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ABSTRACT. Classical conditioning procedures instill knowledge about the temporal
relationships between conditioned stimuli, which are regarded as predictive signals
and triggers for action, and the unconditioned stimulus, the event to be timed. This
knowledge is expressed in the temporal features of the conditioned response, which
typically develop such that its peak amplitude occurs at times when the unconditioned
stimulus is expected. A simple connectionist network, comprised of two neuron-like
processing units, provides a mechanism that can acount for virtually all aspects of
conditioned response timing. The unfolding of time from the onsets and offsets of
events such as conditioned stimuli is represented by the propagation of activity along
delay lines. Input to the two processing units from conditioned stimuli arise from
collateral taps off of each sequential element of these delay lines.

1. Introduction

Psychologists interested in time, action, and cognition do not typically attend to re-
search on classical conditioning (Block, 1990). One reason for this is that conditioned
responses reside in the domain of learning, not cognition and perception. Classical
conditioning does not engage the mind—it proceeds beneath the veneer of conscious
awareness. Psychologists are interested in impressions and judgements about time.
Conditioned responses are time veridical—they reflect real time rather than perceptu-
ally distorted impressions of elapsed time. These properties of conditioned responses
make them attractive to neuroscientists and computational modellers interested in real-
time motor control and its underlying neural mechanisms (Gabriel and Moore, 1990).
This community of scholars regards the conditioned response as a microcosm for elu-
cidating behavioral principles of wide generality and for discovering mechanisms for
their expression.

This chapter summarizes some facts about the timing of conditioned responses and
then presents a neural network model that can accommodate them. From now on, I
use the following standard abbreviations: CS for conditioned stimulus, US for uncon-
ditioned stimulus, CR for conditioned response, and UR for unconditioned response.



L1.1. Conditioning and Cognition

Despite its traditional emphasis on the principles of behavioral learning, it is of-
ten convenient to express the outcome of classical conditioning in terms of acquired
knowledge.! Perhaps the most basic thing learned in classical conditioning is that the
CS predicts the US. Prediction is the key to understanding conditioning because a
CS’s capacity to control behavior depends on the degree to which it is a reliable and
nonredundant signal that the US will occur. Subj<|-:cts learn to ignore stimuli that are
poor predictors of the US, and they learn .to suppress CRs to stimuli (conditioned
inhibitors) that predict the withholding of an otherwise anticipated US.

In addition to expressing knowledge, a CR often possesses the elements of skill.
Its topographical features—latency, rise-time, peak amplitude—typically vary from
one set of procedures to the next in such a way that they are appropriate to the
‘task demands’ imposed by training parameters (Levey and Martin, 1968). The main
evidence for this adaptive character of the CR is that these topographical features vary
systematically with the CS-US interval employed in training. (The CS-US interval is
typically abbreviated ISI, for ‘interstimulus interval’.) In particular, eye blink CRs are
‘temporally adaptive.” Temporal adaptability simply means that the peak amplitudes
of CRs occur within a restricted temporal window that also contains the US. In this
sense, CRs reflect the knowledge that the US occurs at a specific time after the CS.
Recent evidence for this assertion is reviewed later. For now, it suffices to say that
subjects learn not only to expect the US in the presence of the CS, but also when to
expect it.

1.2. Mechanisms of Knowledge Acquisition and Expression

Classical conditioning procedures establish knowledge about timing. What are the
mechanisms that bring this about? What happens in the brain that might explain
the temporally adaptive properties of a conditioned eye blink, for example? Learning
theorists and neuroscientists alike believe that the knowledge instilled by conditioning,
and the accompanying rules for generating CRs, arise from ‘associative mechanisms.’
These mechanisms are captured by mathematical models that take the form of rules
for changing the strength of the ‘synaptic connection weights’ between representations
of the CS and the CR. Such rules consist of two factors—one factor is the level of CS
processing; the other factor is the level of US processing (Desmond, 1990; Dickinson
and Mackintosh, 1978; Sutton and Barto, 1990; Rescorla, 1988).

!Saying that conditioning procedures produce knowledge does not contradict the earlier statement
that CRs arise from unconscious processes (Kihlstrom, 1987).



