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Abstract: Computation on and among data sets mapped to irregular, non-uniform, aggre-
gates of processing elements (PEs) is an important problem in parallel vision processing,
arising in segmentation and in support operations for intermediate-level grouping tasks.
The difficulty is that the SIMD processors which map so effectively to pixel-based processing
are restricted here in data dependent computations by their limited control mechanisms.
Associative processing is an effective means of applying parallel processing to non-uniform
computations (Weems 1984), but often results in operating on one data set at a time. We ad-
dress this problem by introducing an additional level of parallelism we call multi-associativity
which provides a framework for performing associative computation on these data sets si-
multaneously.

In this article we present algorithms developed for the coterie network (Weems et al.
1989) to simulate efficiently within non-uniform aggregates of PEs simultaneously the as-
sociative algorithms typically supported in hardware at the array level. One result is that
algorithms requiring a number of operations proportional to the diameters of the regions
in a mesh connected topology can be executed in constant or logarithmic time using the
coterie network. Other results are: the efficient application of existing parindent 0.0truein
associative algorithms (e.g. (Falkoff 1962; Foster 1976)) to arbitrary aggregates of PEs in
parallel, and the development of efficient new multi-associative algorithms, among them par-
allel prefix and convex hull. The multi-associative framework also eztends the associative
paradigm by allowing operations on and among aggregates of PEs themselves, operations
not defined when the entity in question is always an entire array. Two consequences are:
the support of divide-and-conquer algorithms within aggregates, and communication among

aggregates. Numerous multi-associative low-level vision algorithms are presented.

Key Words: low-level vision, non-uniform problems, SIMD processing, associative pro-

cessing, parallel algorithms, coterie network, reconfigurable arrays.

1 Introduction

According to one popular methodology (Marr 1982; Hanson and Riseman 1987), the task of
low-level machine vision is to reduce the enormous amounts of input data to a manageable
size, and to present those data in a format or representation that allows their easy manipula-

tion. This reduction process usually consists of collecting, characterizing, and labeling groups
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of pixels having some property in common: for example a value in a spectral band, a texture
measure, or a gradient magnitude and orientation. When abstracted, these collections of
pixels can be represented symbolically as edges, lines, curves, patches, blobs, regions, and
their combinations and intersections (Brolio et al. 1989). Certain algorithmic approaches
to low-level vision are well established, although their massive computational requirements
make them impractically slow. This problem is magnified by the requirement that low-level
computation be used not just for pre-processing, but also as a part of a continuous feedback
loop as interpretation hypotheses are tested and refined. One consequence has been the
design and use of massively parallel processors for low-level vision applications.

SIMD arrays have been widely applied to pixel-based processing because of their large
numbers of processing elements (PEs), and because many useful algorithms involve only uni-
form communication operations. Their success has been limited, however, in data-dependent
computations (such as those enumerated above), which usually result in non-uniform and
irregular communication. (See Figures 1-4 for an example of non-uniform region formation.)
One methodology that has been applied to solving problems on multiple non-uniform data
sets is associative processing (Foster 1976; Weems 1984). For small numbers of data sets
this is very efficient; however, we are often restricted to operating on one data set at a time,
and low-level vision processing often involves computing the attributes of many thousands
of features (Brolio et al. 1989). We have also had some success with what could best be de-
scribed as ad hoc methods: the solutions are often efficient (Weems et al. 1991), but are not
the result of a uniform technique. Others (Willebeek-LeMair and Reeves 1990; Tilton 1988)
have embedded binary trees in meshes to implement broadcast and reduction primitives on
non-uniform, contiguous regions, and applied those operations with great success to parallel
image segmentation. Their method, although optimal for mesh connected topologies, is still
linear with respect to the dimensions of the regions.

We propose an additional level of parallelism we call multi-associativity as a framework
for performing computation on multiple, arbitrarily shaped aggregates of PEs simultane-
ously, thereby taking advantage of the proximity inherent in many pixel-mapped compu-
tations. The strategy is to emulate efficiently within aggregates of PEs simultaneously the
associative operations typically supported in hardware at the array level. These include
broadcast from controller to array and feedback from array to controller (e.g. count and

global-OR of tag bits). Once we have efficient implementations of these primitives (constant



Figure 1: 256 x 256 8 gray level input image



Figure 2: Segmentation of images often results in a very large number of regions



Figure 3: 32 x 32 8 gray level sub-image of input



Figure 4: Corresponding 32 x 32 sub-image of segmentation



or logarithmic complexity), we can apply them to existing associative algorithms and use
them to build other complex functions. For this strategy to succeed on a real SIMD array
(with only a single thread of control), we must construct multi-associative primitives that
have a low branching factor with respect to the shapes of the aggregates. In this paper we
present an efficient implementation of multi-associative primitives using the coterie network,
the reconfigurable broadcast array used by the Content Addressable Array Parallel Proces-
sor (CAAPP) (Weems 1989 et al.), and demonstrate the usefulness of this approach with
numerous sample algorithms.

The rest of this paper is organized as follows. Section 2 presents the vision methodology
and computational requirements driving our research. In Section 3 we review associative
processing and present an extension to multiple aggregates. A description of the target
architecture and the coterie network follows in Section 4. Section 5 provides background on
the coterie network constructs; these are used in Section 6 where the basic coterie network
algorithms are presented. Section 7 contains the mapping of the multi-associative primitives
to the coterie network as well as other vision primitives. We conclude with sample vision
algorithms in Section 8.

2 A Machine Vision Methodology

Low-level vision processing is often defined in terms of capabilities: we have a massively
parallel array with certain communication support, how can we use it? The answer is
usually that the pixels are mapped to individual PEs, and the procedures are dominated by
certain standard algorithms, such as convolution. In this section we look at low-level vision
from the point of view of requirements; we still define low-level vision as procedures where
pixels are mapped to processors, but also examine what needs arise when computation at
the low level is integrated into a complete vision system with top-down as well as bottom-up
processing.

Computer vision, the task of deriving descriptions of scenes from their images, is well
known tfo require at least two types of computation: processing of sensory data, and pro-
cessing of world knowledge. Sensory data processing uses the image array representation
and includes line and region segmentation; stereo, motion, and texture analysis; shape from
information such as shading, and many other computations. An example of world knowl-

edge processing might be constrained model matching between “stored models in the form of
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generalized relational structures (Rosenfeld 1984),” and hypotheses created from the image
data. For these two types of processing to be effective, there must be also be constant,
bidirectional, interaction between the two levels of representation: for example, as world
knowledge is brought to bear on an image, parameters from algorithms processing sensory
data must be recomputed.

A problem arising in this computational model is that the representations, pixels on the
one hand and generalized relational structures on the other, are incompatible. One solution
is to include one or more levels of intermediate representation through which the interaction
between high and low levels takes place. These intermediate representations are characterized
by a uniform symbolic representation for both high and low level vision events: a low level
event, such as a contiguous, colinear, group of pixels of similar gradient orientation, has the
same representation as a high level event, such as an edge predicted from a partial model
match. In one such system, the Intermediate Symbolic Representation (ISR) (Brolio et al.
1989), collections of contiguous image data with similar properties are stored as named and
typed symbolic entities called tokens.

