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Abstract

This paper presents the main issues facing next generation real-time dis-
tributed computing from a Computer Science perspective. In particular, the
paper discusses scheduling, real-time kernels, communication and clock synchro-
nization, architecture and fault tolerance, and artificial intelligence.
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1 Introduction

Hard real-time systems are defined as those systems in which the correctness of the
system depends not only on the logical result of computation, but also on the time
at which the results are produced. Examples are command and control systems, pro-
cess control systems, flight control systems, the space shuttle avionics system, flexible
manufacturing applications, the space station, space-based defense systems, and large
command and control systems. Any of these systems might be integrated with expert
systems and other AT applications creating additional requirements and complexities.
Most of the hard real-time computer systems are special purpose and complex, require
a high degree of fault tolerance, and are typically embedded in a larger system. Also,
real-time systems have substantial amounts of knowledge concerning the characteris-
tics of the application and the environment built into the system. A majority of today’s
systems assume that much of this knowledge is available a priorz, and hence are based
on static designs. The static nature of many of these systems contribute to their high
cost and inflexibility. Further, while many distributed real-time systems exist, e.g.,
[9, 22], these systems were designed and built prior to significant new research results
in the areas of scheduling, fault tolerance, artificial intelligence, and predictability.

Next generation distributed, hard real-time systems must be designed to be dy-
namic and flexible, yet provide basic guarantees for safety critical aspects of the sys-
tem. Their sophistication will be significantly greater than past systems. In designing
and building these new systems we must not make the same mistakes and work with
the same misconceptions that plagued past system design [14]. For example, the most
common misconception is that real-time computing is fast computing. Approaching
real-time computing from this perspective is fraught with difficulties as detailed in
[14]. Unfortunately, too much recent work in distributed real-time systems (mistak-
enly) treats real-time computing as fast computing. In this (short) invited paper, the
main issues facing next generation real-time distributed computing are presented, em-
phasizing the need for predictability [15] rather than speed alone. We organize the
discussion into the following real-time areas: scheduling, real-time kernels, commu-
nication and clock synchronization, architecture and fault tolerance, databases, and
artificial intelligence.

2 Scheduling

Real-time scheduling results in recent years have been extensive. Theoretical results
have identified worst case bounds for dynamic on-line algorithms, and complexity re-
sults have been produced for various types of assumed task set characteristics. Queue-
ing theoretic analysis has been applied to soft real-time systems covering algorithms



based on real-time variations of FCFS, earliest deadline, and least laxity. We have
seen the development of scheduling results for imprecise computation (a situation where
tasks obtain a greater value the longer they execute up to some maximum value). More
applied scheduling results have also been produced with an extensive set of improve-
ments to the rate monotonic algorithm (this includes the deferrable server and sporadic
server algorithms [13]), techniques to address the problem of priority inversion [10], and
a set of algorithms that perform dynamic on-line planning [7, 23]. We have also seen
practical application of a prior: calculation of static schedules to provide what is called
100% guarantees for critical tasks. While these a prior: analyses are very valuable,
system designers better not be lulled into thinking that 100% guarantees mean that
no scheduling error can occur. It is important to know that these 100% guarantees
are based on many and often times unrealistic assumptions. If the assumptions are a
poor match for what can be expected from the environment (more and more likely in a
distributed environment), then even with 100% guarantees the system will indeed miss
deadlines. Hence, a key issue is to choose an algorithm whose assumptions provides the
greatest coverage over what really happens in the environment. For all these scheduling
results outlined above, the trend has been to deal with slightly more and more compli-
cated task set and environment characteristics (e.g., multiprocessing and distributed
computing and task with precedence constraints). While many interesting schedul-
ing results have been produced, the state of the art still provides piecemeal solutions.
Many realistic issues have not yet been addressed in an integrated and comprehensive
manner.

