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ABSTRACT

MODEL DEPENDENT INFERENCE OF 3D INFORMATION FROM
A SEQUENCE OF 2D IMAGES

FEBRUARY 1992
RAKESH KUMAR
B.TECH., INDIAN INSTITUTE OF TECHNOLOGY AT KANPUR
M.S., STATE UNIVERISTY OF NEW YORK AT BUFFALO
PH.D., UNIVERSITY OF MASSACHUSETTS
Directed by: Professor Allen R. Hanson

In order to autonomously navigate through a complex environment, a mobile
robot requires sensory feedback. This feedback will typically include the 3D motion
and location of the robot and the 3D structure and motion of obstacles and other
environmental features. The general problem considered in this thesis is how this
3D information may be obtained from a sequence of images generated by a camera
mounted on a mobile robot.

The first set of algorithms developed in this thesis are for robust determination
of the 3D pose of the mobile robot from a matched set of model and image land-
mark features. Least-squares techniques for point and line tokens, which minimize
both rotation and translation simultaneously are developed and shown to be far su-
perior to the earlier techniques which solved for rotation first and then translation.
However, least-squares techniques fail catastrophically when outliers (or gross errors)
are present in the match data. Outliers arise frequently due to incorrect correspon-
dences or gross errors in the 3D model. Robust techniques for pose determinatioﬁ are

| developea to handle data contaminated by fewer than 50.0 % outliers.
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To make the model based approach widely applicable, it is necessary to be able to
automatically build the landmark models. The approach adopted in this thesis is one
of model extension and refinement. A partial model of the environment is assumed
to exist and this model is extended over a sequence of frames. As will be shown in
the experiments, the prior knowledge of the small partial model greatly enhances the
robustness of the 3D structure computations. The initial 3D model may have errors
and these too are refined over the sequence of frames.

Finally, the sensitivity of pose determination and model extension to incorrect
estimates of camera parameters is analyzed. It is shown that for small field of view
systems, offsets in the image center do not significantly affect the location of the
camera and the location of new 3D points in a world coordinate system. Errors in
the focal length significantly affect only the component of translation along the optical

axis in the pose computation.
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CHAPTER 1

INTRODUCTION

In order to autonomously navigate through a complex environment, a mobile
robot must be able to plan and follow a smooth path, detect and avoid obstacles, and
finally recognize when it has reached its destination. An industrial robot which has
to perform complex assembly tasks must be able to recognize, locate and manipulate
various tools and objects in its workspace. The visual feedback required to accurately
accomplish tasks such as these will typically include the 3D motion and location of
the robot, and the 3D structure and motion of obstacles and other environmental
features. The general problem considered in this thesis is how this 3D information
may be obtained from a sequence of images generated by a camera mounted on a
mobile robot. It is assumed that rough estimates of the motion of the robot between
consecutive frames are known. Many different photometric and geometric visual cues
may be used to infer 3D information from a sequence of images. We restrict our
attention to geometric cues such as the image flow of tokens (2D points and lines)
and correspondence between modeled 3D tokens and image tokens.

In the Mobile Robot Research Project at the University of Massachusetts, a model
based approach to navigation has been adopted. The premise is that the higher level
goals of navigation and the degree of accuracy required would benefit greatly from
knowledge of objects in the environment. For instance, visual measurements of mod-
eled 3D landmarks provide strong constraints on the 3D position and orientatiori (3D

pose) of the robot in a world or model coordinate system. The first set of algorithms
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developed in this thesis are for robust determination of the 3D pose of the mobile
robot from a matched set of model and image landmark features (Pose Determi-
nation). First, existing least-squares techniques for pose determination from both
point and line tokens are improved upon. Least-squares techniques which minimize
both rotation and translation simultaneously are developed and shown to be far su-
perior to the earlier techniques which solved for rotation first and then translation.
However, least-squares techniques fail catastrophically when outliers (or gross errors)
are present in the match data. Outliers arise frequently due to incorrect correspon-
dences or gross errors in the 3D model. Robust techniques for pose determination are
developed to handle data contaminated by fewer than 50.0 % outliers.

To make the model based approach widely applicable, it is necessary to be able to
automatically build the landmark models. A substantial amount of effort has been
invested by computer vision researchers over the past ten years on developing robust
methods for computing 3D structure from a sequence of 2D images. However, robust
computation of 3D structure, with respect to even small amounts of input image
noise, has remained an open problem. The approach adopted in this thesis is one of
model extension. A partial model of the environment is assumed to exist and this
model is extended over a sequence of frames. As will be shown in the experiments,
the‘prior knowledge of the small partial model greatly enhances the robustness of the
3D structure computations. It also provides a stable world coordinate system within
which all new measurements can be fused. The initial 3D model may have small
errors and these too are refined over the sequence of frames.

Finally, the sensitivity of pose determination and model extension to incorrect
estimates of camera parameters is analyzed. The camera parameters studied are
focal length and image center. It is shown that for small field of view systems, offsets

in the image center do not significantly affect the location of the camera and the



location of new 3D points in a world coordinate system. Errors in the focal length
significantly affect only the component of translation along the optical axis in the

pose computation.

1.1 Mobile Robot Project

In this section, a brief overview of the Mobile Robot Research Project, conducted
at the University of Massachusetts, is presented. The goal is to briefly describe an
overall navigation system and to place within it the algorithms and analysis devel-
oped in this thesis. Note, however, that the potential applications of the algorithms
developed here are not limited to the navigation domain.

At the University of Massachusetts, a model-based approach has been adopted for
the robot navigation project. The robot is supplied with a hierarchical description
of the environment in terms of locales [21]. The hierarchical organization of the map
gives it a functional structure and facilitates high-level goals such as path planning.
For instance, in the global locale of the UMass campus, different buildings will be
sub-locales and each building will be further sub;divided into rooms, hallways etc..
A basic command given to the mobile robot is to go to a certain destination from a
certain start or home position. The robot then uses its map of the environment to
plan a path. Details of the locale structure and path planning techniques employed
can be found in [21, 22]). To ensure the robot is following its planned path and to
correct any deviations from the path, visual feedback is employed. This is necessary
because the actual motion of the robot is not described completely by its modeled
kinematic equations. Hence from dead-reckoning alone, the actual motion of the
robot cannot be accurately predicted. To reach its goal, the navigation system sets

up a sequence of milestone locations along its planned path. If the robot is able



to successfully reach all its milestones, it will eventually reach its goal destination.
A primary goal of the vision system is to verify if a milestone location has been
successfully reached. If the milestone has been achieved, the robot proceeds to the
next milestone. If not, the robot replans another path from its current location as
determined from the computation of its pose. Since a milestone may not be reachable
because of some unmodeled obstacles in the scene, another task of the vision system
is to detect unmodeled obstacles.

Figure 1.1 shows a block diagram of the flow chart for milestone verification. To
verify a milestone, the robot takes an image from its current location. 2D lines or
points are extracted from the image. These lines or points serve as the visual features
used for locating landmarks. From previous milestone verification and dead-reckoning
over the intervening motion, the robot is expected to be at a new location. Given
the expected pose of the robot, a set of visible landmarks are predicted. A selection
procedure chooses the optimal set of visible landmarks to be used for the milestone
verification step. These 3D landmarks are projected using the expected pose to
create a 2D model data set. Correspondences are then established between the 2D
model and extracted image features. Given these correspondences as input, the pose
determination algorithms developed in this thesis return the location and orientation
of the robot. This completes the sensory feedback loop for milestone verification. The
first set of algorithms developed in this thesis are for robust determination of robot
location and orientation.

The experiments reported herein have used the output of two different matching
algorithms. The first matching technique is based on local search and was developed
by Beveridge et. al. [8]. The second technique uses optic-flow based token tracking
and was developed by Williams et. al. [76]. The matching algorithms produce a lhist

of correspondences between 3D model features and 2D image features. Some of the
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Figure 1.1: Block Diagram for Milestone Verification.



correspondences returned by the matching algorithms may be wrong and therefore
the pose determination process must be insensitive to these matching errors.

In this framework, a key step for navigation is milestone verification. For the robot
to verify a milestone, however, it need not have a complete map of the environment.
The process of navigation can be begun with a partial map of the environment.
However, as the robot explores the environment, it is desirable to enhance the initial
map. Also, the initial model may contain errors and these too should be refined over
time. Finally, as noted above there may be unmodeled obstacles in the robot’s path;
these must be detected and their locations returned to the planner to replan a path
around them. This leads us to the second set of algorithms developed in this thesis;
those for model extension and refinement. The initial partial model is used to develop
a more complete model of the environment over time; in the process, the initial model

1s also refined.

1.2 Thesis Outline

Each of the next four chapters is self-contained with its own literature survey
and a results section with extensive experiments reported on both simulated and real
data. Each consecutive chapter builds upon and uses the theories and algorithms

developed in the previous chapters.

1.2.1 Pose Determination: Least-Squares Approach

Chapter 2 presents techniques for determination of pose using least-squares meth-
ods. The pose determination problem is defined as follows: “Given correspondences
between 3D lines (or points) in the model and 2D lines (or points) found in the image,

find the rotation and translation matrices which map the world coordinate system



to the camera coordinate system.” Most existing techniques minimize the sum of
squares of a non-linear error function. The goal is to find the pose which best aligns
the perspective projection of the 3D model with the image data. Previously developed
techniques solved for rotation first and then translation (“R-then_T”). In Chapter 2
a new least-squares algorithm called “R_and_T” is developed which simultaneously
solves for both rotation and translation; this algorithm performs much better than
“R-then_T”.

In the case of line token data, it is assumed that end-points of image lines cannot
be reliably extracted. This gives rise to two different sets of error functions: the first
aligns a model line segment with an infinitely extended image line while the second
aligns an image line segment with an infinitely extended model line. We show in the
experiments that if there is significant line fragmentation (which produces unreliabil-
ity in the end-point estimate), then the “infinite model line” method performs much
more better than the “infinite image line” method.

Both of the above algorithms are iterative in nature and require initial estimates
of the rotation and translation matrices. However, experiments show that there is
rapid convergence even with significant errors in .the initial estimates. These initial
estimates can be obtained in several ways. In the case of autonomous navigation, for
example, we usually know an approximate pose of the robot from the last verified
robot pose and dead reckoning. In those cases where such data is not available, it is
possible to sample the rotation space and use the different sample points as initial
estimates for the “R_then_T” algorithm. The output estimates from the different
“R_then_T” runs are fed into the “R.and_T” algorithms and the best fitting pose
chosen as the final answer. Hence, the pose determination process can be boot-
strapped by selecting initial estimates from a regular sampling of the space of all

orientations.



1.2.2 Robust Pose Determination: Outliers

 Visual processes have often been modeled in a parameter estimation paradigm,
although rarely is the assumed model valid over the entire range of the visual data. A
central problem therefore is to know when the underlying process model breaks down.
Parameter estimation methods based on least-squares fitting break down when there
are gross errors or outliers in the data. In the pose determination problem, incorrect
correspondences or gross errors in the 3D model can give rise to outliers.

In Chapter 3, we investigate two different statistical techniques for the “robust”
estimation of pose with data having outliers. The first set of techniques, called M-
Estimation techniques, minimize non-convex functions of the individual residual er-
rors. The effect of large errors is bounded by saturating the minimization function.
Experimentally, the M-estimate methods seem to be susceptible to initial estimates
and are not able to handle a large number of outliers (a maximum of approximately
20%). However, there are efficient computational methods for minimizing the associ-
ated error functions.

The second set of algorithms developed are capable of performing correctly in
situations where the number of outliers is less than 50% of the number of data points.
Also, they are not as sensitive as the M-Estimate techniques to initial estimates.
These minimize the Least Median Square (LMS) of the residual error functions across
all landmarks. The LMS pose computed is used to detect and remove outliers, and
then a least-squares fit on the remaining data is used to obtain the rotation and
translation matrix estimates. These algorithms are computationally much slower than
those based on M-Estimation techniques. Using random subset selection methods, the

average time complexity of the LMS-based algorithms can be substantially reduced

with a minimal loss in robustness.



1.2.3 Model Extension and Refinement

An important problem in vision is to automatically build 3D models of objects.
The approach we have adopted in Chapter 4 is to first begin with a partial model and
to then extend and refine it by viewing the object over a sequence of frames. Both
modeled and unmodeled features of the object are tracked over the image sequence
by using an optic flow based token-tracking algorithm. Correspondences are obtained
between the modeled 3D features and their image projections. New features are
located by triangulation using the displacement of image tokens and the poses of the
object computed from model-image feature correspondences for a sequence of image
frames. The estimation of the new 3D points is done using both batch and sequential
Kalman filter based methods. New 3D points are located in four real data sequences
with average errors less than 1.7% . These results are far superior to those obtained
by the traditional structure from motion techniques employed in computer vision.
This supports the premise that prior knowledge of a partial model greatly extends
the robustness of the structure estimates.

The initial partial model may have errors in.some applications. We therefore
extend the pose determination techniques to optimize for errors in both the image
and model data. Triangulation is done using the poses computed by the extended
technique to obtain new measurements for both new and old model points. The new
measurements and old estimates are then combined using their respective covariance
matrices. This is essentially an exercise in data fusion and leads to both model

refinement and extension.

1.2.4 Sensitivity to Camera Parameters

Camera calibration is an important and difficult task in vision. The goal in camera

calibration is to make accurate estimates of intrinsic camera parameters such as focal
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length, image center, lens distortion, etc. Chapter 5 discusses how critical this task
is for the pose determination and model extension problems. We show that the
sensitivity to errors in various intrinsic camera parameters depends on the particular
3D inference to be made and the amount of noise in the system. In particular, for
“small” field of view imaging systems, incorrect knowledge of the camera center (or
“principal point”) fortunately does not significantly affect the determination of the
location of the robot camera or the location of new points in the world coordinate
system. However, the orientation of the robot is affected. The amount of error in
the orientation is linearly related to the error in the estimate of the center. These
results are extended to analyze the effect of center offsets on the structure from
motion problem. It is also shown that incorrect estimates of the focal length only
significantly affects the z-component (i.e. the component parallel to the optical axis)
of the translation in camera coordinates. |

Finally in Chapter 6, the main contributions of this thesis are summarized. We

also present open problems and propose future directions for research.



CHAPTER 2

LEAST-SQUARES METHODS FOR POSE
DETERMINATION

2.1 Introduction

This chapter mathematically analyzes and proposes a new solution for the problem
of estimating camera location and orientation (Pose Determination) from a set of
recognized landmarks appearing in the image. Given correspondences between 3D
lines (or points) and 2D lines (or points) found in the image, the goal is to find
the rotation and translation matrices which map the world coordinate system to
the camera coordinate system. Algorithms are developed for handling both 3D line
and 3D point landmarks. The line landmarks employed are real or virtual 3D lines
represented in a world coordinate system. A minimum of three pairs of point or line
correspondences are needed to solve the pose problem. In practice, however, many
more correspondences may be available and all of them should be used to obtain the
best possible estimate of the pose.

"This chapter presents a sequence of least-squares techniques to solve the pose
determination problem, each performing better than the previous one. The least-
squares techniques minimize non-linear functions, are iterative in nature and require
an initial estimate. For those cases in which an initial estimate of rotation and
translation is not available, techniques based on sampling the rotation space to provide

initial estimates are developed. Least-sciuares techniques are known to be sensitive

11
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to gross errors or outliers in the data; techniques based on robust statistics to handle
outliers are developed in Chapter 3.

The camera model assumed is perspective projection. Intrinsic camera parame-
ters, such as focal length, field of view, center of the image, size of image etc. are
assumed to have been estimated by a camera calibration procedure [19, 49, 73}. In
Chapter 5, the sensitivity of the pose parameters to errors in the intrinsic camera
parameters such as focal length and image center are studied.

A mathematical analysis of an uncertainty measure is developed, which relates the
variance in the output parameters to the noise present in the input parameters. This
analysis is used to compute a covariance matrix which represents the uncertainty in
the estimated pose parameters. In Section 2.6 and Section 4.2.1, results of Monte-
Carlo analysis over thousands of experiments are reported and the experimentally
derived covariance matrices are compared with the computed covariance matrix. In
certain scenarios there are strong prior expectations of the pose of the robot. For
instance, in the hallway domain, the height of the robot (the z-coordinate of the sensor
location vector) changes very little over a sequence of frames. The prior expectation
can be captured by an initial estimate with an associated prior covariance matrix.
An extended Kalman filter combines both the new measurements and the initial
estimate weighted with its covariance matrix to obtain new pose estimates. For the
experiments and analysis in this chapter, it is assumed that there is no noise in the
3D model data and the only input noise is in the image data. In Chapter 4, the pose
determination algorithm is extended to handle errors in the model.

The remainder of the chapter is organized as follows: Section 2.2 discusses the ge-
ometry of perspective projection and the rotation and translation constraints. Section
2.3 critiques previous approaches and motivates our approach. Section 2.4 presents

the least-squares non linear technique and solution methods for situations when there
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is no good initial estimate. Section 2.5 presents results for the pose algorithms using
point data and Section 2.6 presents results using line data. For real image data results
are presented for environments in which the landmarks are on the order of hundreds
of feet distant from the camera. For point data more results are also presented in
Chapter 4. Appendix A discusses various representations for rotation and motivates

the particular choice of quaternions for large rotations and the 3D rotation vector for

small angles.

2.2 Rotation and Translation Constraints

In this section, the basic constraints for pose determination are developed. Given
correspondences between 3D lines (or points) and 2D lines (or points) found in the
image, the goal in pose determination is to find the rotation and translation matri-
ces which map the world coordinate system to the camera coordinate system. The
constraints developed in this chapter relate the rotation and translation parameters
to the 3D model line (or point) coordinates and the corresponding 2D image line (or
point) coordinates. These constraints are used in Section 2.4 to develop the objec-
tive functions, which are minimized to find the optimum pose parameters given noisy

input data.

2.2.1 Pose Constraint for Points

Points in 3D space are represented by 3D vectors . Lines in 3D are represented
by two end-points p; and p,. The unit vector corresponding to the direction d of
the 3D line is determined by subtracting the two end-point vectors. The rigid body
transformation from the world coordinate system to the camera coordinate system

“can be represented as a rotation (R) followed by a translation ('f) The point p'in
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world coordinates gets mapped to the point . in camera coordinates. The mapping
is given by:

f.=RF)+T (2.1)

In this equation, except for the rotation R, all the terms are column vectors with 3
components each, referred to by the subscripts x, y and z. R is the rotation operator
and can be expressed in many ways, e.g. orthonormal matrices, quaternions, axis
and angle, etc. The various representations for rotation are discussed in Appendix A.
Based on the discussion there, quaternions were chosen to represent large rotations
and 3D vectors chosen for small rotations.

Figure 2.1 shows the camera and world coordinate systems with X,,, ¥, and Z,
representing the axes of the world coordinate system. O is the optical center of the
lens and also the origin of the camera coordinate system OX,.Y.Z.. OZ, is the optical
axis of the camera. In equation (2.1) the translation vector T represents the location
of the origin of the world coordinate syétem in camera coordinates. Equation (2.1) can
be rewritten to map points in the camera coordinate system to the world coordinate
system:

F=FR'(.)+ T, (2.2)

In this equation, RT is the inverse of the rotation operator (transpose if rotation is
expressed as an orthonormal matrix) in equation (2.1). “T.," represents the location
of the origin of the camera coordinate system in world coordinates. “T,” is related

to “T” by the following equation:
T, = —RY(T) (2.3)

The 3D line “AB” in (Figure 2.1) projects to the image line “ab”. Image points

I,J are represented by 2D vectors. A 3D point p. projects to an image pixel T by the
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Figure 2.1: Perspective projection of image lines.

following equations:
De= Pcy
I.=s.— I,=3s,~—~ 2.4
b T (2.4)

where s, and s, are the scale factors along the “X” and “Y” directions respectively.

They are related to the field of view angles ¢., ¢, and the image size N, (number of

rows) and N, (number of columns) by:

N, ¢z
Sp = — cot(-2—

N, y
5 ) sy = TCOt(%) (2.5)

Using equations (2.1) and (2.4) the constraint equations for the pose parameters

given point correspondences are:

_ _(Rp+T).
I,=s, (R + 1. .(2.6)
5, (BE+T), (27)

= Sy - =3
(Rp+T).
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Each point correspondence gives two constraint equations. The “x” and “y” coordi-
nates of the projected model point must equal the “x” and “y” coordinates of the
measured image point, respectively. In Section 2.4, this constraint is used to develop
an objective function given point correspondences as input. The objective function

is minimized to find the optimal pose parameters.

2.2.2 Pose Constraint for Lines.

In the case of line correspondences, it is assumed that model and image line
end-point correspondences cannot be established. Constraint equations for the pose
parameters can be developed in two ways. In the first case (“Infinite Image Line”) a
model line segment is aligned with an infinitely extended image line, whereas in the
second case (“Infinite Model Line”) an image line segment is aligned with an infinitely

extended model line.

The “Infinite Image Line” Case

In the “Infinite Image Line” case an image line is represented by its (p, §) param-

eters. Any image point (I, I,) on the i’th line must satisfy the following equation:
I.cosf + Iysinf=p (2.8)

Substituting I, and I, from equation (2.4) into equation (2.8), the equation of the

projection plane formed by the image line and the optical center is obtained :

(82 o8 0)per + (8y5in8)pey — pPe:
pcz

=0 (2.9)

In Figure 2.1 , the projection plane formed by the image line “ab” is given by
the plane “Oab” and the 3D line “AB” must lie in this plane. The normal N to the

projection plane is given by:

N = (sgcos0,sysin8, —p)7 (2.10)
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Using equations (2.1) and (2.10), equation (2.9) can be rewritten as follows:
N-(R@+T) _ 0
(R(p) + T).

This equation is the basic constraint for the “Infinite Image Line” case. The

(2.11)

projected model end-point must lie on the infinitely extended image line. If the
denominator is dropped and the vector N made into a unit vector N, the equivalent
3D constraint is formulated:

N-(RE)+T)=0 (2.12)

The 3D constraint represents the fact that any point on the 3D line in camera coor-

dinates ideally must lie in the projection plane. The vector formed from the origin

(optical center) to this point must be perpendicular to the normal of the projection
plane.

These constraint equations (2.11 and 2.12) relate both rotation and translation

pose parameters to the 3D model and 2D image coordinates. A separate constraint

involving just rotation was formulated by Liu et.al. [53):
N.Rd)=0. (2.13)

The constraint reflects the fact that the 3D line must lie in the projection plane formed
by its corresponding image line. Rigid body transformation can be represented as a
rotation followed by a translation. Since translation does not change the direction
of the line, the direction of the 3D line after rotation in equation (2.13) must be
perpendicular to the normal of the projection plane of the image line.

From the constraints represented in equations (2.12) and (2.13), two algorithms
have been developed to solve for rotation and translation. In the first algorithm
(“R-then_T”) the constraint in equation (2.13) is used to solve for rotation. Then the
rotation result returned from this step is used in conjunction with equation (2. 12) to

solve for translation.
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In the second algorithm (“R.and_T”), only equation (2.12) is used and both rota-
tion and translation are solved for simultaneously. For each line, the two end points
must satisfy equation (2.12). The tables in Section 2.6 will show that “R.and.T”
performs much better than “R_then.T”. Finally, a third algorithm (“R-and_T.img”)
is developed which uses the image-based constraint equation (2.11) instead of the 3D-

based constraint equation (2.12) to solve for rotation and translation simultaneously.

The “Infinite Model Line” Case

In the “Infinite Model Line” case, an image line segment is aligned with the infinite
extension of a projected model line. The (p, #) parameters in the line equation (2.8)
are now used to represent the infinite extension of the projected model line!. The
image line end-points (I and I3) must lie on this projected model line and satisfy
equation (2.8).

Expressions are derived for (cos(8),sin(f) and p) in equation (2.8) in terms of the
model end-points (py, p») and the pose (R, T). J; and J, are the image projections of
the 3D model line end-points (p; and p,). The expressions for (cos(§),sin(8) and p)

for the image line between (J_; and J;) are:

cosf = (J2y — J1y)
g \/((le - J2z)2 + (Jzy _ le)z) (214)
sin = (le - JZ::)
’ \/Z(le — Joz)? + (J2y — J1y)?) (2.15)
p = (VraJay = Jaadry) 16

V((Fie = o) + (J2y — J1y)?)

The projections of the 3D model line end-points into the image plane points (J~1

and J;) are given by equations (2.6) and (2.7). Substituting these expressions for

IThis is in contrast to the “Infinite Image Line” case where the (p,d) parameters in equation
(2.8) were used to represent the image line.
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points (Ji,J) into the equations for (cos(d),sin(f) and p) and using equation(2.3)
the following is obtained:

1

cosf = ——r(R(F - T,,) x R(F: — To))e (2.17)
: 1 . A ~ A
sinf = (R(p2 — Tw) x R(Pr — Tw))y (2.18)
syM
1 L = -
p = _’M‘(R(Pl’ - T,) x R(pr — T)): (2.19)

where the vector A and scalar M are defined as follows:

A = R(p,-T.,) x R(p: — T) (2.20)
M= IS+ ) 2.21)

The line equation (2.8) can be rewritten as the dot-product of two vectors:
(Iz,1y,1) - (cosb,sin 8, —p) = 0.0 (2.22)

We now define vector B corresponding to the projection ray from the focal point

to an image point I as:
B = (ﬁ, ﬂ’ 1)T (2.23)

Sz Sy

Using the above definition and substituting equation (2.17), (2.18) and (2.19) into

the line equation (2.22) the “Infinite Model Line” constraint equation becomes:

—(B - R(5y ~Tu) x Rz - T) = 0 (2:24)
or
ARTB (7~ Ta) x (R~ Ta) = 0 (225)
or
%(RTB‘ (Faxpr+Twx(B2—F1)) = 0 (2.26)

For each image line end-point, the constraint equation (2.26) is developed. It
represents the constraint that the image line end-points fl,fz must lie on the pro-

jection of the 3D model line. From this constraint, another least-squares algorithm
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(“R-and_T.mod”) is developed in Section 2.4 for computing the pose parameters given
line correspondences. In Section 2.6, it is shown that algorithm (“R-and_T.mod”)
performs more robustly than algorithm (“R.and_T_.img”) when there is significant

line fragmentation in the image data.

