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Abstract

A famous theorem of I. Fary states that any planar graph can be drawn in the
plane so that all edges are straight-line segments and no two edges cross. The angular
resolution of such a drawing is the minimum angle subtended by any pair of incident
edges. The angular resolution of a planar graph is the maximum angular resolution over
all such planar straight-line drawings of the graph. In a recent paper by Formann et
al., Drawing graphs in the plane with high resolution, Symp. on Found. of Comp. Sci.
(1990), the following question is posed: does there exist a constant r(d) > 0 such that
every planar graph of maximum degree d has angular resolution > r(d)? We answer
this question in the affirmative by showing that any planar graph of maximum degree
d has angular resolution at least o radians where 0 < a < 1 is a constant. In an
effort to assess whether or not this lower bound is existentially tight (up to constant
a), we analyze a very natural linear program that bounds the angular resolution of
any fixed planar graph G from above. The optimal value of this LP is shown to be
Q(1/d). This suggests that our a? lower bound might be improved to §(1/d), although
currently, we are unable to settle this issue for general planar graphs. For the class of
outerplanar graphs with triangulated interior and maximum degree d, we show not only
that ©2(1/d) is lower bound on angular resolution, but in fact, this angular resolution can
be achieved in a planar straight-line drawing where all interior faces are similar isosceles
triangles. Finally, we show that three methods previously described in the literature
for generating convez planar straight-line drawings of 3-connected planar graphs fail
to guarantee angles bounded away from zero, even for the class of 3-connected planar

graphs with maximum degree 3.



1 Introduction

Graphs are useful tools for representing many important structures in computer science, in-
cluding VLSI circuits, parallel computer architectures, networks of terminals, state graphs,
data-flow graphs, Petri nets, entity-relationship diagrams, etc. In some applications, the
graph representing one of these objects must be displayed visually so that a human can
interpret its structure easily. How a graph is best displayed typically depends on the appli-
cation. If the graph represents, say, a VLSI circuit, it may be most appropriate to represent
the vertices of the graph as points in a plane and the edges as rectilinear paths. In other
applications, the edges may be more naturally displayed as straight line segments. Say we
wish to generate a display of this latter kind. Since aesthetics are an important considera-
tion, there are certain measures of a graph drawing that are worth optimizing. These could
include one or some combination of, say, minimizing the number of edge-crossings, spacing
the vertices and edges in relatively uniform fashion, obtaining good “angular spread” of the
edges incident to each vertex, etc.

It is in fact this latter goal, trying to obtain good angular spread of the edges incident
to each vertex, that is the subject of the present paper. The first authors to formalize
this concept of “angular spread” and explore some of its properties, were Formann et al.
[9) where they called this quantity the resolution of the graph. In the present paper, we
shall call this quantity the angular resolution to distinguish it from other possible notions of
resolution that might, for example, be related to distances between vertices. The paper 9]
contains many interesting results. For example, they prove general upper and lower bounds
on the angular resolution of any graph with maximum degree d (the degree of a vertex is the
number of neighbirs it has.) In addition, they show how to construct straight-line drawings
with high angular resolution for many interesting graph families.

Following [9], given an arbitrary graph G, the angular resolution of a straight-line draw-
ing for G in the plane is defined to be the minimum angle subtended by any pair of incident
edges. The angular resolution of G is the maximum angular resolution over all straight-line
drawings of G. Thus, for example, if the maximum degree of G is d, the angular resolution
is bounded above by 27 /d. In general, however, this bound is not tight, as witnessed by the
complete graph K3 on 3 vertices which has maximum degree 2 and angular resolution 7 /3.

Besides being a natural and mathematically interesting concept associated with graphs,
and having possible application in the realm of graph display as remarked earlier, there

is another motivation for considering angular resolution—it concerns the design of optical-



communication networks (see [1], [11].) Quoting from [9], .. .consider a network in which
each node represents a processor that can communicate via optical beams with it’s neighbors
in the graph. By maximizing the angular resolution of the layout, we simplify the task of
designing the processors and the task of recognizing one’s neighbors. (It is hard to send or
recieve at very tight angles for a unit-size processor.)”

One of the many results demonstrated in (9] is that any planar graph with maximum
degree d has angular resolution Q(}), independent of the number of vertices. In these
drawings, however, the line segments representing edges of the planar graph are allowed to
cross. This lead the authors of [9] to pose the following question: is there a constant r(d) > 0
such that any planar graph with maximum degree d has angular resolution > r(d), where
now angular resolution is computed over all planar straight-line drawings, i.e., drawings
where the edges do not cross? (That every planar graph has a planar straight-line drawing
is a famous theorem of I. Fary (8].)

The present paper answers this question in the affirmative, and shows that the angular
resolution of any planar graph with maximum degree d is at least af radians where 0 < a < 1
is a constant. (The proof utilizes a recent deep result by Andreev and Thurston which says
that any triangulated planar graph can be realized as a disc-packing in the plane.) In
addition, we show that no stronger lower bound (up to constant a), can be obtained by
our methods. Later, we explore another interesting consequence of the Andreev-Thurston
result, namely that it leads to a high-resolution drawing for the dual graph of a triangulated
planar graph, a drawing in which every interior face is convex.

In an effort to assess whether or not the a? lower bound is existentially tight (up to
constant a) for the class of arbitrary planar graphs, we analyze a very natural linear program
related to the angular resolution of a planar graph. The linear program has a collection of
variables called “angles”. For a fixed planar graph G, the linear program says maximize the
minimum “angle” subject to the following constraints: (1) the “angles” at every vertex sum
to 2; (2) the “angles” inside any interior face with k edges sum to (k — 2); (3) the values
of all “angles” are greater than or equal to zero. Clearly any planar straight-line drawing
of G satisfies these constraints. The converse is not necessarily so—not every solution to
the constraints corresponds to a planar straight-line drawing. Consider, for instance, the
complete graph K4 on 4 vertices. Figure 1 shows an assignment to the angles that satisfies
all the constraints, but which does not correspond to a planar straight-line drawing. So

the LP above only partly captures the problem of computing angular resolution. More



precisely, the value of this LP is an upper bound on the angular resolution of the associated
graph. A question we sought to answer was, how small can this upper bound be in terms
of d, the maximum degree of the graph? By casting the LP as a maximum flow problem
and applying the Max-Flow Min-Cut Theorem, we prove that the optimum value of the LP
is always Q(}). (This proof simplifies the earlier proof in Malitz [12] which argues from LP
duality.) This suggests that (), and not af, is perhaps the true lower bound on angular
resolution for arbitrary planar graphs with maximum degree d. We are currently unable to
answer this question.