We now refine our model of vision computation. It is the task of high level vision to
hypothesize objects and collections of objects in the scene, and to search the intermediate
levels for evidence of those objects. The task at the intermediate level is to provide a dynamic,
reconfigurable data base. Additional data transformations also occur there, as perceptual
organization algorithms split, merge, add, and/or delete intermediate-level representations.
Low-level vision processing retains the standard pixel mapped functions outlined above,
but must also include routines to support the dynamic recomputations demanded by the
intermediate levels.

There are several requirements for low-level vision computation in the context of an
overall vision system. The first two presented below are from the standard bottom-up view,

the rest result from integration into a complete system.

1. Computing the attributes of individual pixels, and of small, fixed, neighborhoods of
pixels. These operations include much of previous window based low-level vision work,

and are characterized by regular communication patterns between nearby PEs.

2. Grouping sets of pixels that share attributes. The methods here come under the
heading of segmentation. In these computations, the resulting sets are arbitrary in
shape, although the points are usually contiguous. .
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3. Characterizing these sets; simply labeling pixels as edge/region points is not by itself
sufficient. Extracting events for the intermediate levels requires collecting information
about the number of points in the set, the number of points with certain characteristics,
the mean and median of the pixel attributes, the spatial dimensions of the set, and
many others. Another part of extracting symbolic events is gathering information

about neighboring sets.

4. Collecting this information in a small number of PEs for rapid transmission to the
intermediate level processor. This may be the front end, a separate parallel processor
(as in the IUA), or the same processor using a different representation. In each case,
however, the complexity of the interaction is reduced if the number of PEs transmitting

information is small.

5. Providing support for symbol manipulation at the intermediate level. Sometimes these
grouping processes can be accomplished by simple operations on the event attributes
within the intermediate levels. Often, however, new symbolic events must be created
at the lowest level and the attributes recomputed. This is especially true if an iterative

combining procedure is used.

6. We need to be able to make all of the above computations not just once, but many
times. As is well known, images of scenes are underconstrained; a consequence is that
the entire image understanding process must be dynamic. Evidence in the original
image can be missed in initial processing. Therefore, we must be prepared to recompute

using different parameters.

What characterizes these requirements? We must support regular, local, communication,
but also the extraction of data from arbitrarily shaped contiguous sets. We must be able
collect this information in a small number of PEs. We must be able to operate on these
sets as distinct entities, with certain inate operations, such as merge. And finally, the
speed at which these characterization, collecting, and merging operations takes place must
be comparable to the original computation and grouping steps. In the next section we

introduce a programming methodology that supports these requirements.



3 Multi-Associative Algorithms

3.1 Introduction to Associative Processing

In the previous section we grouped computational requirements for low-level vision into six

categories: (1) computing attributes of individual pixels, (2) grouping pixels into events, (3)

characterizing events, (4) extracting event information, (5) support for merging events, and

(6) performing 1-5 repeatedly. Here we present a general programming methodology, called
multi-associative processing, that provides support for most of these groups of operations.

But we first look at the categories in some more detail to characterize the computations they

require.

(6) will be satisfied if (1-5) have all been implemented efficiently. (1) requires only con-
text independent, local, communication and is supported by the CAAPP nearest-neighbor
communication network. (2) will be discussed in a later paper; however, many of the al-
gorithms presented will also be applicable to pixel grouping. (3-5) do not fit easily into
the standard model of SIMD computation: they are characterized by the need for flexible
communication and rapid feedback. However, it is exactly these operations that characterize
associative processing (also called content addressable processing).

There are four capabilities that are key for associative computation (Foster 1976):
1. Global Broadcast/Local Compare/Activity Control
2. Some/None Response
3. Count Responders
4. Select a Single Responder

The prototypical associative operation is for the controller to broadcast a query to the array,
and to receive a response either in the form of Some/None (global OR of response tag bits)
or a Count (of tag bits). But associative processing, as opposed to the familiar associative
memory operations, also enables the conditional generation of symbolic tags based on the
values of data, and the use of those tags to constrain further processing. These capabilities are
useful for low-level machine vision when the controller performs multiple logical operations
on pixels, or events having multiple tags, based on their attributes and relationships to other

pixels or events. Only subsets of the data are involved in any particular operation, but all
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pixels and events with a given set of properties are processed in parallel. See (Weems 1984;
Weems et al. 1989) for numerous examples of associative vision a],goﬁthm.

Let us examine in more detail the fundamental operations required for associative pro-
cessing, and the hardware support required to perform them efficiently. Global broadcast,
local compare, and activity control are all standard SIMD operations: a controller can broad-
cast global data as well as instructions, PEs typically possess a local comparitor, and a PE
activity-control bit is the standard method to implement branching. Thus, capability (1)
is available to most SIMD processors. However, the distinctive requirement of associative
processing is that of rapid feedback from array to controller: if the controller must query
individual PEs for responses, then all parallelism is lost. Therefore the CAAPP has been
designed with specialized hardware for the rapid execution of Some/None, Response Count,
and Select Single Responder (Select-First) (Rana and Weems 1990). Typical execution times
of these operations are 0.1, 1.6, and 2.4 micro-seconds, respectively. For reference, the exe-

cution of a bit-serial arithmetic operation takes between 1 and 6 microseconds.

3.2 Multi-Associative Processing

Associative processing permits operations on any single selected subset of the data. But
what if there are many data sets to work on simulaneously? In the model of vision presented
earlier, we are computing attributes of thousands of events; a simple associative system
would typically perform these computations by time-slicing between sets of pixels. We
would prefer to operate on all sets of pixels simultaneously. We propose a new model we
call multz-associative processing, in which associative operations are applied to multiple data
sets simultaneously.

We now define the multi-associative model independently of specific architectures, except
that we assume an SIMD array of N PEs; the implementation on the CAAPP will be
discussed in the next section. To facilitate the definition, we use set notation. We begin
by partitioning the array into k < N aggregates S; € {S,..., Sk} of PEs. Next, we define
associative capabilities analogous to those presented above. This time however, instead of
being defined over the entire array, the operations are ezecuted simultaneously within each
aggregate S;. But we still have only one controller for the entire array; how can these
operations be meaningful? By replacing the role of the controller in the global broadcast,

some/none, count, and select first operations with an arbitrary subset of PEs within each
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S;. For example, “global broadcast” from controller to array is replaced with: “Vz, multicast
by selected subset of PEs, SMCe# C §;, to a selected subset of receiving PEs, S7= C S;.”

In the same way, “count responders” is replaced with: “Vi, send count of subset of selected

PEs, S5 C §;, to SPee C S;.” Whenever > 1, the signal multicast to the set S

MCast
S;°e

is the OR of the values multicast by the individual elements of S}M%e*,

We also define two operations on the aggregates themselves. These are Split/Merge and
DataTransfer. Split allows, for all aggregates in parallel, the S; to be split into any number
of new aggregates, depending on some predicate. Merge allows any number of aggregates to
be combined into a single aggregate. We now have siz capabilities defining multi-associative

processing:

1. Within Each Aggregate: Multicast by a Subset/Local Compare/Activity Control
2. Within Each Aggregate: Some/None Response to a Subset

3. Within Each Aggregate: Count Responders to a Subset

4. Within Each Aggregate: Select a Single Responder

5. Split/Merge Aggregates

6. Data Transfer Between Aggregates

The first four operations map all associative algorithms defined over processor arrays to
associative aggregates in parallel. The Split and Merge operations give the model new power
beyond the ability to carry out multiple associative operations in parallel; there are three

basic advantages:

1. Split and Merge enable the use of divide-and-conquer strategies. It is now possible,
for several important algorithms, to iteratively partition the S; into subsets, solve the
subproblems, and then merge. Just as in the sequential case, we can thereby reduce

the computational complexity from linear to logarithmic.