What is still required are analyzable scheduling approaches (it may be a collection of
algorithms) that are comprehensive and integrated. For example, the overall approach
must be comprehensive enough to handle:

e preemptable and non-preemptable tasks,

e periodic and non-periodic tasks,

e tasks with multiple levels of importance (or a value function),
e groups of tasks with a single deadline,

e end-to-end timing constraints,

e precedence constraints,

e communication requirements,

® resource requirements,

e placement constraints,



o fault tolerance needs,

o tight and loose deadlines, and

e normal and overload conditions.

The solution must be integrated enough to handle the interfaces between:

o CPU scheduling and resource allocation,

I/0 scheduling and CPU scheduling,

CPU scheduling and real-time communication scheduling,

local and distributed scheduling [2, 8, 19], and

static scheduling of critical tasks and dynamic scheduling of essential and non-
essential tasks.

3 Real-Time Kernels

One focal point for next generation real-time systems is the operating system. The
operating system must provide basic support for predictably satisfying real-time con-
straints, for fault tolerance and distribution, and for integrating time-constrained re-
source allocations and scheduling across a spectrum of resource types including sensor
processing, communications, CPU, memory, and other forms of I/O. Towards this end,
at least three major scientific issues need to be addressed.

o The time dimension must be elevated to a central principle of the system and
should not be simply an afterthought. An especially perplexing aspect of this
problem is that most system specification, design and verification techniques are
based on abstraction — which ignores implementation details. This is obviously
a good idea; however, in real-time systems, timing constraints are derived from
the environment and the implementation. This dilemma is a key scientific issue.

e The basic paradigms found in today’s general purpose distributed operating sys-
tems must change. Currently, they are based on the notion that application
tasks request resources as if they were random processes; operating systems are
designed to expect random inputs and to display good average-case behavior.
The new paradigm must be based on the delicate balance of flezibility and pre-
dictability: the system must remain flexible enough to allow a highly dynamic
and adaptive environment, but at the same time be able to predict and possibly



avoid resource conflicts so that timing constraints can be met [17]. This is espe-
cially difficult in distributed environments where layers of operating system code
and communication protocols interfere with predictability.

o A highly integrated and teme-constrained resource allocation approachis necessary
to adequately address timing constraints, predictability, adaptability, correctness,
safety, and fault tolerance. For a task to meet its deadline, resources must be
available in time, and events must be ordered to meet precedence constraints.
Many coordinated actions are necessary for this type of processing to be accom-
plished on time. The state of the art lacks solutions to this problem.

Existing practices for designing, implementing, and validating real-time systems of
today are still rather ad hoc. It is often the case that existing real-time systems are
supported by stripped down and optimized versions of timesharing operating systems.
To reduce the run-time overheads incurred by the kernel and to make the system fast,
the kernel underlying a current real-time system

e has a fast context switch,

e has a small size (with its associated minimal functionality),

e is provided with the ability to respond to external interrupts quickly,
e minimizes intervals during which interrupts are disabled,

e provides fixed or variable sized partitions for memory management (i.e., no virtual
memory) as well as the ability to lock code and data in memory, and

e provides special sequential files that can accumulate data at a fast rate.
To deal with timing requirements the kernel,

e maintains a real-time clock,

e provides a priority scheduling mechanism,

e provides for special alarms and timeouts, and

e tasks can invoke primitives to delay by a fixed amount of time and to pause/resume
execution.

In general, the kernels perform multi-tasking; inter-task communication and synchro-
nization are achieved via standard, well-known primitives such as mailboxes, events,
signals, and semaphores.



In real-time computing these features are also designed to be fast. However, fast is a
relative term and not sufficient when dealing with real-time constraints. Nevertheless,
many real-time system designers believe that these features provide a good basis upon
which to build real-time systems. Others believe that such features provide almost
no direct support for solving the difficult timing problems and would rather see more
sophisticated kernels that directly address timing and fault tolerance constraints.