Where we did make progress along these lines, is in the consideration of outerplanar
graphs with maximum degree d. We demonstrate not only that Q(}) is a lower bound on
angular resolution, but that any outerplanar graph with triangulated interior and maximum
degree d admits a planar straight-line drawing in which every angle is Q(}) and all interior
faces are similar isosceles triangles.

Finally, we show that three methods described in the literature for generating convex
drawings of 3-connected planar graphs fail to guarantee angles bounded away from zero,
even for the class of 3-connected planar graphs with maximum degree 3. The methods we
consider here are those of Tutte [15], Becker and Hotz [2], and Becker and Osthof [4].

The organization of the paper is as follows. Section 2 derives the a? lower bound on
angular resolution for arbitrary planar graphs with maximum degree d. Section 3 shows that
the disc-packing approach used in Section 2 cannot be pushed further to yield a stronger
lower bound. Section 4 shows that the dual graph of a triangulated planar graph with
maximum degree d admits a planar straight-line drawing in which all angles are §(1/d?)
and all interior faces are convex. Section 5 analyzes a linear program that bounds the
angular resolution of a planar graph from above, and shows that its optimal value is always
Q(4). Section 6 establishes the lower bound of Q(}) on angular resolution for arbitrary
outerplanar graphs with maximum degree d, and describes an interesting planar straight-
line drawing for triangulated outerplanar graphs. Section 7 demonstrates that three earlier
methods for generating convex drawings of 3-connected planar graphs fail to guarantee
angles bounded away from zero, even for the class of planar graphs with maximum degree

3. Finally, Section 8 concludes the paper with some open questions.



2 The Angular Resolution of Planar Graphs

In this section, we show that given any triangulated planar graph G with maximum degree
d and specified exterior face fext, there is a planar straight-line drawing of G that respects
foxt and has angular resolution bounded below by ad=? where a = 34——21’75 ~ .15.

To begin the argument, we need some definitions. A disc packing P is a set {D1,...,Dn}
of closed discs (of zero, finite, or infinite radius) in the plane some of which may be adjacent
(i.e., touching), but none of which overlap on interior points. A disc packing P induces a
planar graph G in the obvious way: place a vertex at the center of each disc and for each
pair of vertices in adjacent discs create an edge. If the edges are drawn as straight line
segments, P determines a planar straight-line drawing of G. Let fex be the exterior face of
G in this planar drawing. In this case, we say P realizes the pair (G, fext)-

We start with the following remarkable result:

Theorem 2.1 (Andreev and Thurston) For every triangulated planar graph G with

exterior face fox, there is a disc packing P that realizes (G, fext)-

Given any triangulated planar graph G with exterior face fext, let P be a disc-packing
that realizes (G, fext)- Let T'p(G) denote the planar straight-line drawing of G induced by
P. We will now show that P can be selected so that for any two adjacent discs in P, the
ratio of the smaller radius to the larger radius is bounded below by a constant depending
only on d, the maximum degree of G. Clearly, for such a P, the angular resolution of I'p(G)
is bounded below by a constant depending only on d.

Consider any planar straight-line drawing of the triangulated planar G with exterior
face fex. Comsider any vertex v not lying on fex:. If we were to walk around v at close
range in say clockwise fashion, we would encounter the edges incident to v in a specifice
order: say (v,uo),(v,u2),...,(v,us-1),(v,u0). Since G is triangulated, u; is adjacent to
Uit1 mod ¢ for each i, so that the u;’s form a cycle. The sequence v, o, ..., is called a
wheel of length t with v as hub. If uii1,..., Uit mod ¢ is @ path in the above cycle, then the
SeqUeNce v, Uip1, Uit2, - - -, Ui+j 15 called a fan of length j with v as hub.

By analogy, an ordered disc packing P = (C, D, . .., D¢-1) is called a wheel of length t
with C as hub if all D; are adjacent to C and each D; is adjacent to D1 moa ¢- Let P’ be
any subsequence of P that includes C. If P’ is itself a wheel with hub C, then P! is called
a subwheel of P.



An ordered disc packing P = (C, Dy, ..., D¢) is called a fan of length t with C as hub if
all D; are adjacent to C and each D; is adjacent to Diy1. The discs Ds,..., Dy, are called
the intermediate discs of P. Let P’ be any subsequence of P that includes C. If P’ is itself
a fan with hub C, then P’ is called a subfan of P.

In the two lemmas that follow, we show that for any wheel P = (C, Do,...D;_1) of
length ¢, the radius of any D; divided by that of C cannot be smaller than a certain
constant depending only on t.

To prove the next lemma, we need a few more preliminaries. If one removes from the
plane three mutually adjacent closed discs A, B, and C, then the region left over has two
connected components, one bounded, one not. Define the cranny of 4, B, and C to be the
closure of the bounded component.

Given four mutually adjacent discs A, B, C, D, where D lies in the cranny of A, B, C,
then say D is snug in the cranny of A, B, C. For this arrangement of four discs, there is
beautiful formula of Descartes (see Coxeter (6, pp. 13-15]) that relates their radii. Let €4,
€B, €C, €D be the reciprocals of the radii of A, B, C, and D respectively. Descartes’ formula
says

24+ e+ ek +ep)=(eatep+ec+ep)

Solving for ep from this formula yields

€p = €4 + €B + €c + 2v/es€ép + €aec + €BEC. (1)
By merely relabeling the ¢’s, all the formulas relating one ¢ to the other three are obtained.