2. We can save different partial results in individual PEs, as required by parallel prefix

and some reductions.

3. We can take advantage of implicit ordering, for example, when we wish to extract

corner points in order around a border.
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We emphasize the major characteristic of the multi-associative model: there is still only one
controller. Therefore, only algorithms with a branching factor much lower than the number
of associative sets will run efficiently. However, since most low-level vision applications lend
themselves to algorithms that meet this criterion, there is also a positive side: there is greater

hardware efficiency because only a single controller is needed.

4 The IUA, the CAAPP, and the Coterie Network

4.1 Architecture

In order to build an architecture suitable for machine vision it is apparent that not only
must tremendous amounts of data be processed, but that the processing must be of many
types: low-level feature extraction, intermediate-level grouping, high-level model match-
ing, and continuous communication between the levels. The philosophy behind the Image
Understanding Architecture is that qualitatively different types of computation require qual-
itatively different types of architectures. A detailed discussion of requirements can be found
elsewhere (Weems et al. 1989; Weems 1991); we summarize a few that are relevant here:
the ability to process both pixel and symbol data in parallel, the ability to simultaneously
maintain the representations and perform computations at the low, intermediate, and high
levels, the ability to select particular subsets of data for varying types of processing; and fine-
grained, high-speed communication and control among processes at each level, and between
the different processing levels.

A three level architecture has been developed with each level having an appropriate ar-
chitecture for the set of tasks at that level. The lowest level processes and extracts features
from arrays of pixel data; these operations are usually pixel-based, requiring little commu-
nication outside the neighborhood of individual pixels. The processor at that level (the
CAAPP) is a SIMD array of processing elements (PEs). The highest level must support
processing by, and information exchange between, diverse course-grained processes (Draper
et al. 1989), including manipulation of 2D and 3D object models, as well as the complex con-
trol strategies needed to apply those processes. The high-level processor (SPA) will therefore
run a LISP-based black-board system (Erman et al. 1980), but the details are not yet fully
defined.

The intermediate level must provide several functions. One is using the control and
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addressing flexibility of the MIMD processors to assist the CAAPP with feature extraction;
dual-ported memory is used here. Another is supporting high-level queries. And finally, the
intermediate level must be a processor in its own right. In this last role, the intermediate
level processor is charged with grouping and organizing symbolic representations into more
complicated structures. The ICAP (as the intermediate level processor is known) is a collec-
tion of signal processing chips communicating with each other via a general routing network,
and the CAAPP and SPA levels through dual-ported memory.

The Content Addressable Array Parallel Processor (CAAPP) is designed as a 512 x 512
associative array of one-bit processing elements (PEs). Each processing element has several
general purpose registers, 320 bits of on-chip cache memory, 32K bits of main memory, and an
“Activity Register” used for branching control. The Array Control Unit (ACU) broadcasts
instructions, data addresses, and global data. The controller can also extract information
from the array by associative polling, as hardware support is provided for Some/None and
Responder-Count operations. Communication between PEs themselves can take place in
two different ways: by using the nearest neighbor mesh interconnection network, and via a
reconfigurable mesh called the coterie network. The first method is similar to that used by
the CLIP-4 (Duff 1978), the MPP (Batcher 1980), and the DAP (Hunt 1981). In the second
method, PEs transmit information by writing to a specified register connected to the coterie
network. PEs then read a register which will have been set to the OR of these signals, within
a local group as defined by the network configuration. This scheme is a generalization of the
“fash-through” mode of the ILLIAC III (McCormick 1963), the propagate operation in the
CLIP-4 (Duff 1978), and networks proposed by (Miller et al. 1988; Li and Maresca 1989).
In order to distiguish broadcast by PEs from the broadcast by the controller, we refer to this
operation as “coterie multicast.”

In the coterie network, each PE controls a set of eight switches (see Figure 5), enabling
the creation of electrically isolated groups of PEs that share a local associative Some/None
feedback circuit. Four of these switches control access in the different directions (North,
South, East, West). Two switches, H and V, are used to emulate horizontal and vertical
buses. The last two switches, NE and NW, are used to create eight-way connected regions.
The isolated groups of processors (see Figure 6), called coteries, have access only to the
multicast signals of PEs within their own coteries. For example, when a set of PEs multicasts
within a coterie, the receiving PEs will read the OR of precisely those PEs multicasting within
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the same coterie. L

The coterie network switches are set by loading the corresponding bits of the mesh control
register in each PE. Because each PE views the mesh control register as local storage, coterie
configurations can be loaded from memory, or can be based on data dependent calculations.
In general, the coteries can be any contiguous set of PEs, and this is the way the network is
conventionally used to support grouping tasks. However, the coterie network can also be set
so that columns and rows are isolated. Once this is done, the row and column “buses” can
be arbitrarily segmented still further. The coterie network can thus emulate the mesh with
reconfigurable buses (Miller et al. 1988), and the polymorphic-torus (Li and Maresca 1989).
In this mode, the coterie network is well suited for many algorithms designed for regular
topologies, such as general routing, parallel prefix, emulation of various networks, and many

other useful constructs.

4.2 Basic SIMD Operations

In the next two subsections we describe some useful operations available on the CAAPP
(and most SIMD processors) and on the coterie network.

LoadPeID. Each PE has an ID, defined (using standard convention) as its address in row
and column coordinates. Since the ID is used often, LoadPelID is usually executed once, and
the value retained in cache memory.

Select. PEs all contain an activity register, the value of which determines whether that
PE will execute the instruction currently being broadcast by the controller. A PE with an
activity register set to one is said to be “Selected.” Often, PEs are selected according to
whether an internal label matches a broadcast or multicast key.

Route and Combine. Route is defined as an operation where any source PE; can send
data to any destination PEJP . If multiple PE$’s send packets to the same destination
PEJp , then those packets can be combined according to some operator. For example, in
SumCombine, the result in a PEJp is the sum of the contents of all the packets sent there.
Other combine operations include MaxCombine and combine with boolean operators such
as OrCombine. On the CAAPP, route and combine are implemented as software functions;
more details are given in (Herbordt et al. 1990). The fundamental result is that most

communications patterns can be routed on-line—on a SIMD processor such as the CAAPP

with no support for indirect addressing or queues—with a number of local communications
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operations only slightly larger than the maximum distance any packet must travel.
OrCombine is also implemented using coterie multicast. As long as the distinct sets of
sending and receiving PEs are members of the same coteries, the result of a multicast is
precisely the logical OR of the transmitted values. The advantage of the multicast version
is that the signal is transmitted at electrical speeds. The advantage of using the software
version is that there is no requirement that the sending and receiving PEs be members of

the same coterie.

4.3 Basic Coterie Operations

Coterie Multicast. PEs multicast on the coterie network by loading the X register with
the bit to be output, whence it propagates at electrical speeds for some distance across
the network. The X register value is retransmitted every machine cycle by all PEs having
already received it; the signal thus resembles a wavefront, moving outward until it reaches
every PE. If more than one PE in an electrically connected region (coterie) has written to
its X register, the resulting signal is the OR of those values. After transmission has been
completed, PEs input the signal by reading their X registers.