One key issue that comes up over and over again is the need to provide predictability.
However, more than lip service must be supplied. Predictability requires bounded
operating system primitives, some knowledge of the application, proper scheduling
algorithms (see previous discussion), and a viewpoint based on a team attitude between
the operating system and the application. For example, simply having a very primitive
kernel that is itself predictable is seen as only the first step. What is needed is more
direct support for developing predictable and fault tolerant real-time applications. One
aspect of this support comes in the form of scheduling algorithms. For example, if the
operating system is able to perform integrated CPU scheduling and resource allocation
in a planning mode so that collections of cooperating tasks can obtain the resources
they need, at the right time, in order to meet timing constraints, this facilitates the
design and analysis of real-time applications [17]. Further, if the operating systems
retains information about the importance of a task and what actions to take if the
task is assessed as not being able to make its deadline, then a more intelligent decision
can be made as to alternative actions, and graceful degradation of the performance
of the system can be better supported (rather than a possible catastrophic collapse of
the system if no such information is available). Kernels which support retaining and
using semantic information about the application are sometimes referred to as reflective
kernels [16].

Real-time kernels are also being extended to operate in highly cooperative multipro-
cessor and distributed system environments. This means that there is an end-to-end
timing requirement (in the sense that a set of communication tasks must complete
before a deadline), i.e., a collection of activities must occur (possibly with complicated
precedence constraints) before some deadline. Much research is being done on devel-
oping time constrained communication protocols to serve as a platform for supporting
this user level end-to-end timing requirement. However, while the communication pro-
tocols are being developed to support host-to-host bounded delivery time, using the
current operating system paradigm of allowing arbitrary waits for resources or events,
or treating the operation of a task as a random process will cause great uncertainty in
accomplishing the application level end-to-end requirements. As an example, the Mars
project [3], the Spring project [17], and a project at the University of Michigan [11]
are all attempting to solve this problem. The Mars project uses an a prior: analysis
and then statically schedules and reserves resources so that distributed execution can
be guaranteed to make its deadline. The Spring approach support dynamic requests



for real-time virtual circuits (guaranteed delivery time) and real-time datagrams (best
effort delivery) integrated with CPU scheduling so as to guarantee the application level
end-to-end timing requirements. The Spring project uses a distributed replicated mem-
ory based on a fiber optic ring to achieve the lower level predictable communication
properties. The Michigan work also supports dynamic real-time virtual circuits and
datagrams, but their work is based on a general multi-hop communication subnet.

Research is also being done on developing real-time object oriented kernels [20, 21]
to support the structuring of distributed real-time applications [12]. As far as we know,
no commercial products of this type are available.

The diversity of the applications requiring predictable distributed systems technol-
ogy will be significant. To handle this diversity, we expect the distributed real-time
operating systems must use an open system approach. It is also important to avoid
having to rewrite the operating system for each application area which may have differ-
ing timing and fault tolerance requirements. A library of real-time operating system
objects might provide the level of functionality, performance, predictability, and porta-
bility required. We envision a Smalltalk like system for hard real-time, so that a
designer can tailor the OS to his application without having to write everything from
scratch. In particular, a library of real-time scheduling algorithms should be available
that can be plugged in depending on the run time task model being used and the load,
timing, and fault tolerance requirements of the system.

4 Communication and Clock Synchronization

In the design of distributed real-time systems, there is a need for communication pro-
tocols that provide for deterministic behavior (guarantees) of the communicating com-
ponents as well as those that provide a best effort (by a deadline) delivery service. The
deterministic service requires protocols that result in bounded message communication
delays where the bound is low compared to timing requirements. Protocols providing
such service are sometimes called real-time virtual circuits. Such protocols are being
developed or exist for arbitrary mesh networks, rings, TDMA-like busses, and globally
replicated memory. Most of the work in this area assumes that messages requiring
the deterministic service are periodic or occur rarely (e.g., alarms), and are statically
specifiable. These requirements are likely to prove inadequate for autonomous real-time
systems of the future. For example, these new systems will be highly dynamic and have
strong cooperation requirements typical of distributed problem solving software induc-
ing richer communication patterns than simple periodic messages. The dynamics might
require that a task dynamically seek a guarantee that a particular message will arrive
in time, before that task commits to beginning an action.