2.2.3 Minimum Number of Lines/ Points.

Both rotation and translation in the 3D world can be represented by three param-
eters each. Each line or point data gives us 2 constraint equations (2.6,2.7). Thus,
a minimum of three lines or points are needed. However, in many cases, with three
lines or points, there is no unique solution. If the three lines are parallel in 3D space
or lie on the same projection plane, then an infinite number of solutions can be found.
If the three lines meet at a common point in 3D space, then there are two solutions
for rotation (the Necker cube phenomena) and an infinite number of solutions for
translation.

In general, there are eight possible solutions for the 3 point or line case, four of
which correspond to the 3D points lying in {ront of the camera and four corresponding
to the 3D points lying behind the camera. The fact that there are eight possible
solutions for the three line case can be seen by representing the rotation operator
in equation (2.13) as quaternions. Let the directions of the 3 lines in the world
coordinate space be d-;,(fg,ci;, respectively. Representing the rotation operator R in
equation (2.13) by the quaternion g (see Appendix A), the following three equations

can be written:

Ny-(godiogq) = 0 (2.27)
N,-(godyoq”) = 0 (2.28)
N;-(godsog’) = 0 (2.29)

Since quaternions are 4-tuples, each of these equations is a second degree polynomial
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equation with four unknown variables. Due to the fact that quaternions must be a
unit vector, a fourth polynomial equation of degree two (Equation (A.8) in Appendix
A) can be written. From elementary algebra, it is well known that a system of four
second degree equations in four variables can have a maximum of eight solutions.
Thus, for the three line pose problem using only line direction information, there are
a maximum of 8 solutions. The same result holds for the three point case because
three lines can be drawn between the three points. However, another property of
the imaging process is that the viewed scene must lie in front of the camera. If this
constraint is enforced, that then the three line/ point pose problem has a maximum of
four solutions [16, 23, 29, 36]. Wolfe et. al. [78] also provide geometric explanations

for 3 point configurations that cause 1, 2 or 4 solutions.

2.3 Previous Work

The problem of “pose determination” has been referred to by various other names
including “exterior orientation”,“determination of camera location and orientation”,
“pose refinement”, “perspective inversion” and “model alignment”. There have been
many papers on pose determination, but most assume only point data is available;
only a few have presented techniques for line data. Previous work can be classified
into three categories: (1) Special configurations, (2) Three (minimum number) lines/
points, and (3) Arbitrary set of lines/ points. A related problem to pose determination
1s “camera calibration” or “interior orientation”. The last subsection of our review
will briefly discuss some of these methods and their relevance to pose determination

techniques.
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2.3.1 Special Configurations

The first category includes papers which deal with pose determination from spe-
cial configurations of landmarks such as cubes, rectangles, crosses etc.. For instance,
Kite and Magee [40] present algorithms for pose determination from rectangular land-
marks. Tseng et.al. [74] determine the pose of a mobile robot in 3D space from a
single 2D image of a cube. They derive initial estimates from a vanishing point analy-
sis. The estimated pose is then refined using the constraints imposed by the structure
of the cube. Paquette et.al. [62] determine the orientation of a robot given the image
projections of a set of three orthogonal lines in 3D space. However, this kind of work

is not extensible to an arbitrary set of landmarks and therefore is not very useful to

us.

2.3.2 Three Line/ Point Correspondences

A fair amount of research has been done on the problem of finding closed form
solutions for the pose problem using the minimal set of three lines or points. The
goal is to find computationally efficient techniques which are robust with respect to
noise. The first known solution for the three point pose problem? was obtained by
a German photogrammetrist in 1841 {27, 29]. Fischler and Bolles [23] were among
the first in the computer vision literature to provide a closed form solution for the
pose problem using three pairs of point correspondences. They solve for the “legs”
of the points (the lengths of rays from the optical center of the camera to the points
in 3D space). The closed form solution they present is quite complex and involves
solving a quartic equation. Linnainmaa et.al. [52] provide another solution for the
three point pose problem. Their solution involves solving an eighth order equation.

Recently, Haralick et.al. [29] have done a comprehensive survey of six different ‘tech-

?Referred to in the photogrammetry literature [77] as the “three point space resection problem.”



niques (including the above two) for the three point pose problem. They compare the
six techniques with respect to numerical stability and robustness towards noise, finite
word lengths etc.. Each of the methods reduces the problem to solving a polynomial
equation in one variable. Those methods which require solving smaller degree poly-
nomial equations rather than larger degree equations perform better. For instance,
Fischler et.al.’s [23] technique which solves a quartic equation performs better than
Linnainmaa et.al.’s [52] technique, which requires that an eighth order equation be
solved. Haralick et.al. [29] also report that for similar degree equations “depending
on the order of substitutions realized to obtain the equation, the relative error can
change over a thousand to one”. Their analysis technique guarantees obtaining a
method which provides stable solutions.

In the case of lines, Horaud [36] devised a closed form solution for 3 line segments
meeting at a point. Like the solution of Fischler et.al. [23] for the three point case,
Horaud must solve a quartic equation. Dhome et.al. [16] find a solution for a general
set of three lines. Their solution involves solving an eighth order equation.

In the literature, two advantages are given for devising methods to compute pose
which use the minimum size set of three pairs of. line/ point cofrespondences. The
first advantage is that initial estimates are not needed, since it is possible to develop
closed form solutions. It was noted in the previous section that there is a maximum
of four possible solutions for an input set of three line or point correspondences. Note
that in ensuing sections, techniques are developed for an arbitrary configuration of
lines/ points which likewise do not need initial estimates. The techniques depend
on sampling the rotation space to find initial estimates for rotation, from which the
initial estimate of translation can be determined. Thus, while these techniques do
not have a closed form solution, they share some advantages of those that do.

The second advantage in using solutions to the three point pose problem is that
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these methods are typically used in conjunction with a matching algorithm. Using
a small size input set for pose estimation reduces the computational complexity of
the algorithm. For instance, two common techniques used for matching are Hypothe-
size/ Verify and the Hough Transform. In the Hypothesize/ Verify procedure [54], a
pose computed from an hypothesized seed set of three line/ point matches is used to
extend the match. Using the computed pose, if a sufficient number of plausible and
consistent correspondences can be found, then the match has been verified; otherwise
another triplet is used to hypothesize the next pose. In Hough-based techniques [52],
poses computed from all possible sets of correspondences of line/ point triplets are
clustered in the pose-space. Viable matches correspond to peaks found in this space.
In either matching technique, the combinatorial complexity is reduced by using just
the minimal set to compute the pose.

However, there is a need for pose estimation techniques which work with an ar-
bitrary configuration and number of lines/ points. First, at the end of the matching
cycle there will typically be many more than three correspondences available and
all of them should be used to obtain the best possible estimate of the pose. Sec-
ond, based on experiments discussed further in Chapter 4, it seems doubtful whether
“cood enough” poses can be generated in noisy situations by using just a subset of
3 line/ point correspondences. In Chapter 4 this point plays an important part in

selecting the parameters of the median-based robust algorithm.

2.3.3 Arbitrary Number of Line/ Point Correspondences

No closed form solution has yet been found for the general pose problem with an
arbitrary set of lines/ points in an arbitrary configuration. Most techniques minimize
non-linear error functions, are iterative in nature and require an initial estimate.

Iterative techniques for point data based on linearization of a non-linear error
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function are presented in the photogrammetry literature [77]. Wu et.al. [80] use
extended Kalman filtering to solve for the pose and motion of an object given point
correspondences from a matching algorithm. They track the pose of the object over
a sequence of frames and have as their state vector both the position and motion of
the object. Their dynamic model assumes that the velocity of the object remains
constant. Mitchie et.al. [59] use constraints based on conservation of distance under
rigid body transformation to solve for the length of the “legs” of an arbitrary set
of points. Once the points have been located in the 3D camera coordinate system,
the pose can be computed by employing a simpler absolute orientation (3D-3D pose)
algorithm. This technique is employed by them to solve the related problem of relative
orientation between two camera coordinate systems (structure from motion) given
correspondences between points in the two image frames. However, their method
involves minimizing a non-linear error function with as many variables as the number
of points. In contrast, the techniques presented here solve directly for the six pose
parameters and the dimension of the error function does not increase with the number
of lines/ points.

Some researchers [8, 76] have examined the u'se of image lines as an alternative
to point data; the idea is that lines provide a more stable image feature to match.
It is assumed that line end-points cannot be reliably extracted and hence end-point
correspondences cannot be established. This has led to the formulation of two sorts
of constraint equations for pose determination: the “Infinite Image Line” case and
the “Infinite Model Line” case. Constraint equations for both these cases were de-
veloped in Section 2.2. In the “Infinite Image Line” case, a model line segment is
aligned with an infinitely extended image line, whereas in the “Infinite Model Line”
case extracted image line segments are aligned with infinitely extended model lines.

Beveridge et.al. [8] report that, in the case of a 2D-2D pose problem, if extracted
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image lines have significant line breaks, then the “Infinite Model Line” algorithms
perform much better than the “Infinite Image Line” algorithms. In Section 2.6, we
report similar results for the 3D-2D pose problem.

Liu, Huang and Faugeras present a solution to the “camera location determina-
tion” problem which works for both point and line data [53]. Their constraint is based
on the “Infinite Image Line” case and on the observation that three-dimensional lines
in the camera coordinate system must lie on the projection plane formed by the cor-
responding image line and the optical center. Using this fact, constraints for rotation
can be separated from those of translation. Equations (2.12) and (2.13) express these
constraints. They first solve for the rotation and then use the rotation result to solve
for the translation. Two methods are suggested to solve for the rotation constraint.
In the first method, rotation is represented as an orthonormal matrix and a smallest
eigenvalue based solution technique is presented. However, the six orthonormality
constraints for an orthonormal matrix are not enforced. It is not clear how they
would find the nearest orthonormal matrix to the matrix their algorithm returns,
and whether that would be a solution to the original problem. The second method
represents rotation by Euler angles and is a non-linear iterative solution obtained by
linearizing the problem about the current estimate of the output parameters. The
translation constraint is solved for by a linear least-squares method. Liu, Huang and
Faugeras extend their technique to point data by drawing virtual lines between pairs
of ‘points [53]. They use the same rotational constraint; however, the translation
constraint is different from that for lines.

Lowe [54] presents iterative techniques for both point and line data. His camera
model is an approximation to perspective projection and therefore the solution pre-
sented in his book is not applicable to our problem of camera location determination,

where the typical scenes that we consider have landmarks spread over a large range
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in depth. For line data, the solution presented in his book is based on the “Infinite
Image Line” case. However, in his recently published papers [55, 56], the camera
model adopted is the exact perspective projection and the error functions minimized
are based on the “Infinite Model Line” case. Lowe’s current least-squares technique
for pose estimation is very similar to ours, although the two pieces of work were done
independently. His papers, however, do not discuss the relative merits of the “Infi-
nite Model Line” based error functions versus the “Infinite Image Line” based error
functions.

In [56], Lowe presents techniques for stabilizing the iterative minimization method
for “near singular” data sets. Lowe also integrates matching and pose estimation. His
matching technique is based on the Hypothesize/ Verify paradigm discussed earlier.
Based on smoothness of motion, image lines are predicted in the next frame and
potential matches are weighted by their Mahalanobis Distance from the image pre-
dictions. The final matches are computed by a best-first tree search with the pose
being computed at each node of the search tree [55].

Worrall et.al. [79] present a least-squares technique for line data which minimizes
an error measure derived from the “Infinite Imagé Line” constraint equation (2.12).
They compare results with one of Lowe’s solutions and report similar performance.
However, they represent rotations as Euler angles and use a different non-linear tech-
nique from that presented here. They also do not handle outliers or provide a math-

ematical analysis of the errors.

2.3.4 Camera Calibration

It is important to draw the distinction here between techniques for “camera cal-
ibration” [19, 49, 73], also called “interior orientation”, versus the techniques for

“camera location determination”. Camera calibration techniques solve for intrinsic
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camera parameters (such as focal length, image center, lens distortion) along with the
pose parameters (rotation and translation). The techniques for camera calibration
require very precise image measurements and are less tolerant to noise. Pose deter-
mination techniques are less susceptible to image noise but one needs to know the
intrinsic camera parameters. In Chapter 5, the effect of errors in the intrinsic camera
parameters on the pose determination problem is studied.

Ganapathy [25] presents a linear closed form solution for point data. In addition
to solving for the rotation and translation parameters, he also solves for the center
of the image and scaling along the “x” and “y” directions in the image. We have an
implementation of his technique and find it extremely susceptible to noise, probably
due to the use of a linear least-squares minimization where it is assumed that all the
parameters are independent when they are not. Faugeras et.al. [19] have come up
with a technique to solve a similar system of equations with appropriate constraints
and report better results. Tsai et.al. [73, 49] have also developed state of the art
camera calibration techniques. They assume that the lens distortion is mostly radial
and solve for the lens distortion parameters and the pose parameters using a radial
alignment constraint equation. The image center and the relative scale along the im-
age “x” and “y” axes are solved for separately using a variety of special methods [49].

For their technique to work image points must be located within 0.1 pixel accuracy.

2.3.5 Our Approach

The first algorithm developed in this thesis is called “R_then_T” and is similar to
the line based algorithm developed by Liu et.al. [53]. First, rotation parameters are
solved for by minimizing an error function based on the “Infinite Image Line” con-
straint equation (2.13). The rotation estimate obtained is used to minimize an error

function based on equation (2.12) to solve for translation. However a different non-
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linear technique from Liu et.al. is used for the minimization process. The technique
used was adapted from one used by Horn [35] to solve the problem of relative orienta-
tion (also called structure from motion). It is based on the Gauss-Newton method for
minimizing non-linear functions. We believe that the application of Horn’s technique
gives us much better convergence properties than Liu’s solution using Euler angles.

One of the results of this thesis is that decomposition of the solution into the
two stages, of first solving for rotation and then for translation, does not use the set
of constraints effectively [47]. This same observation was made by other researchers
working on the structure from motion problem [57]. The rotation and translation
constraints (refer to equations (2.12, 2.13)), when used separately, are very weak
constraints. When solving for them separately, small errors in the rotation stage are
amplified into large errors in the translation stage. This is particularly true with the
large distances of the landmarks from the camera in our application. Much better
noise immunity is obtained if both rotation and translation are solved for simultane-
ously. That is the approach adopted here. Using Horn’s technique, another algorithm
(“R-and_T") was developed to solve for the rotation and translation simultaneously.
Section 2.6 presents results that show algorithm .“R_and-T” performs much better
then “R_then T”.

For the techniques developed in this chapter, the major source of noise in the input
data is assumed to be gaussian noise in the image measurements®. The algorithms
“R_then_T” and “R._and_T” minimize error functions which lie in the 3D projection
plane and they also give more weight to lines whose end-points are further away
from the camera. Therefore the “R_and.T” technique described above is modified
to use equation (2.11) instead of equation (2.12) to develop the objective function.

The resulting algorithm, called “R_and.T_.img”, based on the “Infinite Image Line”

3In Chapter 5, pose determination techniques are developed where significant noise is assumed
to be in both the image and model data.
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constraint equations, minimizes the sum of squares of the perpendicular distances
in the image plane between projected model end-points and the infinitely extended
image line. This does not give more weight to distant lines, and also the error terms
for each line is weighted by the inverse of the standard deviation of the expected
image noise for optimal estimation.

Another algorithm “R_and_T_mod” is developed which minimizes an error func-
tion in the image plane based on the “Infinite Model Line” constraint equation
(2.26). In contrast to “R_and_T_img”, algorithm “R_and_T_mod” minimizes the sum
of squares of the perpendicular distance from the image line end-points to the in-
finitely extended projected model line. Section 2.6 presents results that show algo-
rithm “R_and_T_mod” performs significantly better than “R_and_T_img” when there
are lots of line breaks in the input image data. This is because image line breaks
cause the alignment error from model end-point to the infinitely extended image line
to be magnified, whereas the perpendicular distances from image end-point to the pro-
jected model lines are not so severely affected. If there is not significant noise along
the length of the image lines (i.e. not severe line breaks) then the two algorithms
perform comparably.

All the above algorithms are iterative and require initial estimates. “R.and_T”,
“R.and_T_img” and “R.and_T_mod” need initial estimates for both rotation and
translation while “R_then_T” needs initial estimates just for rotation. For appl-
cations, for which no initial estimate is available, an algorithm is developed which
samples the rotation space to provide initial estimates for the “R_then_T” algorithm.
The output of this algorithm is then used as initial estimates for the “R_and.T_img”
or “R.and_T_mod” algorithms. The sample which results in the smallest alignment
error is returned as the best estimate. In practice, it is found that 12 initial samples

of the rotation space suffice to find the optimal estimate.
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A mathematical analysis of an uncertainty measure is developed which relates the
variance in the output parameters to the noise present in the input parameters. In
our experiments, it is assumed that the noise is the same for all lines. Given the input
noise variance, the covariance matrix of the output parameters is computed. Results
of Monte-Carlo analyses over thousands of experiments are reported in Section 2.6
and Section 4.2.1 and the experimentally derived covariance matrices are compared
with the computed covariance matrix.

In certain scenarios there are strong prior expectations of the pose of the robot.
For instance, in the hallway domain, the distance of the robot camera sensor from the
floor is fairly constant over multiple frames. This prior expectation can be captured
by an initial estimate with an associated prior covariance matrix. It is shown that this
prior information about the pose estimate can easily be incorporated into the system
of equations developed by the non-linear minimization technique used in this thesis.
Effectively the optimization technique corresponds to an extended static Kalman filter
where both new measurements and the initial estimate weighted with its covariance
matrix are combined to make the new pose estimates.

Finally, the techniques and mathematical a,nalysis developed in this chapter ap-
ply equally well to 3D/2D point data. In the point case, the total error between
the projection of the model points to the extracted image points is to be minimized.
In section 2.4, an objective function based on the constraint equations (2.6,2.7) is
developed for point data. This function is minimized in the same manner as the opti-
mization -technique used for line data. Both rotation and translation parameters are
solved for simultaneously and the algorithm is refered to as the “R_and_T” algorithm
for points. The line and point algorithms can be extended to deal with combinations
of point and line data. Similar comments can be made regarding the use of Point

data as were made for lines. For example, solving for rotation and translation si-
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multaneously instead of separately gives much better results. Comparatively, a point
algorithm using “n” points seems to be more robust than the corresponding line al-
gorithm using “n” lines, although in any specific case, the results for both points and

lines depends on the particular data set available.

2.4 Least-Squares Solution Methods

Ideally, if there was no noise, the minimal set of constraint equations (2.6, 2.7)
or (2.11,2.26) for three sets of point or line correspondences respectively could be
used to solve for the unknown pose parameters. The correct pose parameters would
then cause perfect alignment between the projected model landmarks and the image
measurements. However, in practice, measurements are noisy and perfect alignment
cannot be realized. Therefore an objective function is minimized to find the pose
parameters. The objective function is typically some function of the alignment error
between the transformed model landmarks and image measurements. Most of the
objective functions constructed in this thesis are non-linear in nature. Therefore a
crucial factor in the choice of the objective function is the ability to construct suitable
minimization algorithms for it. Suitability of minimization techniques is gauged by
the following parameters: (1) speed of minimization, (2) convergence from a suitably
large distribution of initial estimates, (3) numerical stability of the algorithm with
respect to noise, finite length calculations etc..

In this section, a set of different objective functions for line and point data are
presented. The objective functions are sum of squares of a function of the alignment
error between each 3D model feature and its corresponding image measurement. To
optimally estimate the pose (rotation and translation) parameters, the error {or. each

landmark feature must be appropriately weighted based on the assumptions of noise in
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the measurement process. In the least-squares algorithms presented in this section, it
is assumed that the image measurements are corrupted with zero-mean independent

4

gaussian noise®. Thus the error terms corresponding to each image line or point

measurement are weighted by the inverse of the squared standard deviation of the

measurement noise.

2.4.1 Objective Functions for line data

The first set of objective functions developed is based on the line constraint equa-

tions (2.12) and (2.13):

Er = iwi(N;-R(J;))z (2.30)
B, = iwi(fve-(R(sz))’ (2:31)

i=1

If there was no noise, the normal of the projection planes formed using the image
lines would be perpendicular to the direction of the rotated model lines and thus the
cosine of the angle between them would be zero. Ep is the sum of squares of these
cosines. E, is the weighted sum-of-the-squares of the perpendicular distances from
the end-points of the 3D lines to their corresponding projection planes. For each line
two 3D end-points are used and therefore, each line contributes twice to the objective
function E;. In these equations, w; is the weight applied to the error for each line for
optimal estimation.

In the “R_-then.T” algorithm for line data, the rotation objective function Ep is
minimized to solve for rotation “R”. The estimated rotation is used to minimize the
objective function E; to determine the translation “T”  In contrast, the “R.and_T”
algorithm minimizes only “E;” to determine rotation “R” and translation “ i

multaneously. The particular non-linear iterative technique used to minimize these

1t is assumed in this chapter that the input noise in the 3D model is not significant.
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functions and the ones discussed below, is given in Section 2.4.1.. Objecfive function
E, is a 3D alignment error between model line end-points and the infinitely extended
image line. However, the significant noise is assumed to be in the image measure-
ments. Thus to optimally weight the error terms in E;, the weight terms w; must be
computed by reverse projecting the standard deviation value of the image noise onto
the 3D projective plane. A similar “optimal” objective function can more simply be
obtained by minimizing the sum of squares of the residual error function defined in

the image plane:

_& (N (RE)+ D)
=) ( (R(F)+ 1) ) (2:32)

This error function is based on the constraint equation (2.11). The resulting algorithm

i=1

which minimizes Ej is called “R.and_T_img”. The objective function® E, is the sum
of squares of the perpendicular distance between projected model end-points to the
infinitely extended image line. Figure (2.2) shows the above alignment error for one
line pair. E, is also a rational function and theréfore it is more difficult to optimize.
To minimize E,, at each iteration in our non-linear technique, the denominator term
(R(p;) + T')? for each point is held constant (see section 2.4.1). In the next iteration,
the denominator is updated with the new “R” and T Therefore, we are able to
employ the same algorithm as used for E,. This seems to work for all the cases the
algorithm has been run on. The same technique is applied for other error functions
which have a denominator term.

In contrast to E; and E,, which are based on the “Infinite Image Line” con-
straints given in equations (2.12) and (2.11) respectively, an objective function (E3)

is constructed based on the “Infinite Model Line” constraint equation (2.26):

hi 2 w': Iz' I y - - - —
E3 = Z Z M2 (RT(S_J) ?W_’ 1) * (Pzi - Tw) X (pli - w))2 (233)
i=1 j=1 1 z Yy

SNote in E; the normal vector N is not a unit vector. It is defined by equation (2.10).
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where fw and RT are the translation and rotation in the world coordinate system
(2.2). M 1s defined in equation (2.21) in Section 2.2. Ej is the sﬁm—of—the-squares of
the perpendicular distances of the end-points of the image lines to the projected model
line. Figure (2.3) shows the alignment error for one line pair. It is minimized by a
method similar to the techniques used for £; and E,; the algorithm which minimizes
E3 is called“R_and_T_mod”.

In Section 2.6, it is shown that algorithm (“R-and_T_mod”) performs more ro-
bustly than algorithm (“R.and-T.img”) when there is significant line fragmentation
in the image data. This is because of the difficulty in optimally weighting the er-
ror terms in the objective function E; minimized by algorithm (“R_and_-T_img”).
This can be understood by the discussion in the following paragraph on noise in the
measurement of image lines.

The noise in the measurement of image lines can be decomposed into two compo-
nents: noise in measuring the location of the image line end-points perpendicular to
the line and noise in measuring the location of the image line end-points along the
length of the line. We model the noise in locating the image line end-points perpen-
dicular to the length of the line as a gaussian random variable. However, it seems
intuitively not plausible that fragmentation of image lines i1s reasonably modeled as a
gaussian process. In fact, the noise in locating line end-points along the length of the
line seems significantly dependent upon factors such as the particular line extraction
algorithm used, the image contrast across the line length, intensity structures neigh-
boring the line in the image etc.. Thus it is difficult to develop a general model for
the noise in locating line end-points along the length of the line.