Lemma 2.1 Let the ordered disc packing P = (C, A, Dy, ..., D¢, B) be a fan of length t 4+ 2
with hub C. Letrc, 74, 71, ..,Tt, 7B respectively denote the radii of the discs in P. Suppose
further that A is adjacent to B. Letr = min{rs,rB,7c}. Then each D; has radiusr; > a'r,

where a = 5:%75 ~ .15.

Proof. The proof is by induction on ¢, which is the number of intermediate discs in the
fan P.

For the base case, we consider ¢ = 1. Here P consists of 4 discs C, A, D,, and B,
where all discs are mutually adjacent, and D; lies in the cranny of A, B, and C. We now
bound r; from below. Without loss of generality, assume r = r4. Take the disc packing
P, and shrink discs B and C' (maintaining adjacencies) until both have radius ». To have

maintained adjacencies, the disc D; must also have shrunk in radius. This shows that r,



is smallest, when A, B, and C all have the same radius r. In this case, formula (1) gives
T = ar.

Suppose the lemma is true for all s < t. We now prove the lemma for ¢.

Fix r4, rg, and r¢c. Without loss of generality, assume the disc-packing P is such that
disc D; acheives its smallest possible radius. (Such a P is always seen to exist by considering
an infinite sequence of drawings where the radius of D; is decreasing monotonically to its
infimum. This sequence has an accumulation point.) Again without loss of generality,
assume D; # D;.

We claim that in P, the disc D, is adjacent to some other disc besides C, A, and D,.
Suppose, for contradiction, this is not the case. Place the origin of the complex plane at
the touching point of B and C and apply the inversive map 1/z. See Figure 2. Keeping A4,
B, and C fixed, expand the disc D, while sliding the assembly {Dy, ..., D;} to the left. At
all times, maintain the adjacencies of P, and halt the expansion of D; when it first touches
some disc besides A, C, and D;. Take this new diagram and again apply the inversive map
1/z. The outcome is a new disc packing P’ that preserves all the adjacencies of P (and
adds some new adjacencies), but for which the disc D; is now of smaller radius than in P.
This contradicts the definition of P. So in P, the disc D; is adjacent to some other disc
besides A, C and D,.

So P has a proper sub-fan P’ of the form (C, A, D1, Dt3, Diys, ..., Dy, B) where
1 <k <t Since P/ has t — k < t intermediate discs, we can apply the induction hy-
pothesis to conclude that each disc D; in P’ has radius r; > at~%r. But observe that
P" = (C,Dy, Dy, ..., Diy1, Dgy2) is also a proper sub-fan of P where D, is adjacent to
Diy2. Since P has k < t intermediate discs, we can apply the induction hypothesis again

to conclude that each disc D; in P” has radius r; > a*(at~*r) = atr. B

Lemma 2.2 Suppose the ordered disc packing P = (C, D,, . ..y Ds—1) is @ wheel of length
t with hub C. Let the discs in P have respective radii r¢, 7o, . . -+T¢-1. Then each disc D;

has radius r; > at-3r¢.

Proof. The proof is by induction on ¢, the length of the wheel P.

The lemma clearly holds for ¢ = 3 since every disc in this case has radius at least as
large as r¢.

Suppose the lemma holds for all s < t. We now prove the lemma for ¢.

Fix r¢c. Without loss of generality, suppose the disc packing P is such that Dy assumes

its smallest possible radius. (Such a P is always seen to exist by considering an infinite



sequence of drawings where the radius of Dy is decreasing monotonically to its infimum.
Since we are allowing discs of infinite and zero radius, this sequence has an accumulation
point, which we take to be P.)

We claim that P contains a proper subwheel. Clearly this is true, if Do is just a single
point. So let us suppose that Do has some positive finite radius. Suppose for contradiction,
that P contains no proper subwheel. Place the origin of the complex plane at the touching
point of Do and C. Apply the inversive map 1/z. See Figure 3. Keeping C, Dy, ..., D;_2
fixed, simultaneously expand the discs D, and D;_; while translating Do upward as neces-
sary, so as to maintain all the adjacencies of P. Halt the expansion of D, and D,_; as soon
as either touches a disc other than C and its two neighbors on the cycle Do, ..., D1, Do.
To the resulting diagram, apply the inversive map 1/z. This yields a new disc packing P’
that preserves all adjacencies in P (and adds some new ones), but where Do now has smaller
radius than it did in P. We see this contradicts the definition of P.

So, P contains a proper subwheel P’ of length s < t. Without loss of generality, we
may assume that P’ is of the form (C, Di41, Diy2, .- -, D;;,) where and 2 < s < t. By the
induction hypothesis, each disc D; in P’ has radius at least a’~3r¢. By Lemma 2.1, each

of the remaining ¢ — s discs has has radius at least a*~*(a*~3r¢) = a*~3r¢. B

Lemma 2.3 Every triangulated planar graph G with exterior face fex is realized by a disc

packing in which all three exterior discs have the same radius.

Proof. Let P be any disc packing for the triangulated planar graph G with exterior face
fext. Label the three exterior discs A, B, C, and let r4 < rp < r¢ denote the relationship
among their respective radii. We now indicate how to obtain a new disc packing P” for G
where 74 and rp are unchanged, but for which r¢ = r4. Place the origin of the complex
plane at the touching point of the discs A and B, and apply the inversive map 1/z. Call
the resulting disc packing P’. See Figure 4. Now slide C' and the entire assembly of discs
between A and B to the right a distance [ while maintaining contact with A and B. After
performing this slide, apply the map 1/z once again to yield a new disc packing P" for G
where 74 and rp remain unchanged but r¢ is decreased. Choose the distance ! over which
C slides in P’ so as to make r¢c = r4 in P”.