For the best effort service (sometimes called real-time datagrams), a number of



advances have been made as extensions to collision based protocols. These extensions
provide time aware scheduling and are more predictable than pure CSMA protocols.
However, this service is unreliable in that the timing constraint of a message may be
missed. These protocols work by attempting to transmit messages that would minimize
the number of messages whose deadlines are not met. Usually, the protocol used mimics
earliest deadline first or least laxity first scheduling. These protocols only approximate
these algorithms because no one node has a complete picture of all pending messages.

Complicating factors in developing both types of services include the need to sup-
port high speed networks, the integration of the low-level protocols with the oper-
ating system kernel, I/O modules, and application modules, as well as the inclusion
of fault-tolerant features. Generally, the protocols for real-time communication must
be supported at the kernel level and deep and expensive protocol stacks are avoided.
Along these lines, researchers are proposing various local area network architectures for
communication in distributed real-time systems that are efficient, allow specification
of service requirements, and provide mechanisms to achieve those service requirements
[1].

Distributed real-time systems must have a common view of time. This requires clock
synchronization. While there have been many algorithms for clock synchronization, it is
likely that the demanding requirements of hard real-time systems will require hardware
supported clock synchronization such as provided in [4].

There has also been significant work in developing reliable atomic broadcasts with
varying semantics and performance characteristics. For example, some broadcasting
protocols support FIFO semantics, others a causal ordering, and yet others are tailored
to determine group membership. However, all of these protocols are expensive and do
not adequately support predictable timing properties. Since broadcasting is such an
important underlying facility for many things including fault tolerance, application
cooperation, and state consistency, it is important to develop such solutions for real-
time systems.

5 Architecture and Fault Tolerance

Hard real-time systems are usually quite special purpose. Architectures to support
such applications tend to be special purpose too. The current trend is one in which
more “off-the-shelf” components are being used to produce more generic architectures
[11, 18], rather than the previously developed highly special purpose architecture. As
an example, consider the SpringNet architecture.

SpringNet [18] is a physically distributed system composed of a network of three
multiprocessors each running the Spring Kernel. Each multiprocessor currently con-
tains four application processors, one system processor, and a I/O subsystem. Appli-



cation processors execute previously guaranteed processes as specified in the execution
plan constructed by the scheduler executing on one or more system processors. The
system processor ' offloads the scheduling algorithm and other OS overhead from the
application processors both for speed, and so that external interrupts and OS
overhead do not cause uncertainty in executing guaranteed processes. The
I/0 subsystem is partitioned away from the Spring Kernel and it handles non-critical
I/0, slow I/O devices, and fast sensors.

Each of the nodes is connected via two networks. First, there is an ethernet to
support non real-time traffic. Second, a fiber optic register insertion ring connects 2
Mbyte memory boards on each node, supporting 2 Mbytes of replicated memory. This
provides a shared memory model for this 2 Mbytes (of physically distributed but log-
ically centralized memory). Each node also has at least 20 Mbtyes of non-replicated
memory (4 Mbytes per processor thereby presenting a local memory model for the rest
of the memory of the multiprocessor). The replicated memory is implemented via the
off-the-shelf product called Scramnet. This replicated memory together with commu-
nication software and scheduling constraints are used to provide end-to-end predictable
performance. The replicated memory can also be exploited for fault tolerance. In other
words, important data structures and other information at a given node are written
to the replicated memory board and are then automatically reflected in the replicated
memory of all the nodes on the ring. This duplication of information is useful in recov-
ering from several classes of node failure faults including power loss, bus failure, and
Scramnet failures that do not cause corruption of the replicated memory. Of course,
to enhance fault tolerance it is possible to add other parallel register insertion rings,
each supporting its own replicated memory.

The SpringNet architecture can scale by connecting rings of replicated memory in
an n-dimensional grid. For example, a 2-dimensional grid would have one replicated
memory register insertion ring for each row and another replicated memory register
insertion ring for each column. Even though the SpringNet architecture resembles a
multicomputer, it is important to note that the SpringNet architecture can be physi-
cally distributed, limited only by the maximum fiber optic ring size.