In algorithm “R_and_T_img” the error in aligning model line segments with in-
finitely extended image lines is optimized (objective function E,). In order to derive

the optimal weights for the error terms, the alignment error for each line must be
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approximated by a function of the measurement noise. If the model line segments
and the corresponding measured image line segments are of similar length, then the
perpendicular noise component in locating image line end-points reasonably approx-
imates the alignment error. However, if the model line segments are much larger or
smaller than the measured image line segments®, the alignment error can only be
“well” approximated by a function of both components of the noise in locating image
line end-points. This, as we noted earlier is very difficult to do. In contrast, in algo-
rithm “R._and_T_mod”, the objective function E3 optimized is the error in aligning
image line segments with infinitely extended model lines. The alignment error con-
‘sidered in this case depends only on the perpendicular noise component in locating
the image line end-points. Thus, to optimally weight the error terms in FEj it is not
necessary to know (or erroneously model) the measurement noise along the length of
the image lines. Note, in experiments reported in Section 2.6, for both algorithms
“R.and_T.img” and “R_and_-T_mod”, the weights used in the respective objective

functions are based only on the perpendicular noise components.

2.4.2 Objective Functions for point data

For point data, we could draw virtual lines between all pairs of points and then use
any of the line algorithms. This however would give us an objective function which
has O(n?) terms where “n” is the number of points. Instead the following objective

function based on constraint equations (2.6) and (2.7) has only O(n) terms:
n w: . B
E = —l—., S:,O,—Iiz'Rﬁi)'*'T 2+ 0,5,—],' : RIB‘%)'*'T 2)
= 3 s (o0 0, L) (R + T+ (0,50 =J) - (R(E) + )
(2.34)
E, is the sum of squares of the distance of the projected model point to the measured

image point in the image plane. E,; is again minimized by keeping the denominator

6Note, this would be the case when image lines are highly fragmented.
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(R(p; + f)f constant during an iteration and then updating it for the next iteration
using the new “R” and “T”. The resulting algorithm is refered to as the “R_and.T”
algorithm for point data.

‘Er, E,, E3, Eg and E,, are all minimized by modifying the same basic non-linear
technique. Therefore, only the technique for minimizing E; is presented in the next
section. For algorithm “R.then.T”, E, is minimized by a straight-forward linear
least squares algorithm. Appendix A discusses various representations for rotation
and motivates our particular choice of quaternions for large rotations and the 3D

rotation vector for small angles.

2.4.3 Non-linear Technique for “R_and_T”

To minimize “E,”, we adapt an iterative technique formulated by Horn [35] to
solve the problem of relative orientation. An initial estimate is required for both “R”
and “T”. The technique linearizes the error terms about the current estimate for “R”
and “T”. At each iteration, the linearized error function is minimized to determine
adjustment vectors for the rotation and translation terms. The iterative adjustments
are made to the rotation and translation terms until the objective function “E,”
converges to a minimum. Note that the algorithm, like all such descent algorithms,
doebs not guarantee a global minimum.

Assume we have a current estimate “R” for rotation. The coordinates 7; of a
rotated 3D point is given by p; = R(f;). An incremental rotation vector Sw is added
to the rotation estimate “R”; the direction of this incremental vector is parallel to
the axis of rotation, while its magnitude is the angle of rotation.

This incremental rotation takes p; to 7 :

-t

Pi =P +6wxp; (2.35)

This follows from Rodrigue’s formula [35] for the rotation of a vector r to 7' by angle
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“g” about the three dimensional axis vector “w”:
' = r(cos) + sinf(w x r) + (1 — cosf)(w - r)w (2.36)

where 6 = ||bw| and w = dw/||éw||
Let AT represent a small translation added to the current translation estimate

T. Thus, the linearized energy function about the current estimate “R” and wqm

becomes:
2n
E =Y wi(N; (5 + 6w x p; + T + AT))? (2.37)
t=1

Let b; = P: X N;. Using the chain rule of triple scalar product for vectors, differen-
tiating the objective function with respect to AT and 8w respectively, and setting the

results equal to 0, the following two equations are obtained after some manipulation:

2n 2n
Y wi(N; - AT + 6w - b;)N; = = 5" wi(N; - (57 + T)) N (2.38)
i=1 i=1
2n - - o o 2n - , - .
Zw;(N,- AT + bw - b,')b,' = — Zw;(N; . (]-)'i + T))b, (2.39)

i=1 i=1

Together, these two vector equations constitute 6 linear scalar equations in the 6
unknown components of AT and §w. They can be rewritten in the more compact
matrix form:
AT _ &
A [ ¥ ] -7 (2.40)
dw
In the above equation, A is a 6 x 6 matrix and f is a 6 x 1 vector. A and f are

defined in the following manner:

A = [FC"T g] (2.41)
F = [3] (2.42)

where C = 23:1 wiﬁ,’.ﬁg‘ D= Zf:l w,-g,-gg' F = 23:1 ‘LU.]V,I_:?
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while &= £ wi(N; - (7 + T))N;  and  d = £ wi(; - (57 + T))b:
Solving the above set of 6 linear equations gives a way of finding small changes
in rotation and translation that reduce the overall objective function. The algorithm

can therefore be expressed in the following four steps.

Step 1 Given an initial estimate for rotation “R” and translation “T» and a list of

correspondences between 3D modeled lines and their image measurements.

Step 2 Compute the coefficients of the matrices in equation (2.40). Solve the linear
system for AT and éw.

Step 3 Compose 6w with the current estimate R of rotation to get the new estimate.

Add AT to T to get the next estimate for translation.

Step 4 Stop if the algorithm has converged or has exceeded a maximum number of

iterations, else go back to Step 2.

The current rotation estimate “R” is represented as a quaternion. At each itera-
tion, the rotation increment bw is transformed into a quaternion and composed with
the current estimate to form the new rotation estimate [35]. The iteration procedure
is terminated when either a maximum number of iterations is exceeded or when the
difference in the result between two successive iterations is less than a pre-specified
minimum. The computational complexity of the algorithm is O(kn) where there are
“n” points or lines and “k” iterations are needed to converge to the optimal solution.

The covariance matrix Ap of the estimated pose parameters is related to the

coefficient matrix A (defined in equation 2.41):
Ap=A~"1 (2.43)

The above formula for the covariance matrix is only valid if the residual error terms

of the objective function are optimally weighted. The covariance matrix is computed
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using the final pose parameters estimated at the last iteration. The matrix 4 is known
as the information matrix. It becomes singular when there are an infinite number of
solutions e.g. a data set of less than three lines, all lines are parallel, all lines meet at
a point etc.. For these cases, incremental adjustments to the current pose estimate
cannot be computed. In Chapter 4, we will present an alternative method to derive

the expression for the covariance matrix.

Performance of the Non-linear Algorithm

The non-linear algorithm described above requires the user to specify an initial
estimate for translation and rotation. How close the initial estimate must be to
the final values, in order to ensure convergence, depends on the particular data set.
The algorithm seems to converge for initial estimates which differ considerably from
the correct solution. Generally, the rotation estimate is more important than the
translation estimate. For some data sets, convergence seems to be almost independent
of the starting point; for others the initial rotation estimate must be within 40 degrees
for all the three Euler angles representing the rotation.

Another important question asked about non-iinear iterative algorithms is speed
of convergence. In our experiments, for “good” data sets of about 10 or more lines,
the algorithm typically converges in 3 or 4 iterations for initial estimates that may
be more than 40 degrees off in rotation and 100 feet off in translation. For instance,
Figure (2.4) shows an initial set of input image lines used for an experiment to demon-
strate the convergence properties of the above minimization technique. Figure (2.4)
is the first frame of a set of outdoor images on which the pose algorithms were tested.
Figure (2.5) is the projection of the model using the initial estimate of the pose pa-
rameters. The initial estimate is off by more than 100 feet in translation along the

“walkway direction, 20 feet under the walkway in the vertical direction and about 15
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degrees off from the axis for rotation. Figure (2.6) shows the projection of the model
using the estimate of the pose parameters obtained after the first iteration. The pose
is now within 10 feet of the correct answer. Figure (2.7) shows the projection of the
model using the estimate of the pose parameters after the second iteration; the pose is
now almost correct. The algorithm converges in the third iteration and the projection
using the final estimate is shown in Figure (2.8). Note that in Figure (2.8) additional
model lines have been projected to show the accuracy of the final projection.

Finally, for certain near singular data sets, it is possible that the technique can
diverge rather than converge. Iterative minimization techniques can be looked upon
as moving in a multi-dimensional space, searching for the bottom of the nearest
valley. Ideally, at each iteration or move, the function value would decrease until the
valley bottom is reached. The Gauss-Newton minimization method adopted here is
a second-order technique. Second-order methods have the property of extremely fast
convergence under normal conditions. Unlike first-order (or gradient based) methods,
they are not guaranteed to descend in every iteration.

For the near singular cases where the technique might diverge, a simple solution ex-
ists to guarantee convergence. This solution is motivated by the Levenberg-Marquardt
method [64] for minimizing non-linear functions and its application to this minimiza-
tion technique for pose was first noted by Lowe [56]. The Levenberg-Marquardt
method combines first- and second-order methods. At any current iteration, the in-
crement is first calculated by second-order methods. If the new estimate causes the
objective function to increase, then the increment is re-estimated by adding a compo-
nent of the gradient to the old estimate of the increment. Note that moving along the
gradient guarantees descent and hence convergence. But gradient-descent algorithms
are slow to converge. The Levenberg-Marquardt method attempts to combine the

best of both methods by moving along directions close to the gradient only if moving
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Figure 2.4: Image Lines for Out- Figure 2.5: Projection of model
door Frame 1 used for conver- using initial estimate for con-
gence experiment. vergence experiment.

Figure 2.6: Projection of model Figure 2.7: Projection of model
using estimate after first iter- using estimate after second it-
ation for convergence experi- eration for convergence exper-
ment. iment.

Figure 2.8: Projection of model using estimate after third and final iteration
for convergence experiment.
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in the direction computed by the second-order method causes divergence.

In the non-linear technique described above for the pose problem, the gradient
direction at any iteration is given by the (6 x 1) vector f defined in equation (2.40).
If the A matrix in equation (2.40) is diagonal then the incremental move calculated is
in the direction of the gradient. Thus, if the new estimate at the end of an iteration
increases the total error, then the diagonal terms of A are multiplied by a constant
factor (10 in our experiments). This biases the new increment to be towards the
gradient direction. This procedure is repeated until the error function decreases after
the addition of the increments to the current estimate. Experiments have proven
that the method is effective in forcing convergence. However, in most of the data sets
we have experimented with, divergence behavior of the second-order method is not

observed.

2.4.4 Initial Estimates of Rotation and Translation

For some applications, initial estimates for rotation and translation may not be
available. In that case, the rotation space can be sampled; each of the samples is used
as an initial estimate for the rotation estimation‘part of “R_then_T”. The rotation
and translation estimates made by the algorithm “R_then_T” are then used as initial
estimates for “R_and_T”. We have successfully tried this procedure with 12 uniform
samples of the rotation space based on the rotation group of a i:etrahedron. Appendix
B provides the initial rotation estimation based on sampling the tetrahedron and
octahedron rotation groups respectively.

The algorithm for pose determination, when no initial estimate is available, is the

following:

Step 1: Pick a rotation estimate from a uniform sampling of the rotation space.

(Refer to Appendix B.)
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Step 2:  Run Algorithm “R_then_T” to get estimates for both “R” and “T”.

Step 3: - Use the output estimates from Step 2 as initial estimates to algorithm
“R_and.T”.

Step 4:  Repeat Steps 1-3 until all rotation samples have been used.

Step 5:  Return the estimate which gives the smallest alignment error in Step 3

as final estimate.

It is possible to speed up the computation by running algorithm “R_then_T”
. in step 2 for all initial rotation samples. The best? estimate is then used as the
initial estimate for a single run of “R_and_T”. In practice, this has been found to be
good enough most of the time. Finally, in Step 3, the algorithms “R_and_T_img” or

“R.and_T.mod” can replace “R_and.T”.

2.4.5 Prior Estimates

In many applications a prior estimate for the pose parameters is available; in
many case a prior covariance (or uncertainty) matrix of the pose parameters is also
available. For instance, when tracking independently moving objects their location
and orientation can be predicted by incorporating a motion model such as constant
velocity or constant acceleration. Similarly in the mobile robot navigation domain,
the location of the robot can be predicted by dead-reckoning. Some pose parameters
may remain relatively constant. The height of a robot navigating indoor hallways may
change only by negligibly small amounts. The strength of belief in such predictions
on the robot pose are captured by the prior covariance matrix. In this section,

the iterative methods developed earlier to estimate pose are extended to handle the

"Best is defined in terms of final alignment errors.
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information represented by the prior estimate and its covariance matrix. The basic
tool used is akin to Extended Kalman Filtering [26].

Let the initial estimate be denoted by the (6 x 1) vector Q and the associated
prior covariance matrix by the (6 x 6) matrix Ag. In the iterative system developed
earlier, a linear system of equations (2.40) is solved at each iteration to determine the
pose increments AT for translation and rotation éw. To incorporate the additional
information available in the covariance matrix, this linear system of equations is

modified in the following way:

=f-43'(6- Q) (2.44)

Sw

(A+AgY [ oL ]
In the above equation, @ is the current pose estimate. Note that A is a (6 x 6) matrix
while f and 0 are (6 x 1) vectors. Therefore, when prior estimates and covariance
matrices are available equation (2.44) instead of equation (2.40) is solved at each
iteration. The output covariance matrix of the pose parameters is given by (A—}—Aal)‘l
evaluated at the final pose estimate. In the Section 2.6, we shall describe monte-carlo
experiments where the pose estimation is done with initial estimates having high and

low 1nitial prior covariance matrices respectively.

2.5 Results Using Point Data

In this section, pose estimation results using point data are presented for the A211
room sequence. The A211 sequence was generated by taking images from a camera
mounted on a mobile robot. The robot was translated roughly along the optical
axis of the camera and 10 image frames (Frame 1 to Frame 10) were taken; the
translation for each step is approximately 0.38 feet. The field of view of the camera
was approximately 29.27° x 22.86°. Objects in the scene ranged from 8 feet to 26 feet

away in the first image frame. The depths of some corner points was measured by
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using a tape measure. Using the image measurement of these points, a 3D model was
built in the first frame’s coordinate system. The corner points were tracked over the

10-frame sequence using William’s [76] optic-flow based line tracking system.

Figure 2.9: A211 sequence Frame 1.

Figure 2.9 shows frame 1 of the sequence. The 9 points used to compute the pose
are marked by crosses in the figure. The location estimation results for frame 2 to
frame 10 are presented in Table 2.1. In the table, the x and y-axes are parallel to the
image plane (see Figure 2.9) and the z-axis is the optical axis. Ground truth was not
available for the orientation estimate. For the location estimation, the ground truth
was obtained from dead-reckoning. The exact amount of movement in the forward
direction was measured again by tape measure. However no accurate measurement
was made of any sideways drift in the robot motion. As can be seen from Table 2.1
the robot is located to within 0.21 feet for all 9 frames. However, there is a systematic

increase in error in location along the x-axis from frame 2 to frame 10. We believe
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Table 2.1: Estimated Errors of Location in world coordinates for “R_and_T”
algorithm for point data. Real Data results for A211 sequence.

Frame | Num. Location Error

No. |points | AL, | AL, | AL,
feet | feet | feet

2 9 -0.01 | 0.01 | 0.01
3 9 0.02 | -0.02 | 0.04
4 9 0.07 | -0.03 | 0.03
5 9 0.09 | -0.04 | 0.04
6 9 0.13 | -0.05 | 0.03
i 9 0.16 | -0.05 | 0.01
8 9 0.16 | -0.06 | 0.00
9 9 0.19 | -0.06 | 0.00
10 9 0.21 | -0.06 | 0.06

this systematic error is due to a unmeasured sideways drift in the robot from the
specified forward motion. Note along the measured forward direction (z-axis) and
the vertical direction (y-axis) the robot is located within 0.06 feet.

Finally, we report results for frame 2 when no initial pose estimate is available. In
this case, the algorithm developed in Section 2.4.2 is used. Twelve rotation samples
were used as input for the “R_then T” algorithm the output of which was fed to
the “R.and_T” algorithm. Finally, the estimate with the smallest average fitting
error for all nine points was chosen as the optimal estimate. Table 2.2 shows the
estimated pose for each of the rotation samples. The rotation samples and the final
rotation estimates are specified as quaternions. The rotation samples are based on
the tetrahedron group (see Appendix B). Each of the twelve initial rotation samples
led to one of four final pose estimates (P0 — P3). The translation and rotation values
of each of the pose estimates is given in the caption of Table 2.2. As can be seen from

the table, pose estimate P0 has the lowest average fitting error of 0.26 pixels and it
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Table 2.2: Estimated Pose for 12 different input rotation samples using a
combination of algorithms “R_then_T” and “R_and_T” (point) data. Re-
sults for frame 2 of A211 sequence; the 12 initial rotation samples for “R_then.T”
lead to one of the following four pose estimates:

PO0: Translation ( 0.01 -0.02 0.40) Rotation (0.9999 -0.0017 -0.0018 -0.0010)

P1: Translation (-0.18 7.00 31.6) Rotation (0.2041 -0.9735 -0.1010 0.0179)

P2: Translation ( 0.40 -2.19 3.95) Rotation (0.0027 0.0869 -0.9891 0.1186)

P3: Translation ( 1.36 -1.69 37.0) Rotation (0.0076 -0.0376 0.0476 -0.9981)

Trial INITIAL FINAL | FITTING
No. ROTATION POSE | ERROR
QUATERNION Estim-

Qo] Q1] Q2] Qs ated pixels
1 1.0 0.0} 0.0} 0.0 PO 0.26
2 00| 1.0| 0.0 0.0 P1 37.88
3 00| 0.0 1.0| 0.0 P2 36.66
4 0.0] 00| 0.0 1.0 P3 10.49
5 05| 05| 0.5 0.5 P3 10.49
6 0.5 0.5 05| 0.5 P1 10.49
7 05]-051 0.5 0.5 PO 0.26
8 0.5 0.5|-05| 0.5 P2 36.66
9 0.5{ 05| 0.5]-0.5 P3 10.49
10 0.5 0.51-0.51]-0.5 PO 0.26
11 0.5(-0.5]| 05]-0.5 - P2 36.66
12 0.5]-0.5]-0.5] 0.5 P1 37.87

was obtained from three of the rotation samples. This is the correct pose for image
frame 2 and corresponds to an forward motion of 0.38 feet from the position of the

robot at frame 1.

2.6 Results Using Line Data

The development of the algorithms presented in this thesis are part of a larger

. effort to enable the UMASS robot “Harvey” to navigate the sidewalks and interior
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hallways of a part of the UMASS campus [20]. Consequently, results using line
data are presented for both indoor hallway images and outdoor sidewalk images.
Figures 2.10 and 2.13 are examples of the outdoor images. Figures 2.16 and 2.19 are
examples of indoor hallway images.

The indoor model was built by measuring distances with a tape measure and is
accurate to approximately 0.1 feet [20]. The outdoor 3D model was built over two
passes. In the first pass, blueprints of the campus, drawn to a scale of 40 feet to an
inch, were used. Errors of up to 10 feet were found in the resulting 3D model; errors
of this magnitude are unacceptable for our navigation goals. An error of 1 foot in the
location of a 3D landmark, 50 feet away from the camera, can cause its projection to
be displaced by 24 pixels in the image. In the second pass, landmarks were surveyed
using theodolites. We believe most of our 3D model is now accurate to within 0.3
feet. Some landmarks, such as poles and posts, are difficult to position accurately,
because of their cylindrical shape and their lack of any distinguishing points.

The images were acquired using a Sony B/W model AVC-D1 camera mounted
on the robot vehicle. Linked to a Gould frame grabber, 512 by 484 pixel images are
obtained, with field of view of 24.0° by 23.0°. Calibration was not done for the image
center; it was assumed to be at the frame center. In Chapter 5, the sensitivity of pose
determination to errors in the estimate of intrinsic camera parameters is studied. It
is shown that errors in estimation of the image center do not affect the location of
the camera in a world coordinate system.

Experiments were conducted on both real image data and simulated data with
noise added to it. The landmarks used for the outdoor scene experiments were the
3D lines forming the visible corner of the building, window lines, lampposts, telephone
poles and one sidewalk line (see Figure 2.4). The experiments for both synthetic and

real data for the outdoor scenes were conducted with the camera about 300 feet from
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the building in Figure 2.4. The synthetic data experiments were conducted with
projections of 3D lines from the model. The camera was assumed to be placed at the
same location as the first frame of the real data experiments. For that frame, there
was one telephone pole 50 feet away from the camera. The rest were in the range
of 150 to 300 feet away. For indoor hallway scenes (Figure 2.16) the camera was
anywhere from 40 to 23 feet from the door at the far end of the hallway. A typical
set of indoor landmarks. used for both the synthetic and real data experiments can

be seen by the highlighted lines in Figure 2.16.

2.6.1 Synthetic Data Results for “R_and_T” and “R_then_T”

The synthetic data experiments were conducted for both algorithms “R_and_T”
and “R_then_T” using the outdoor 3D model. The two algorithms were run with four
different sets of data lines, each set being perturbed by at least two different amounts
of noise. Zero mean uniform noise was added to the p and 6 of each image line. In
Tables 2.3 and 2.4 the noise for each simulation is specified in the p and 8 columns.
One pixel noise in p means that to the correct p of each line, we added a Ap, which
was a random number anywhere in the range [-1,‘+1]. Similarly, one degree of noise
in 8 means that to the correct § of each line, we added a Af, which was a random
number anywhere in the range [-1,+1]. Simulations were performed for a maximum
of 1° or 5° noise in 6, and a maximum of 1 pixel or 5 pixel noise in p. For each
set of lines and each specification of input noise, 100 data samples were created; for
the generation of each sample the random number generator was initialized with a
different seed point.

The results presented in the tables are the average absolute error of the computed
rotation and translation over these 100 data samples, for each set of lines and each

noise specification. The results for the “R.and_T” and “R_then_T” algorithms are
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shown in Table 2.3 and Table 2.4, respectively. Rotation and translation errors in
these tables for synthetic data are specified with respect to the camera coordinate
system (Figure 2.1). The rotation errors are specified in terms of the error in degrees
of the axis-angle 3D rotation vector. AT, corresponds to error in translation in the
direction along the rows in the image plane (in camera coordinates, see Figure 2.4).
AT, corresponds to error in translation in the vertical direction in camera coordinates.
AT, corresponds to error in translation along the direction of the optical axis in
camera coordinates.

The first set of 5 lines consisted of the 4 corner edges of the building visible
in Figure 2.4 and one window line in that same building. The second set of 10
lines consisted of the 4 corner edges of the building, as above, and 6 lampposts and
telephone pole lines. The third set of 14 lines consisted of these 10 lines plus three
more lines on the building and one side walk line. The fourth set of 30 lines consisted
of the above set of 14 lines plus a set of 16 virtual lines that were drawn between 6
real vertices in the scene.

A comparison of the results shows that the performance of the “R_and_T” algo-
rithm (Table 2.3) is much better than the “R_then.T” algorithm (Table 2.4). With
zero noise specified, both algorithms gave the correct result. For each set of lines and
each specification of noise, “R_and_T” performs much better than “R_then_T”. The
results for “R_then_T” are particularly bad for the 5 and 10 line simulations. This can
be explained by the observation that, in the 5 line case, 3 of the lines form a trihedral
junction. As noted before, trihedral junctions can give rise to an infinite number of
translations. Thus, the translation result is determined from this infinite set solely by
the two remaining lines, both of which are vertical and not too far from each other.
With noise, therefore, we would expect large errors in translation. Similarly, in the

10 line simulation, most of the lines are vertical. Vertical lines do not disambiguate
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rotations about the x-axis and translations along the y-axis. This problem is com-
pounded even further when the rotation stage is separated from the translation stage
as is the case in algorithm “R_then.T”.

In the results for both algorithms, the error decreases appreciably as the number of
lines increases. In the “R_and_T” case (Table 2.3) results are shown for experiments
with the 5 line data set for two extra cases of noise. Examination of the results for
these two cases in Table 2.3 shows an appreciably larger error when the noise in
is 5°. However, when the noise in p is 5 pixels and the noise in 4 is 1°, the errors
are much smaller; in general noise in 4 for lines is much more harmful than noise in
p. Finally, in all experiments, the error in AT, was often found to be larger than
the errors in AT, and AT,. This i1s due to the fact that in the data sets for these

experiments, the majority of the 3D lines are vertical.

2.6.2 Results for “R_and_T_mod” and “R_and_T_img”

Synthetic Data

In this subsection, synthetic data results for algorithms “R_and.T.mod” and
“R.and_T_img” are discussed. The results for the experiments are presented in Ta-
ble 2.5. The 3D line model used for these experiments is same as that built for the
indoor hallway images (see Figure 2.16). The camera was assumed to be 40 feet from
the door in Figure 2.16. The field of view and other intrinsic camera specifications
aré the same as those used for the the synthetic data experiments discussed in the
previous 'section. Given an input pose, the 3D model of 10 lines is projected to create
a set of 2D data lines. The end-points of the 2D lines are then corrupted by 2D
gaussian noise. The gaussian noise has two components; the first is perpendicular to
the 2D line and the second is along the length of the line. Noise for each end-point

was assuimed to be independent. For all the experiments reported in Table 2.5 the



Table 2.3: Average Absolute Error of Translation and Rotation in camera
coordinates for algorithm “R_and_T”. The average for each experiment is taken
over 100 samples of uniform noise.