Now perform a similar sequence of manuevers on P” to reduce the radius of rg, while

leaving the other two radii untouched, yielding ultimately a disc packing for G in which
rp=rp=1rc. &



Given any triangulated planar graph G with maximum degree d and exterior face fex,
we know by Theorem 2.1 and Lemma 2.3 that there is a disc packing P for (G, fext) Where
the three outer discs all have the same radius, say unit radius. Consider any adjacent pair
of discs C,D in P and let D have the smaller radius. If C is not one of the three outer discs,
then C and D are part of a wheel of length < d with C as hub. By Lemma 2.2, the radius
of D divided by that of C is at least a9~2. Now suppose C is an exterior disc and D is an
interior disc. In this case, C and D are part of a fan with hub C that includes the other
two exterior discs, call them A and B. Since A and B are adjacent, we can use Lemma 2.1
to conclude that the radius of D divided by that of C is at least a9~2. Hence, given any
two adjacent discs in P, the radius of the smaller disc divided by that of the larger is at
least ad~2.

Consider any triangle in the planar straight-line drawing of G induced by the disc-
packing P above. Call the three discs that generate this triangle A, B, and C with radii
ra < rg < r¢. If we take r¢ = 1, then by the remarks above, a2 < r4 < rg. It is rather
easy to see that the smallest angle 4 in the triangle is acheived when r4 = 7 = a%2. In
this situation, sin(§) = 1;’_‘%3_7. Since 4 > sin g, we obtain § > l—zfa%__l, > a%-2. We have

proved

Theorem 2.2 The angular resolution of any triangulated planar graph G of mazimum

degree d and ezterior face f.yy is at least a2 where a = 3_-%-%75 ~ .15.

As far as algorithms are concerned, we do not know of an efficient way to obtain the
disc packing of Theorem 2.1 for arbitrary triangulated planar graphs G. (See the open
questions in Section 7.) If we did, we would have an efficient algorithm for generating a
planar straight-line drawing of G with angular resolution bounded away from zero (for fixed

maximum degree d.) This could be very useful in the display of planar graphs.

3 Tightness of the Above Analysis

We now demonstrate that no better lower bound (up to constant a) for the angular res-

olution of arbitrary planar graphs is obtainable via the disc-packing method of the last

section.

Proposition 3.1 For every integer d > 2, there is a triangulated planar graph G4 with

specified exterior face fexs and mazimum degree d such that for any disc-packing P realizing

10



(Ga, fext), the induced planar straight-line drawing T'p(G4) contains an angle less than ue

where 0 < p < 1 is a constant.

Proof. We start by defining the triangulated planar graph G4 and its exterior face foy.
Let C, Dy, ..., Dq_1 denote the d + 1 vertices of G4. Let Dy, Dq_3, and Dy4_; be connected
in a triangle, and take this triangle to be the exterior face f.r;. Place an edge between C
and each of Dy, Dg_3, and Dg_;. Place an edge between D, and each of C, Dy, and Dy_s.
For all j with 2 < j < d - 3, place an edge between D; and each of C, D;_, and Dj_,.
This concludes the description of G4. See Figure 5(a).

Let P = (C, Do, ..., D4-1) be any disc packing realizing (G4, F). See Figure 5(b). We
see that P is a wheel of length d with hub C. Furthermore, disc C is snug in the cranny
of Do, Dg-3, and Dg_,, disc D, is snug in the cranny of Dy, D4_5, and C, and for each j
with 2 < j < d -3, disc Dj is snug in the cranny of D;_,, D;_1, and C. In what follows,
we show that the radii of Dy_4 and Dg_3 are small by comparison with that of C, which
means that in I'p(Gg4), the angle at C induced by discs C, Dg_4, D4_3 is small.

We bound the radii of D4_4 and Dy_3 from above as follows. Without loss of gen-
erality, we assume C has radius 1. Let r¢ = 1,79,...,74_, denote the radii of the discs
C, Dy, ..., Dq4_1, respectively. Let ¢c = 1,¢,...,€e4—1 denote the reciprocals of the above
radii. It is clear that that for any disc packing P realizing (G4, fext), there holds €3 > ¢; > 1,
and in fact, there are constants fy,v9 > 1 such that for any disc-packing P as above,
Yo€1 > € > Poer. Let v = max{yo,3 + 2v/3} and 8 = min{fo,1 + ;1;} Obviously,
Y€1 2 €2 2 Pe;. For the purpose of induction, suppose we have shown yep_; > ¢ > Bek-1,
and want to conclude yer > €41 > Ber. Let us see that this conclusion is valid for any k.

From (1), we have

€kt1 =1+ €1 + €k + 2/ + € + €x—1€k.
Applying the induction hypothesis to the equation above, there follows
1
(3+2V3)er > &1 > (1 + ;)Gk-

But by the definition of 8 and vy, we have y > 3+ 2v/3 and 1 + —117 > B and so the induction
goes through.

Hence the radii of Dy_4 and Dy_5 are at most F‘l':g and /371_—4, respectively. Therefore
the angle at C in I'p(Gq) induced by the discs C, Dg4_4, and Dy_5 is at most u? for a
suitably chosen constant x € (0,1). W

11



4 The Angular Resolution of Dual Graphs

Let G be a triangulated planar graph of maximum degree d and G* its dual graph obtained
by placing a vertex in each interior face of G and connecting two such vertices whenever
the corresponding faces of G are adjacent. Clearly, G* has maximum degree 3, and every
interior face has at most d vertices. In the present section, we show that G* admits a
planar straight-line drawing in which every angle is Q(1/d?) radians, and all interior faces
are convex. To obtain this drawing of G*, we first use Theorem 2.1 to get a disc-packing P
for G, and then draw G* perpendicular to I'p(G) as shown in Figure 6. In this drawing, all
interior faces of G* are convex since all the edges in a given face are tangent to the same
disc of P. What now remains for us to show is that there is a lower bound of Q(1/d?) on
all the angles of G*.