Another aspect of architecture for real-time computing is the facility with which the
worst case execution time can be calculated. Worst-case execution times of programs
are dependent on the system hardware, the operating system, the compiler used, and
the programming language used. Many hardware features that have been introduced
to speed-up the average case behavior of programs pose problems when information
about worst case behavior is sought. For instance, the ubiquitous caches, pipelining,
dynamic RAMs, and virtual (secondary) memory, lead to highly nondeterministic hard-

1Ultimately, system processors could be specifically designed to offer hardware support to our
system activities such as guaranteeing processes. We are currently investigating this option.



ware behavior. Similarly, compiler optimizations tailored to make better use of these
architectural enhancements as well as techniques such as constant folding contribute
to poor predictability of code execution times. System interferences due to interrupt
handling, shared memory references, and preemptions are additional complications. In
summary, any approach to the determination of execution times of real-time programs
has many complexities.

Many real-time system architectures consist of multiprocessors, networks of unipro-
cessors, or networks of uni- and multi-processors. Such architectures have potential
for high fault tolerance, but are also much more difficult to manage in a way such
that deadlines are predictably met. Fault tolerance must be designed in at the start,
must encompass both hardware and software, and must be integrated with timing
constraints. In many situations, the fault tolerant design must be static due to ex-
tremely high data rates and severe timing constraints. Ultrareliable systems need to
employ proof of correctness techniques to ensure fault tolerance properties. Primary
and backup schedules computed off-line are often found in hard real-time systems. We
also see new approaches where on-line schedulers predict that timing constraints will
be missed, enabling early action on such faults. Dynamic reconfigurability is needed
but little progress has been reported in this area. Also, while considerable advance
has been made in the area of software fault-tolerance, techniques that explicitly take
timing into account are lacking.

Since fault tolerance is difficult, the trend is to let experts build the proper un-
derlying support for it. For example, implementing checkpointing, reliable atomic
broadcasts, logging, lightweight network protocols, synchronization support for repli-
cas, and recovery techniques, and having these primitives available to applications,
then simplifies creating fault tolerant applications. However, many of these techniques
have not carefully addressed timing considerations nor the need to be predictable in
the presence of failures. Many real-time systems which require a high degree of fault
tolerance have been designed with significant architectural support but the design and
scheduling to meet deadlines is done statically, with all replicas in lock step. This may
be too restrictive for many future applications. What is required is the integration of
fault tolerance and real-time scheduling to produce a much more flexible system. For
example, the use of the imprecise computation model, or a planning scheduler (such
as the Spring scheduling algorithm), gives rise to a more flexible approach to fault
tolerance than static schedules and fixed backup schemes.

6 Databases

A real-time database is a database system where (at least some) transactions have
explicit timing constraints such as deadlines. In such a system, transaction processing



must satisfy not only the database consistency constraints, but also the timing con-
straints. Real-time database systems can be found, for instance, in program trading in
the stock market, radar tracking systems, battle management systems, and computer
integrated manufacturing systems. Some of these systems (such as program trading
in the stock market) are soft real-time systems. These systems are designated soft
because missing a deadline is not catastrophic. Usually, research into algorithms and
protocols for such systems explicitly address deadlines and make a best effort at meet-
ing deadlines. In soft real-time systems there are no guarantees that specific tasks will
make their deadlines. This is in contrast to hard real-time systems (such as controlling
a nuclear power plant) where missing some deadlines may result in catastrophic con-
sequences. In hard real-time systems a prior: guarantees are required for critical tasks
(or transactions).

Most current real-time database work deals with soft real-time systems. In this
work, the need for an integrated approach that includes time constrained protocols for
concurrency control, conflict resolution, CPU and I/O scheduling, transaction restart
and wakeup, deadlock resolution, buffer management, and commit processing has been
identified. Many protocols based on locking, optimistic, and timestamped concurrency
control have been developed and evaluated in testbed or simulation environments. In
most cases the optimistic approaches seem to work best.

