g, [0b]))) V
(t: € T.,t; € T, b € Te (conflict(pe, [ob], gi; [0b]) A (p, [0b] — g;[0b])))))

In this definition, the first clause expresses how a dependency between two transactions
which do not belong to the same set is directly established when they invoke conflicting
operations on a shared object. This is similar to the clause in the classical definition of
(conflict preserving) serializability. The other two clauses reflect the fact that when a

transaction establishes a dependency with another transaction, the same dependency is
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established between all the transactions in their corresponding cooperative transactions
sets. These clauses can be viewed as expressions of the development of dependencies

between transaction sets.

DEFINITION 4.14: A set of transactions T is cooperative serializable iff
Vt € T -(tC:t)

With respect to the taxonomy of the previous section, for cooperative serializability,
the consistency unit is the complete database, consistency is required when an ordinary
transaction (not a member of a T.) completes or a set of cooperating transactions complete,
and immediate consistency restoration is required. Absolute correctness of transaction

results is expected. The correctness requirement expressed informally in [29] corresponds

to CSR.

4.1.4 Quasi Serializability

Quasi Serializability has been proposed in [12] as a correctness criterion for maintaining
transaction consistency in multidatabases, i.e., heterogeneous distributed databases. In
these systems, transactions can either execute on a single site (called local transactions),
or can execute on multiple sites (called global transactions).

A set of of local and global transactions is quasi serializable if (1) all local histories are
(conflict preserving) serializable, and (2) there exists a total order of all global transactions
gm and g, where g, precedes g, in the order and all g,,’s operations precede g,’s operations

in all local histories in which they both appear.

DEFINITION 4.15: Let T; be the set of transactions, both local and global, executing

on node 3.

DEFINITION 4.16: Let R be a binary relation on a set of global transactions G, and
gm, gn € G.
(9mRgn), gm # gn if

3k 3gm, gn € Ti b 3p, q (conflict(py,, [0b], g5, [08]) A (Pg,. [0B] — g4, [0B]))

15



DEFINITION 4.17: A set of local and global transactions T' = (U;T;) (G C T) is quasi

sertalizable if

1. ViVvteT; (Commit, € H) = -(iC*¢t),
2. Vge G (Commity, € H) = —~(gR*g).

With respect to the taxonomy of the previous section, for Quasi serializability, (site-
based) subsets of the database objects form the consistency units (i.e., objects in each site
form a subset), consistency is required when a transaction completes, and immediate con-
sistency restoration is required. Absolute correctness of transactions’ results is expected.
Quasi serializability has been proposed in the context of distributed (multi-database)

transactions.

4.2 Transaction Model Dependent and Application Indepen-
dent Criteria

Transaction model dependent but application independent correctness criteria are typi-
cally related to the structure of transactions that conform to a particular model. (Note
that specific transaction models may be more suited to specific applications.) As was
mentioned earlier, different transaction models produce different transaction structures
where the structure of an extended transaction defines its component transactions and
the relationships between them. Dependencies can express these relationships and thus,
can specify the links in the structure. For example, in hierarchically-structured nested
transactions, the parent/child relationship is established at the time the child is spawned.
This is expressed by a child transaction ¢, establishing a weak-abort dependency (defined
below) on its parent ¢, ((t. WD t,)) and by a parent establishing a commit dependency on
its child ((¢, ¢D t.)). The weak-abort dependency guarantees the abortion of an uncom-
mitted child if its parent aborts whereas the commit dependency prevents a child from
committing after its parent has committed.

We now formally specify some of the dependencies that can occur in addition to

the Commit Dependency, Abort Dependency, and Begin Dependency specified in
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Section 3.2.
Let t; and t; be two transactions and H be a finite history which contains all the

events pertaining to ¢; and ;.

Weak-Abort Dependency (t; WD t;): if t; aborts and ¢; has not yet committed, then
t; aborts. In other words, if ¢; commits and ¢; aborts then the commitment of ¢;

precedes the abortion of £; in a history; i.e.,

(Aborty, € H) = (~(Commity; — Aborty,) = (Aborty; € H)).

Strong-Commit Dependency (t; SCD t;): if transaction t; commits then ¢; commits;

i.e., (Commit,, € H) = (Commit,; € H).

Termination Dependency (t; 7D ¢;): t; cannot commit or abort until ¢; either commits
or aborts; i.e., (¢ € H) = (e — ¢)

where ¢ € {Commit,,, Abort,,}, and ¢’ € {Commit,,, Abort,;}.