For an n X n array, the number of machine cycles required to propagate the signal to
all PEs is proportional to n. The calculation is simple: the maximum Manhattan distance,
with wraparound, is n, and a conservative propagation distance is 50 PEs/machine cycle;
therefore n/50 propagation cycles should be adequate. However, when the coterie switches
are set, oddly shaped regions can result. In the worst case, if the switches are set to form
a spiral, the distance the signal needs to travel is N PEs. However, our experience has
shown that letting the signal propagate for 2n/50 machine cycles is sufficient in all practical
circumstances. See Figure 7 for pseudo-code.

Open/Close Switches. PEs control switches that determine whether a multicast signal
will pass through the section of the coterie network they control (see Figure 6). In this way,
electrically isolated regions can be created. PEs open or close switches to create connected
components, to isolate row or column buses, to separate region borders, or because of the
parity of a bit in an address, ID, or offset as specified by some algorithm. PEs can only
multicast information to other PEs that are members of the same coterie, and all coteries

are made up of contiguous sets of PEs.
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FOR BitNum := 0 TO LabelLength - 1 DO {For all bits in the label}

Activity := WriteCondition {Activate PEs matching the “write” condition}
Response := Label[BitNum]| {Transmit data}

Propagate() {send data across circuit}

Activity := ReadCondition {Activate PEs matching the “read” condition}
Output{BitNum] := Response {Input transmitted data}

Figure 7: Procedure for coterie multicast. Parameters are Label, LabelLength, WriteCondi-
tion, Quput, and Read Condition.

5 Using the Coterie Network

Physically, a coterie is a bus with broadcast. More abstractly it is an arbitrarily shaped,
connected subgraph of a mesh. Another view is that the coterie network is a mesh with
reconfigurable buses, but without the buses being restricted to one dimension. Some of the
advantages of the coterie network are support of one-to-many communication (sometimes
many-to-many) within coteries, the reconfigurability of the coteries, and the propagation of
information over long distances at electrical speeds. The disadvantages are that a circuit
can carry only one data element per communication step, and that the creation of possible
partitions for multiple communications are restricted by the underlying geometry of the
network.

The fundamental strategy in using the coterie network is to orchestrate the partitioning
of the array (or some previously determined subsets) into coteries such that the maximum
number of PEs needing to exchange information on any algorithm-step can do so. Since we
are concerned primarily with data dependent algorithms, the methodology requires each PE
to determine in a small constant number of time-steps what role it is to play in the next
phase or operation of the algorithm: whether it is a sender, receiver, or off; as well as how
the section of the network controlled by that PE should be configured. The key is using the
information available locally to each PE, for example:

e the row and column ID,

o the tag and the tags of the nearest neighbors, and

o the OR of some bit of information in a given memory location of members of the

coterie.
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In the next sections we will show how this information, together with iterative partitioning,

can be used to construct efficient algorithms, but first present some definitions.

5.1 Local PE Coterie Definitions

In coterie algorithms it is often convenient to classify a PE with respect to its position in
the coterie. The most basic information is whether the PE is an interior or perimeter point,
that is, whether any of its (either four or eight) nearest neighbors has a tag different from
its own. Another classification is according to how the switches (N,E,S,W for the purposes
of this paper) are set. Depending on the number of connections to the coterie, the PE will
have different capabilities in controlling the flow of information through the network. Since
algorithms often involve multiple partitions, a PE may have different switch settings during
different algorithm steps. Depending on the number of connections to its nearest neighbors,
we call a PE unconnected (0 connections), an endpoint (1), a through-point (2), a T-junction
(3), or a cross (4).

5.2 Coterie Stuctures

Certain coterie algorithms are available only on some of of the possible array partitions.
Therefore, an obvious strategy is to partition a coterie that does not meet the algorithmic
specification into a number of coteries that do, and then to combine the results. We next
look at classes of coteries: Examples of structures described have been created from Figure 4

and can be found in Figures 8-13.

5.2.1 Coterie

Definition
This is the general structure: A coterie is any aggregate of processing elements sharing the

same circuit. Figure 8 contains coteries derived from the segmented image fragment of Fig-

ure 4.

Method of Construction
Coteries can be created by loading masks, or by having PEs close switches in the directions
of neighboring PEs with whom they share an attribute.
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5.2.2 Vertical (Horizontal) Line

Definition
Lines are coteries where all member PEs have the same row or column ID. Figure 9 contains

horizontal lines derived from the coteries in Figure 8.

Method of Construction
In order to partition a coterie into vertical (horizontal) lines, open the E and W (N and S)

switches.

5.2.3 Boundary Contour

Definition

The obvious definition of a boundary contour of a coterie is the set of exterior points of that
coterie together with all their mutual connections. However, this definition can result in
boundaries that are not connected or—in the case of two-pixel wide regions—redundantly
connected. As it is often useful to traverse the boundary, we modify the definition slightly.
The boundary contour of a coterie has as members the set of eight-connected exterior PEs
in that coterie. Not all connections among those PEs are closed, however: In order for two
PEs to have mutually closed switches, they must be mutually adjacent to at least one PE
from outside the region. Figure 10 contains boundary contours derived from the coteries in

Figure 8.

Method of Construction
Each PE creates bit vectors whose eight values are determined by whether the eight-
connected neighbor in a given direction is an interior, exterior, or external PE. The switches

are then set according to the above definition.

5.2.4 Singly Vertically (Horizontally) Connected Contour

Definition

SVCCs are defined as coteries composed of horizontal lines with exactly one vertical connec-
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tion between each pair. A PE in a given row whose N (S) switch is closed is called an up-link
(down-link). Figure 12 contains SVCCs derived from Figure 8; Figure 10 and Figure 11 are

intermediate structures in the construction. SHCCs are analogous.

Method of Construction

Two conditions derived from how SVCCs are used constrain their construction: (1) SVCCs
are subsets of boundary contours, and (2) it can be assumed that data of interest in the com-
putation has already been reduced to one value per row, which by convention is deposited
in the rightmost PE. Even with these constraints, the problem of partitioning an arbitrary
boundary contour into the minimum possible number of SVCCs using only a small constant
number of steps is surprisingly complex. Although we have developed such an algorithm, it
is quite detailed and mostly of theoretical interest. We present here a procedure for creat-
ing SVCCs from boundary contours that in practice often results in the minimum number,
and if there are no embedded regions, always returns a number within a constant factor.
Otherwise, the excess is proportional to the number of embedded regions.

We first summarize the algorithms. Because of the possibility of embedded regions, each
horizontal line in a boundary contour can have any number vertical connections (up- and
down-links) to a neighboring horizontal line. The idea in the general algorithm is find the
minimal matching between up- and down-links using only information that can be obtained
by each PE in a constant number of steps. In the simplified algorithm, we only make sure
that the right endpoint, and the rightmost up-link and down-link are in the same coterie.
The other up- and down-links we disconnect.

1. PEs that are right endpoints identify themselves as such.

2. Run SeparateBoundaryContours (see Figure 10).

3. PEs that are up-links and down-links identify themselves as such.
4. Run SeparateHorizontalLines.

5. Form multiply connected vertical contours. Right endpoints multicast a “one.” PEs

that are not on a line with a right endpoint open their connections (see Figure 11).

6. Identify rightmost up-link. Up-links open East coterie switch, right endpoints multicast
a “one.” Only the rightmost up-link will receive that one.
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7. Identify rightmost down-link. Procedure analogous to step 6.