NOISE ROTATION ERROR | TRANSLATION ERROR

No. ) p| bws | bwy bw, | AT; | AT, AT,
Lines | deg. | pixels | deg. | deg. deg. | feet | feet feet
Correct 0.00 | 0.00 0.00 | 0.00 § 0.00 0.00

5 1.0 1.0 | 0.24 | 0.15 0.04 | 0.21 2.03 1.16

51 5.0 5.0 | 1.20 | 0.79 0.19 | 1.08 | 10.14 6.20

5 1.0 5.0 | 0.24 | 0.16 0.04 | 0.21 | 2.04 1.18

5 5.0 1.0 | 1.19 | 0.78 0.19 | 1.08 | 10.14 6.20
10 1.0 1.0 | 0.21 | 0.08 0.05 | 0.02 1.73 0.08
10 | 5.0 5.0 | 0.72 | 0.27 0.31] 0.18 | 6.33 0.48
14 1.0 1.0 | 0.07 | 0.06 0.08} 0.03| 0.77 0.02
14 5.0 5.0 | 0.34 | 0.30 0.39 1 0.17 | 3.80 0.12
30 1.0 1.0 | 0.03 | 0.05 0.06 | 0.06 | 0.48 0.06
30 5.0 5.0 | 0.16 | 0.24 0.31 | 0.32 2.39 0.32

Table 2.4: Average Absolute Error of Translation and Rotation in camera
coordinates for algorithm “R_then_T” The average for each experiment is taken
over 100 samples of uniform noise.

NOISE ROTATION ERROR | TRANSLATION ERROR

No. 6 p| dw bwy bw; | AT, | ATy AT,
Lines | deg. | pixels | deg. | deg. deg. feet feet feet
Correct 0.00 1 0.00 0.00 { 0.00 | 0.00 0.00

5 1.0 1.0 | 1.08 | 5.06 0.62 | 11.44 | 13.96 51.16

5| 5.0 5.0 | 3.19 | 14.65 1.62 | 32.69 | 39.85 149.40
10| 1.0 1.0 | 0.50 | 2.26 0.31 | 9.24| 8.83 8.84
10| 5.0 5.0 | 2.44 | 10.45 1.28 | 40.83 | 40.03 38.65
14| 1.0 1.0 { 0.29 | 0.29 0.18 | 0.35| 2.37 0.23
14 5.0 5.0 | 1.50 1.56 0.91 1.92 | 12.44 1.27
30| 1.0 1.0 { 0.09 | 0.10 0.13| 0.40| 1.01 0.36
30| 5.0 5.0 | 0.45| 0.50 0.66 | 2.09| 5.05 1.82
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standard deviation of the component of the noise perpendicular to the line was 1
pixel. The standard deviation of the component of the noise along the length of the
line is specified as percentage of the length of the line. This is reported in column 2
in Table 2.5. For each noise specification, 1000 noisy sample sets are created and the
two algorithms run on each of the noisy 2D data sets. First-order and second-order
statistics are collected for each set of 1000 runs. From the first order statistics (i.e.
estimation of the mean) it is observed that the final estimates are unbiased. The
second-order statistics are the experimentally derived covariance matrices of the out-
put pose parameters. The square root of the diagonal values (or standard deviations)
of each of the pose parameters for each noise specification and each algorithm are
reported in Table 2.5.

From Table 2.5, it can be seen that the two algorithms perform comparably as
long the component of noise along the length of the line is small. But when the
standard deviation of the noise along the length of the line becomes 20 % or more
of the length, then the results for algorithm “R_and-T_mod” sharply improve over
algorithm “R._and.T.img”. This confirms what was predicted in the discussion in
Section 2.4. -

In Section 2.4.4, the use of prior knowledge in estimating the pose parameters
was discussed. Table (2.6) shows the advantage of having prior knowledge. Prior
knowledge of the location of the robot is specified in terms of an input estimate and
an associated covariance matrix. The same experiment as described above is repeated
for both -algorithms “R.and.T.img” and “R.and_T_mod”. In this case, however, the
initial estimate is supplied with a small prior covariance matrix. For these experi-
ments, the input covariance matrix is assumed to be a diagonal matrix. Thus only
the diagonal values corresponding to the square of the input standard deviation of the

pose parameters needed to be specified. As noted before for hallway scenes, the height



56

Table 2.5: Standard deviation of Translation and Rotation error in world
coordinates for algorithms “R_and_T_img” and “R_and_T_mod” with high
prior covariance estimates for translation. The statistics for each experiment
is taken over 1000 samples of gaussian noise.

NOISE ROTATION ERROR TRANSLATION ERROR

No. length | perp. bw, buwy bw, AT, ATy AT,

Lines % pixels deg. deg. deg. feet {eet feetJ

Algorithm “R_and_T_img”

Prior Estimate 57.30 57.30 57.30 94.86 94.86 94.86
10 1.0 1.0 DT 0.46 2.48 0.25 0.82 0.70
10 5.0 1.0 2.79 0.47 2.50 0.25 0.83 0.70
10 10.0 1.0 2.83 0.48 2.53 0.26 0.84 0.71
10 20.0 1.0 3.03 0.54 2.71 0.27 0.89 0.77
10 30.0 1.0 6.68 1.35 527 0.96 1.72 1.49
10 40.0 1.0 10.33 2.32 8.45 2.00 2.44 2.12

Algorithm “R_and_T_mod”

Prior Estimate 57.30 57.30 | 57.30 94.86 94 .86 94.86
10 1.0 1.0 2.69 0.46 2.40 0.25 0.79 0.68
10 5.0 1.0 2.69 0.46 2.40 0.25 0.79 0.68

10 10.0 1.0 2.70 0.46 2.40 0.25 0.80 0.68
10 20.0 1.0 2:79 0.48 2.48 0.27 0.82 0.70
10 30.0 1.0 2.92 0.48 2.59 0.28 0.86 0.73
10 40.0 1.0 3.06 0.45 2:69 0.27 0.90 0.76

Table 2.6: Standard deviation of Translation and Rotation error in world
coordinates for algorithms “R_and_T_img” and “R_and_T_mod” with low
prior covariance estimates for translation. The statistics for each experiment
is taken over 1000 samples of gaussian noise.

NOISE ROTATION ERROR TRANSLATION ERROR
No. length | perp. bw, bwy bw, NS AT AT,
Lines % | pixels deg. deg. deg. feet {eet feet
Algorithm “R_and_T_img”
Prior Estimate 57.30 57.30 | 57.30 3.0 3.0 0.001
10 1.0 1.0 0.30 0.44 0.19 0.24 0.12 0.0
10 10.0 1.0 0.30 0.45 0.20 0.24 0.12 0.0
10 20.0 1.0 0.34 0.51 0.23 0.25 0.14 0.0
10 30.0 1.0 0.70 1.11 0.52 0.39 0.30 0.0
10 40.0 1.0 0.83 1.51 0.67 0.77 0.37 0.0
Algorithm “R_and_T_mod”
Prior Estimate 57.30 57.30 | 57.30 3.0 3.0 0.001
10 1.0 1.0 0.30 0.44 0.19 0.24 0.12 0.0
10 10.0 1.0 0.30 0.44 0.19 0.24 0.18 0.0
10 20.0 1.0 0.30 0.43 0.19 0.24 0.17 0.0
10 30.0 1.0 0.30 0.42 0.19 0.24 0.15 0.0
10 40.0 1.0 0.29 0.41 0.18 0.24 0.13 0.0
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of the robot (T, component of location of camera) does not change much. Therefore
the T, component of the input location vector is given a very small standard devia-
tion value of 0.001 feet, effectively pinning it to the input estimate. The T, and T,
components of the input location estimate are given standard deviations of 3 feet.
This is reasonable because in normal runs of the robot for navigation purposes, the
robot can usually be located to within 3 feet just by dead-reckoning. All components
of rotation are given standard deviations of 1 radian or 57.30°. Comparing corre-
sponding rows in Table 2.5 and Table 2.6, it can be seen that specifying lower prior
covariance matrices greatly improves the results for both algorithms “R_and_T_mod”

and “R.and_T.img”.

Real Data Results

In this subsection results for algorithms “R_and-T_mod” and “R.and-T_img” over
two real data sequences are compared. The first sequence consists of 6 outdoor frames.
The first, second and fourth frames are shown in Figures 2.4,2.10 and 2.13 respectively.
For the outdoor sequence, the camera was moved in an approximate forward motion
25 feet along the walkway. Each subsequent framé was taken after a movement of 5
feet down the walkway. The sidewalk line is close to parallel to the x-axis in the world
coordinate system. The z-axis is the vertical axis in the world coordinate system. The
2D images lines were taken from the output of a 2D line matching system {8]. For
each frame, column 2 in Table 2.7 gives the number of lines the 2D line matcher was
able to correctly match. The 2D matcher does not return the original image lines,
rather it returns the location of the matched 2D lines as predicted by the final 2D-2D
pose. One consequence of this is that the input lines used in our experiment for the
outdoor sequence are not broken and fragmented like the original extracted image

lines may be. Figures 2.10 and 2.13 show the input 2D lines as returned by the line
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matcher for frames 4 and 6 of the outdoor image sequence. These were used as input

to our algorithm along with the 3D model.

Table 2.7: Estimated Errors of Translation in world coordinates for algo-
rithm “R_and_T_img” and “R_and_T_mod”. Real Data results for Qutdoor and
Indoor frames without outliers.

“R-and_-T_img” “R-and_T_mod”
Frame | Num. || TRANSLATION ERROR | TRANSLATION ERROR
No. | Lines || AT, AT, AT, AT, AT, AT,

feet feet feet feet feet feet

Outdoor Frames
17 0.47 0.02 0.54 0.42 0.05 0.54
15 0.41 0.56 0.59 0.37 0.86 0.85
12 2.03 0.48 0.41 2.34 0.58 0.50
0.64 1.02 0.88 0.77 1.16 0.90
13 1.30 0.87 0.61 1.32 0.87 0.61
13 1.72 1.23 0.79 1.41 1.43 0.88
Indoor Frames
22 0.24 0.04 0.04 .|| 0.24 0.05 0.01
22 0.10 0.17 0.02 0.12 0.08 0.01
12 1.58 4.87 4.25 0.11 0.11 0.03
10 2.95 1.06 0.79 0.10 0.03 0.01

DU x| W] DO =
\]

| ool o=

Table 2.7 gives the error in the estimated location by algorithms “R_and_T_img”
and “R_and_T_mod”. Ground truth for rotation was. not available so the algorithms
were compared only with respect to location estimation. In most cases, the robot
is 1ocated to within one or two feet. The measurement errors in Table 2.7 are ap-
proximate to 0.5 feet. The precise location of the camera is not known. It is better
to judge the performance of the algorithm by looking at the projections of the 3D
landmarks on the image after the pose has been estimated. Figures 2.11 and 2.12
are the projection of the 3D model lines using the poses estimated by the algorithm

“R-and_T_img” and “R.and_T_mod” for outdoor frame 2 respectively; similar results
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for outdoor frame 4 are shown in Figures 2.14 and 2.15 respectively. As can be seen,
in all cases there is fairly good alignment between the 3D model and the original
image. The two algorithms perform comparably for this sequence. This is probably
due to the fact that the output of the 2D matcher returns whole lines and there 1s no
fragmentation of the 2D image lines.

The results for the outdoors can be improved by the following three strategies :

(1) Use more line correspondences, some of which can be obtained by drawing
virtual lines between modeled 3D points, in this case from the corner of the building
to the tops of lampposts.

(2) Use closer landmarks. The most accurate result is for frame 1; this is probably
because it is the only frame in which there is an object close to the camera (a telephone
pole 50 feet away).

(3) Improve the 3D positioning of the lampposts and poles in the 3D model.

The results of the two algorithms “R_and_T_img” and “R.and_T_mod” on four
indoor hallway frames are also given in Table 2.7. The camera location for these
frames ranged from 32 feet to 23 feet from the door. The results in Table 2.7 are with
no outliers in the input data. Figures 2.16 and 2.‘19 show the input 2D lines for the
first and third frame of the indoor sequence respectively. The line correspondences
for the four frames were obtained from a motion line tracking system [76]. In this
case, the input lines used are the extracted image lines. As a result, some of the input
lines are fragmented. If more than one image line was matched to a model line, then
the longest matched line was selected for the input set given to the pose algorithms.
The projection of the 3D model lines using the poses estimated by the algorithm
“R.and.T.img” and “R.and_.T_mod” for indoor frame 1 are shown in Figures 2.17
and 2.18 respectively, and for indoor frame 3 in Figures 2.20 and 2.21 respectively.

Algorithm “R_and_T_mod” is able to locate the camera within 0.3 feet for all
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four frames. In contrast, algorithm “R_ahd_T_img” performs poorly for the last two
frames. This is due to the severe and noisy fragmentation of the image lines in the
last two frames. The final estimate of algorithm “R_and_T_img” for indoor frame 3
is wrong by more than 4 feet (see Table 2.7). In Figure 2.20, it can be seen that the
projected model lines (especially, the baseboard lines on the left hand side) for indoor
frame 3 are not at all aligned with the input image. The line extraction algorithm
has recovered only a small and noisy fragment of the lower left baseboard line (see
Figure 2.19). This input line is an outlier for algorithm “R.and_T.img” and causes
the final projection to be skewed. Note that if the lower left baseboard line is removed
from this data set, the algorithm “R.and.T-img” locates the robot within an inch of
the correct location.

From the above experiment for indoor frame 3, two facts are demonstrated. The
first, of course, is that algorithm “R.and.T_mod” is more robust than algorithm
“R.and_T.img”. The second fact is that even .a single outlier can cause a least-
squares algorithm to fail catastrophically. Thus, we must develop algorithms which

are robust with respect to outliers; this is the subject of the next chapter.
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Figure 2.10: Outdoor frame 2 with input image lines.

Figure 2.11: Projection of model Figure 2.12: Projection of model
(Outdoor frame 2) using final (Outdoor frame 2) using final
estimate of algorithm estimate of algorithm
“R_and_T_img”. “R_and_T_mod”.



Figure 2.14: Projection of model
(Outdoor frame 4) using final
estimate of algorithm
“R_and_T_img”.

Figure 2.15: Projection of model
(Outdoor frame 4) using final
estimate of algorithm
“R_and_T_mod”.
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Figure 2.16: Indoor frame 1 with input image lines.

Figure 2.17: Projection of model
for Indoor frame 1 using final
estimate of algorithm
“R_and_T_img”.

Figure 2.18: Projection of model
for Indoor frame 1 using final
estimate of algorithm
“R_and_T_mod”.
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Figure 2.20: Projection of model
for Indoor frame 3 using final
estimate of algorithm
“R_and_T_img”.

Figure 2.21: Projection of model
for Indoor frame 3 using final
estimate of algorithm
“R_and_T_mod”.
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CHAPTER 3

ROBUST METHODS FOR POSE DETERMINATION

3.1 Introduction

This chapter develops and analyzes pose determination techniques which are ro-
bust:;‘ with respect to outliers or gross errors in the data. Given correspondences
betv&-reen 3D lines (or points) represented in a world coordinate system and 2D image
lines (or points) represented in a camera coordinate system, the goal is to find the
rotation and translation matrices (the pose) which map the world coordinate system
to the camera coordinate system. Some of the image to world correspondences may
be incorrect and hence outliers or gross errors may be expected to occur. Gross errors
or outliers may also occur if parts of the 3D model are incorrect.

Traditionally, least squares techniques have been used for regression analysis or
model fitting. In Chapter 2, least squares techniques were presented to solve the
pose problem. Least squares is optimum and reliable when thg underlying noise in
the data is gaussian. However, when outliers are present in the data, the gaussian
assumption is violated and the least squares result is skewed in order to make the
data approximate a gaussian. Because of the skewing of the result, trying to detect
outliers by comparing the residual errors of each line with a threshold will not work.
Throwing away one line at a time and doing least squares on the remaining subset
also does not work when more than one outlier is present.

Statisticians have suggested many different “robust” techniques [24, 28, 38, 5.1, 60,

65, 66, 81] to handle outliers and these techniques are currently gaining popularity

65
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in computer vision [7, 23, 24, 31, 39, 45, 46]. A measure to analyze these “robust”
algorithms is the breakdown point : the smallest fraction of outliers present in the
input data which may cause the output estimate to be arbitrarily wrong. Algorithms
based on minimizing L1, L2 or Ln error measures have breakdown points of 1/n where
“n” is the number of data items. Another measure of robust statistical procedures
is their “relative efficiency” [39, 65]. It is defined in Kim et. al. [39] as the “ratio
between the lowest achievable variance for the estimated parameters (the Cramer-
Rao bound) and the actual variance provided by the given method”, so that the best
possible value is 1. Kim et. al. also note that “the least mean square estimator in the
presence of gaussian noise has an asymptotic (large sample) efficiency of 1 while the
median’s efficiency is only 0.637” [39, 60]. As we shall see, there is a trade-off between
algorithms with high breakdown points versus those with high efficiency. Finally most
research in robust statistics appears to have been done for linear problems. When
applying these techniques to non-linear problems, another important consideration is
the initial estimate. Non-linear problems are often solved iteratively using an initial
estimate. How close must this initial estimate be for the robust technique to work?
In this chapter, two different techniques for robust determination of pose are
presented. These techniques are analyzed with respect to the above measures and

extensive experimental results on real data are presented.

3.2 Previous Work

There are two major sets of statistical techniques for handling outliers. The first
attempts to detect outliers before forming a robust estimate. The goal is to find
“leverage points” i.e. data points which are on the outskirts of the data cluster.

These points, if wrong, can have the largest influence on the final estimate. Standard
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outlier detection techniques are based on the diagonal entries of the “Hat” matrix?,
Mahalanobis distance etc. [24]; these generally work for only certain kind of outliers
and often cannot handle more than one outlier. This fact will be demonstrated
experimentally in Section 3.5, where the hat matrix values for a contaminated data
set with outliers will be given. However, when no outliers are present, the hat matrix
is useful for analyzing the data set to determine high leverage data elements and the
effect of each of the input data elements on the final estimate. Rousseeuw and Leroy
present additional outlier detection techniques in Chapter 6 of their book [65].

The second set of robust statistical techniques detects outliers and computes ro-
bust.estimates simultaneously. Most of these techniques attempt to define objective
functions whose global minimum would not be significantly affected by outliers. The
tec‘hniques analyzed in this chapter are of this kind. Standard among these are
M-estimates (Maximum likelihood type estimates), L-estimates (linear combination
of order statistics) and R-estimates (estimates based on rank transformations). M-
estimation techniques, first proposed by Huber [38], minimize some function of the
individual residual errors. Least square techniques, for instance, minimize the sum
of squares of the residual error. The error value for outlying data can be arbitrarily
large and hence to accommodate it the least squares fit is skewed.

Functions minimized by M-Estimate techniques attempt to bound the maximum
possible error value (e.g. the biweight “redescending” function suggested by Tukey) or
bound its rate of change (e.g. Huber’s Minimax function). Figures 3.1 and 3.2 shows
Huber’s and Tukey’s function respectively. For small values of “u”, both functions
are quadratic up to a point, then Tukey’s function becomes constant (correspond-
ing to the maximum possible error value) whereas Huber’s function becomes linear

(corresponding to the maximum rate of change.).

1The hat matrix is defined in Appendix C.
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Inherent in this attempt to bound the error values is a computation of “scale” or
the point in these functions where the switch from quadratic té constant or linear
occurs. The underlying noise model is based on the assumption that the data is locally
contaminated with gaussian noise and then some data elements have gross errors. The
standard deviation of the gaussian noise corresponds to the scale. Data points lying
beyond a few standard deviations from the mean are classified as outliers and their
error is bounded. In some applications, the standard deviation of the gaussian noise
may be known whereas in others it is concurrently computed along with the robust
estimate. Most of these M-Estimate techniques have been shown to have breakdown
points of 1/(p+1) or lower [51, 65) where “p” is the number of unknowns (p = 6 for
the pose refinement problem). They have high efficiencies however, typically more
than 0.9. Huber [38] suggests iterative algorithms to minimize these error functions
and these algorithms are relatively fast to compute. However, it is important to have
good initial estimates because of the number of local minima.

Haralick and Joo [31] adapt these M-Estimate techniques for the pose problem
using point data. They use the “redescending” function suggested by Tukey [60] and
the “minimax” function suggested by Huber [38], respectively. These techniques are
also adapted here for the pose problem using line correspondences. Better results were
obtained using Tukey’s function as compared to Huber’s. An algorithm “Tuk_wts”
based on using Tukey’s error function and the “Infinite Image Line” constraint for
pose is presented in Section 3.3 of this chapter.

Another robust technique suggested by Rousseeuw and Leroy [65] is based on the
minimization of the median of the squares of the residual errors (LMS: Least Median
Square). This method has a breakdown point of 0.5 and. consequently is able to
handle data sets which contain less than 50 % outliers. However, since the median 1s

not a differentiable function, it has to be minimized by a combinatorial method and
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1s comparatively very slow compared to the M-Estimate techniques. To minimize the
median square error, a brute-force technique is employed that computes the median
square error using all “p” size data subsets, where “p” is the number of unknown
parameters. Rousseeuw and Leroy [65] believe that only techniques of this brute
force nature will be able to achieve this high breakdown point. They suggest that by
sacrificing 100% probability of correctness, a large gain in computational speed can
be obtained by considering only a small random set of the minimal subsets (this point
is discussed further in Section 3.4). Using the best median pose, data points whose
residual error is greater than a certain threshold are weeded out as potential outliers.
The threshold may be either fixed a-priori or determined based on the computed scale
(standard deviation) of the non-outlier gaussian noise. Finally a reduced weighted
least squares (RLS) or a one step M-Estimate ? is done, using the median estimate
as the initial guess. This greatly improves the relative efficiency of the median-based
estimate.

In this chapter, two algorithms based on the Least Median Squares technique are
developed. The first (“Med_R_-and_T_img”) minimizes the median of the square of the
alignment error given by the “Infinite Image Line’; constraint discussed in Chapter 2
(see equation 2.11). The second (“Med_R_and_T_mod”) minimizes the median of the
square of the alignment error given by the “Infinite Model Line” constraint (see equa-
tion 2.26). In both cases the random sampling techniques suggested by Rousseeuw
and Leroy [65] to achieve higher computational speed are implemented and finally a
weighted reduced least squares is done to improve the efficiency.

Yohai [81] attempts to combine the high efficiency of M-Estimate methods with the
high breakdown of median-based methods by suggesting a fully iterated M-Estimate

(as opposed to a one-step M-Estimate) method using a redescending type function

2A one.step M-Estimate is the estimate obtained after one step of the iterative M-Estimation
based algorithm. '
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for which the initial estimate is obtained by minimizing the least squares median. We
find, empirically, that local minima of the Median based methods are also the local
minima of the M-Estimate methods and therefore there is no benefit in following this
procedure.

Fischler and Bolles [23], with their RANSAC paradigm, were among the first
to present robust techniques for the pose problem given point data. They find a
pose, using a minimal set of three points, and then attempt to grow the solution by
successively adding points which are satisfied by the same pose. If a sufficient number
of points can be explained by a pose, then it is chosen as the final estimate. Their
technique is similar to the median-based technique in that it finds the best pose by
looking for a consensus. However, it is adhoc in terms of what is being optimized and
the search mechanism to find the estimate. The median based techniques provide an
explicit error function to minimize and also provide a mechanism for calculating the
scale of the gaussian noise to detect and remove outliers.

In the next section, the M-Estimate based “Tuk_wts” algorithm is presented.
The median based algorithms “Med_R_and_T_img” and “Med_R_and_-T_mod” are de-

scribed in section 3.4. Results and discussion are presented in section 3.5.

3.3 M-Estimation Techniques

A least squares optimization technique minimizes the sum of squares of an error

function “e” of an unknown parameter vector “4” over all “n” data elements:

Minimize Y e} (3.1)

Least square techniques are optimum and reliable when the underlying noise in the
data 1s gaussian. However, when outliers are present in the data, the gaussian as-

sumption is violated. The error values for outlying data can be arbitrarily large and
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hence to accommodate even a single outlier the least squares result can be arbitrarily
skewed. Least squares fitting therefore has a break down point of 1.

In contrast, M-Estimation techniques, developed by Huber [38] and other statis-
ticians, minimize the sum of a function p(e;/s) where e; is the error function for the

1’th data vector and s is a scaling factor:

Minimize Y _ p(ei/s) (3.2)

The function p is designed to bound the influence of outliers and it must satisfy the

following assumptions for efficient optimization [38, 81]:

1. p(0) = 0

2. p(w) = p(—u)

3. 0 £ u £ vimplies p(u) < p(v)

4. p1s continuous

5. letb = supp(u)then0 < b <

6. if p(u) < band 0 <u < v then p(u) < p(v)

Essentially these conditions guarantee that p(u) is a continuous, symmetric function
with minimum value at v = 0. Also p(u) must be monotonically increasing from
v = 0to oo and from v = 0t0 — oo.

There have been many p functions proposed in the literature. One of the first was

proposed by Huber [38]:

0.5u? fjluj< a
a|u|—0.5a> otherwise

p(u) = { (3.3)

Figure 3.1 shows Huber’s function and its derivative plotted with “a” set to 2.0. In

this function, for small values of “u”, p(u) varies as the square of “u”. Above a certain
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threshold value “a”, p(u) varies linearly; thus the rate of change of the function is
bounded. The function is therefore a combination of L2 and L1 error norms. However,
it still has a break-down point of 2, since both the L1 and L2 norms have break-down
points of 2.