Most hard real-time database systems are main memory databases of small size,
with predefined transactions, and hand crafted for efficient performance. The metrics
for hard real-time database systems are different than for soft real-time databases.
For example, in a typical database system a transaction is a sequence of operations
performed on a database. Normally, consistency (serializability), atomicity and perma-
nence are properties supported by the transaction mechanism. Transaction throughput
and response time are the usual metrics. In a soft real-time database, transactions have
similar properties, but, in addition, have soft real-time constraints. Metrics include re-
sponse time and throughput, but also include percentage of transactions which meet
their deadlines, or a weighted value function which reflects the value imparted by a
transaction completing on time. On the other hand, in a hard real-time database,
not all transactions have serializability, atomicity, and permanence properties. These
requirements need to be supported only in certain situations. For example, hard real-
time systems are characterized by their close interactions with the environment that
they control. This is especially true for subsystems that receive sensory information or
that control actuators. Processing involved in these subsystems are such that it is typ-
ically not possible to rollback a previous interaction with the environment. While the
notion of consistency is relevant here (for example, the interactions of a real-time task
with the environment should be consistent with each other), traditional approaches to
achieving consistency, involving waits, rollbacks, and abortions are not directly appli-
cable. Instead, compensating transactions may have to be invoked to nullify the effects
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of previously committed transactions. Also, another transaction property, namely per-
manence, is of limited applicability in this context. This is because real-time data,
such as those arriving from sensors, have limited lifetimes — they become obsolete after
a certain point in time. Data received from the environment by the lower levels of a
real-time system undergoes a series of processing steps (e.g., filtering, integration, and
correlation). We expect the traditional transaction properties to be less relevant at the
lowest levels and become more relevant at higher levels in the system.

While the hard real-time system should guarantee all critical transaction deadlines
and strive to meet all other transaction deadlines, this is not always possible. In
this case it is necessary to meet the deadlines of the more important transactions.
Hence, metrics such as maximizing the value imparted by completed transactions and
maximizing the percentage of transactions that complete by their deadline are primary
metrics. Throughput and response time are secondary metrics, if they are used at all.

Outstanding questions in real-time database work include:

e should all the data be integrated in one uniform database,

e should there exist several subsystems, each better tailored to the specific needs
of transactions that comprise that subsystem, and if so, what are good interfaces
between those subsystems,

e what is the relevance of properties traditionally associated with transactions to
hard real-time databases (it is sometimes true that in some real-time systems,
an incomplete result “on time” is considered better than a late but complete
result. In the context of transactions, this implies that committing a (partially
completed) transaction that is expected to be lost may be acceptable, depending
on the nature of the transaction and on the consistency of the data modified by
it.),

o what distributed operating system and communication primitives are required to
support predictability in such systems, and

e what is the correct form that active databases should take when used in a real-
time setting, i.e., when triggers of an active database can be initiated by timing
requirements and where other triggers must complete by a deadline?

Current real-time database research has focussed on database systems with flat,
soft real-time transactions operating on centralized databases with read/write objects.
Extensions to real-time database research is needed along four dimensions:

e enhancing the data model from a simple read/write data model to an abstract
data type model,
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e enhancing the transaction model to nested transactions,
e enhancing the system model to include distributed database systems, and

e enhancing the nature of timing constraints to include hard real-time constraints.

7 Artificial Intelligence

Many complex real-time applications now require or will require knowledge-based on-
line assistance operating in real-time [5, 6]. This necessitates a major change to some
of the paradigms and implementations previously used by Al researchers. For example,
AT systems must be made to run much faster (a necessary but not sufficient condition),
allow preemption to reduce latency for responding to new stimuli, attain predictable
memory management via incremental garbage collection or by explicit management
of memory, include deadlines and other timing constraints in search techniques, de-
velop anytime algorithms (algorithms where a non-optimal solution is available at any
point in time), develop time driven inferencing, and develop time driven planning and
scheduling. Rules and constraints may also have to be imposed on the design, models,
and languages used in order to facilitate predictability, e.g., limit recursion and back-
tracking to some fixed bound. Coming to grips with what predictability means in such
applications is very important.