8. The rightmost up- and down-links remain as they were. The rest are opened (see

Figure 12).

5.2.5 Simple Contour

Definition
Simple Contours are boundary contours where each PE is a through-point. See Figure 13.

Method of Construction

The way to create a simple contour from a boundary contour is to cut the “hairs.” For each
direction (N,E,S,W) in succession, the T-junctions and crosses open all their switches but
one. The endpoints multicast a “one”. T-junctions and crosses receiving the “one” know
that the link in the “closed” direction is towards a hair, and so open that switch. Some
T-junctions and crosses will remain intact as the result of the coterie having holes, forming
a figure eight, etc. In this case, TraceBorder (see below) must be run to determine which
additional switches should be opened.

6 Coterie Algorithms

We present algorithms and specify the coterie structure for which they are applicable. Our
strategy is to use information that can be obtained locally in constant time. In the previous
section we showed how coteries can be partitioned using only tag information. In this section
we construct algorithms by using the additional information provided by the row and column
IDs and by the data multicast within coteries.

For the rest of this paper all algorithms will be assumed to be operating over any number
of coteries in parallel; for simplicity, the descriptions refer to only one. The execution time is
never related to the number of coteries and is either independent of their size and shape, or
has a complexity equal to the execution time on the coterie taking the longest to complete.
In the latter case, we use global feedback from array to contrdﬂer to determine when the

algorithm has completed for all coteries.
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6.1 Tools

Select Max/Min. The goal is to select the PEs with the greatest value within each coterie.
The method is to apply a standard associative algorithm (Falkoff 1962) to coteries. At no
extra cost, all the PEs in the coterie “listen in” on the process, and so know the greatest
value itself at the end of the algorithm. The algorithm is bit-serial; for k-bit integers the
algorithm starts with the high order bit (k—1). PEs multicast bit k—1: if any PEs multicast
a one, then all PEs with a zero turn themselves off as they have been eliminated. If there are
no ones, or if they are all ones, then no PEs are eliminated on that step. By the time the low
order bit is reached, only the PEs with the maximum value remain. An analogous algorithm
selects the PEs with the minimum value. SelectMax and SelectMin run in 3k steps, where
k is the number of bits in the word. See Figure 14 for pseudo-code.

FOR BitNum := AddressLength - 1 DOWN TO 0 DO  {Beginning with the high-order bit}

Response := Address[BitNum] {transmit bit through Response register}
IF (Response = Some) {If any PE has a 1 in this bit,}

THEN Activity := Response { turn off activity in PEs with a 0 in this bit}
ComponentLabel[BitNum)] := Response {Save bit values for component label}

Figure 14: Algorithm to find and distribute the maximum valued label in a region.

Select Single Responder. This routine selects a unique PE within each coterie by running
SelectMax on the IDs of the responding PEs.

Collect Sparse Data. Assume that desired information is distributed in a subset S of PEs,
and that this information is to be gathered in a distinct PE. Run SelectSingleResponder on S
to activate one PE in the set. That PE multicasts its data to the accumulator, then removes
itself from S. Repeat until S is empty. This procedure requires time linear in the number of
PEs holding data, and so is only efficient if that number is small. For dense subsets, either

' Combine or Reduce (see next subsection) are used.

Collect Ordered Data. This technique works for lines and simple curves. An endpoint
(or the PE with the maximum ID in the case of a closed curve) is selected to be the accu-
mulator. A rough outline of the technique is that each PE to determines the links in the

directions toward and away from the accumulator, and for the data to be transmitted in
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priority according to the distance away from the accumulator. Again, this procedure is only
used if the number of PEs holding data is small.

Get Offset (Establish an Ordering Within a Line or SVCC). In any coterie, but of
primary importance for lines and SVCCs, a PE can easily obtain its offset from an endpoint.
For example, to find the offset from the west end of the coterie, we first select a PE furthest
in that direction, either by running SelectMin on the column ID, or for a horizontal line, by
selecting the west endpoint. The selected PE multicasts its column ID to the rest of the PEs

in the coterie, which obtain their offsets by subtracting from their own column ID.

6.2 Parallel Prefix and Reduction

Parallel Prefix and Reduction are fundamental operations on lists and arrays. Among the
applications that use parallel prefix are: the enumeration of selected PEs, Radix Sort, parsing
regular languages (Hillis and Steele 1986), and carry propagation in multi-gauge emulation
(Annexstein et al. 1990). See (Karp and Ramachandran 1988; Blelloch 1989) for many
more. First we define parallel prefix: Given a set [z;,...,z,] of n elements with each
element assigned to a different processor, and a binary associative operator *, compute the

n S;'s:
S,-:a:l*zz*...*z,-,

leaving the ith prefix sum in the ith processor. The operation * is not necessarily com-
mutative. The implementation of parallel prefix takes particular advantage of the coterie
network: it requires only logn communication steps, rather than the 2logn required for a

tree-connected parallel processor.

6.2.1 Parallel Prefix for Lines and SVCCs

We first present parallel prefix for horizontal lines (see Figure 15 for pseudo-code); no as-
sumptions are made as to the lengths of the lines or starting points. An analogous procedure
is used for vertical lines. To execute parallel prefix, there must be at least an implicit order-
ing to the PEs, in this case we use the distance from the west endpoint. Therefore, the first
step of the algorithm is for PEs to calculate their offsets using GetOffset.

The rest of this algorithm is illustrated in Figure 16. The binary numbers represent the
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{Assume Coterie[N,S,NE,NW] = Open, Coterie[H,V] = Closed,}
{and Coterie[E,W] set according to the region boundaries}
SaveCoterieSettings()
{All PEs get offset from east end of horizontal line}
Broadcast(ColumnNumber,ColumnNumberLength,Coterie[E] = Open,Base,All)
Offset := ColumnNumber - Base
{Initialize switch masks. All compare operations using OpenLeftMask}
{and OpenRightMask use only the rightmost BitNum + 1 bits}
OpenWestMask := 0
OpenEastMask := 1
FOR BitNum := 0 TO ColumnNumberLength - 1 DO
IF (OpenEastMask = Offset) Coterie[E] := Open
IF (OpenWestMask = Offset) Coterie[W] := Open
Multicast(Data,DataLength,OpenWestMask = Offset ,Temp,ALL)
IF (Offset > OpenEastMask AND Offset < OpenWestMask)
Combine(Temp,Data) {combine into Data according to a specified operator}
BitSet(BitNum+1,0penEastMask)
BitSet(BitNum+1,0penWestMask)
RestoreCoterieSettings()

Figure 15: Algorithm for parallel prefix on a horizontal line.

offset of the PE, the decimal numbers the data currently residing there. In the first iteration,
PEs whose rightmost offset bit is a 0 open their E switches, the rest open W. The “0” PEs
multicast their data, the “1” PEs receive it and “sum.” In the next iteration, PEs whose
rightmost two offset bits are < 01, do not participate. All PEs with a bit pattern ending
in 01 open to the left, all PEs ending with 11 open to the right. The 01’s multicast, the
others receive and combine. In the next iteration (the final one of the example), PEs whose
rightmost three offset bits are < 11, do not participate. All PEs with a bit pattern ending
in 011 open their W switches, PEs with 111 open to the right. The 011 PEs multicast, the
rest receive and combine.