Another p function was proposed by Tukey [60]):

(3.4)

o) = { u;/z —u'/2a* +u%/6a* if |u|< a
a’/6 otherwise

Figure 3.2 shows Tukey’s function and its derivative plotted with “a” set to 2.0. In this
function, p(u) approximately varies as the square of “u” for small values and then
tapers off to a constant maximum value of “a?/6”. Thus the error for any outlier
data element cannot be arbitrarily large. A rationale for this function is that for
small error values, “u” corresponds to gaussian noise and thus for optimum relative
efficiency their square value must be minimized. However, as the error grows, the data
element is probably an outlier and therefore its influence must be bounded. Blake and
Zisserman [10] use a variation of Tukey’s function in solving the problem of fitting
piece-wise smooth surfaces to range data. They provide another rationale for the
above function: the constant maximum value is assumed to be the cost of assigning a
data element to be an outlier. Thus non-outlier data elements are minimized as the
sum of squares of their error values and there is a cost of assigning a data element to
be an outlier. The final estimation is a trade-off between minimizing the number of
outliers and the fitting error for the non-outlier data points.

Inherent in these M-Estimation techniques is a simultaneous computation of a
scale 5. The scale corresponds to the standard deviation of the residual errors. If a
good estimate of the standard deviation of the errors of non-outlier data can be made,
then data points whose error lies beyond a certain number of standard deviations from

the center (that is, in the “tails” of the distribution) can be classified as outliers. The

| estima.te.of scale therefore itself must be robust and not affected by outliers. M-
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Estimation techniques therefore vary both on their choice of the p function and the
method used to compute scale. In the algorithm presented below, scale s is computed

by the following equation:
_ median; |e; |

3.5
0.6745 (35)

where 0.6745 is one half of the interquantile range of the Gaussian Normal distribution
N(0,1). This equation relates the scale (standard deviation) of a gaussian distribution
to the median of the absolute values of a sampled set of data points. It is based on
the fact that the median of the absolute values of random numbers sampled from the

Gaussian Normal distribution N(0,1) is estimated to be approximately 0.6745.

3.3.1 The “Tuk_wts” Algorithm

Huber [38] suggests two methods for minimizing the error functions in equations
(3.2), (3.3) and (3.4). The two methods are the modified residual method and the
modified weights method [38, 31]. In our expefiments better performance was ob-
tained using the modified weights method; consequently only this version will be
presented here.

The modified weights method is an iterative reweighting least squares (IRLS)
algorithm. Let §; represent the set of unknown parameters (rotation and translation
in our case) to be estimated. Differentiating the error expression in equation (3.2)
with respect to each parameter ; we get the set of equations:

€ 58; _
; Uz, =00 (3.6)

where ¥ is the derivative of the p function with respect to u. The ¥ function used in

the “Tuk_wts” algorithm is obtained by differentiating Tukey’s p function as given in
equation (3.4):

\p(u)={u(l—§a)’ if|u|< o

0.0 otherwise (3.7)



|
(<11

The ¥ function is also sketched in Figure 3.2. Note, that for small values of “u”
around » = 0.0 it is almost linear and then it slowly tapers off to zero on both ends.

Equation (3.6) can be written in the standard weighted form as:

(e
wp = (&’) (3.8)
(58,‘

Xi:wiﬂigj = 0.0 (3.9)

If the weights w; in the above equation (3.9) are held constant and the residual error ¢;
is a linear function of the unknown set of parameters, then a linear system of equations
in the unknown parameters 6; is obtained. The modified weights algorithm solves the
equations (3.9) iteratively. At each iteration the weights w; are held constant and
equal to the values computed using the previous iteration’s estimates of the unknown
parameters §; and the linear system of equations is solved to get new estimates. The
iterative procedure is repeated until the parameter values converge to a final value.
Huber [38] proves that the above iterative procedure leads to a minimum (possibly
a local minimum) of the objective function as given in equation (3.2) for linear e;
residual error functions.

In this iterative procedure, if the error of a data element is greater than “a”
for a current estimate, then by the weighting function defined in equation (3.8) its
weight will be zero and therefore it will not contribute to the new estimation. Data
elements with small errors will have almost unit weight while data elements with
slightly larger errors (but less than “a”) will contribute partially (between 0 and 1)
to the ﬁﬁal fit. This partial contribution of these data elements greatly improves
the relative efficiency of the final estimation. This can be intuitively understood by

recalling that the noise model assumes that most of the data is contaminated by

gaussian noise and only some of the data elements are outliers. The important issue

3Note, ;ﬂthough e; may be linear, p(e;) is not a quadratic function.
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is the criteria for deciding when a data element should be classified as an outlier (i.e.,
the number of standard deviations to be used as an outlier threshold). The relative
efficiency is improved by using all data elements which are not outliers for the final
fit. The above procedure does not automatically cut-off all data elements beyond
a certain threshold; instead it gives increasingly small weight to data elements with
larger errors until a final weight of zero is given for data elements whose error is larger
than “a” standard deviations.

We now turn to the problem of applying this technique to the minimization of
the pose error functions, which are non-linear. In Chapter 2, an iterative method
was developed to minimize the sum of squares of the error function. This method
entailed linearizing the error function about the current estimate and then solving
for the small increments in translation (AT) and rotation (éw). Equations 2.38 and
2.39 shown in chapter 2.4 are the linear system of equations solved at each iteration
of the “R.and.T” algorithm described there. An equivalent set of equations can
be developed for algorithms “R.and.T.img” and “R_and_T_mod”. The error for each
data element is weighted by w;. To incorporate the robust techniques described above
into the minimization procedure for “R_and_T” (and by extension for “R_and.T_img”
and “R_and_T_mod”) described in Section 2.4, the only change required is to replace
the weights in equations 2.38 and 2.39 by the weighting function given in equation
(3.8). This procedure leads to rapid convergence and a robust estimate, as will be
seéen in the experiments section 3.4. For most of our experiments, convergence is
reached in about 10 iterations.

The “Tuk_wts” algorithms developed here solves the system of equations (2.38)
and (2.39) corresponding to algorithm “R_and_T_img” at each iteration and composes
the results with the previous estimates of rotation and translation. The weights are

calculated using equation (3.8). The steps used in the algorithm are identical to the
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steps used in algorithm “R_and_T.img”. At each iteration there is also an estimation
of scale using equation (3.5). Finally, although not done here, the “R_and_T_mod”

algorithm can also be similarly modified to give a robust M-Estimate version of it.

3.4 Least Median of Squares (LMS) Technique

In this section another set of robust techniques for the pose determination problem
are developed. These techniques were developed by Rousseeuw et. al. [65] for the
linear regression problem. They are based on minimizing the median of the square of

the error function over all data elements:
Minimize Median; €? (3.10)

Earlier, it was noted that in least square systems the large error values of the outlier
data elements causes a skew of the final fit. If the data elements are ranked in
ascending order according to error values, the median corresponds to the error of
the middle data element. Minimizing the median, therefore ignores the errors of the
larger ranked half of the data elements. Thus, this method automatically can perform
robustly in situations where less than 50 % of the data elements are outliers; it has a
breakdown point of 3.

This procedure can be modified to incorporate a-priori knowledge of the level of
contamination of the data set with outliers. If for example, in a particular application,
it is guaranteed that no more than 30 % of the points are outliers, then the 70 %
ranked error could be minimized rather than the median. In absence of any such
guarantees, the median is the best choice to minimize. This corresponds to finding
that pose which fits (with minimum error) at least half of the data elements. In other
words, the final estimated pose is the best consensus fit over all subsets of size équal

to half tl;e number of the data elements.
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To develop robust pose algorithms, any of the pose alignment error functions de-
veloped in Chapter 2.4 can be substituted for e; in equation (3.10). In this section, two
such robust algorithms “Med_R_and_T_img” and “Med-R_and_T_mod’ are developed,
based on the alignment errors used in the least square algorithms “R.and_T_img” and
“R_and.T_mod”, respectively. In “Med R._and.T.img” the following objective func-

tion “E,,;” 1s minimized:

resian [ (B R@+ D\ (8- (RG) + D))
I R ( (R(7)~ 1. ) *( (R(F) + - ) &y

E..1 1s a modification of the objective function E, given in equation (2.32) in Section
2.4. The right hand side corresponds to the median of the total alignment error for
each line. The total alignment error 1s based on the “Infinite Image Line” constraint
and 1s the sum of squares of the perpendicular distances from the projected model
end-points to the infinitely extended image line.

The “Med-R.and_T_mod” algorithm is based on the “Infinite Model Line” con-

straint and the following objective function “E,,»” is minimized:

C;i = (pai — fw) X (P — fw) (3.12)
o) Ttk
B = (=223 T
J (Sz ) Sy’l) (313)
Enz = Median; 7 ((R"(Ba)- Ci)” + (BT (Ba) - Ci)?) (3.14)

E 2 1s a modification of the objective function F3 given in equation (2.33) of Section
2.4; M; is defined in Section 2.4. Again, the right hand side corresponds to the median
of the total alignment error for each line. In this case, however, the total alignment
error is based on the “Infinite Model Line” constraint and is the sum of squares of
the perpendicular distances from the image line end-points to the infinitely extended
projected model line.

Since the median is not a differentiable function, E,,; and E,, must be -mini—

mized by combinatorial methods. In the method adopted here, candidate poses are



79

generated by using the least squares algorithms developed in chapter 2 on subsets of
the data elements. The pose which gives the minimum median error across all data
elements is chosen as the optimal median pose. The goal is to find at least one subset
which has no outliers in it; this should give the minimum median error. The “pose
determination problem” needs a minimum of 3 input lines. Thus subsets of line data
elements used to generate the candidate poses must be of size m (m > 3). Typically,
poses are generated from all subsets of size m of the data elements. Experimentally,
we have found the choice of “m” is important. The larger the size of the subsets,
the greater the probability of them having an outlier. However, choosing “m” = 3,
the minimum as suggested by Rousseeuw [65], often leads to local minima. Typically
good results are obtained with m = 6 or higher. This is because the poses estimated
by using just 3 line data sets have large variances and some of the non-outlier lines
can get labeled as outliers. This point is further elaborated in the results section of
this chapter (Section 3.4).

To speed up the computation, instead of using all subsets, only a random set of
all size m subsets is used. If € is the fraction of contaminated data and we choose “k”
different random subsets of size “m”, then the préba.bility “P” that all “k” different

subsets will contain at least one or more outliers 1s:
P=(1-(1-¢™)* ' (3.15)

The probability that at least one random subset has no outliers is given by (1 - P).
This is the probability that the correct answer will be found by the median algorithm.
For example, if we want the correct answer with 99% probability and expect no more
than 30% outliers when using subsets of size 3 (m = 3), then only 37 out of the 1140
subsets (for a set of 20 lines) need to be randomly chosen. In practice, however, we
find that a much larger set needs to be chosen (again, this is shown in the results

section). Finally, some subsets will lead to degenerate solutions because all lines are
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parallel, etc. This can be detected before any further processing of the subset is done.
A simple method to detect degenerate subsets in the case of three lines is to threshold
on the determinant of the matrix whose rows are the unit direction vectors of the 3D
lines.

Using the best median pose, data points whose residual error is greater than a
certain threshold are weeded out as potential outliers. The threshold may be either
fixed a-priori or determined based on the computed scale (standard deviation) of the
non-outlier gaussian noise. In many of our experiments, it is assumed that the scale
of the line fitting process to edge data is 2 pixels. Equation (3.5) developed in the
previous section may also be used to compute the scale. Finally, the weighted least
squares algorithm (“R.and_T_.img”) or (“R-and_T_mod”) are run on the remaining
lines. This last step greatly improves the “relative efficiency” of the robust algorithm.

The algorithms “Med-R-and_-T_img” and “Med_R_and_T_mod” are summarized

as follows:

Step 1: Select “k” random subsets of size “m” from the input data.

Step 2: For each subset, determine the pose by using algorithm “R.and_T.img” or
“R-and_-T_mod”. Estimate the residual error for all “n” lines given this pose

and find the median square error.

Step 3: Select the pose which gives the minimum median error E,.; or E,, and

compute the scale “s” (if not known apriori) using equation (3.5).

Step 4: Filter out lines as outliers whose squared residual error for that pose is

greater than (a X s)?; a is an algorithm parameter and is set equal to 2.0 for

all experiments discussed in Section 3.5.

Step 5: Minimize the error function given in equation (2.32) or equation (2.33) on the

remaining lines using the least square algorithm “R_and_T.img” or algorithm
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“R_and_.T_mod” and return the estimated translation and rotation as the final

output.

3.5 Results and Discussion

In this section we shall present and analyze the results of running the three al-
gorithms “Tuk_Wts”, “Med_R-and_T_img” and “Med_R_and_T_mod” on real image
data. The results are presented for both the indoor hallway images (Figures 3.3 and
3.11) and the outdoor sidewalk images (Figures 3.7 and 3.15). The indoor and outdoor
images are similar to the ones used in Chapter 2 for the least-squares experiments.
In some cases, the data used for experiments in chapter 2 was artificially altered to
create outliers. In other cases, the data is directly an output of the the 2D matching
system developed by Beveridge et. al. [8]. The camera parameters and the indoor
and outdoor models used for the experiments are exactly the same as those described
in Chapter 2. In the indoor scenes the door is about 20 to 40 feet from the camera.
In the outdoor scenes, the building is about 300 feet from the camera.

Tables 3.1-3.4 shows the results of the three aigorithms on eight indoor hallway
images and three outdoor walkway images. In the tables only the translation re-
sults (in world coordinates) are listed. This is because we have no way to measure
accurately the true orientation of the camera with respect to the world coordinate
system. However the 3D model can be projected into the image plane using the final
computed pose. A qualitative estimation of the orientation accuracy can be obtained
by seeing how well the projected model aligns with the original image data (e.g. as
in Figures 3.5 and3.9) In the tables, the translation direction “x” is the horizontal
direction oriented with the long side of the hallway (for indoor images) or the walk-

way (for outdoor images), the “y” direction is the horizontal direction perpendicular
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to the long sides of the hallway or walkway, and the “z” direction is aligned with the
direction of gravity. The data listed under the column “No. Ln.” is the number of
input data lines and the data under the column “Outliers Fnd.” is the number of
outliers found by the median based algorithm.

The “Med_R_and_T.img” and “Med_R.and.T_mod” algorithms were run on both
the indoor and outdoor data sets with the same set of parameters. In each case,
500 random sample sets of size 6 were generated. The scale of the gaussian noise
was assumed to be 2 pixels for all lines. Using the best median pose, any line whose
alignment error was more than 4 pixels was declared to be an outlier and it was given
zero weight for the final least-squares fit. Similar to Chapter 2, each experiment
was performed with two different settings of the input prior covariance matrix of the
pose parameters. In each case, the prior covariance matrix was a diagonal matrix.
In Tables 3.1 and 3.2, the prior covariance matrix specified for the least-squares
and median based algorithms had high diagonal values corresponding to standard
deviations of 94.86 feet for translation terms and 1 radian or 57.3 degrees for the
rotation terms. In the experiments whose results are presented in Tables 3.3 and
3.4, the standard deviations of the rotation terms in the prior covariance matrix was
set at the same value of 57.3 degrees. However much smaller standard deviations
are specified for the translation terms; the input estimate of the height of the robot
(the translation term T,) was set to have a standard deviation of 0.001 feet and the
estimates of the horizontal location of the robot (the translation terms T, and T})
were set at standard deviations of 3 feet each. This corresponds to the typical values
obtainable from dead-reckoning in the robot-navigation domain. It was ensured for
all experiments that the initial estimates used were within a standard deviation of the
correct estimate. Finally, the “Tuk_wts” algorithm was always run with the threshold

({99 )

a” in equation (3.7) set to 4.0.
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For comparison, the results of the least-squares algorithms “R.and_T_img” and
“R_and_T_mod” on the same data sets are also presented in the tables. The perfor-
mance of the least-squares algorithms gives a measure of the severity of the outliers
in each of the data sets. Generally, the more gross an outlier is with respect to the
non-corrupt data the easier it is detect and remove®. However, the robust algorithms
must perform comparably or better than the least-squares algorithms both when the
least squares algorithms.completely fail and when they do reasonably well. The re-
sults presented in the Tables 3.1-3.4 document both these cases. The first case 1s
the first 7 frames of the indoor hallway images. From any of the four tables, it can
be observed that the least-squares algorithms performed reasonably well for the first
seven indoor frames. The outliers in these cases have not very significantly affected
the performance of the least-squares algorithms and the robust algorithms perform
only slightly better. In contrast to the first seven indoor frames, the least-squares
algorithms totally fail in locating the robot for indoor frame 8 and outdoor frames 1

and 3. Each of these cases is discussed in more detail in the next few sections.

3.5.1 The First Seven Indoor Frames

The average error in locating the robot for the first seven indoor frames by the
least-squares algorithms “R_and-T_img” and “R.and_T.mod” when run with high
initial covariance matrices is 0.676 feet and 0.585 feet respectively °. Note, that
“R_and_T_mod” performs slightly better than “R.and_T.img”. The robust algorithms
perform better than both the least squares algorithms. From the data shown in the
Tables 3.1 and 3.2, the average error in locating the robot for the seven indoor frames

by algorithms “Med_R.and_T.img”, “Tuk_wts” and “Med_R_and_T.mod” (run with

4This is actually more true for the median algorithms. Severe outliers can affect the “Tuk-Wts”
algorithm because of its low break down point. :

5Note, the average values are calculated from data in Tables 3.1 and 3.2
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high initial covariance matrices) is 0.405 feet, 0.387 feet and 0.363 feet respectively.
Note again, “Med_R_and_T_mod” performs slightly better then “Med.R-and-T-img”.

Similar statistics can be calculated from the data shown in Tables 3.3 and 3.4
for the cases when the algorithms were run with low initial covariance matrices.
The least-squares algorithms “R.and.T.img” and “R-and-T_mod” located the robot
in these cases to an average error of 0.626 feet and 0.488 feet respectively. The
robust algorithms “Med.R.and_T_img” and “Med-R.and-T_mod” located the robot
for the same seven frames to an average error of 0.366 feet and 0.280 feet respectively.
Based on the above comparisons, algorithm “Med_R.and.T_mod” performed the best.
It located the robot within 0.20 feet for five of the seven frames (see Table 3.2 or
Table 3.4). Figure 3.3 shows the initial set of lines for Indoor frame 7. Figure 3.4 shows
the projection of the model using the pose estimated by the least-squares algorithm
“R.and_T.mod” and there is some mis-alignment of the two baseboard lines running
parallel to the length of the hallway. The projections of the model using the poses
estimated by algorithms “Med_R_and-T_mod” and “Tuk_wts” is shown in figures 3.5

and 3.6 respectively. In these two cases, the alignment between model and image

data has improved.

3.5.2 Outdoor Frame 1

Figure 3.7 shows the input data set of 17 lines for the outdoor frame 1. In this
case, the street-light has been mismatched to the telephone pole. The top bar of the
telephone pole is also located incorrectly. Finally, the left edge of the nearby telephone
pole (in the left of the image) is slightly out of alignment and also the walkway line
has been slightly skewed. Thus, of the 17 input lines, 5 are clear outliers and 2 may or
may not be outliers. The least-squares algorithms are off in their estimate of location

by about 10 feet for this data set (for all cases of initial covariance). Figure 3.8 shows



Table 3.1: Estimated Errors of Translation in world coordinates for algo-
rithms “R_and_T_img”, “MED_R_and_T_img” and “Tuk_-Wts”; High Co-
variance Case. Prior Standard Deviation (o) of the initial robot pose estimate is
94.86 feet and 1 radian for each axis of location and orientation, respectively.

Fr. | No. || “R.and-T.img” “Med_R_and_T.img” “Tuk_Wts”
" TRANS. ERR. TRANS. ERR. Out- TRANS. ERR.
No. | Ln. " AT, | AT, | AT, || AT; | AT, | AT, | Liers || AT: | AT, | AT
feet feet feet || feet | feet | feet | Fnd. feet feet feet
INDOOR FRAMES

[ 1 [ 24] 035] 026] 0.00] 0.08]001]001] 7 ] 0.11] 0.01] 0.02 |
[ 2 [ 26 ] 087] 048] 0.08 [ 0.19]0.02]0.02] 11 | 047] 0.32] 0.06 |
{ 3 24 063] 009] 0.02] 0.017042]0.35] 10 [ 0.13] 0.01] 0.01 |
[ 4 [ 15 ] 057] 0.03] 0.23] 0.55]0.22]0.10] 7 [ 0.64] 0.25] 0.29
| 5 | 16 || 043[ 0.23] 0.03 0.27] 0.01]0.07] 5 [ 0.27] 0.01| 0.10 |
[ 6 [ 16 ] 074] 037 047] 065]0.18] 0.23] 4 [ 0.59] 0.26 | 0.30 |
{ 7 |46 ] 038] 0.25] 041 011]0.21]0.35] 17 || 0.06 ] 0.02] 0.07 |
| 8 [ 19 | 5.67] 0.27] 0.56] 0.05] 0.38] 0.32] 9 | 0.04] 0.00| 0.01|
[ OUTDOOR FRAMES i
[ 1 [17 [[1042] 276 2.38] 095 0.36] 1.22] 7 [ 1.16] 0361 0.14]
I

3 | 15 140.91]13.56 [ 10.19] 239 [ 0.21 ] 0.12] 5 [ 36.72 ] 13.41 | 13.46 |

Table 3.2: Estimated Errors of Translation in world coordinates for algo-
rithms “R_and_T_mod”, “MED_R_and.T_mod”; High Covariance Case.
Prior Standard Deviation (o) of the initial robot pose estimate is 94.86 feet and 1
radian for each axis of location and orientation, respectively.

Fr. | No. “R.and.T.mod” “Med_R_and_T_mod”

TRANS. ERR. TRANS. ERR. Out-

No. | Ln. AT | AT, | AT, || AT | AT, | AT; | Liers

feet feet | feet feet | feet | feet | Fnd.
INDOOR FRAMES

OUTDOOR FRAMES
1 [ 17 Jf10.41] 2.82] 2.28 || 1.00 [ 0.38 | 1.27 |
3 [ 15 [[41.23]1390[ 7.91{ 2.53]0.19] 0.10[ 5

-3

{ 1 ] 24 0.26] 020]003] 0.02]047]044] 6 |
{2 ] 2] 075] 047]0.05] 020] 0.03]0.02] 9 |
[ 3 [ 24 ] 014] 012]0.02] 0.04] 004]0.01] 3 |
[ 4 | 15 ] 050] 0.04[0.10] 0.02] 0.08] 0.00] 4 |
[ 5 J16 ] 034] 034]0.12] 0.15] 001 0.07] 3 |
| 6 | 16 || 0.77] 059 011 0.85[0.49] 033 ]| 4

[ 7 | 46 031] 020[061] 0.14]0.01] 0.03] 17

[ 8 ] 19 ] 547] 030 0.78 || 0.05 [ 0.38 ] 0.32| 9

|

|

|

I J_ JU JIJL.J
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Table 3.3: Estimated errors of translation in world coordinates for algo-
rithms “R_and_T_img”, “MED_R_and_T_img”; Low covariance case. Prior
standard deviation (o) of initial robot pose estimate is 3 feet for “x” and “y” axis of
location, 0.001 feet for height of robot and 1 radian for each axis of orientation.

Fr. | No. “R.and_T_img” “Med.R_and_T.img”

TRANS. ERR. TRANS. ERR. Out-

No. | Ln. || AT; | AT, | AT: || AT; | AT, | AT; | Liers

feet | feet | feet feet | feet | feet | Fnd.
INDOOR FRAMES

[[1 JT24]034]0.26]0.00]] 0.09]70.02]000] 7 |
[2 ] 26 [ 084][0.46] 0.00] 0.18] 0.03] 0.00] 11 ]
[ 3 T24 ] 064]0.08]0.00[ 0.13]0.02]0.00] 7 |
[ 4 [15 Jo54]0.21] 0.00] 084]042[000] 5 |
[ 5 J16 [] 048] 0.20] 0.00 || 0.27 [ 0.05[ 0.00 [ 5 |
[6 T 16 [ 0.68] 0.13]0.00] 0.68[ 052]0.00[ 5 |
| 7 [ 46 ]| 0.50 ] 0.26 | 0.01 || 0.07 | 0.05 | 0.00 | 17 |
[ 8 T 19 ]| 5.65] 0.25] 0.00  0.03] 0.00] 000 8 |
| OUTDOOR FRAMES |
{ 1 | 17 [[884] 1.63] 0.00 ] 1.04 | 0.34] 0.00 | 7 |
| 3 | 15 |[ 9.86 ] 1.16 | 0.00 || 2.43 | 0.08 | 0.00 | 5 |

Table 3.4: Estimated errors of translation in world coordinates for algo-
rithms “R_and_T_mod”, “MED_R_and_T_mod”; Low covariance case. Prior
standard deviation (o) of initial robot pose estimate is 3 feet for “x” and “y” axis of
location, 0.001 feet for height of robot and 1 radian for each axis of orientation.

Fr. | No. “R.and.T_mod” “Med.R._and_T_mod”
TRANS. ERR. TRANS. ERR. Out-
No. | Ln. AT; | AT, | AT: || AT: | ATy | AT: | Liers
feet | feet | feet | feet | feet | feet | Fnd.