In addition to these changes within Al, real-time AI (RTAI) techniques must be
interfaced with lower level real-time systems technology to produce a functioning, reli-
able, and carefully analyzable system. Should the higher level RTAI techniques ignore
the system level, or treat it as a black box with general characteristics, or be developed
in an integrated fashion with it so as to best build these complex systems? What is the
correct interface between these two (to this point in time) separate systems. Integrat-
ing RTAI and low level real-time systems software is quite a challenge because these
RTAI Applications are operating in non-deterministic environments, there is missing
or noisy information, some of the control laws are heuristic at best, objectives may
change dynamically, partial solutions are sometimes acceptable so that a tradeoff be-
tween the quality of the solution and the time needed to derive it can be made, the
amount of processing is significant and highly data dependent, and the execution time
of tasks may be difficult to determine. These sets of demanding requirements will drive
real-time research for many years to come.

Not only is it important to develop real-time AI techniques, but it is also necessary
to determine what must change at the low levels to provide adequate support for
the higher level, more application oriented tasks? Answers to these questions have
been somewhat arbitrarily chosen on an application by application basis. It is too
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early to synthesize the general principles and ideas from these experiments as sufficient
evaluative data is not available.

Competing software architectures for real-time AI include production rule archi-
tectures, blackboard architectures, and a process trellis architecture. Some real-time
Al systems have been built by carefully and severely restricting how production rules
and blackboard systems are built and used. Research is on-going to relax the restric-
tions so that the power of these architectures can be utilized, but at the same time
providing a high degree of predictability. The process trellis architecture, used in the
medical domain, is a highly static approach while the other two are much more dy-
namic. The trellis architecture (because it is static) has potential to provide static
real-time guarantees for those applications characterized by enough time to completely
compute results from a set of inputs before the next set of inputs arrive. This approach
is suitable for certain types of real-time AI monitoring systems, but its generality for
complex real-time Al systems has not been demonstrated.

In a distributed setting, high level decision support requires organizing computa-
tions with networks of cooperative, semi-autonomous agents, each capable of sophis-
ticated problem solving. Theories of communication and organizational structure for
groups of cooperative problem solving agents must be developed. These theories must
include problem solving under uncertainty and under timing constraints.

8 Summary

Most distributed, critical, real-time computing systems require that many competing
requirements be met including hard and soft real-time constraints, fault tolerance,
protection, security, and significant computational requirements. In this list of require-
ments, the real-time requirements have received the least formal attention. We believe
that it is necessary to raise the real-time requirements to a central, focusing issue.
This includes the need to formally state the metrics and timing requirements (which
are usually dynamic and depend on many factors including the state of the system),
and to subsequently be able to show that the system indeed meets the timing require-
ments. Achieving this goal is non-trivial and will require research breakthroughs in
many aspects of system design and implementation. For example, good design rules
and constraints must be used to guide real-time system developers so that subsequent
implementation and analysis can be facilitated. This includes proper application de-
composition into subsystems and allocation of those subsystems onto distributed ar-
chitectures. The programming language must provide features tailored to these rules
and constraints, must limit its features to enhance predictability, and must provide
the ability to specify timing, fault tolerance and other information for subsequent use
at run time. Execution time of each primitive of the Kernel must be bounded and
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predictable, and the operating system should provide explicit support for all the re-
quirements including the real-time requirements [17]. The architecture and hardware
must also adhere to the rules and constraints and be simple enough so that predictable
timing information can be obtained, e.g., caching, memory refresh and wait states,
pipelining, and some complex instructions all contribute to timing analysis difficulties.
The resulting system must be scalable to account for the significant computing needs
initially and as the system evolves. An insidious aspect of critical real-time systems,
especially with respect to the real-time requirements, is that the weakest link in the
entire system can undermine careful design and analysis at other levels. Research is
required to address all of these issues in an integrated fashion.
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