ParallelPrefixSVCC is surprisingly similar to Paralle|PrefixLine. Recall from the defini-
tion of an SVCC that all rows of PEs except the top and bottom have exactly one PE with
an up-link and one PE with a down-link. Assume that only one PE per row has information
to be summed. (If there were more, they could be summed first using ParallelPrefixLine.)
There are therefore three PEs of interest on every level, the up-link and down-link PEs, and
the information-holding PE (see Figure 17). We now execute an algorithm nearly identical to
ParallelPrefixLine, the only difference being that during every iteration, the PEs that send
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and receive data can be different from the PEs opening and closing the links. See Figure 18

for pseudo-code.

{Assume coterie switches set so that coteries are singly,}

{vertically connected contours. Coterie[H,V] = closed,}

{Coterie[NW,NE] = Open}

SaveCoterieSettings()

{All PEs get offset from north end of vertical line}

Broadcast(RowNumber,RowNumberLength,Coterie[N] = Open,Base,All)

Offset := RowNumber - Base :

{Identify significant PEs}

If (Coterie[N] = Closed) Uplink := True

If (Coterie[S] = Closed) Downlink := True

If (Coterie[E] = Open) InfoPE := True

{Initialize switch masks. All compare operations using OpenLeftMask}

{and OpenRightMask use only the rightmost BitNum + 1 bits}

OpenNorthMask := 0

OpenSouthMask := 1

FOR BitNum := 0 TO ColumnNumberLength - 1 DO
IF (OpenSouthMask = Offset AND Downlink) Coterie[S] := Open
IF (OpenNorthMask = Offset AND Uplink) Coterie[N] := Open
Multicast(Data,DataLength,OpenNorthMask = Offset AND InfoPE, Temp,ALL)
IF (Offset > OpenSouthMask AND Offset < OpenNorthMask AND InfoPE)

Combine(Temp,Data) {combine into Data according to a specified operator}

BitSet(BitNum+1,0penSouthMask)
BitSet(BitNum-+-1,0penNorthMask)
RestoreCoterieSettings()

Figure 18: Algorithm for parallel prefix on an SVCC.

6.2.2 ParallelPrefix for Coteries

To illustrate the technique for parallel prefix on arbitrary coteries, we first sketch a paral-
lel prefix algorithm for rectangles. The algorithm runs in two phases: the first starts by
separating the coterie into horizontal lines with SeparateHorizontalLines. ParallelPrefixLine
is then executed on these lines. In the second phase, the right endpoints are made into a
coterie with SeparateVerticalLines. ParallelPrefixLine is now run on the vertical line using
the results from the first phase as input. The second phase concludes by reconfiguring the
coteries as they were in phase one: Each right endpoint multicasts its result from phase two

back down its row. The other PEs read the multicast data and combine it with their own to
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complete the algorithm. ParallelPrefixRectangle requires at most log ! +log w + 3 arithmetic
and communication operations. _

For arbitrary coteries, we must modify the second phase and add a third to the rectangle
algorithm. We again begin by executing SeparateLines and ParallelPrefixLine to obtain the
partial sums in the right endpoints. This time, however, the information carrying pointé do
not neatly line up. Therefore, we instead run the analogous operations of SeparateSVCCs
and ParallelPrefixSVCCs, completing the second phase as before with a multicast operation.
This time, however, we are not yet finished: it is likely that some coteries will have multiple
SVCCs. The third phase of the algorithm thus consists of running parallel prefix on the
endpoints of the SVCCs and then (in a manner similar to phase two) returning the data
back to the SVCC and the adjoining horizontal lines.

Here is the third phase in more detail. Select one PE in the coterie to be the accumulator.
Then run a routine similar to CollectSparseData: the PEs containing the last sum in each
SVCC are the s; € S. One by one, each s; is selected, after which it multicasts its current
sum to the coterie accumulator. The accumulator combines that data with the current sum,
then multicasts the sum back to s;. That SVCC accumulator then multicasts the data back
up the SVCC (and its adjoining horizontal lines); those PEs read the data and combine it
with their current sums to obtain their final results.

The first two phases require a logarithmic number of steps in the dimensions of the
coterie. However, the third phase is not so easily bounded: the number of SVCCs from
phase two is equal to the number of local minima (in terms of column ID) on the region
boundary. It is possible to construct regions where this number is large, although such

regions are unlikely in practice. This issue is discussed further in Section 8 .

6.2.3 Reduction

Like parallel prefix, reduce combines information from multiple PEs according to some oper-
ator; however, the partial sums are not saved. Reduce can be executed running ParallelPrefix
and ignoring the intermediate results. Alternatively, reduce can be run using Combine; the

choice depends on whether the operator is associative, and on the shapes of the regions.
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7 Multi-Associative Vision Primitives

7.1 Multi-Associative Primitives

In order to efficiently map the multi-associative primitives to the coterie network, associative
sets must be restricted to contiguous aggregates of PEs. Although the resulting capabilities
are not as general as for the full multi-associative model, they are sufficient for many vision
applications such as the non-uniform region processing algorithms presented in the next
section.

1. Multicast, Local Compare, Activity Control. Local compare and activity control
are basic PE operations, multicast is implemented through the coterie network.

2. Some/None Response. Direct implementation of coterie multicast.

3. Count Responders. CountResponders has been implemented in two ways: using
SumCombine, and using a two dimensional reduction technique similar to the one presented
in the last section. The latter (described in detail below) is usually the algorithm of choice, as
it requires only O(log d) as opposed to O(d) operations, where d is the maximum dimension
of an aggregate. If the d’s are all small, however—a result that can be obtained quickly by
the controller, then we use the simpler SumCombine.

4. Select a Single Responder. We use the SelectSingleResponder algorithm of the
previous section.

5. Create, Split/Merge Aggregates. Associative aggregates are created, split, and
merged by opening and closing the coterie network switches to form electrically isolated
regions (coteries).

6. Data Transfer Between Aggregates. Neighboring aggregates communicate by closing

the coterie switches between them and using coterie multicast.

7.2 Vision primitives

Create Connected Component. This is the essential operation in creating multi-
associative sets: once a set of coteries has been created, communication can take place
within each coterie via multicast. In the four-connected version, each PE fetches the label
of its four nearest neighbors via the mesh network and tests them against its own value.
Switches are closed in the direction of the PEs whose labels are equal—or similar according

to some measure—and opened otherwise (see Figure 19 for pseudo-code). The eight-way
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connected version is slightly more complicated: to make the diagonal connection, the NW

and/or NE switches of neighboring PEs must be set.

Coterie[N,S,E,W,NE,NW] := Open

Coterie[H,V] := Closed {Initialize coterie switches }
FOR Neighbor := North TO West DO
Equal := True {Initialize flag }

FOR BitNum := LabelLength - 1 DOWN TO 0 DO {Compare own label with neighbor}
Equal := Equal AND (Neighbor.Label[BitNum] = Label[BitNum])
IF Equal THEN Coterie[Neighbor] := Closed {If labels match, close switch to connect}

Figure 19: Algorithm to create four-way connected components.

Elect Leader. One of the essential parts of the information extraction process is to collect
the region attributes in a small number of PEs for rapid transmission to the ICAP. An
efficient method is for each ICAP element to contain a list of PEs, one per region, with which
it shares memory, and to extract the region information from just those PEs. ElectLeader
selects a unique PE within each set by running the multi-associative SelectSingleResponder
operation.