2. CR Waveforms and CS-US Intervals
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Figure 1. Effects of changing US timing on simulated CR topography, Y(t). Top:
Topography after 25 short CS-US interval training trials in Stage 1. Middle: In Stage
2, the CS5-US interval is lengthened. After 10 trials, the short-latency CR is somewhat
diminished and the longer-latency CR begins to develop. Bottom: After 30 Stage 2
trials, tranformation of CR topography is nearly complete. Copywrite 1989, Springer-
Verlag.

Conditioned response waveforms are functions of the CS-US interval used in train-
ing. Long CS-US intervals give rise to delayed CRs, which Pavlov attributed to an
active inhibitory process which persists until the US is imminent (‘inhibition of de-
lay’). There is little evidence to support Pavlov’s explanation of the delayed temporal
placement of CRs. Instead of being due to inhibition, the phenomenon of delayed CR
placement is more likely attributable to the fact that a CR generated by a long CS-US
interval is a different response from that generated by a shorter CS-US interval.



That a CR generated with one CS-US interval can be regarded as being a different
response from one generated with a different CS-US interval is attested to by studies
in which subjects are trained with a short CS-US interval and then shifted to a longer
CS5-US interval. Typically, the CR in the temporal window defined by the short CS-
US interval undergoes extinction while 2 new CR emerges in a window defined by
the longer CS-US interval. It is not the case that the original CR migrates to the
new temporal window. It remains within its original window but progressively loses
amplitude while at the same time the new CR emerges in the time window defined by
the new US locus. This is illustrated in Figure 1, which is a simulation from the VET
neural network model discussed later on.

Additional evidence for the temporal specificity of CRs comes from a widely cited
study of rabbit eye blink/nictitating membrane conditioning by Millenson, Kehoe, and
Gormezano (1977). Their training protocol consisted of mixing two CS-US intervals,
one of 400 msec and another of 700 msec. There were occasional ‘probe trials’ on which
the CS was presented without the US for either 400 or 700 msec. On 400-msec probes,
response topography showed a peak appropriate to the 400-msec CS-US interval. On
700-msec probes, response topography revealed two peaks—one appropriate for the
shorter interval and another appropriate for the longer interval. This finding implies
that subjects learned If the CS extends beyond 400 msec, initiate another CR; if it
does not, do nothing. However one chooses to phrase it, the implication remains that
subjects learned not one CR but two, one appropriate for each CS-US interval it
experienced.

2.1. CR Waveforms and Trace Conditioning

The Millenson et al. (1977) experiment used a delay conditioning protocol, which is
technical jargon for the fact that, on training trials, CS onset preceded the US and
stayed ‘on’ until the US occurred, at which time it went ‘off.” But what of trace
conditioning protocols in which CS onset precedes the US but goes off beforehand?
Where do subjects place their CRs: during the CS’s ‘on’ phase or during its ‘off’
phase? As in the case of delay paradigms, CRs occur near the US, so CRs occur
during the ‘off’ phase.

In trace conditioning there are two possible CS-US intervals, one defined by CS
onset and the other defined by CS offset. Hence, two things might be learned: the US
follows CS onset; the US follows CS offset. Which event, CS onset or offset, defines
the temporal window in which to place CRs? The answer is both, although this is
constrained by such details as the CS’s duration and the time between its offset and the
US, the so-called trace interval. Support for this conclusion comes from an experiment



by Desmond and Moore (1991a). They trained rabbits using a trace conditioning
protocol in which the CS was a 150-msec tone followed 200 msec later by the US,
giving a nominal CS-US interval of 350 msec. The US was a mild eye shock, and
the CR was extension of the nictitating membrane. A second group of animals were
trained in a delay conditioning procedure in which the tone was of 350 msec duration.

Trace Delay |

Figure 2. Average CR waveforms from training and probe trials for the Trace and
Delay groups of Desmond and Moore (1991a). Fine-grain bars on waveforms during
probe trials are standard error bars. Vertical cursors correspond to expected times of
the US with respect to CS onset and offset. Copywrite 1991, Springer- Verlag.