INDOOR FRAMES :

[ 1 ] 24 ] 026020000l 013]0.04[000] 35 }
{ 2 [ 26 ] 073] 0.45] 0.00 0.30| 0.00] 0.00| 10 |
[ 3 [ 24 ] 013]0.12]0.00] 003]0.03[000]| 3 |
| 4 [ 15 ] 047] 0.04] 0.00] 0.08] 0.05]0.00 3 |
[ 5 [ 16 ]| 043 0.280.00] 0.16 [ 0.05 [ 0.00 [ 3 |
| 6 ] 16 ]| 062 0.15] 0.00[ 0.95] 0.57{ 0.00]| 4 |
| 7 | 46 ] 040] 0.17]0.04 | 0.07] 0.09 | 0.00| 17 |
{ 8 | 19 || 5.56 | 1.53 ] 0.00] 0.04] 0.01]0.00] 7 |
( OUTDOOR FRAMES |
[[1 [ 17 ] 709]153]0.01]1.07]035]0.00]| 7 |
{ 3 ] 15 ] 1096] 1.54]0.00] 292] 0.21] 0.00] 5 |
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the projection of the model using the pose returned by algorithm “R_and-T_mod”
for this data set and as can be observed, there is significant mis-alignment. The
median algorithms and “Tuk_wts” are able to locate the robot to within 1.5 feet for
this data set. This result is considered quite reasonable given that the 3D landmark
lines are all in the range of 300 feet distant from the camera except for the two
model lines of the nearby telephone pole (50 feet distant) and the walkway line. The
final projection of the model for algorithms “Med_R.and_T_mod” and “Tuk.wts” are
shown in Figures 3.9 and 3.10 respectively. All 7 lines (discussed above) are detected
as outliers. However, as can be noticed from the figures, the final projections of all

model lines are fairly well aligned.

3.5.3 Indoor Frame 8

Figure 3.11 shows the input set of lines for indoor frame 8. This data set of 19
lines has 8 outliers, i.e. approximately 40% of the data is contaminated. Only the
11 lines on or close to the left wall are correct. Both the least-squares algorithms
“R-and_-T_img” and “R-and-T_mod” fail (for all variance settings) on this data set.
Their final pose estimates are more than 5 feet éff from the correct location. Fig-
ure 3.12 shows the projection of the model using the pose estimated by algorithm
“R.and_T.mod” (run with the low initial variance setting) and as can see from the
figure, it is quite skewed.

From Tables 3.1 and 3.2, the error in locating the robot for this frame by the
robust algorithms “Med_R.and_T._img” and “Med_R.and-T_mod” (run with high ini-
tial covariance) is about 0.38 feet in the y-axis and 0.32 feet in the z-axis (or vertical
direction). Figure 3.13 shows the projection of the model using the pose estimated
by “Med_R.and_T.mod” when run with high initial covariance. In that figure, it can

be noticed that the line in depth in the top left corner of the image is slightly skewed.



88

All other lines are fairly well aligned. This line has been detected as an outlier. Note
that in the Table 3.2, 9 lines have been labeled as outliers. Of the 11 lines in the data
set for indoor frame 8, only 2 are lines in depth. The rest of the lines are coplanar
and are clustered near the door. The best pose returned by the median is a consensus
of only half the number of lines. As a result, one of the lines in depth remains out of
the best consensus set and becomes an outlier.

In contrast, when algorithm “Med_R_and_T_mod” is run with the low prior co-
variance setting®, the height of the robot is pinned and the final estimate of location
returned by the algorithm is within 0.05 feet and only the 8 outlier lines have been
detected as outliers (see Table 3.4). Figure 3.14 shows the projection of the model us-
ing the pose estimated by “Med_R_and_T_mod” when run with low initial covariance.
In this case, all lines, including the top left line in depth, are well aligned.

Finally, the “Tuk_wts” algorithm performed very well on this data set, locating
the robot to within 0.04 feet. The projection of the model for indoor frame 8 using
the pose estimated by the “Tuk_wts” algorithm is almost identical to the projection

shown in Figure 3.14.

3.5.4 Outdoor Frame 3

The outdoor frame 3 data set (shown in Figure 3.15) is another case where the
least-squares algorithms fails completely. The outlier here is due to the telephone pole
being mismatched to the street light. Thus, 3 of the 15 input lines are clear outliers.
The location of the robot returned by the least-squares algorithm is off by about 40
feet for the high initial covariance case (see Tables 3.1 and 3.2) and by about 10 feet
for the low initial covariance case (see Tables 3.3 and 3.4). Figure 3.16 shows the

projection of the 3D model using the pose estimated by algorithm “R_and_T_mod”

SFor snbsets of size 6 or 8.
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for the high covariance case.

Analysis Using Hat Matrix

It was noted in Section 4.1 that data sets can be analyzed for outliers by exam-
ining the diagonal entries of the hat matrix’ h;. These correspond to the relative
contribution an observation has on its current fit®. Typically, observations with hy;
greater than two or three times the average value are considered observations with
“high leverage” [65]. Outliers which have a significant effect on the final fit there-
fore should be detected as observations with “high leverage”. Unfortunately, the Hat
matrix diagonal entries are not very robust and the values of hy; for outliers can be
masked by other “leverage” observations [65). This fact is demonstrated by examin-
ing the residual errors and diagonal hat matrix values estimated by the least-squares
algorithm “R.and_T.mg” on the outdoor frame 3 data set. In Table 3.5, the resid-
ual errors and diagonal hat matrix values are shown for the two end-points of each
line. Lines 3-5 in Tables 3.5 correspond to the three outlier telephone lines in out-
door frame 3 (see Figure 3.15). Lines 6 and 7 correspond to the two lines of the
street-light and line 8 corresponds to the walkway. line. Table 3.5 is the result of run-
ning the algorithm “R.and_T.img” on the complete data set (including three outlier
lines) and hence the residual errors as seen in Table 3.5 are quite large. The near
end-point of the walkway line in outdoor frame 3 (line 8 in Table 3.5) has a diagonal
hat matrix value of 0.99 implying that it is having a very significant effect on the
final fit. Meanwhile, the three lines corresponding to the outlier telephone pole (lines
3-5 in Table 3.5) have hat matrix values ranging from 0.16 to 0.20. These lines are

therefore not characterized as having “high leverage” on the final fit. However, we

7See Appendix C for a definition of the Hat Matrix.

8hi; range from 0 to 1. Higher values of h;; imply that the observation has a more significant
- effect on its final fit compared to the effect of other observations.
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know that they are outliers and are causing the pose estimate to be offset by 40 feet
from Table 3.1. This demonstrates the fact that the hat matrix values themselves
are corrupted when outliers are present and therefore they cannot be used to detect
outliers. Note also in Table 3.5, the telephone outlier lines (lines 3-5) do not have the
largest residual errors. This demonstrates the fact that the highest residual errors

need not belong to the outlier lines.

Table 3.5: Residual Errors (pixels) and Diagonal Hat Matrix entries for
outdoor frame 2 for data with outliers. Outlier lines are marked with an as-
terik(*).

Line Residual Errors Hat Matrix Diagonals
No. | endpoint 1 | endpoint 2 | endpoint 1 | endpoint 2

pixels pixels hii hi;
1 -12.88 -20.28 0.18 0.16
2 -10.94 -19.85( . 0.17 0.15
3* -11.89 -29.34 0.17 0.19
4* -9.09 -28.57 0.17 0.20
5* 20.42 15.90 0.32 0.39
6 20.26 3.96 0.24 0.29
7 27.44 4.76 0.23 0.29
8 -1.68 -2.37 0.11 0.99
9 -9.96 -28.94 0.16 0.10
10 1.15 -7.66 0.12 - 013
11 -18.76 -34.60 0.10 0.13
12 -15.04 -22.32 0.12 0.13
13 14.22 -7.09 0.16 0.09
14 15.37 -5.68 0.16 0.10
15 17.37 -0.37 0.16 0.10
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Performance of the Robust Algorithms

The estimates of the robot pose returned by the two median algorithms are much
better than the least-squares algorithms, but are still off by about 2.5 feet along the
walkway direction for the both high and low initial covariance cases. The best pose
returned by the median classifies the two lines of the street lamp on the right side of
the image also as outliers (see Fig. 3.17). This is because in this image there are two
sets of data lines that have significant “leverage” on the resultant pose: the walkway
line (as mentioned earlier, lines in depth are important for these scenes) and the
street lamp (which is the only non-outlier data in the right side of the image). Since
both these sets of lines are slightly incorrect, the median chooses a pose which best
explains the walkway line together with the rest of the data (which is mostly 300 feet
away).

In contrast to its performance for indoor frame 8, the “Tuk_wts” algorithm failed
completely on outdoor frame 3. The results for it are shown in Table 3.1. The
algorithm is extremely sensitive to initial estimates for outdoor frame 3 (see Fig 3.15).
As noted earlier, outdoor frame 3 has three outlier lines (the telephone pole lines).
For algorithm “Tuk._wts” to converge to the right answer, the initial estimate must
be within 1 foot of the correct translation. However, if one of the outlier telephone
lines is removed from the data set, the algorithm will converge to the correct answer
from initial estimates up to 10 feet or so away. Finally, if two of the telephone
outlier lines are removed convergence to the correct answer is obtained from initial
estimates upto 20 feet away. This problem of an accurate initial estimate is due to
the presence of multiple local minima in the objective function minimized by the
“Tuk_Wts” algorithm. The iterative algorithms for M-Estimation techniques weight
lines based on their residual errors, and therefore if the initial estimate is off, the

- outlier lines may get higher weights and the algorithm will then converge to a local
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minima. A possible solution would be to use a global minimization technique for
minimizing the M-Estimate error functions with some prior estimate of scale [10].
The algorithm “Med_R.and_T”, on the other hand, is not affected by these initial

estimates and produces the same answer as shown in the tables for all of them.

3.5.5 Discussion

The output of the pose refinement process depends on the quality of the input
provided to it. The best data sets have many “good” lines in all directions and lines
running both near and far from the camera. In contrast indoor frame 7 and outdoor
frame 3 are impoverished data sets where most of the input lines are at approximately
the same distance from the camera and one or two lines are much closer to the camera.
As a result these close lines have a significantly larger effect in determining the final
pose estimation and have “high leverage” in the final estimation. Note that the “high
leverage” data lines can be detected by examining the diagonal values in the hat
matrix when there are no outliers. For instance, in Table 3.5, the walkway line in
Outdoor frame 3 had a hat matrix diagonal value of 0.99°.

A consensus based algorithm tries to find the best pose which explains a significant
proportion of the set of lines. Given that the observations for the non-outlier data are
noisy, it is conceivable that the pose returned by the consensus algorithm explains a
significant set of observations with “low leverage” quite well and makes a non-outlier
observation with “high leverage” an outlier. This is what happened in the indoor
frame 8 and outdoor frame 3 case, where some of the lines with “high leverage”
become outliers. A consequence (and an inherent danger) of the incorrect removal of

the “high leverage” lines as outliers from an impoverished data set is that the output

9Note, this high value of the diagonal entry in the hat matrix pertaining to the the walkway line
in Outdoor frame 3 is obtained even when the computation is done with the outlier lines removed
from the data set.
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covariance matrix of the computed pose parameters will be much higher than what
is optimally obtainable for that data set. The consensus-based algorithms will work
best when there are no observations with “high leverage” and the data set is well
rounded with a sufficient number of input data lines in all directions both close and

far to the camera.

3.6 Conclusions

To conclude, we quote from Li [51] “No one robust regression technique has proved
superior to all others in all situations, partly because of the challenge of handling
many forms of influential observations”. We have observed this especially with the
performance of the median and other similar consensus-based algorithms using many
different error functions!®. For instance, in another consensus algorithm we exper-
imented with, instead of minimizing the median, the optimization criterion was to
find that pose which fits the maximum number of lines under a certain error value.
The results of this algorithm were of a similar nature to the median based algorithm.
There appears to be no one algorithm which works best for all data sets. The robust
statistical algorithms presented in this chapter, given data with outliers, can locate
the robot in the indoor scenes in a range of 0.4 feet (on the average) for the high
prior covariance cases and within 0.3 feet (on the average) for the low prior covari-
ance cases. This was sufficient for most of our robot navigation tasks. However, the

question remains can we do better?

10Although only two are reported here.



Figure 3.3: Indoor frame 7 with
input image lines.

Figure 3.5: Projection of model
for indoor frame 7 using final
estimate of Algorithm
“Med_R_and_T_mod” with high
prior covariance matrix.

Figure 3.4: Projection of model
for indoor frame 7 using final
estimate of Algorithm
“R_and_T_mod” with high
prior covariance matrix.

Figure 3.6: Projection of model
for indoor frame 7 using final

estimate of Algorithm
“Tuk_wts”.
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Figure 3.7: Outdoor frame 1 with
input image lines.

LR

Figure 3.9: Projection of model
for outdoor frame 1 using final
estimate of Algorithm
“Med_R_and_T_mod” with low
prior covariance matrix.

Figure 3.8: Projection of model
for outdoor frame 1 using final
estimate of Algorithm
“R_and_T_mod” with low prior
covariance matrix.

Figure 3.10: Projection of model
for outdoor frame 1 using final
estimate of Algorithm
“Tuk_wts”. .
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Figure 3.11: Indoor frame 8 with
input image lines.

Figure 3.13: Projection of model
for indoor frame 8 using final
estimate of Algorithm
“Med_R_and_T_mod” with high
prior covariance matrix.

Figure 3.12: Projection of model
for indoor frame 8 using final
estimate of Algorithm
“R_and_T_mod” with high
prior covariance matrix.

Figure 3.14: Projection of model
for indoor frame 8 using final
estimate of Algorithm
“Tuk_wts”. Note that the
projection of model using final
estimate of “Med_-R_and_T_mod” .
with low prior covariance is almost
identical.
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Figure 3.15: Owutdoor frame 3
with input image lines.

Figure 3.17: Projection of model
for outdoor frame 3 using final
estimate of Algorithm

“Med_R_and_T_mod” with high

prior covariance matrix.

Figure 3.16: Projection of model
for outdoor frame 3 using final
estimate of Algorithm
“R_and_T_mod” with high

prior covariance matrix.

s =
R B S P

Figure 3.18: Projection of model
for outdoor frame 3 using final
estimate of Algorithm
“Tuk_wts”. :
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CGH AP TEE R 4

MODEL EXTENSION AND REFINEMENT

4,1 Introduction

An important problem in vision is to automatically build 3D models of objects
and scenes. In Chapters 2 and 3, least-squares and robust methods were presented for
determining the location and orientation of a mobile robot from visual measurements
of modeled 3D landmarks. However, building the 3D landmark models i1s a time
consuming and tedious affair. For the landmark-based navigation methods to be
widely applicable, automatic methods have to be developed to build and enhance
the 3D models. Ideally, the mobile platform would continuously build and update
its world model as it explores the environment. This chapter presents techniques for
determining the 3D location of image features from a sequence of 2D image frames
taken by a camera mounted on the robot. It is assumed that a prior partial model is
available. The goal is to have the robot extend and refine this model as it explores
the world.

Extensive research has been done in computer vision to develop robust algorithms
for extracting 3D information from a sequence of 2D images. Of the many differ-
ent visual cues for extracting 3D information, the two most extensively researched
are stereo and motion. The basic principle exploited in both cues is triangulation
(see Figure 4.1). New points are located by triangulating the projection rays-from

corresponding points in two or more frames.
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In applications involving stereo, two cameras separated by a baseline are used to
provide the two image frames. The relative orientation of the two fixed cameras is
determined during a prior calibration stage. Thus, the main problem and focus of
stereo research has been to establish correspondences [6, 15, 58, 63].

In two-frame motion analysis both the correspondences and the relative orienta-
tion between the two camera frames are unknown. Research in motion analysis has
classically been divided into two steps. In the first step inter-frame image displace-
ments of image pixels and/or higher level tokens are computed. The second step,
also known as “structure from motion” or “relative orientation”, is the interpretation
of these displacements (or correspondences between image tokens) into 3D structure
and relative orientation (rotation and translation) between frames (1, 35, 37].

However, due to noise in the measurement process, results for both stereo and
motion analysis using just two frames are not very robust [1, 17]. To improve the
robustness of the results, the traditional stereo and structure from motion techniques
have been extended to deal with multi-frame image sequences (3, 5, 11, 32, 61, 69, 82],
under the assumption that temporal integration would lead to more robust results.
The multi-frame research can be categorized into t.wo broad classes or strategies. The
first class assumes that a model of 3D inter-frame motion is known [11, 12, 67, 68|,
rather than assuming independent motion parameters between consecutive frames.
Broida {11} assumes constant velocity motion and estimates the 3D location of a set of
points tracked over a monocular image sequence. Recently, Chandrasekhar et.al. [12]
have extended Broida’s technique to deal with data sets where the 3D location of
a few points is known. The objective function, which Broida and Chandrasekhar
et.al. minimize has the motion model parameters and the unknown structure location
parameters as unknowns. Thus the dimension of the objective function grows with

the number of unknown points. An even more basic limitation of this approach lies
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in the model of motion being employed and its adequacy in cases with more general
motion.

The second class of techniques does not assume any model of motion. The rigid
structure of the world is carried forward by the depth estimates from frame to frame.
These techniques are incremental in nature and typically use Kalman-filtering to
compute the depth estimates[5, 13, 61, 69, 75, 82].

Both Ayache et.al. [5] and Zhang et.al. [82] build world models using multi-frame
stereo sequences. Zhang et.al. [82] track 3D line segments over a sequence of stereo
image frames and use a Kalman-filter to integrate the results for a final estimate of the
3D line segment. To do the temporal integration, the absolute orientation between
successive stereo pair coordinate frames is determined.

Oliensis and Thomas [61] use Horn’s relative orientation algorithm [35] to solve
for the motion parameters between consecutive image frames in a monocular image
sequence. With each image pair, new measurements are made for depth values of
features and these are integrated with previous estimates in the Kalman-filter frame-
work. The new observation Oliensis and Thomas [61] make is that the depth estimates
of different feature points are correlated since the same noisy motion parameters are
used to compute the depth. Because of this correlation, they estimate the depth
parameters of all points simultaneously. This gives them fairly good depth estimates
for camera motions having some translation component along the optical axis. The
cost, however, is that for estimating the depths of “m” points, a covariance matrix of
size (3m x 3m) must be inverted with each new frame.

Sawhney et.al. [69] also use Kalman-filtering to estimate the depths of “shallow
structures” over a monocular sequence of multiple image frames. Shallow structures
are those whose extent in depth is small compared to their average depth from the

camera. The algorithm, however, cannot handle non-shallow structures. The image
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motion of shallow structures can be described by an affine transform. Based on
the affine trackability of an object, they are able to segment out different shallow
structures in the scene and hence can potentially handle multiple moving objects.
In some of the experiments reported in the results section of this chapter, an initial
model is built using the 3D points lying on some of the shallow structures recovered by
their algorithm. Using this initial model, the 3D location of other points in the scene
is estimated by the techniques developed in this chapter. Thus with a combination
of techniques presented in this chapter and Sawhney et.al.’s [69] technique for 3D
recovery of shallow structures, a fairly robust general motion technique [42] may be

constructed.

4.1.1 Our Approach

The approach adopted here is to first begin with a partial model (possibly noisy)
and to then extend and refine it by viewing the object over a sequence of frames [43].
Both modeled and unmodeled features of the object are tracked over the image se-
quence by using an optic flow based line tracking algorithm [4, 76]. Correspondences
are obtained between the modeled 3D features a;ld their image projections. Using
the flow of image tokens and the poses of the object computed from model-image
feature correspondences for a sequence of image frames, new points are located by
triangulation (see Figure 4.1). The triangulation process is also used to make new 3D
measurements of the initial model points. These measurements are then fused with
the previous estimates to refine the set of initial model points. The approach adopted
here is basically induced stereo. Tracking image features over a large sequence ef-
fectively leads to a large baseline for stereo and improves the robustness of the 3D
reconstruction. Note that this approach does not require any models of inter-frame

motion. .
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The key assumption made is that a partial model is available at the beginning
of the process. Due to the availability of the partial model, new points are located
in a stable world coordinate system. The pose computed from each image frame 1s
independent of the other frames, so each frame provides an independent measure to
the whole process*. This does not lead to the cascading problems which most of the
sequential multi-frame “structure from motion” techniques suffer from because noisy
prior estimates in the previous frame’s coordinate system are integrated with new
estimates in the current frame’s coordinate system.

The estimation of the new 3D points is done using both batch and quasi-batch
or sequential methods. Triangulation requires at least two frames and therefore the
minimum batch size is two. Results from batch to batch are integrated by the standard
Kalman-filter covariance based updating equations. Results are presented for four real
data sequences where new 3D points are located with average errors less than 1.7 %.
These results are far superior to those obtained by the traditional structure from
motion techniques employed in computer vision. This supports the earlier stated
premise that prior knowledge of a partial model greatly extends the robustness of the
structure estimates.

The errors in the initial partial model are assumed to be either gross errors or
gaussian noise. If gross errors are present in the 3D model, these would be detected
as outliers by the robust pose recovery techniques developed in Chapter 3 and would
not be used for the final step of least-squares fitting to the remaining non-outlier
data. Note that outliers can also arise due to incorrect correspondences. However,
if a modeled landmark appears as an outlier over a large number of frames, then it
probably is due to a gross error in the 3D model and it could eventually be removed

from the 3D model database. Thus for the remainder of this chapter, the noise in the

INote that this would not be true if there was significant noise in the initial partial model.
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input 3D model is assumed to be gaussian. Section 4.2 extends the least-squares algo-
rithms for pose determination (presented in Chapter 2) to handle gaussian noise both
in the 3D model and image measurements. In Section 4.2.1, results of monte-carlo
experiments for the new pose determination algorithm are presented. Experimentally
derived standard deviations of the error in the estimated pose parameters are com-
pared with the computed standard deviations. Section 4.3 presents the mathematics
for locating new points and refining old points using the computed poses and their
respective variances. Finally, Section 4.4 presents and analyzes results from real data

experiments. Some concluding remarks are presented in Section 4.5.

WORLD

Figure 4.1: Model Extension and Refinement.
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4.2 Pose Determination

In Chapter 2, least-squares techniques for pose determination were developed.
These techniques are optimal with respect to gaussian noise in the input image mea-
surements. In this section, the least-squares techniques are extended to handle gaus-
sian noise in the 3D model. The techniques presented in this section assume point
correspondences but are easily modified for line correspondences.

The rigid body transformation from the world coordinate system to the camera
coordinate system can be represented as a rotation (R) followed by a translation (T°).

The point pin world coordinates gets mapped to the point §, in camera coordinates:
Pe=R(P)+T (4.1)

Using the equation (4.1) and assuming perspective projection, the pose constraint

equations for the i** point p; in a set of “m” points can be written in the following

manner:
Liﬁzg-(Rﬁ-i-f) =0 (4.2)
;é',,;-(R,r,-Jrf) =0 (4.3)
Coi = (52,0, —I) (4.4)
Co = (0,84, 1) (4.5)
Pi = (RE+T). (4.6)

(Izi, I:) 1s the image projection of the point and (s, sy) is the focal length in pixels
along each axis.

Since both the image measurements and the 3D model locations are assumed to
be noisy, it will not be possible to satisfy the above constraint equations exactly. Let

the measurement error in pixels of image point locations be given by (AX, AY’) and
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the error in the 3D model points be given by Ap. Given a current estimate R, T, the

constraint equations (4.2,4.3) are linearized about the estimate:

1 -~ - - - -
(O AT+ 8- b2) = S, S (47)
1 = = o~ - 1 =

(Cyi - AT + 6w -by) = ——Cyi P+ 1y (4.8)

where E,,- = Rp; X 6,,,~ and Ey; = Rp; x C-"y,-. The noise terms in the two equations,

7. and 7, are functions of both model noise Ap and image noise AX,AY:

~C.: - (R(S,)) (49)

czi

LGy (R(S7,)) (4.10)

€2z

7. = AX +

AY +

Ty

Therefore for the i** point, two linear equations (4.7 and 4.8) can be written and
for a set of “m” points, a total of “2m” equations is obtained. This linear system
of equations relate the pose increments éw (rotation) and AT (translation) to the
computed measurement errors using the current pose estimate. The system of “2m”
equations is similar to the linear system of equations (C.1) described in Appendix C.
Using the formula for the best linear unbiased estimate described in equation(C.2)
in Appendix C, the linear system of equations is solved at each iteration to find the
best increment vector. This increment is added to the current pose estimate and the
process repeated until there is convergence.

In the above system of equations, (7.,7,) represents the measurement noise. If
the correct estimate of pose were known, %, and 7, would be equal to the sum of
the measurement error of the image point location and the projection of the error in
the model point along the image x-axis and y-axis respectively. The measurement
of the image point location is assumed to be corrupted with zero-mean independent
gaussian noise. In our case, for lack of a better noise model, it is assumed that the

image noise in the measurements is independent across all points and is also the same.
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The 3D model points are also assumed to be corrupted by zero-mean independent
gaussian noise. Therefore, in the “2m” system of linear equations, the noise in the two
equations for every point is correlated. Thus the covariance matrix “V” corresponding
to the noise in the linear system of equations (C.1) in Appendix C is a band matrix
in which the non-zero entries are (2 x 2) matrices about the diagonal. If the model
noise was zero and the noise in the image measurements were assumed to be same
for all points, then the input covariance matrix would be an identity matrix scaled
by the standard deviation of image noise. The output covariance matrix for the pose
rotation and translation parameters is given by equation (C.3) evaluated at the final

pose estimate.