Collect Info. There are several methods of collecting information in the leader PEs. One
is to combine information as it arrives; this is a method used to count PEs. Another is to
form a local array: this is necessary when collecting information that is not to be combined,
such as the addresses of corner points. If the amount of information to be collected is large,
then arriving data can also be transferred synchronously to the ICAP. That is, the CAAPP
controller waits for the information to be read by the ICAP through the dual-ported memory
before continuing with the next iteration.

Get Sorted List. Run ElectLeader to select an accumulator. Repeatedly run SelectMax on
the key to get the next highest value, eliminating processors from contention after they have
been selected. The PE with the maximum valued key after each iteration multicasts its data
to the leader. If the keys are not unique, then SelectMax must be run, perhaps repeatedly,
on the IDs after every iteration to break the ties. The complexity is roughly equivalent to
the number of points in the set with the most points (N,,), times the SelectMax complexity.
This routine is most useful when the number of points can be assumed to be relatively small

compared to the number of points in the regions, as it usually is, for example, during the
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computation of the convex hulls of the regions.

CollectOrderedCurveInfo. This procedure takes advantage of implicit ordering deter-
mined by the position of a PE on a curve. Although the basic concept is simple, in practice
it is complicated by considerations of regions that are one pixel wide and regions that enclose
other regions. We will only discuss the algorithm in terms of the curve being simple and
closed.

Assume that the closed curve forms a coterie, that is, each PE on the curve has two
closed links, one in the direction of the clockwise neighbor and one in the direction of
the counterclockwise neighbor. The links are labeled by observing their relation to the
local direction from inside to outside the region. Assume further that the PEs holding the
information to be collected are tagged. The first step is to run ElectLeader on the tagged set
to select an accumulator. The leader opens the switch connecting it to its counterclockwise
neighbor in the loop. The loop is thus transformed into an open figure with the leader at
one end. Every tagged PE in the chain now opens the switch connecting it to its clockwise
neighbor. Next, each tagged PE multicasts its information. Because the tagged PEs have
broken the coterie, only the information from one PE will reach the accumulator. The leader
then multicasts a bit to the coterie, a bit that will only reach the PE whose information was
just received. That PE now removes itself from the set and closes the switch to its clockwise
neighbor, enabling further multicasts to pass through. The process is repeated until no
tagged PEs remain.

8 Multi-Associative Vision Algorithms

FindExtremum. One of the most common uses of SelectMin/Max is to find the extrema in
curves and regions. In these situations SelectMin (or SelectMax) is executed on the column
or row address. In an n X n = N array, FindExtremum requires 3log(n) steps.
GetSmallestCircumscribingRectangle. This algorithm follows immediately from appli-
cation of FindExtremum using SelectMin and SelectMax on the row and column addresses,
and thus requires 12log(n) steps.

LabelConnectedComponents. Perhaps the most direct use of multicast on the CAAPP is
labeling connected components. The connected components are created, as in the previous
section, by closing the coterie switches in the direction of PEs with the selected value in

common and opening the others, thereby forming coteries. ElectLeader is run to select a
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single PE in each component. Because of the way that the switches are set, PEs in each
coterie will receive the leader ID at no extra cost. This necessarily unique value is the label
of the component.

PaintRegion. Although this routine consists of a single application of multicast, it shows
the versatility of the IUA model to include graphics functions. Assume that a list containing
the color and the address of the leader PE of each region is known in the ICAP, a scenario
that occurs during the DARPA Integrated Image Understanding Benchmark (Weems et al.
1991). The ICAP loads the color into the memory of each leader. The leaders then multicast
the color to their regions.

TraceOuterPerimeter. One of the steps required in the DARPA benchmark is identifying
the outer perimeters of connected regions. The information locally available around a pixel
is not sufficient to distinguish inner from outer borders, as occur, for example, in regions
wholly enclosing multiple other regions. One way to distinguish the outer borders is use the
following two-phase algorithm. In the first phase, FindExtremum is run to identify a point
known to be on the outer perimeter. The second phase currently uses only nearest neighbor
moves to traverse the perimeter and so is not described in this paper.
CreateBorder-CornerList. One application of CollectOrderedCurvelnfo is extracting a
list of corners. Although CollectSparseRegionInfo can be used here, there is a major ad-
vantage to extracting the corners in order: reconstructing the shape of the region is greatly
simplified. Assume that the corner points are known. Run SeparateBorder and CreateS-
impleCurve to obtain a coterie containing the border points. PEs determine the clockwise
and counterclockwise links by examining neighbors to find the inside of the region. Col-
lectOrderedCurvelnfo now creates an ordered list of the corner points. This version of
CreateBorder-CornerList can only be run if the resulting simple curves are closed.
GetAdjacentRegionLabels. This routine is used in building a region adjacency graph, a
process essential to the region-merging phase of the segmentation algorithm in (Beveridge
et al. 1989). The routine starts with the boundary PEs fetching the labels of the adjacent
regions. Next, a modified version of CollectSparseRegionInfo is run on the set of boundary
cells; the modification is that PEs whose data matches that just sent remove themselves
from the set immediately, rather than sending the same label again. Since most of the cells
_ will have redundant information, GetAdjacentRegionLabels will only require the number of

iterations equal to the number of adjacent regions, not the number of border PEs.
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MergeRegions. During the region merging phase of a segmentation, the ICAP will deter-
mine the regions to be merged; the following procedure is then executed on the CAAPP.
Leader PEs in pairs of regions are sent the label of the neighboring region with which each
is to merge, along with a bit telling whether it is the region with the higher or lower ID. The
leaders of the lower ID regions multicast the label of the neighboring region to their coteries.
The PEs on the border between the regions close the coterie switches in the direction of
that other region. The leader PE with the higher ID is selected to be the new leader of
the region. The “former” leader then multicasts its region characterization info (size, etc.),
which is read by the current leader and combined. Alternatively, the ICAP could combine
and download the new region characterization information. Also, some parameters are not
easily combined and must be recomputed.

Count(Selected)PEs. An essential part of extracting low-level vision events is the charac-
terization of sets of points in a component; some of the basic parameters needed are a count
of the total points in the region and the number of points having some property. In the
latter case we assume that the comparison phase has already taken place, so we are really
counting “selected PEs.”

CountSelected PEs uses the coterie reduction algorithm present above. Each selected PE
18 given a 1, the rest 0’s. The coterie is reduced using the addition operator.

CountPEs uses the same second and third phases as CountSelectedPEs, but the first
phase can be simplified. After SeparateLines and GetOffset, the east endpoint already has
the number of points in the Line, thereby avoiding the need for ReduceLine.

As mentioned previously, the first two phases require at most 2log d communication
steps, where d is the maximum dimension of the largest set. The execution of the thirdphase,
however, is proportional to the number of local minima (in terms of column ID) on the region
boundary. Since this number could be large, phase three has been modified: the following is
an example of the use of array associativity to bound a multi-associative algorithm.

After each iteration of phase three, the global controller (ACU) performs a CountRespon-
ders operation on the leader PEs of the regions not yet having completed. When this number
falls below a threshold, say ten, then an array associative version of Count(Selected)PEs
takes over; the algorithm finishes by performing CountResponders on each of the remaining
regions. The hybrid version of phase three guarantees that the number of iterations required
to complete the algorithm will be small in virtually all cases. Although this algorithm is
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still suboptimal when there are many regions all with large numbers of local minima, the
likelihood of such patterns arising out of an image segmentation is very small.