Consider three mutually adjacent discs A, B, C in P with radii r4 < rg < r¢, respec-
tively. Let us assume that C is an interior disc of P and therefore the hub of a wheel of
length at most d. (The case where C is not an interior disc of P is argued similarly.) Since
C is adjacent to A and B, two discs of smaller radius, it must be that d > 4. Consider,
once again, the drawing of G* shown in Figure 6. Nestled in the cranny of 4, B, C, there
lies a vertex v of G*. Let T denote the three edges of G* incident to v. Call T a tri-spoke.
Notice, the edges of T are perpendicular to the edges of the triangle A whose vertices are
at the centers of the discs A, B, C. Let aa be the angle in A incident to disc A. Let ar be
the angle in T that faces aa. Obviously, aa is the largest angle in A since r4 < rg < rc .
Hence ar is the smallest angle in T as ar = 7 — aa. The following two lemmas will used

to bound aa from above, and thus bound ar from below.

Lemma 4.1 Given d > 4, fizx t € {2,3,...,d — 2}. Let the ordered disc packing W =
(C,A,Dy,..., Dy, B) be a wheel in P of length t + 2 with hub C. Let T4, TB, Tc denote the
radii of discs A, B, and C respectively, and assume r4 < rp < r¢c. Thenry > Z?(";ET)'

Proof. Consider an infinitely long strip of discs like that shown in Figure 7(a) where the
discs are numbered ..., —2,-1,0,1,2,...in sequence. Here the discs are all the same radius
and adjacent to the lines y = 1/rc and y = —1/rp. Let the origin of the complex plane
be located symetrically between disc 0 and disc 1. Now apply the complex inversive map
1/z, to yield Figure 7(b). In this figure, the discs labled B and C have radii rg and r¢

respectively.

We claim that r, is no smaller than the radius of disc ¢ — 1 in Figure 7(b). For if it

12



were smaller, then the discs A, Dy, ..., D, B would not be able to grow in radius quickly
enough to make a cycle all the way around disc C.
Now the radius of disc ¢—1 in Figure 7(b) is greater than 1 [(t—l)(1/r15+1/rc) - t(l/rail/rc)]

which simplifies to [r—':ffg] 52(21——1) Since r¢c > rpg, this latter quantity is at least as large

as (substituting rpg for r¢) m’;{—ﬁ. Thus 74 > m’f:)- L

Before proceeding with the next lemma, we note that m’ﬁ—l—) is smallest when t = d — 2.
Hence, for fixed rp < r¢, the angle a, is largest when we take r4 = Zw:gf(m.

Lemma 4.2 Let A, B, and C be three mutually adjacent discs with respective radii r4 <
rg < rc. Letry = m:%ﬁ?——ﬂ' Let A be the triangle whose vertices are at the centers
of the three discs A, B, C. Let ap denote the angle of A incident to disc A. Then

T .
aA S T - m_—zm radians.

Proof. Clearly, for fixed 4 and rpg, the angle a, is largest when r¢ = oco. See Figure 8.

= 28 i — IB— — 2 -
Let § = aa - §. Then 2 < sinf = 12374, Thus B < § [1- ;24| < ¥ - sy

T
Hence ap < 7 — gz B

It follows from Lemma 4.2 that the tri-spoke angle ar which faces ap is at least
m’m radians. But every vertex of G* is the center of a tri-spoke, and we have just

argued that the minimum angle in any tri-spoke is at least m radians. We have

therefore proven

Theorem 4.1 Let G* be the dual graph of a triangulated planar graph G of mazimum
degree d. Then G* has a planar straight-line drawing such that every angle is Q(1/d?) and

all interior faces are convez.

5 A Linear Program and its Evaluation

In this section we define a very natural linear program associated with a triangulated planar
graph G of maximum degree d whose optimal objective value is an upper bound on the
angular resolution of G. By casting this LP as a max-flow problem and applying the Max-
Flow Min-Cut Theorem we prove that its optimal value is at least ﬂh for all G as above.
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Let G = (V, E) be a triangulated planar graph with maximum degree d > 2 and specified
exterior face foxt. Introduce a collection of variables called “angles” representing angle-
values in a drawing of G. The linear program that we are interested in says maximize the
minimum “angle” subject to the following constraints: (i) the “angles” at every vertex sum
to 2; (ii) the “angles” inside any interior face sum to =; (iii) all “angles” are greater than

or equal to zero.
Theorem 5.1 The LP above has optimal value at least 5(3”_—15

Proof. Let F be the collection of all faces of G including fey:. Let deg(v) denote the degree
of vertex v in G. Let Vo C V be the subset of vertices that lie on fexi. Let H denote
the directed bipartite graph (V, F,I) where (v, f) € I iff vertexv € V and face f € F are
incident in G.

We now describe a max-flow problem corresponding to the LP above. Start with the
digraph H = (V, F,I). Let all arcs of H have infinite capacity. Add to H two new vertices,
s and t. Fix a real number a € [0,3]. Create an arc from s to each vertex v € V with
capacity 27 — adeg(v). Create an arc from each vertex f € F — fex: to vertext with capacity
7 — 3a. Create an arc from fux to t with capacity 57 — 3a. Call this capacitated network
K. Clearly, K has an s — ¢ flow saturating all s-arcs iff a is a lower bound for the LP.

Now by the Max-Flow Min-Cut Theorem, K has a flow saturating all s-arcs iff every s ¢
cut has capacity > ¥ ,cv 27 — adeg(v). Obviously, the cut separating s from everybody else
has this property, and the cut separating ¢ from everybody else has this property. Let us
consider any other finite-capacity cut. Such a cut is of the form (S, ) where § = {s}UV'UF'
where V' C V, and F' C F denotes a set of F-vertices containing all those incident to V7.
Clearly it suffices to consider only those cuts in which F' actually equals the set of F-
vertices incident to V', since such cuts have lower capacity than those which do not satisfy
this condition. Henceforth, we shall denote F’ by F(V'). If S contains fex, then by the
previous remark, we may assume S also contains at least one member of V. However, if
S does not contain all members of V., in this circumstance, a cut with lower capacity can
be obtained by removing fex, and all members of V., from S. Hence, in the cut (S, S) with
least capacity, it must be that S either contains no vertices among Vext U{ fext}, or contains
all the vertices of this set.