Exclusion Dependency (t; €D ¢;): if t; commits and ¢; has begun executing, then ¢;
aborts (both ¢; and t; cannot commit); i.e.,

(Commit,, € H) = ((Begin,; € H) = (Abort,; € H)).

Force-Commit-on-Abort Dependency (t; CAD t;): if ¢; aborts, ¢; commits; i.e.,

(AbO‘I‘tei € H) = (C’ommitg, € H)

Serial Dependency (t; SD t;): transaction ¢; cannot begin executing until ¢; either com-

mits or aborts; i.e.,

(Begine; € H) = (e — Begin,;) where € € {Commit,,, Abort,,}.

Begin-on-Commit Dependency (t; BCD ;): transaction ¢; cannot begin executing until

t; commits; i.e., (Begin,; € H) = (Commit,, — Beginy;).

Begin-on-Abort Dependency (t; BAD t;): transaction ¢; cannot begin executing until

t; aborts; i.e., (Begin,; € H) = (Abort,, — Beginy,).

17



Weak-begin-on-Commit Dependency (t; WCD t;): if ¢; commits, ¢; can begin executing
after ¢; commits; i.e.,

(Beging; € H) = ((Commity; € H) = (Commit,, — Beginy,)).

Let us look at further examples of structure-related transaction correctness proper-
ties. In the transaction model proposed in [6, 16] a parent can commit only if its vital
children commit, i.e., a parent transaction has an abort dependency on its vital children
t, (t, AD t,). Child transactions may also have different dependencies with their parents
if the transaction model supports various spawning or coupling modes [10]. Sibling trans-
actions may also be interrelated in several ways. For example, components of a saga [17]
can be paired according to a compensated-for/compensating relationship [23]. Relations
between a compensated-for and compensating transactions as well as those between them
and the saga can be specified via begin-on-commit dependency BCD, begin-on-abort de-
pendency BAD, force-commit-on-abort dependency CAD and strong-commit dependency
ScD [9]. In a similar fashion, dependencies that occur in the presence of alternative

transactions and contingency transactions [6] can also be specified.

4.3 Transaction and Application Dependent Criteria

We now focus on the required behavior of a transaction and hence on the requirements
imposed by the application that employs that specific transaction. We distinguish between

two types of behavior related properties:

1. Those that relate to constraints on a transaction’s access to objects — beyond those

mandated by the concurrency properties of the objects.

2. Those that relate to properties that deal with its other behavioral properties, such
as, when a transaction can/must begin and when it can/must end. Spatial and

temporal requirements are related to this type.

We elaborate upon the first type through an example. Consider a page object with

the standard read and write operations, where read and write operations conflict. A
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read’s return-value is dependent on a previous uncommitted write, whereas a write’s
return-value is independent of a read or another write. In addition, consider transactions
which have the ability to reconcile potential read-write conflicts: When a transaction ¢;
reads a page  and another transaction ¢; subsequently writes =z, t; and ¢; can commit in
any order. However, if ¢; commits before ¢; commits, ¢; must reread z in order to commit.

This is captured by the following requirement:
(ready[z] — writey[z]) = ((Commity, » Commity,) = (Commit,, — ready,[z]))).

In this example, ¢; has to reread the page = when, subsequent to the first read, the page
is written and committed by ¢;. In general, {; may need to invoke an operation on the
same or a different object. For instance, instead of z, ¢; may have to read a scratch-pad
object which #; and ¢; use to determine and reconcile potential conflicts. In general, the
specification of correct transaction behavior can include the specification of operations
that need to be controlled to produce correct histories as well as the specification of
operations that have to occur in correct histories. These correspond to conflicts and
patterns in [41].

Let us now turn to other behavioral specifications, for example, those that concern
the beginning and termination of transactions. Consider the following simple requirement

which states that if condition is true then transaction ¢; must begin.
condition = (Begin,; € H)

condition can depend on the occurrence of an event, on the state of the database, and on
time. As we will see, the above requirement can be used for the flexible enforcement of
consistency, to trigger the propagation of changes, to react to consistency violations, and
to notify changes. Thus, the above specification can be considered to be a specification
for the automatic triggering of situation-dependent actions, e.g., for expressing the rules
that govern the triggering of actions in an active database [11].

Suppose condition is related to the occurrence of some significant event within a

transaction ¢;. In this case, the additional structural relationships (for instance, the
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different coupling modes [10]) between t; and t; can be specified via the dependencies
discussed in Section 4.2.

If condition relates to the state of the database, what we have is related to spatial
consistency discussed in [40]. For instance, consider the following condition: “One hun-
dred sales have occurred at this store since the master database at the store’s headquarters
was last updated.”