GetMean. The next two algorithms are derived from the standard associative model (Foster
1976): they can now be applied multi-associatively as all of those basic operations have been
implemented. The algorithm to find the mean is similar to SelectMax in that both are bit
serial over a k-bit label, and both run from high to low order (k — 1 to 0). Assume we are
trying to find the mean of a label L over the PEs in a region. We sum the L’s by successively
counting the PEs with the ith bit of L set, and scaling that count by 2'. We start at the
high order so that scaling can be accomplished with one shift per iteration.

Select PEs with bit k — 1 of L set. Run CountSelectedPEs to get the count. Add the count
to the accumulator (zero to start). Shift the accumulator left 1 bit. Repeat this process
for bits k — 2 to 0 of L, but without shifting after the final iteration. GetMean requires a
number of iterations equal to log(Maz(L)); each iteration contains one add, one shift, and

one CountSelectedPEs operation. See Figure 20 for pseudo-code.

Sum :=0 {Initialize Sum}
FOR BitNum := LabelLength - 1 DOWN TO 0 DO

Activity := Label[BitNum] {Select PEs with bit set}

Sum := (Sum << 1) + CountSelectedPEs() {Count number of active PEs and scale}
Mean := Sum/CountPEs() {Count all PEs and divide Sum}

Figure 20: Algorithm to compute mean.

GetMedian. The method used is analogous to binary search: we find the range of possible
values and successively halve the interval on each iteration. Start by running SelectMin
and SelectMax to find the lower and upper bounds (L and H), and CountPEs to obtain C,
the number of PEs in the region. Let the initial guess G = ££Z. Select the PEs with a
label greater than G; then run CountSelectedPEs again. Depending on whether the count
is higher or lower than C/2, the new guess G is either g;._c_ or I’L.‘,G H or L is also updated.
The algorithm converges after log(Maz(H) — Min(L)) iterations.

Histogram within Regions. The multi-associative version of histogram permits each
region to use a different set of bins. Run ElectLeader to select an accumulator. For each bin,
multicast the value (or range of values) of that bin. PEs are selected according to whether
their value matches that of the bin. Run CountSelectedPEs to get the bin count. The
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algorithm requires a number of iterations equal to the number of bins, and each iteration
contains one CountSelectedPEs operation.

ConvexHull. The convex hull of a set of points S is defined as the smallest convex set
contained in S. Intuitively, the convex hull in a plane can be found by conceptually wrapping
S with a rubber band and eliminating the interior points (Preparata and Shamos 1985).
Two leading methods for finding the convex hull on a serial processor are the Graham Scan
(Graham 1972) and the Jarvis March (Jarvis 1973).

The Graham Scan works as follows: A point p, known to be on the hull, is chosen.
Without loss of generality, let p be the point with the smallest X-coordinate, where the
smallest Y-coordinate breaks any ties. For all other points s; in S, calculate the slope of
line segment 75;. Sort the s;’s by slope. Traverse the list of points in order: for each point,
compute the angle it makes with its predecessor and successor. If the angle is reflex, then
eliminate that point. The serial Graham Scan is of complexity O(N log N), the minimum
time required for the sort. The scan phase requires only O(N) steps because at most N
points can be either eliminated or traversed.

The Jarvis March is analogous to wrapping the points in a package, one hull edge at
a time. Again, the algorithm begins with the selection of a point p known to be on the
hull. The slope of each segment P3; is calculated, and the next point on the hull selected by
finding the segment p3; making the smallest angle with respect to the positive X-axis. This
process is repeated for all h points on the hull; the Jarvis March thus has a complexity of
O(hN). In general, the Jarvis March should be used when the expected number of points
on the hull % is less than log N.

The multi-associative versions of these algorithms are assumed to be over sets of points
in connected components. Also, we assume that the points in S are mapped to PEs according
to their row and column coordinates.

The first step in the parallel Graham Scan is to select an extreme point p in S by using
ElectLeader. The other s; calculate their slopes with respect to p. The next step is to sort
the PEs by slope by using a variation of GetSortedList, modified so that each s; retains the
IDs of its predecessor and successor points. Using these IDs and that of the coterie leader,
the s; determine whether they are on the hull. If a PE does not represent a point on the
hull, it removes itself from S.

However, this procedure may require a few iterations to simulate the backtracking that
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is sometimes necessary in the serial version. Therefore, the above procedure is repeated until
no points drop out. Typically only two iterations are sufficient, although it is possible to
construct cases where more are required. As we have not proven a constant bound on the
number of iterations, we can only conjecture that the complexity is O(N), where N is the
number of points in S in the coterie that takes the longest to terminate. This assumes that
SelectMin in GetSortedList is counted as a unit operation.

The Jarvis March can be parallelized somewhat more easily: A point p on the hull is
found using ElectLeader, and its ID is simultaneously distributed to the rest of S. The s;
calculate the angle formed by 73; with the column axis. Calling SelectMin locates the next
point on the hull. The procedure is then repeated until the PE forming the smallest angle
is p, in other words until the loop has closed. The éomplexity is clearly O(h), the number
of points on the hull, if SelectMin is counted as a unit operation.

9 Summary and Conclusion

Summary

Parallel low-level vision involves the characterization, manipulation, extraction of informa-
tion from, and communication between, non-uniform aggregates of PEs. Processing of data
dependent configurations of PEs has special requirements often met by associative process-
ing. However, the result is that aggregates are operated upon one at a time (region-serial).
To deal with cases where the number of aggregates is large, multi-associative processing is
proposed; that is, associative primitives on aggregates simultaneously (region-parallel). The
immediate consequence of using the associative primitives in parallel is the multi-associative
extension of existing associative algorithms. The multi-associative split and merge operations
result in further capabilities: support for divide-and-conquer, the direct use of the geometry
of an aggregate to make explicit implied orderings, and the ability to retain multiple, partial
results.

The viability of multi-associativity on a SIMD processor was demonstrated by mapping
it onto the coterie network. Some basic results were presented, including definitions and
algorithms for the construction of new coterie structures, and a parallel prefix algorithm
that completes in O(log d) time-steps for most coteries. Some of the direct consequences of
the impementation of multi-associativity to parallel low-level vision processing are efficient,

region parallel, algorithms to: collect and extract region information (sparse, ordered bound-
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ary, etc.), exchange information among regions (building region adjacency graphs), combine
regions, count pixels (and pixels with specified attributes), find the circumscribing rectangle
and convex hull, and label connected components. Array associative and multi-associative
processing can also be used together as was shown in a hybrid Count algorithm: for most
regions the multi-associative part finishes quickly, the remaining regions are then processed
array associatively. The multi-associative primitives can also be used to construct region-

parallel versions of existing associative algorithms such as median, mean, and histogram.

Conclusion and Future Work '

The problem was to come up with SIMD algorithms that would be efficient when operating
in parallel on regions of pixels with data dependent (usually non-uniform and irregular)
shapes. We have constructed algorithms using the coterie network where most of the shape
dependence has been removed.

Although some of our results are of theoretical interest, we are mostly interested in
improving performance of the CAAPP-—by itself, and as a part of the IUA system—in
solving real-time vision problems. Therefore, the real measure of our success will come when
we have tried our approach on a large number of test cases. A more practical problem is to
find the break-even point between associative and multi-associative processing, an important

problem in system tuning as the number of regions being processed can vary widely.
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