To start, let us assume the former holds. In this case, the capacity of the cut (S, 5) is

Z 27 — adeg(v) + Z T —3a.

vgVv! FEF(V')
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For what values of « is this capacity always greater than or equal to Y ¢y 27 — adeg(v)
(the saturation flow value for K) irregardless of which V! C V' — Viy is chosen? First, let
us simplify. The desired inequality is equivalent to

Z T—3a 2> z 27 — adeg(v).

fEF(V) vev'

Simplifying further, we can restate the question as follows: for what values of a is
(7 = 30)| F(V")| - 2x[V"| + adeg(V") (2)

greater than or equal to zero irregardless of which V! C V' — Vi is chosen? (Here deg(V”’)
denotes the sum of the degrees of all the vertices in V'.) Let Gy be the subgraph of G
induced by F(V') (viewed now as faces in G rather than vertices in K). Let Ty be a
graph obtained from Gg(yr) by identifying various pairs of edges (preserving planarity) on
the boundary of Gp(v+), and then at the end contracting various edges, so that the result is
a fully triangulated planar graph whose interior vertices are exactly V' and whose interior
faces number at most |F(V')|. Observe, the quantity deg(V') does not increase in going
from Gp(vr) to Tr(y+). Hence, for fixed V' C Vex, quantity (2) is minimized when Gp(y)
is assumed to be a fully triangulated planar graph whose interior vertices are exactly V.

We now compute quantity (2) under this assumption. Let V" denote the vertices of G
incident to the faces F(V'). Let B = V" — V'. Let deg(B) be the sum of the degrees (in
the graph Gp(v+)) of the vertices of B. Let us recall a few simple facts: (a) in any graph
with, the sum of the vertex degrees equals twice the number of edges; (b) any triangulated
planar graph on p vertices has exactly 3p — 6 edges; (c) in any biconnected planar graph,
three times the number of faces (remember to include the exterior face) equals two times
the number of edges. Assuming the conditions stated at the end of the last paragraph, it
follows from (a) and (b) that

deg(V') + deg(B) = 2[3(|V’| +3) - 6]
= 6]V| +6.

Additionally, it follows from (c) that
3(|F(V) + 1) = 2(3|V’| + 3)

or by rearrangement

|F(V')| = 2|V'| + 1.
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The quantity (2) now evaluates to

2n|V| + 7 - 6a|V’| - 3a — 27|V + 6a|V’| + 6a — adeg(B)
= 7+ 3a - adeg(B)
> w4+ 3a— 3ad.

The latter quantity is greater than or equal to zero iff a < E(I_-T)‘ This finishes the case
where S contains no members of Voy; U { fuxt}.

Let us now assume that S contains all the members of Vext U {fext}. In this case,
fext € F(V') and the capacity of the cut (S, 5) is

4r + z 27 — adeg(v) + Z T - 3a.
vgV! FEF(VY)

We are interested in the values of a for which this capacity is always greater than or equal
to 3 yev 2m — adeg(v) irregardless of which V' C V containing Viy, is chosen. That is, we

are asking for what values of a is
4m + (7 = 3a)|F(V')| - 2x|V'| + adeg(V") (3)

greater than or equal to zero irregardless of which V' C V' containing V,y, is chosen? Arguing
in a manner similar to the case considered previously, the quantity (3) is minimized when
we assume that Gy is a fully triangulated planar graph with vertex set V’. Under this
assumption, we find that (3) is greater than or equal to zero (and actually equals zero) for
all a. This finishes the case where S contains all the members of Vext U {fext}

We have now shown that all cuts (S, 5) have capacity > ¥,y 27 — adeg(v) as long as
a< ad”j;. Under this assumption, K has a flow that saturates all s-arcs. Thus « < ﬂh
is a lower bound for the optimal value of the LP. B

6 The Angular Resolution of Outerplanar Graphs

In this section, we prove that every triangulated outerplanar graph with maximum degree
d has a planar straight-line drawing in which all angles are Q %), and all interior faces are
similar isosceles triangles.

First, we introduce some notation. Let AB denote a line segment in the plane with
endpoints labeled 4, B. Let AABC denote a triangle with vertices labeled A, B, C. Let
LABC denote the magnitude of the angle between the line segments BA and BC. We begin

with a technical lemma.
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Lemma 6.1 Fiz any integert > 2. Let a = m’j_—zj Draw AABC as an isosceles triangle
with edge AB of length 1 lying on the z-axis, vertex C above the z-azxis, and /CAB =
LCBA = a. Let s be the height of vertex C above the z-azis, and let r be the length of the
edge AC. Let R, be a ray emanating from A passing through a point Q 4 directly above C
at a height l = s 3322, 7 above the z-azis. Then the angle B between R, and the edge AC
salisfies (t — 1)a + f < 3. (See Figure 9).

Proof. The result follows from a short sequence of equalities and inequalities.
B+a = arctan2l

2s
-r

= arctan

2s
1-1r
2sina

= 5-——— (because rcosa =} and rsina = s)
2cosa—1

2a
O
2a
1-a?
4a (aslongasa< 715)

(because tanz > z for z > 0)

IA

Since a = 5(?1—25 < 1/v/2, we have from above, 8 < 3a. Therefore, (t—1)a+8 < (t+2)a <
zZ.n
z.

To state and prove the theorem of this section, we need two more definitions.

Given an isosceles triangle AABC with axis of symmetry passing through C, define the
base angle to be the value /CAB (or equivalently /CBA.)