After training, subjects in both the Trace and Delay groups were given probe trials
without the US. These consisted of presentations of the tone for durations of 150,
400, and 600 msec. As Figure 2 shows, the two longer duration tones often resulted in
bimodal (double peaked) CR waveforms in the Trace group, but not in the Delay group.
The initial peak was located 350 msec after tone onset, within the temporal window
defined by the interval between CS onset and the US. The second peak was located 200
after tone offset, within the temporal window defined by the interval between CS offset
and the US. This second peak, though inappropriate for the nominal CS-US interval
of 350 msec, is appropriate for the CS-US interval of 200 msec defined in terms of
tone offset. Thus, for example, on a typical 600-msec probe trial, one peak appeared
350-msec after tone onset and the other appeared 800 msec after tone onset. Hence,
the following knowledge was acquired: The US follows CS onset by 350 msec; The US
follows CS offset by 200 msec. Let us turn now to considering how the ‘motor program’
Initiate @ CR such that peak amplitudes correspond to the times of the US might be
derived from this knowledge.

3. The VET Model

Desmond and Moore (1988) proposed a neural network model capable of simulating the
features of CR timing described above (see also, Desmond, 1990; Moore, Desmond, and
Berthier, 1989). We refer to this model by the mnemonic VET in order to emphasize its
function of mapping associative values onto action based on ezpectancies about timing.
The model assumes that CSs trigger propagated activity in the nervous system. In its
simplest form, this activation can be represented by a delay line. A ‘tap’ or collateral
from each element of the delay line encodes the time after the activation has been
triggered by the CS. Each potential CS has its own set of delay line elements which
are anatomically associated with its modality.? In addition to time-tagged stimulus
elements, there are two processing units where learning occurs. One unit associates
active stimulus elements with the US and passes this information to the other unit,
which uses this information to generate appropriate (adaptively timed) CR waveforms.
The assumed delay-line representation of time enables these two processing units, which
are thought to reside within cerebellar cortex, to treat CS-initiated input as a sequence
of discrete events. '

In addition to the simulation shown in Figure 1 and the results of the Desmond
and Moore (1991a) trace conditioning experiment (Figure 2), the VET model correctly
predicts that, as in the case of delay conditioning, CR waveforms in trace conditioning

2Desmond (1990) describes an extension of the simple delay line representation of the CS into a pla-
nar array. The planar array representation can encompass stimulus generalization and discrimination.



peak at the point of US onset, that is, within the trace interval. The model also
predicts that, with long CS-US intervals, CRs do not begin until the US is imminent,
the phenomenon that Pavlov attributed to ‘inhibition of delay.’ Finally, the model
predicts the outcome of experiments with multiple CS-US intervals such as the study
by Millenson et al. (1977), which showed that training with randomly mixed trials
having CS-US intervals of 200 and 700 milliseconds gives rise to CRs with two peaks,
each centered at a time of US onset.
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Figure 3. Diagram of the VET network. CS onset and CS offset are assumed to activate
separate tapped delay lines that project to the V and E units, as explained in the text.
Copywrite 1991, Springer-Verlag.

The structural components of the VET model are depicted in Figure 3. The two
neuron-like processing units receive convergent input from CSs and the US. The V-



unit is the output device that generates CR topography. It has modifiable synaptic
weights that are changed according to a competitive learning rule. Weight changes
depend on local ‘eligibility’ factors, a global parameter dependent upon the ISI, and
a reinforcement signal that reflects the expected time of occurrence of the US. The
learning (weight update) rule contains two reinforcement factors: one is contributed
directly by the US; the second is contributed by the E unit, which learns when the US
occurs with respect to CS onsets and offsets. Both must exceed zero for weight changes
on the V unit to occur. '
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Figure 4. Basic tapped delay line. Injection of CS input begins sequential propagation
of signal through a delay line. Each ‘synapse’ introduces a delay; the total delay from
activation of the first element of the delay line to the last element is a direct function of
the number of intervening sequential ‘synapses’ and the conduction speed of propagated
activity in the cascade. Taps from the delay line elements send time-tagged information
to higher order processing units. Copywrite 1988, Springer-Verlag.

Like the V unit, the E unit receives convergent input from CSs and the US, and it
has modifiable synaptic weights that are changed according to a simple linear difference
equation that includes local eligibility factors and the global ISI parameter. By pro-
viding a precisely timed positive signal to the V unit, the E unit prevents the eventual
extinction of positive weights from input elements to the V unit, thereby permitting
CR waveforms to anticipate the US. Without this mechanism, the output of the V unit
would over the course of training be positive only within time steps that also contain

the US.