4.2.1 Experimental Results: Pose Algorithm

In this subsection, results of Monte-Carlo experiments using the pose algorithm
described above are presented. The synthetic data used for the experiments was
generated from the 3D model constructed for the A211 sequence described in Sec-
tion 2.5. The nine points marked in Figure 2.9 were used for the experiments. For
each experiment, given an input pose, the 3D model of the nine points is projected
to create a 2D image data set. The field of view of the virtual camera was set to be
29.27° x 22.86° and image size of the sensor was assumed to be (256 Xx 256) pixels.
The 3D model points and the projected 2D image points are corrupted with gaussian
noise. Noise for each point was assumed to be zero-mean, identically distributed, and
independent. For each noise specification, 1000 noisy sample sets were created and
the pose algorithm was run on each of the samples. From each sample run, both
the estimated pose and the estimated pose error covariance matrix were collected.
The estimated standard deviations of the pose parameters are computed from the

diagonal terms of the error covariance matrix. The actual standard deviations of
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Table 4.1: Experimental and Computed standard deviation of Translation
and Rotation error in world coordinates for algorithms “R_and_T” for
point data. The algorithm was run on a data set generated from the model created
for the A211 sequence. The statistics for each experiment is taken over 1000 samples

of gaussian noise.

NO. NOISE ¢ | TRANSLATION ERR. ROTATION ERR.
PTS. || IMG. | 3D | AT, AT, | AT, dwg dw, dw,
pixels | feet || feet feet feet deg. deg. deg.
EXPERIMENTAL STANDARD DEVIATIONS
9 1.0 | 0.0 || 0.031 | 0.032 | 0.119 || 0.124 | 0.118 | 0.334
9 3.0 | 0.0 0.092 | 0.094 | 0.355 || 0.369 | 0.351 | 1.001
9 50 | 0.0 || 0.151 | 0.154 | 0.583 || 0.607 | 0.579 | 1.668
9 1.0 | 0.5 | 1.540 | 1.640 | 3.395 | 2.679 2.492 | 5.029
9 1.0 [ 1.0 | 1.539 | 1.635 | 3.382 || 5.466 | 5.034 | 10.224
9 3.0 | 1.0 || 1.540 | 1.640 | 3.395 || 5.485 | 5.035 | 10.254
COMPUTED STANDARD DEVIATIONS
9 1.0 | 0.0 |[ 0.031 | 0.032 | 0.118 | 0.122 | 0.118 | 0.321
9 3.0 | 0.0 0.092 | 0.095 | 0.352 ) 0.364 | 0.353 | 0.958
9 50 | 0.0 0.152 | 0.156 | 0.579 || 0.599 | 0.581 | 1.583
9 1.0 | 05§ 0.762 | 0.799 | 1.704 || 2.648 | 2.487 | 5.026
9 1.0 | 1.0 || 1.498 | 1.574 | 3.402 || 5.194 | 4.846 | 9.016
9 30 | 1.0 | 1.502 | 1.577 | 3.414 || 5.206 | 4.861 | 9.051
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the pose parameters are also calculated from the sample set of 1000 pose estimates.
These are both shown in Table 4.1. Under the heading “Experimental Standard De-
viations”, the actual standard deviations of the estimated pose parameters over the
1000 samples are reported. Under the heading “Computed Standard Deviations”, the
average of the computed standard deviations over 1000 samples are reported. The
statistics (o) of the input 2D and 3D gaussian noise is specified in Columns 2 and 3
of Table 4.1. Columns 4-6 and 7-9 list the standard deviations of the translation and
rotation errors respectively.

From Table 4.1, various observations can be made about the performance of the
algorithm. The first three rows report experiments with no input 3D model noise.
The pose recovery algorithm is able to locate the robot with 0.6 feet and 1.7° when
the image noise has a standard deviation as large as 5 pixels. However, when even
moderate amount of 3D model noise is introduced, the performance of the algorithm
rapidly degrades. This is because, for this experiment, the 3D model points ranged
from 8 feet to 20 feet away from the camera. Thus noise of 0.5 feet or 1 feet has a
very large effect on the estimated pose. For instance, 3D noise of 0.5 feet in a model
point 20 feet away can cause the projection error in the image to be approximately 15
pixels. The corresponding error for points closer to the camera would be much larger.
Finally, comparing corresponding rows in Table 4.1, it is noted that the “Computed
Standard Deviations” are fairly close to the “Experimental Standard Deviations”.
This provides experimental confirmation of the claim that the estimated standard
deviations are quite reliable. Note that the standard deviations of the 1000 sample

standard deviations was also calculated (although not reported here) and found to

be quite small.
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4.3 Induced Stereo

In this section, we present techniques for computing 3D estimates of new points
in the world coordinate system from their tracked image locations over a multi-frame
sequence. The mathematics for both extending the model and refining the initial
modeled points is presented. Computed with the estimate of each new model point
is an estimate of its error covariance. These covariances are functions of the input
image measurement covariances and the initial 3D model point covariances.

Image features (both new features and modeled image features appearing in the
images) are tracked over a sequence of frames using the computed optic flow between
pairs of successive frames [76]. Typically corners (defined by the intersection of two
image lines) are tracked although any image feature which can be reliably tracked
may be used. The initial matching of image features to the partial model for the first
frame may be done by a matching process such as in {8]. Combining the results of the
initial matching and the feature tracking, correspondences between image features
and the partial model for each frame are established. Using these correspondences,
pose estimation is done for each frame using the method presented in the previous
section.

The image projection ray for an image point in a particular frame is defined as the
ray originating from that frame’s optic center and passing through the image point.
Given the pose estimates for each frame, the vectors corresponding to these projection
rays in the world coordinate system can be obtained. The 3D estimate of the point
is the pséudo-intersection of all the image projection rays for a tracked image point
(see Figure 4.1). In order to combine 3D measurements from a sequence of frames, a
stable coordinate frame should be used; a nice property of the system described here
is that the pose estimation process provides the world coordinate frame as this stable

coordinate frame. Independent measurements can be made relating the coordinate
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system of each frame in the sequence to the world coordinate frame.

Points are located by the pseudo-intersection process in two steps. In the first step,
a 3D error function is minimized to find an initial estimate of the point’s location.
This step, however, does not yield the optimal estimate since the various error terms
are not weighted by the input covariances. In the second step, an image-based error
function is optimized in which the error terms are inversely weighted by a combination
of the input covariances.of the pose estimate and the image measurements.

Let r; be the unit vector corresponding to the image projection ray for an image
point in the i’th frame. The pose estimation for this frame is given by the rotation R;
and translation T} (see equation (2.1)). Since the image projection rays do not inter-
sect at a unique point?, the 3D pseudo-intersection point p; is obtained by minimizing

an error function E:

E =Y W(R(7) + T x i (4.11)

=1

Therefore the 3D error function E (used in the first step) is the sum of squares of the
perpendicular distances from the pseudo-intersection point p to the image projection
rays. Differentiating E with respect to the unknown variable p'leads to a set of linear
equations, which are then solved to give the initial estimate for p.

In the second step, the pose constraint equations (4.2, 4.3) are used to formulate

image-based error equations for the X and Y projections of the model points.

1 - 1 = =
—Cei-Ri(p) = ——Cu-T:+¢(x (4.12)

cz p cz

1 5 1 = =
p—Cy,' . R,(f)) ——Cui T+ ¢y (4.13)

cz

where (y and (y are the noise terms in the two equations. {y and (y are functions
of both noise in pose AT; and éw; and image noise (AX, AY):

— - 1 -
(x = AX+ iC,,- AT; + —by; - dw; (4.14)

cz cz

2Due to noise both in image measurements and pose estimates.
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1 = - -~ -
ly = AY + ‘—Cyi -AT; + iby; - dw; (4.15)

cz Pez

In this case the 3D model point p is the unknown variable. The denominator p..
in the equations (4.12 and 4.13) corresponds to the depth of the point and is a
function of the unknown variable . Therefore for each frame over which the point
is tracked, two non-linear constraint equations (4.12 and 4.13) are obtained®. An
iterative procedure is employed to solve the system of non-linear equations. At each
iteration, the denominator p., is held constant using the previous estimate of 7 and
the resulting linear system of equations is solved using equation (C.2) (see Appendix
C). The iterative procedure is repeated until there is convergence. In practice, we
have found one iteration is sufficient for good results. The input covariance matrix V
required in equation (C.2) is obtained from the expressions derived above for the noise
terms (x,(y. The output covariance of the 3D point estimate is given by equation
(C.3) in Appendix C.

In the batch method, information from all frames is used simultaneously to es-
timate the 3D locations of tracked image points. However, it may be desired to
sequentially update the location of new points after every pair (or a larger set) of
frames. In the sequential or quasi-batch mode, equations (4.12 and 4.13) are again
used to estimate the 3D location of image points tracked over the current set of
frames. However, these new estimates must be fused with thc;: previous estimates
to obtain the current optimal estimate. Associated with each estimate is a covari-
ance matrix representing the uncertainty in the estimate. These covariance matrices
are used to fuse the two estimates and provide a new uncertainty matrix using the
standard Kalman Filtering equations.

Let the estimate of the point’s 3D location and its covariance at frame “t,” be

P(t1) and A,(t;) respectively. A new 3D location estimate Q with uncertainty estimate

3A minimum of two frames is needed to solve the system of equations.
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(covariance matrix Ag) is computed from a batch of “n” image frames. The fused

location estimate p(t,) and updated covariance matrix A,(t,) at frame “t,” are given

by:

Blta) = Ap(ta)(Ap(t)'Blta) + A5'Q) (4.16)
Ap(tn) = (Ap(tl)_l + Ac_gl)_l (4'17)

This same method is used for model refinement. Initial model points have asso-
ciated with them their input covariance matrices. When the model is tracked over a
new batch of frames, 3D measurements can also be made for the model points by the
above pseudo-intersection procedure. These new measurements are fused with the

old estimate using the above equation.

4.3.1 Model Extension and Refinement Algorithm

The algorithm for model extension and refinement using a current batch size of

“n” (n > 2) frames can be summarized as follows:

Step 1 Given a partial 3D model and an image, establish correspondences between

model points and image points using a matching technique such as in [8].

Step 2 Track image points over the batch of “n” frames using the computed optic

flow between successive pairs of images [76].

Step 3 Using the correspondences established above between model points and im-

age points, compute the pose for each image frame using the method described

in Section 4.2.

Step 4 Estimate the 3D location of both new points and initial model points in

world coordinates using the two-step approach developed in Section 4.3 and
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the feature correspondences established in Step 2 for the current batch of “n”

frames.

Step 5 Fuse initial estimates of both the new points and the model points with any

previous estimates using equations (4.16) and (4.17).

4.4 Experimental Results -

The model extension and refinement algorithm has been applied to four image
sequences. Figures 4.2, 4.4, 4.6 and 4.7 show example images from the BOX, PUMA,
A211 and COMP sequences respectively. In all experiments the image center was
assumed to be at the center of the image frame and the effective focal length was
calculated from the manufacturers specification sheets. Since we show in Chapter 5
that errors in the image center do not significantly affect the location of new points
in a world coordinate system, calibration for the image center has not been done.
The image sequences were captured with a SONY B/W AVC-D1 camera, with an
effective FOV of approximately (23° x 23°) and (40° x 40°) for the BOX and
PUMA sequences respectively. The images in the A211 and COMP sequence had an
approximate FOV of (29.27° x 22.86°). The images in all sequences were digitized
to 256-by-242 pixels.

4.4.1 BOX Sequence

The first sequence (referred to as the BOX sequence) was generated by rotating the
box (in Fig. 4.2) about its central vertical axis, while the camera was kept stationary.
Consecutive images in the sequence were taken after a rotation of approximately 3.6
degrees. In the first frame, the camera was about 650 mm distant from the top .front

corner of the box. The location of 30 points (marked in Fig.4.2 by circles and crosses)
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in a world coordinate system was measured to an accuracy of approximately 1 mm
along each axis. The depth of the points (in the first frame’s coordinate system) used
in our experiment varied from 575 mm to 700 mm. The thirty points were tracked
over the set of 8 frames.

The fifteen points marked by crosses in Figure 4.2 were used as the initial model to
do pose estimation for each frame. Various experiments were performed with different
amounts of synthetic uniform noise added to the measured 3D locations of the cross
points. Using the computed poses, 3D estimates of the remaining 15 points (marked
by circles in Figure 4.2) were computed. In addition, the initial model of 15 (cross
marked) points was refined. The algorithm described in Section 4.3 was run in a
batch mode over all 8 frames to perform these experiments; the results are reported
in Table 4.2. The first column of Table 4.2 gives the range of noise added to the
initial model points. Thus a 10 mm entry in the first column means uniform noise in
the range of +/- 10 mm was added to each of the 3D coordinates of the model points.
The average error? of the 15 initial model points for each experiment (prior to any
refinement) is given in the second column of Table 4.2. The third column in the table
shows the results of the model refinement procesé; it gives the average output error
of the 15 (now refined) initial model points. The fourth column in the table shows
the results of the model extension process; it gives the average output error of the 15
new (circle) points.

* As can be seen from the first row in Table 4.2, the average error for model extension
when there is no noise in the initial model is 1.38 mm. The maximum error was 2.6
mm and the minimum error was 0.44 mm. The average percentage error was 0.25 %.
The percentage error is calculated by dividing the absolute 3D error by the depth

of the point from the origin of the camera in the first image’s coordinate frame. As

“The average error is the root mean square (RMS) value of the 3D location error of all points.
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Table 4.2: Computed average output 3D location errors for model extension
process with noisy input model points for the Box Sequence of 8 frames.
Input Noise to model is synthetic uniform noise.

Uniform 3D | RMS | RMS Output Noise
Input | Input Initial New
Noise | Noise Points | Points

+ mm| mm mm mm
0| 0.00 0.00 1.38

R 1.01 1.69

2 1.95 1.52 1.92

3| 3.06 2.00 2:23

5| 449 3.00 3.78

7| 6.96 3.32 3.84

10 | 10.25 4.16 6.31

201 1729 10.32 | 16.23

the noise in the initial model increases, the errors in model extension and refinement
also increases. However, except for the first two cases in Table 4.2, the average
output error for both model extension and refinement were significantly lower than
the average input error of the initial model points.

The model extension and refinement algorithm was also run in a sequential mode,
where new 3D locations were computed after every new pair of frames and the results
were fused with previous estimates. Figure 4.3 shows the results of such an experi-
ment. For this experiment, the range of input noise was 5mm and the average error
of the initial model points was 4.49 mm (corresponding to the fifth row in Table 4.2).
The average output error in location of both the initial model points and the new
(circle) 3D points is plotted for every image frame in the sequence. As can be noticed
in the figure, the 3D error in both the initial model points and the unknown points
monotonically decreases between each frame. The average error of the new points is
reduced from 6.5 mm after the first pair of frames to about 3.7 mm at the end. The

average error of the initial points is reduced from 4.49 mm to about 2.8 mm.
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Figure 4.2: Box Image. The points marked by crosses were used to compute
the 3D pose for each frame. Using these poses, the 3D location of the
numbered points marked by circles is computed.

Ksalsman filter output for old and

] "bow5 old.plot" ——
N "box5 new.plot" —-

new points (Box Sequence)

Average Error (mm).

Figure 4.3: Box Sequence. Plot of average error over the frame sequence

for for the new points (Model Extension) and for the initial model points
(Model Refinement).
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In this experiment, the high accuracy with which 3D parameters of the new points
were computed is due primarily to the fact that the motion over the sequence is ap-
proximately parallel to the image plane. Such motion is best for accurate triangula-
tion. Moreover, due to the rotation about an off-centered axis, image features remain
in the image plane for the entire sequence and large image disparities are obtained.

In the first experiment (first row of Table 4.2) described above for the box se-
quence, the image center was assumed to be at the frame center. In another exper-
iment, the image center was assumed to be displaced by 15 pixels along each axis
from the frame center. The experiment was repeated and the 3D locations of the
points obtained; comparing these locations to the previously computed locations, we
found that the new estimates of the 3D points differed from the previously computed
estimates by an average distance of 0.261 mm. This supports the claim made in
Chapter 5 that incorrect estimates of the center do not affect the 3D estimation of

points significantly for small field of view systems (24 degrees for this sequence).

4.4.2 PUMA Sequence

The second sequence was generated by fixing a camera to a PUMA arm and
rotating the arm by 4 degrees between consecutive positions of the camera. The field
of view of the imaging system was 40 degrees. Figure 4.4 shows the 14’th frame of this
sequence (referred to as the PUMA sequence). The plane of rotation of the camera
is approximately parallel to the image plane. The axis (off-centered) of rotation
intersects the image plane somewhere between points 8 and 18 in Figure 4.4. The
radius of rotation is approximately 2 feet. Thirty frames were taken over a total
angular displacement of 116 degrees. The maximum displacement of the camera in
these thirty frames is approximately 2 feet along the world y-axis (vertical direction)

and 1 feet along the world x-axis (parallel to the x-axis of the image in Figure 4.4).
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This corresponds to the longest baseline over these 30 frames. The location of 32
points (marked in Figure 4.4) in a world coordinate system was measured to an
accuracy of approximately 0.2 feet along each axis. The depth of the points (in the
first frame’s coordinate system) used in our experiment varied from 13 feet to 33 feet.

Most of the 32 points were tracked over the entire set of 30 frames.

Figure 4.4: Puma Image. The points marked by crosses were used to com-
pute the 3D pose for each frame. Using these poses, the 3D location of
the numbered points marked by circles is computed.

The twelve points marked by crosses in Figure 4.4 were used to do pose estimation
for each frame. For this experiment, no noise was added to the initial twelve model
points. Table 4.3 shows the errors in computing the 3D locations of the remaining 20
points (marked by numbered circles in Figure 4.4). The results shown in Table 4.3 are
the output of the algorithm when run in a batch mode using all 30 frames. Figure 4.5
is a graph of the same experiment when run in a sequential mode using a batch size

of 2 frames to generate 3D locations. The y-axis in Figure 4.5 is the average error in
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Table 4.3: Absolute and Percentage 3D location errors for points in PUMA

sequence (see Fig. 5.)

Point | Depth | Absolute | Percentage
Num. Error Error
feet feet

1| 24.59 0.616 2.50 %
2| 26.02 0.355 1.36 %
3| 28.32 0.373 1.32 %
4| 22.06 0.440 1.99 %
5| 30.20 0.217 0.72 %
6| 28.62 0.281 0.98 %
7| 31.56 0.472 1.50 %
8| 32.61 0.038 012 %
9| 14.33 0.125 0.87 %
10| 15.34 0.279 1.82 %
11| 14.46 0.019 0.13 %
12 | 13.50 0.081 0.60 %
13| 21.75 0.054 0.25 %
14| 18.81 0.022 0.12 %
15| 21.73 0.036 017 %
16 | 20.28 0.104 0.51 %
17| 21.26 0.402 1.89 %
18 | 20.28 0.731 3.60 %
19 | 21.55 0.234 1.09 %
20 | 20.42 0.594 291 %

locating the 20 new points and the x-axis is the frame number. Again, the average

error is reduced from about 1.5 feet after the first pair of frames to about 0.3 feet at

the end of 30 frames.

The point numbers in Table 4.3 correspond to the numbered circled points in

Figure 4.4. The depth of each point from the first camera coordinate frame is also

shown®. The average error for the twenty points was 0.27 feet. The maximum error

was 0.731 feet and the minimum error was 0.019 feet. The average percentage error

®Since the plane of motion was roughly parallel to the image plane, these depths are approximately

constant for the entire sequence.
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Figure 4.5: Puma Sequence. Plot of average error over the frame sequence
for for the new points (Model Extension).

was 1.22 %. The reader must note that this average is just over the set of unknown
20 points. There are points in the sequence for which the error is much larger than
1.2 %. Points 1-4 in Table 4.3 have large errors because they were not localized
accurately. The line-finding algorithm was not able to correctly find the borders of
the ights. Points 18 and 20 have large errors because they are close to the point where
the rotation axis pierces the image plane. These points therefore do not have large
disparities. Points 17 and 19, which are a little further away, fxave correspondingly
sma.ller errors. Finally, as noted above, the imaging system has not been calibrated.
Since we used a higher field of view lens for this experiment (40 degrees as compared

to 24 degrees for the BOX sequence), the 3D results are more sensitive to errors in

locating the image center.
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4.4.3 A211 Sequence

The A211 sequence (see Figure 4.6) is described in Section 2.5 and Section 4.2.1.
There are 10 image frames in the sequence, each taken after a forward motion of the
camera by approximately 0.38 feet. Thus the total translation of the camera is 3.42
feet. Objects in the scene ranged from 8 feet to 20 feet away in the first image frame.
For this experiment, the initial model was built using Sawhney’s [69] algorithm for
segmenting and locating shallow structures®. The image motion of shallow structures
can be described by an affine transform. Based on the affine-trackability of an object,
Sawhney [69] is able to segment out different shallow structures in the scene. A
Kalman-filter is used to estimate the depths of “shallow structures” over a sequence
of multiple image frames.

Seven points (the points marked by crosses in Figure 4.6) lying on shallow struc-
tures recovered by this algorithm were used as the initial model points. The 3D model
locations were constructed by extending the image projection rays in the first image’s
coordinate frame of the seven points to the depth computed by Sawhney’s algorithm.
Thus, the model coordinate frame is the same as the first image’s coordinate frame.

The model extension and refinement algorithm was run in a sequential mode.
Table 4.4 shows the result of locating the 13 new points (circled and numbered from
8 to 20 in the Figure 4.6) and refining the seven initial model points. The ground
truth available for the experiment was only the depths (as opposed to 3D location) of
the points in the first image’s coordinate frame. Thus the results shown in Table 4.4
compare the measured depth value (ground truth) with the recovered depth value.
Column 2 in the table shows the measured depth of the point in the first image

coordinate frame. Columns 3 and 4 show the input error and percentage error in

6Shallow structures are those whose extent in depth is small compared to their average ‘depth
from the camera.
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Table 4.4: Absolute and Percentage 3D location errors for points in A211

room sequence.

INPUT OUTPUT

Pt. | Depth || Abs. % Abs. %

No. Err. Err. Err. Err.

ft. ft. ft.
Initial Points
1 134 || 0.24 | 1.80 % || 0.24 | 1.78 %
2 14.6 [ 0.19 [1.31 % |[ 0.20 | 1.34 %
3 19.0 0.74 | 3.88 % || 0.66 | 3.46 %
4 19.0 || 0.16 { 0.86 % || 0.11 | 0.60 %
5 20.4 || 0.13 |0.62% || 0.17 | 0.86 %
6 204 | 0.39 [1.90% || 0.32 | 1.60 %
7 20.4 | 0.49 | 2.38% || 0.46 | 2.25 %
New Points

8 13.4 - - 0.11 {0.79 %
9 13.4 - - 0.00 [ 0.01 %
10 | 14.6 - - 0.53 | 3.65 %
11 19.0 - - 0.73 | 3.86 %
12 19.0 - - 054 1282 %
13 19.0 - - 0.11 | 0.59 %
14 | 19.0 - - 0.07 1034 %
15 | 20.4 - - 023 11.13 %
16 | 204 - - 0.27 1 1.32 %
17 | 204 - - 0.12 [ 0.57 %
18 | 20.4 - - 0.34 {1.65 %
19 | 20.4 - - 0.62 | 3.02 %
20 | 20.4 - - 059 1292 %
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Figure 4.6: A211 Image. The points marked by crosses were used to com-
pute the 3D pose for each frame. Using these poses, the 3D location of
the numbered points marked by circles is computed.

depth (before model refinement and extension) respectively. Thus, for the new points
(Nos. 8 to 20) these two columns are blank, since no prior estimate is assumed
for them. Columns 5 and 6 show the input error and percentage error in depth
(after model refinement and extension) respectively. The percentage error in depth
is computed with respect to the depth in the first image’s coordinate frame.

The average input error in depths of the seven model points was 0.4 feet (1.85 %
error). At the end of the ten frames, the average error of the 7 initial points was 0.37
feet (1.76 %). The thirteen new points were located to an average accuracy of 0.4
feet (1.63 %). Thus, in this experiment there was only slight improvement for the
model refinement process. The model extension process was, however, fairly accurate
in locating new points. If the initial model given to the model extension process is

noise free, then the average error in recovering the thirteen new points is 0.2 feet

(0.94 %).



4.4.4 COMP Sequence

The COMP sequence was generated by taking images from a camera mounted
on a mobile robot. The robot was translated roughly along the optical axis of the
camera and 6 image frames were taken after every 1.4 feet (approximately). The total
translation of the camera was 7 feet. Figure 4.7 shows the first frame in the image
sequence. Objects in the scene ranged from 20 feet to 40 feet away in the first image
frame. The depth of sore salient structures was measured with a tape measure.

Sawhney’s [69] tracking algorithm was applied to the image sequence to identify
the shallow structures in the scene. Nine points (the points marked by crosses in
Figure 4.7) lying on the recovered shallow structures were used as the initial model
points. These points are defined by the intersection of some of the pairs of lines be-
longing to shallow structures. The 3D model locations were constructed by extending
the image projection rays in the first image’s coordinate frame of the nine points to
the depth computed by Sawhney’s algorithm [69]. Thus, the model coordinate frame
is the same as the first image’s coordinate frame.