Given a triangulated outerplanar graph G, the dual graph for G is obtained by placing
a vertex in each interior face of G and connecting two vertices by an edge when the cor-
responding faces of G share an edge. Clearly, the dual graph of an outerplanar graph is

always a tree.

Theorem 6.1 Let G be a triangulated outerplanar graph with ezterior face F, and maxzi-
mum degree d. Let AABC be any face of G where edge AB lies on F. Let 64 denote the
degree of vertez A in G, and 6p denote the degree of vertezx B in G. Théen G admits a
planar straight-line drawing D(G) in which all interior faces are similar isosceles triangles

with base angle a = ﬂﬁ—zj' Assume that in this drawing, the edge AB of triangle AABC is
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of length 1 and lies on the z-azis. Let B be the angle defined in Lemma 5.1. Then D(G) lies
inside a triangle AABP where /[PAB < (§4—1)a+B < § and /PBA L (6p—1)a+8 < §.

Proof Let T be the dual tree of G, and suppose T is rooted at AABC. We prove the
theorem by induction on the height of T'.

If the height of T is 0 (so G consists only of the face AABC), the theorem clearly holds.

So suppose the theorem holds when the height of T is < . We now show the theorem
holds when the height of T' equals h + 1.

Consider the triangle AABC. By removing the edge AB from G and duplicating the
vertex C (let B; and B; denote the copies of C) (see Figure 10), the graph G is split into
two triangulated outerplanar subgraphs G; and G3. Let A; = A and A; = B. Let T; be the
dual tree for G, rooted at the face AA;B;C, and T, be the dual tree for G, rooted at the
face AA3B3C5. The height of both T; and T, is at most A. So by the induction hypothesis,
there are planar straight-line drawings D(G;) and D(G3;) satisfying the conclusions of the
theorem for each of G; and G, respectively.

Now we construct the drawing D(G) for G and show that it satisfies the conclusions of
the theorem. Take the naked triangle AABC and draw it isosceles with base angle a. Put
the edge AB on the z-axis and give it length 1. Next, scale and rotate the drawings D(G,)
and D(G,) so they abutt the triangle AABC as shown in Figure 11. Let D(G) denote the
resulting drawing of G. Clearly D(G) is planar because by the induction hypothesis, each
of D(G1) and D(G3) is planar, and each lies inside a triangle (meaning they will not conflict
with each other in the drawing D(G).)

It remains to show that D(G) lies inside a triangle AABP with the desired angles.
Let 7 < 1 be the length of the edge AC in the triangle AABC. Let s be the height of
C above the z-axis. It is not difficult to see that the highest vertex in the drawing D(G)
has height less than s Y23 rf < s Y 2,7 Let ! denote this value s {2, 7', Consider
the ray R4 emanating from A defined as follows. If G; = ¢, then R, passes through
a point Q4 directly above C at a height ! above the z-axis. (The angle between R4
and AC is precisely 8 from Lemma 5.1.) If G1 # ¢, then R4 coincides with the edge
A, P, of the triangle AA; B, P, that contains D(G;). Similarly define the ray Rg. By
the induction hypothesis, the angle between the ray R4 and the segment AB is at most
(64—-2)a+B+a=(64—1)a+p < §. Similarly, the angle between the ray Rp and the
segment BA is at most (6 —2)a+ 8 +a = (6p—1)a+p < §. Hence the tworays R4 and
Rp cross at some point P, and D(G) lies in the triangle AABP with the desired angles. W
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Figure 12 gives a picture of the planar straight-line drawing generated by Theorem 5.1
on a specific example. We would have drawn more triangles had we a thinner line and
a good microscope. The purpose would be to demonstrate an interesting aspect of our
drawing—for certain outerplanar graphs with a large number of vertices, the triangles in
the drawing turn through arbitrarily large angles. In other words, the boundary of the
drawing may not be nearly so dry as bland as we have drawn, but rather be contoured into

tapering, branching, spirals remeniscent of fractals.

7 Comments on Three Drawing Algorithms

Let G be any 3-connected planar graph. Tutte [15] shows that any such graph has a planar
straight-line drawing in which every face, including the exterior face, is a convex polygon.
Call such a drawing a convez drawing. In this section, we consider three methods from the
literature for generating convex drawings of 3-connected planar graphs, and examine them
with respect to angular resolution. The methods we consider are those of Tutte [15], Becker
and Hotz [2], and Becker and Osthof [4]. We will exhibit an infinite sequence of 3-regular
3-connected planar graphs for which all three methods fail to insure angular resolution
bounded away from zero.

Let G1,G2,Ga,... be the infinite sequence of 3-regular 3-connected planar graphs de-
picted in Figure 13. Take the exterior face of each G; to be it’s bounding triangle. Also,
let e; and 6; be the indicated edge and angle for G;.

Given a 3-connected planar graph G with exterior face fex, Tutte’s method starts with
a prescribed drawing of f.x; as a convex polygon, and then places the interior vertices of
G inside f.x; so that each is at the center of mass of its neighbors. Tutte shows that the
locations of the interior vertices are uniquely determined and distinct, and that all faces of
this drawing are convex. Say we draw the exterior face of each G; as an equilateral triangle
with unit-length edges, and consider the drawing of G; obtained by Tutte’s method. Since
each interior vertex is at the center of mass of its neighbors, and each face is convex, it is
rather clear that the length of the edge e; must be going to zero as i — co. Hence the angle
6; must be going to zero as i — 0.

Fix 1 < p < 0o0. Given a 3-connected planar graph G with exterior face fext, the method
of Becker and Hotz starts with a prescribed drawing of fe, as a convex polygon, and then
positions the interior vertices of G inside fex: so as to minimize }_, |e|P, where the sum is

taken over all edges e € G and |e| denotes the Euclidean length of e. Becker and Hotz show
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that if 1 < p < oo, then the locations of the interior vertices are uniquely determined and
distinct, and that all faces of the drawing are convex. It is not difficult to show that for
p = 2, the Becker and Hotz drawing is identical to that of Tutte. So for the case p = 2,
the Becker and Hotz drawing fails to insure angular resolution bounded away from zero on
the sequence G; (assuming the exterior face of each G; is an equilateral triangle with unit
edge-lengths.)