Conditioned stimuli are provided with a temporal dimension through tapped delay
lines (Figure 4) that encode, not only the source of the stimulus (e.g., a particular



component of a compound CS), but also the time since the stimulus began.

Another set of tapped delay lines encodes the time since the stimulus ceased. Thus,
the model assumes the existence of separate and independent timed-tagged input ele-
ments for both stimulus onset and offset. Figure 5 illustrates how activation of delay
line elements are triggered by CS onset and offset.
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Figure 5. Onset and offset processes for a single CS. Time progresses from left to right.
Each horizontal bar below the CS represents the activation time of an individual input
element. The figure illustrates the overlapping activation times of individual elements
in the onset and offset processes. This feature of the model allows for continous and
‘smooth’ ramping of the CR from a zero baseline position to its peak amplitude at the
expected time of the US, as illustrated in Figures 1 and 2. Copywrite 1988, Springer-
Verlag.

4. Brain Implementation of the VET Model

Because of their crucial involvement in eye blink conditioning, we sought to align the
VET model with the cerebellum and associated brainstem structures (Moore et al.,
1989). We hypothesize that E units, which learn when the US occurs, are Golgi cells
and that V units, which are Purkinje cells, use this information to generate an output
which ultimately produces a temporally adaptive CR. In brief, Golgi cells learn when
USs occur in relation to CS onsets and offsets, and Purkinje cells learns how to generate
appropriately timed CRs and their topographical features.

Where does the knowledge that The CS predicts the US arise, and what role does
it play in the development of adaptively timed CRs? We have suggested that this
knowledge comes about through simple Hebbian learning among brainstem neurons.



These neurons provide a ‘coarsely coded’ version of the CR—one lacking the temporal
specificity of the real thing.? Their activation by the CS is conveyed to cerebellar cortex
where it is fashioned into the appropriate ‘finely coded’ CR waveform. Specifically,
the activation of the brainstem neurons instantiates The CS predicts the US. This
activation is manifest as a burst of firing that persists for at least the duration of
the CS-US interval. When projected to the granule cell layer of the cerebellum, it is
intercepted by Golgi cells (E units) at the mossy fiber/granule cell interface.

The Golgi cells have learned to release their normal inhibitory hold on input from
the brainstem neurons but only momentarily and at times relative to the CS when the
US has occurred in the past. This release of inhibition permits the activation from
the brainstem neurons to proceed via parallel fibers to the Purkinje cells (V units)
where it can reinforce synaptic modifications of active inputs from the tapped delay
line mechanism. In other words, Golgi cells encoding The US follows the CS by =z
amount of time interact with activation arising from the brainstem neurons in such
a way as to provide the temporal specificity needed to instruct the Purkinje cells to
Initiate a CR such that the peak amplitude occurs at the time of the US.

The delay lines illustrated in Figures 3 and 4 are not in the cerebellum but are
extrinsic to this structure. Although their location has not been specified or experi-
mentally determined, their existence ought to be evident in the firing of neurons that
project to the cerebellum. The most likely place to find such evidence would be in
the CS-evoked activity recorded from neurons of the pontine nuclei, which is a major
source of mossy fiber input to the cerebellar cortex. This activity would tell us whether
information is sent to the cerebellum in the manner implied by Figures 4 and 5. How-
ever, it would not inform us about which precerebellar structures are involved in its
manifestation—a task that could be approached with fiber-tracing methods.

One candidate for tapped delay lines is the reticular core of the brain, as has
been suggested by Scheibel and Scheibel (1967). Reticular formation neurons can fire
sustained bursts to a CS (Richards, Ricciardi, and Moore, 1991), they provide a wide
range of possible propagation speeds, which are subject to modulation by local and
distal processes, and their axons show extensive collateralization, which could provide

3Desmond and Moore (1986) reported that the brainstem contains neurons that behave in the
manner imagined in this scheme. For example, CS-evoked firing in some supratrigeminal reticular
formation neurons predict CR amplitude, across a series of trials, but not CR latency. Some red
nucleus neurons behave in this manner (Desmond and Moore, 1991b). By contrast, many cells in the
deep cerebellar nuclei show CS-evoked firing patterns that are highly predictive of both CR amplitude
and latency (Berthier, Barto, and Moore, 1991).
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the taps depicted in Figure 4.
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