If condition relates to time, for instance, if condition is “time > 8pm”, we have a
temporal consistency requirement.

Now let us consider situations where constraints are placed on the beginning of
transactions. For example, a transaction ¢; to compute daily interest can start after
midnight but only after the day’s withdrawals and deposits have been reflected in the

account (say by a transaction ¢;). This can be specified as
(ts(Beging,) > 12am) A (t; BCD t;).

This is an example where a transaction has a time-based start-dependency as well as a
begin-on-commit dependency on another transaction.
Let us consider another example. If a deposit is made by time z then the transaction

that reflects it in the account should not be started until time y. This is specified by
((Commity; € H) A (ts(Commit,,) < z)) = ((Beging, € H) = (ts(Beging;) > y)).

Through several examples, we now consider requirements and constraints associated with
the termination of transactions.

Sometimes, we may want to specify that some specific change of state (by one trans-
action) triggers [10] another transaction (that perhaps fixes the inconsistency resulting
from the first transaction). Clearly, this type of constraint is related to deferred consis-
tency restoration. This can occur, for example, if we had two versions of a database, one
which was complete and another (at perhaps a different site) which only contained data
required at that site. The two are not required to be consistent at all times but changes

done to the complete database are required to percolate to the other within a specified
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delay. If the changes should be reflected within d units of time, we have the following

“temporal commit dependency”:
((Commit,;, € H) A (ts(Commity,) = t)) = (Commit,; € H*+9).

This says that if ¢; commits at time ¢, ¢; should commit by time ¢ + d. For another

example, consider the following:
ple, g
(temperature > threshold A time = t) = (Commit,, ¢ H t+f t"“"5"""(t"""""““""’))

Here ¢; could be a transaction that opens a valve to pass more coolant into the reactor
whose temperature is above threshold. The length of time available to complete this
transaction is a function of the current temperature. This is a form of triggered transaction
but with specific time constraints imposed on its completion [24].

In some situations, it may be desirable to specify an interval [/, u] such that ¢; does
not commit before ! (the lower bound) but definitely commits before u (the upper bound).
For example, consider deposits into a bank account. During the day, if a deposit is made
before 3pm, it is just “logged” into a file but is reflected in the appropriate account

between 10pm and 4am that night. Such constraints take the form
((Commit,; € H) A (ts(Commity,) < t)) = (Commit,; € Hl')

The above conditions imposed on the initiation and termination of transactions
can be viewed as generalizations of the preconditions and postconditions associated with
specific transactions [25].

For a final example of behavior related specifications, consider the situation in which
it may be desirable to prevent a transaction t; from aborting after a time ¢. This corre-
sponds to the assumption that a transaction is implicitly committed if it has not aborted
by a certain time [38]. For example, no bets can be canceled after a race is started and a

lottery ticket cannot be refunded after a given time.
(Abort,, ¢ H') = (Commit,, € H*t!)

Other examples of behavior related requirements appear in [36].

21



5 Conclusions

In this paper, we have examined different types of acceptability criteria and have at-
tempted to provide a taxonomy with respect to database consistency requirements and
transaction correciness properties. Given space limitations, we could examine, in detail,
only a subset of the proposals that have been made to capture the correctness proper-
ties applicable to extended transaction models as well as those demanded by the newer
database applications.

We have approached the problem of categorizing the different proposals by formally
specifying them using the framework of ACTA. This allows us to clearly see where one
proposal differs from another and what its relationship with serializability is.

We believe this taxonomy to be a good starting point in our endeavor to classify
proposed correctness criteria and to compare and contrast them. It can be viewed as a
common framework with respect to which one can study where a new correctness criterion
fits and how it relates to existing criteria. In this regard, we expect the taxonomy to
evolve as better understanding is gained about the correctness needs of emerging database
applications.

Let us now examine some of the other implications of this work. In the context
of a multi-database system, the specifications of database consistency and transaction
correctness can be viewed as requirements on the coordinator of the blackboxes [5] that
control individual databases. We would like to apply the reasoning capabilities of the
ACTA formalism to study the properties of mechanisms, such as in [1], for maintaining
relaxed correctness properties of interdependent data. In the context of active databases,
we can see how the semantics of the rules that govern the triggering of actions can be
formally specified. In addition, the relationships between the triggering action and the
triggered action can also be expressed precisely using dependencies. Just as we were
able to reason about extended transactions using ACTA [8], we see the formalization of
different aspects of active databases as the starting point for addressing issues, such as,

reasoning about the consequences of rule firings, changes to rules, and coupling modes.
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