Let G be a 3-connected planar graph with exterior face fexx which has been given a
prescribed drawing as a convex polygon. For p = 2,3,4,.. ., let D,(G) denote the drawing
of G obtained by the Becker and Hotz method. In Becker and Osthof [4], it is shown
that D,(G) approaches a limiting drawing Doo(G) as p — 0o where Do, (G) minimizes the
maximum Euclidean edge length, and maintains convexity of all the faces. In general, the
locations of the interior vertices of G are not necessarily distinct in Doo(G), but in the case
of the G; in Figure 10, the interior vertices occupy distinct locations in Do (G;). So it is
rather clear that the length of the edge e; in Do(G;) must be going to zero as i — oo.
Hence the angle 8; must be going to zero as ¢ — oo.

We suspect that 8; exhibits the same behavior for any fixed p with 1 < p < co. (Note
that for p = 1, the drawing D;(G;) collapses all the interior vertices of G; to a single point.)

8 Open Questions

We list the following open questions:

e Let G be an arbitrary 3-connected planar graph with exterior face fe,:. By a theorem
of Tutte [15], any such graph has a planar straight-line drawing in which every face,
including the exterior face fey:, is a convex polygon. Call such a drawing of G a convez

drawing. Let 'y and I'; be two convex drawings of G.

Question: Is there a continuous deformation C(t), t € [0,1] taking I'o = C(0) into
T'; = C(1) such that: (1) for all ¢, C(t) is a convex drawing of G; (2) for each angle v

in G, v(t) has no local minimum on the open interval (0,1)?

Notice that condition (2) is equivalent to saying that any local maximum of v(t) on the

closed interval [0,1] is a global maximum. Let C be the space of all convex drawings
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of G—a space easily described algebraically by considering all 3-tuples of consecutive
vertices along faces of G. For a point z € C, let f(z) be the value of the minimum
angle in the convex drawing z for G. If the answer to the above question is yes, then it
is easily shown that any local maximum of 8 on C is a global maximum. This would
mean that a convex drawing with maximum angular resolution (under the restriction

of convex faces) could be obtained for G by a gradient ascent (hill-climbing) algorithm.

o Is it the case that for any 3-connected planar graph G with exterior face fey, G has
a convex drawing with maximum angular resolution (under the restriction of convex

faces) where the vertices of this drawing are at distinct locations?

e Let G be an arbitrary planar graph with maximum degree d and exterior face fey;.
Let I' be a convex drawing of G with maximum angular resolution. Does I' have any
special combinatorial properties that could be exploited to prove a better lower bound

on angular resolution than ¢¢, ¢ a constant in (0,1)?
e Can Theorem 2.1 and Lemma 2.2 be generalized to 3 dimensions and higher?

o Miller, Teng, Vavasis [13]: Is there an efficient algorithm to obtain the disc-packing
of Theorem 2.17?

Acknowledgements

The authors would like to thank Jerome Malitz, Eva Tardos, Peter Winkler, Gary Miller,
Ron Rivest, and Jin-Yi Cai for a variety of helpful discussions.

References

(1] R. Arrathoon ed., Optical Computing: Digital and Symbolic, Marcel Dekker Inc., 1989.

[2] B. Becker, G. Hotz, On the optimal layout of planar graphs with fized boundary, SIAM
J. Computing, vol. 16, no. 5, (1987) pp. 946-972.

(3] S. Bhatt, F. Leighton, A framework for solving VLSI layout problems, J. Comp. Syst.
Sci., Vol. 28, (1984) pp. 300-343.

[4] B. Becker, H.G. Osthof, Layout with wires of balanced length, Information and Com-
putation, vol. 73 (1987) pp. 45-58.

21



[6] N. Chiba, K. Onoguchi, T. Nisheziki, Drawing plane graphs nicely, Acta Informatica,
22 (1985), pp. 187-201.

(6] H.S.M. Coxeter, Introduction to Geometry, 2nd Ed., John Wiley and Sons, Inc., 1989.

[7) P. Eades, R. Tamassia, Algorithms for drawing graphs: an annotated bibliography, TR
CS-89-90, Dept. of Comp. Sci., Brown Univesity, 1989.

[8] I. Fary, On straight-line representations of planar graphs, Acta Sci. Math. Szeged, vol.
11 (1948), pp. 229-233.

(9] M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A. Simvonis,
E. Welzl, G. Woeginger, Drawing graphs in the plane with high resolution, 31st Symp.
Found. of Comp. Sci. (1990), pp. 86-95.

(10] T. Kamada, S. Kawai, An algorithm for drawing general undirected graphs, Information
Processing Letters 31 (1989) pp. 7-15.

(11] F. Lin, Optical holographic interconnection networks for parallel and distributed pro-
cessing, Optical Computing Technical Digest Series, Vol. 9 (1989), pp. 150-153.

(12] S. Malitz, The angular resolution of planar graphs and linear programming, manuscript,
April 1991.

[13] G. Miller, S-H. Teng, S. Vavasis, A unified geometric approach to graph separators,
32nd Symp. on Found. of Comp. Sci. (1991), pp. 538-547.

(14] J. Mogul, Efficient use of workstations for passive monitoring of local area networks,
ACM 1990.

[15] W.T. Tutte, How to draw a graph, Proc. London Math. Soc., (3) 13 (1963), pp. 743-768.

22



290

(20
30 30 30 J 300

FIG. L

e ot ro o scamnw oo o en Ppune - -

o.

FI6. X



FIG, 3

N\\\OX

FIe. Y




(k)

(a)

FLG.









FIG. |2



8 .

FIG.

|3




	TR91-94-1
	TR91-94-2.pdf