The model extension and refinement algorithm was run in a sequential mode.
Table 4.5 shows the result of locating the 18 new points (circled and numbered from
10 to 27 in the Figure 4.7) and refining the nine initial model points. The ground
truth available for the experiment was only the depths (as opposed to 3D location) of
the points in the first image’s coordinate frame. Thus the results shown in Table 4.5
compare the measured depth value (ground truth) with the recovered depth value.
For this experiment the measured depth values are only approximate to about 0.5 feet
for some points. This is especially true for points lying on the left side wall (points
1, 2, 3 etc. in Figure 4.7). Column 2 in the table shows the measured depth of the
point in the first image coordinate frame. Columns 3 and 4 show the output -error

~and percentage error in depth for the nine model points as recovered by the affine-
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Table 4.5: Absolute and Percentage 3D location errors for points in COMP
sequence (see Fig. 4.7.)

INPUT OuUTPUT

Pt. | Depth || Abs. % Abs. %

No. Err. Err. Err. Err.

ft. ft. ft.
Initial Points
1 20.3 [[-0.230.80 % || -0.11 [ 0.36 %
2 31.3 0.26 | 0.84 % || 0.17 { 0.55 %
3 342 |[-0.10]0.29 % || -0.07 | 0.20 %
4 25.7 |/ -0.26 | 1.03 % || -0.23 | 0.88 %
5 35.8 1.59 443 % || 1.54 {431 %
6 28.7 | 0.39 [1.36 % || 0.39 | 1.35 %
7 432 | -1.65(3.82% | -1.63 | 3.76 %
8 43.2 1.18 1 2.73 % || 1.15 | 2.66 %
9 28.7 1.46 | 5.08 % || 1.41 | 4.91 %
New Points

10 | 29.3 - - ) 0.25 1 0.86 %
11 29.3 - - -0.3511.19%
12 | 31.3 - - 0.51 | 1.63 %
13 | 31.3 - - 0.28 | 0.89 %
14 | 34.2 - - 0.93 {2.70 %
15 | 34.2 - - 1.31 1382 %
16 | 25.7 - - -0.02 |1 0.07 %
17 | 25.7 - - 0.03 10.11 %
18 | 35.8 - - 1.05 | 2.93 %
19 | 35.8 - - 0.50 | 1.40 %
20 | 28.7 - - -0.11 | 0.39 %
21 | 28.7 - - 0.08 1 0.29 %
22 | 43.2 - - 0.46 | 1.07 %
23 | 43.2 - . 1.77 1 4.10 %
24 43.2 - - -0.45(1.04 %
25 | 43.2 - - 0.13 { 0.30 %
26 | 28.7 - - 0.80 | 2.77 %
27 | 28.7 - - 0.25 |1 0.88 %
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Figure 4.7: COMP Image. The points marked by crosses were used to
compute the 3D pose for each frame. Using these poses, the 3D location
of the numbered points marked by circles is computed.

based tracking algorithm respectively. Columns 5 and 6 show the output error and
percentage error in depth (after model refinement) respectively. For points numbered
10 to 27, it was assumed that no initial model was available, therefore columns 3 and 4
are blank. Note that these points also belong to the reconstructed shallow structures.
However, their reconstructed locations were not used as a part of the initial partial
model. Instead, these points were used to demonstrate model extension because the
ground truth was available only for these structures. Columns 5 and 6 show the
output error and percentage error in depth after the model extension process. In the
table, the percentage error in depth is computed with respect to the depth in the first
image's coordinate frame.

The average input error in depths of the seven initial model points (as recovered
by the affine-based tracking algorithm) was 1.01 feet (2.27 % error). At the end of

the ten frames, the average error of the 9 initial points was 0.98 feet (2.11 %). In this
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experiment also, there was only slight improvement in the initial model as a result
of the model refinement process. The model extension process was, however, fairly
accurate in locating new points. The eighteen new points were located to an average
accuracy of 0.69 feet (1.46 %). Finally, the reader is reminded that for this sequence,
the measured depth values for some points are approximate to 0.5 feet.

The robust recovery of the location of new 3D points depends on the camera
motion. Optimal angles for triangulation are achieved when there is significant trans-
lation parallel to the image plane. In the A211 and COMP sequence, the translation
of the camera is mostly along the optical axis. Thus, the FOE (focus of expansion)
lies on the image plane. Points close to the FOE have hardly any disparity and their
depths cannot be reliably estimated. For this reason, the best results obtained by the

model extension and refinement process were for the BOX sequence.

4.5 Conclusions

The techniques presented in this chapter are preliminary efforts for model exten-
sion and refinement of point data. The experimental results show that knowledge
of a few points can greatly increase the accuracy of 3D recovery in comparison to
traditional algorithms from motion and stereo analysis. However, the accuracy of
the model extension process depends on the initial accuracy of the model points. To
make the system less sensitive to the initial accuracy of the model points, one possible
solution would be to couple methods of motion analysis with those of pose recovery.

If the initial model points have a large amount of noise, then the poses determined
for any batch of frames will be highly correlated. In this case, the 3D location
estimates of new points will be correlated both across all points and also all frames.

To fully account for this correlation, assuming n points and f frames, (n x f) size
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covariance matrices have to be inverted. In our case, it i1s assumed that the initial
points do not have significant noise and hence the cross-correlations can be ignored.
But for larger amounts of noise, it may not be possible to ignore these effects. These
cross-terms are exactly what Oliensis and Thomas [61] incorporate in their motion
analysis paper.

Finally, the terms model extension and refinement are slightly abused in this
paper. Model extension and refinement are not limited to just locating new points in
the scene. Ultimately, it is desired to build 3D surface and volumetric models and to
integrate the new 3D measurements with the existing higher order models; this has

been left for future work.



CHAPTER 5

SENSITIVITY TO CAMERA PARAMETERS

5.1 Introduction

The standard model adopted for imaging 3D scenes by CCD and other cameras is
perspective projection. A ray from the camera focal point to a 3D point intersects the
image plane at the image location of the 3D point under perspective projection. The
optical axis is defined as the perpendicular line from the focal point to the imaging
plane and the image center is defined as the point where the optical axis pierces the
image plane. Two important camera parameters which often need to be calibrated
are the focal length and the image center. In this chapter, we study the effect of
errors in estimates of the image center and focal length on pose determination and
other related (3D inference from 2D images) problems [44]. The pose determination
algorithms used in the experiments are described in Chapter 2 and in [46]. The
conclusions drawn, however, are independent of the particular algorithm used.

The image center is often assumed to lie at the center of the image frame. This
default center has been reported to be off by as much as 30 pixels for some standard
camera and frame grabber combinations [49]. Calibration techniques using either
lasers or high precision calibration plates have been used to locate the center to
within a few pixels [19, 49, 73]. Is this precise calibration necessary? The analysis

presented here shows that it depends on three factors:

1. The particular 3D output or inference one is interested in.

129



130

2. The level of accuracy desired in the results.
3. The amount of noise in the input data.

The goal in pose determination is to find the rotation and translation matrices
which map the world coordinate system to the camera coordinate system. Given the
rotation (or orientation) and translation, the location of the camera with respect to
the world coordinate system can be computed. We will show that for small freld
of view imaging systems, an error in the estimation of the camera center does not
affect the location of the camera significantly. The rotation or orientation is affected,
however, and the amount of error in the orientation is linearly related to the error in
the estimate of the center.

An application of the pose determination process is model extension. Given a
partial model of the scene, it can be used to obtain robust 3D estimates of new image
features, effectively extending the model. From the poses computed using the partial
model for two images taken from the same camera, the relative orientation between the
two image coordinate frames is computed as a prelude to “induced stereo” analysis®.
Using the computed relative orientation, the 3D depth and location of points ( in the
coordinate frame of one of the cameras) is computed using triangulation. In the third
section of this chapter a model of error for this depth is constructed based on the
amount of error in locating the image center. The errors predicted by this model are
consistent with the errors obtained when applying the pose determination algorithm
[46] to both synthetic and real data. We show that these errors are small compared
to the errors caused by image noise of 0.5 pixels or more for 512 x 512 images with
24 degrees field of view and approximately 2 feet long stereo baseline; note that the

baseline is in the lateral direction. Therefore, image noise is the most significant

'We use the term “induced stereo” to refer to the process of estimating 3D locations of points
from triangulation given the relative orientation between the same camera in two different locations.
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factor in determining accurate 3D depths. Furthermore, if the 3D coordinates of the
triangulated point are transformed to the world coordinates using the computed pose,
the error in 3D location is only due to second order effects, and hence negligible for
small field of view systems.

The results derived for induced stereo, showing the effect of errors in locating the
image center on the relative orientation between pairs of frames, are also applicable to
recovery of structure from motion algorithms? [35]. Experiments for motion in depth
show that these formulae were able to predict moderately well changes in relative
orientation® as computed by Horn’s algorithm [35]. However, the formulae did not
predict the errors well for experiments with motion parallel to the image plane. In the
case of induced stereo, the formulae were accurate in their predictions for both kinds
of motions. Note that structure from motion algorithms are especially non-robust
when the motion is parallel to the image plane [1].

Finally, in the last section of this chapter, the effect of incorrect estimation of the
focal length on the pose determination problem is studied. We show that incorrect
estimates of the focal length only significantly affects the z-component (i.e. parallel
to the optical axis) of the translation. The x and y components of the translation
and the rotation are not affected significantly. However, the location of the camera in
world coordinates will be affected since the z-component of the translation changes.
Again, experimental results on real data are presented to support the theoretical

claims.

%In structure from motion, both relative orientation and depths of image points are unknown.
3Due to errors in locating the image center.
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5.2 Errors in the Pose Determination Problem from Center Offsets

The question asked is this: given two input data sets to the pose refinement
problem (the first with the correct image center and the second with an offset image
center), how are the two resulting poses related? The only difference between the two
data sets is a constant offset of all the image pixels in one data set by the amount
the center estimate is offset. Associated with each of the input data sets is a camera
coordinate frame. The result of the pose refinement process is to determine the rigid
body transformation between the world coordinate frame and the camera coordinate
frame. Let “W?” represent the world coordinate frame, “C1” the camera coordinate
frame with the correct center and “O1” the camera coordinate frame with the offset

center; then

XCI = Rcl(Xw) + Tcl (51)

In this equation, the rotation R.; and translation 7T, relate a 3D point X, in the first
camera coordinate frame “C1” to its coordinates X,, in the world coordinate frame
“W?”. Points in the camera coordinate frame “O1” are related to points in the world

coordinate frame “W” by equation:
Xo1 = Ro1(Xy) + Tor (5.2)

We would like to find the relationship between the two camera coordinate frames
“C1” and “O1”. As noted earlier the only difference between the image data associ-
ated with the two frames is a constant shift of all the pixels. Let these be AC, and
ACy in the X and Y image frame directions, respectively; these shifts correspond to
the offset of the image center for the second image data set relative to the first image.
The displacement of image points between two frames due to rigid motion (2] is given

by the following equation:
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o= __”1?}‘“ —(f+ f’%)ay +y0, + Y2221 B =) (5.3)
B=(f+ yTyl)Q, - ——y“;n” -z, + UL —vT.) ; yT:) (5.4)

where

a, 8 are the image displacements in the z,y axis respectively.

(Qq, Qy, 2,) are the small angle approximations to rotation about the X, ¥ and Z
axis respectively.

(Te, Ty, T:) is the translation along the (X,Y, Z) axis respectively.

Z is the depth of the point in the first coordinate frame.

f is the focal length of the camera in pixels.

(z,y) is the location of the point in the first image frame (“C1”) and (z,%1) is
the location of the point in the second image frame (“O1”).

Between the two frames “C1” and “O1”, a = AC:; and 8 = AC, i.e. both
are constant for all points in the image. What transformation can account for this
constant shift ? If we assume the field of view of the camera is small, then second
order terms such as ‘a::z:l, 2,y etc. can be neglected. If the scene being imaged is not
a frontal plane, i.e. “Z” is not constant for all points # then the only transformations
that can cause a constant change for a general set of points are the rotations €2, and
), about the X and Y axis; everything else (i.e. Q,, T, T, and T;) will be zero.

The following two equations express this relationship:
a=AC,=-fQ, (5.5)
B=AC, = fQ, (5.6)

Let the rotation operator Apg represent the overall rotation composed of the ro-

tations 2, and Q, about the X and Y axis. The two coordinate frames “C1” and

“Frontal planes are dealt with later on.
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“O1” are therefore hypothesized to be related by a rotation Ag:
Xo1 = Ap(Xa) (5.7)
Combining equation (5.7) with equation (5.1) we get:
Xo1 = ApR(Xw) + Ar(Ta) (5.8)
Comparing equation (5.8) with equation (5.2) we see that:

Rol = AH}ZcI (59)
Tor = Ar(Ta) (5.10)
The above equations reflect how the orientation R,; and location of the world ori-

gin in camera coordinates T, are altered with incorrect knowledge of the center.

The location of the camera origin in world coordinates T, is given by the following

equation:
Twer = —RZ;(Td) for camera frame C1. (5.11)
Twor = —RY(T.1) for camera frame Ol. (5.12)

Using equations (5.9, 5.10) and the above equation for T we get:
Twor = —RLARAR(Te) = =R (Ta1) = Tuwa (5.13)

Therefore an error in estimating the image center significantly affects the location of
the camera in world coordinates only if the second order terms in the motion dis-
placement equations (5.3,5.4) are large. For small field of view imaging systems, the
location of the camera is not affected since the second order terms are negligibly
small.

The orientation of the robot, on the other hand, is affected; the amount de;;ends

on the values of (AC., AC,). For instance, for a camera with field of view 24
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degrees and a 512 x 512 image, a 30 pixel offset in the camera center in either x or
y coordinate would cause a rotation error of 1.427 degrees about the corresponding
axis (using equations (5.6,5.6)). Whether changes in orientation of this order are
significant or not depends on the application.

Finally, in the case of frontal planes, the depth value “Z” is the same for all points.
Therefore in the motion displacement equations (5.3,5.4) both the translation com-
ponents T, T, and rotation terms ., {2, can account for the constant displacement.
In this case, the model of change in pose as given in equation (5.7) may not be correct.
However, the reader is reminded that frontal planes are typically a degenerate case
for pose. Even if we have a correct estimate of center, since “Z” is constant, there
could be an incorrect pose related to the correct pose by a transformation composed
of translation components T, Ty and rotation components €1, {1,. The image trans-
formations caused by rotation (Q, €,) can be canceled by the transformation due
to translation (7%, 7)) in equations (5.3,5.4) leading to approximately zero values of
a and B and therefore more than one pose can explain the same input data. The
same observation has been made for the structure from motion problem by other
researchers [57]. The above model will also break down for large field of view imaging

systems (e.g. beyond 45 degrees field of view), when the second order effects cannot

be ignored.

5.2.1 Experimental Results

In chapter 2, we described algorithms for pose estimation given correspondences
for 3D model and 2D image points and lines. We show results from our pose algo-
rithms for two image sets with different errors in the location of the image center. The
images (512 x 484 pixels) were acquired using a SONY B/W camera (model AVC-

D1) interfaced to a Gould frame grabber. The field of view of the imaging system is
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approximately 24.0 degrees. For each set of image data, a new data set was created
by adding a constant pixel offset to the x and y coordinates of the image data of the
original set.

The first image (Figure 5.1) is of a hallway (similar to the hallway images used
in Chapters 2 and 3). The large door in the image is 40 feet distant from the cam-
era. Figure 5.1 shows the first set of input image lines to the pose algorithm. Two
more sets of input data were created by adding center offsets of (10,10) and (20,20)
pixels respectively to the assumed center. Figure 5.2 shows the projected lines after
estimation of pose for the first (original) set of input image data. Figure 5.3 shows
the projected lines after estimation of pose for the third set (center offset of (20,20)
pixels) of input image data. Note that to display the data in Figure 3.3, the original
intensity image was shifted by 20 pixels on each axis (corresponding to the center
offset). It is clear from Figure 5.2 and Figure 5.3 that the projections align with
their respective input images in a very similar manner. The results for location of
the camera in world coordinates for the three different center offsets is given in Table
5.1 under the heading “HALLWAY IMAGE”. The final location (in feet) in world
coordinates (for scenes and tmages as shown in ihe figure above) changes only by a
few tenths of an inch. In Table 5.1 the (0,0) offset corresponds to the projected model
in Figure 5.2 and the (20,20) offset corresponds to the projected model in Figure 5.3.

The second image is from the BOX sequence described in the results section
(Section 4.4) of the previous chapter. The image is shown in Figure 4.2. The fifteen
points marked by crosses in Figure 4.2 were provided as input to the pose refinement
algorithm. Three new image data sets were created by adding center offsets of (10,0),
(10,10) and (20,20) respectively. The results of locating the camera for these different
data sets are shown in Table 5.1 under the heading “BOX IMAGE”. As can be seen

from the table, the location of the camera changes by only 1 or 2 mm for different
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Table 5.1: Location of camera in world coordinates as computed by the pose
refinement algorithm for two sets of real image data with different center
offsets.

Center | Center | LOCATION in WORLD
Offset X | Offset Y L | Ly | L,
HALLWAY IMAGE
pixels |  pixels feet feet feet

Measured Location | 40.00 4.00 3.57
0 0| 39.98 4.09 3.57
10 10 | 40.00 4.09 3.58
20 20 | 40.02 4.09 3.58
BOX IMAGE
pixels pixels mm mm mm
0 0| 418.23 | 260.52 | 381.37
10 0| 417.94 | 260.49 | 381.72
10 10 | 417.27 | 260.56 | 380.85
20 20 | 416.68 | 260.71 | 380.51

center offsets. Although results from only two images are presented here, the above

behavior has been observed for numerous other images.

5.3 Errors in Induced Stereo from Center Offsets

Given two image frames from the same camera at two different positions, the
relative orientation between the camera coordinate systems for the two frames can be
computed using a pose recovery algorithm. The relationship of the two cameras with
respect to the world coordinate system is found and from that the relative orientation
is computed. Let the two frames with the correct center be “C1” and “C2”; their

relationship to the world coordinate system is:

Xcl = Rcl(Xw)+Tc1 (514)

Xcg = Rcz(JYw)+Tc2 (515)



Figure 5.1: Hallway image with input 2D-image lines.

Figure 5.2: Hallway image, pro-
jection of model after estimation
of pose, image center assumed
to be frame center.

Figure 5.3: Hallway image, pro-
jection of model after estimation
of pose, image center assumed
to be offset from frame center
by 20 pixels along each axis.
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Combining these equations, the relative orientation between the frames “C1” and

“C2” can be expressed by:

Xa = Rclz(Xcz) + Taa (5.16)
Ry, = Ra.RY (5.17)
Tc12 = (Tcl - Rcl Rg‘z(Td)) (518)

Similarly, let the frames with the incorrect center be “O1” and “O2”. The relative

orientation between these frames is given by:

Xoo = Raa(Xez) + Torz (5.19)
Ry2 = Ra RZ; ' (5.20)
Taz = (Tol - Rolsz(Tnﬂ)) (521)

Using equations (5.9,5.10) and some algebraic manipulation, we can rewrite equa-

tions (5.20) and (5.21) for R,z and Ty in term.;, of Ra3,Te1z and Apg:

Rn: = ApRaaOj (5.22)

Torz = AR(Taz) (5.23)

The above two equations represent the error in the relative orientation if the center
estimate is incorrect. If two corresponding points in the two frames “C1” and “C2”
are given and assuming the unit vectors® from the focal point to them are r and rc,

respectively, the formula for the depth D, of the 3D point obtained by triangulation

in the first camera coordinate frame is:

D, = s(rq-2) (5.24)
(rcl X Rclz(cm)) * (Tc12 X Rc12(rc2))

S
I{re1 X Rexa(re2))l|?

(5.25)

SWe define the rays corresponding to these vectors as projection rays.
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In this equation s is the length along the 3D ray corresponding to the vector r; from
the ornigin of the 3D point and Z is the unit vector along the z-axis.
For the frames “O1” and “02”, the unit vectors for the same points 7,; and re

corresponding to points 7., and r.; in frames “C1” and “C2” can be approximated

as before® by:

ro1 = Apg(ra) (5.26)

Toz = Apg(rez) (5.27)

Combining these two equations and equation (5.24), the depth of the same 3D point

in the image frame “O1” coordinate system is:
Do = 3(1‘01 . 2) = S(AR(TCI) . é) (5.28)

Note that the length along the 3D ray has not changed in the offset center case,
i.e. frame “O1-0O2” as compared to the correct center pair “C1-C2”. However, the
depth of the point changes because of the rotation of the unit vector r.;. The X and
Y coordinates of the 3D point are also similarly affected.

From the above derivation the percentage error in depth can be predicted by the
following formula:

—ACyra: + AC:

% Derr = - T<1v 100.0% (5.29)
clz

In the next section, this error is used to predict the percentage depth error due to

incorrect center; and the prediction is compared with the actual depth errors found
when running pose and the triangulation algorithm on synthetic data. The errors
in depth computation due to an incorrect estimate of center and noise in the image
locations versus data with a correct estimate of center but no noise being present are
also compared. As results will show, the error for even small amounts of image noise

are much larger than error due to incorrect center placement.

6The approximation ignores the second order terms for small field of view systems.
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Note that if the triangulated 3D point is transformed to world coordinates, then
the only error will be due to second order effects. The center offset causes the 3D
point to be rotated by Ag in the camera coordinate system and the subsequent

transformation back to world coordinates cancels out the Ay rotation.

5.3.1 Experimental Results for Induced Stereo

Experimental results are presented in this section for synthetic data and real image
data. A pair of images is required for each experiment in this section. Synthetic data
was created by taking a model of a 3D scene very similar to the hallway shown in
Figure 5.1 and projecting a set of 3D points onto the image plane for two different
positions of the camera (induced stereo baseline in lateral direction was approximately
2.0 feet). Twenty points in total were used, out of which only 9 were used for pose
calculation. Depth computations were done for all twenty points. The imaging frame
was assumed to be 512 x 512 with a field of view. equal to 24 degrees.

The box image shown in Figure 4.2 was the first frame used for the real image
data (see description of BOX sequence in Section 4.4). The 8th frame of the BOX
sequence was used as the second image. It corresponds to a rotation of the box by
approximately 25 degrees about its central vertical axis. The fifteen points marked
by crosses in Figure 4.2 were used to compute the pose for each .frame. Depths were
computed for the fifteen points marked by circles in Figure 4.2.

“In Table 5.2, the predicted average depth errors are compared with the computed
average depth errors for various different center offsets for both the synthetic data
and the box data. As can be seen, the predicted depth errors compare quite favorably
to the computed ones. The very small difference between the predicted and computed
errors can be attributed to the second order effects which were ignored.

For the comparison of error due to incorrect center versus error due to noisy image
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Table 5.2: Predicted percentage average depth errors versus computed av-
erage depth errors for different center offsets for synthetic and real image

data.
Center | Center | Predicted | Computed
Offset X | Offset Y | % depth | % depth
pixels pixels error error
SYNTHETIC IMAGE
10 0 0.063 0.047
10 10 0.085 0.091
20 20 0.169 0.183
30 30 0.254 0.277
50 50 0.423 0.469
BOX IMAGE
10 0 0.082 0.078
10 10 0.141 0.172
20 20 0.283 0.337
30 30 0.424 0.495
50 50 0.707 0.789

Table 5.3: Computed average depth errors for synthetic uniform noise data
with and without center offsets. 512 x 512 image with 24 deg field of view, center
offset by 30 pixels for each axis, 2 feet long stereo baseline.

Image Noise | Center Offset
Noise only plus Noise
pixels | % Depth Err | % Depth Error
0.0 0.000 0.277
0.1 0.124 0.300
0.2 0.247 0.350
0.5 0.623 0.661
1.0 1.366 1.432
1.5 1.453 1.424
2.0 2.133 2.240
3.0 3.398 3.418
5.0 5.653 5.676
10.0 11.638 11.765
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locations, various amounts of uniform pixel noise were added to the synthetic image
data. The center was offset by a constant amount of 30 pixels along each axis for this
experiment. From Table 5.3, it can be seen that at noise levels greater than 0.5 pixels,
the error with and without center offset are comparable. It is only at image noise
levels of less than 0.5 pizels that the error due to incorrect center is significant. Of
course, if we increase the induced stereo baseline and are able to make more accurate
3D measurements from induced stereo, then the 3D error caused by incorrect center
estimates will become comparable to 3D errors at larger levels of image noise. To
conclude, given a particular stereo configuration and expectation of image noise, we

can calculate the significance of 3D error due to an error in estimating the center.

5.3.2 Structure from Motion

The equations which show the effect of errors in locating the image center on the
relative orientation between pairs of frames, derived in the case of induced stereo,
are also applicable to recovery of structure from motion algorithms. The error func-
tion Ej, minimized by Horn [35] in his relative orientation algorithm, given point
correspondences for a pair of frames, is:

n
Ey = Z;((rcli X Rez(7eai)) - Tc12)2 (5.30)
i=
where
' Teui, Te2i are the vector representations of the projection rays of corresponding
points.

R.2 and Ty, are the relative orientation parameters: rotation and translation

respectively.

If two new frames are created by shifting the original image data by an offset
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corresponding to the error in locating the center, the error function Ef minimized is:
n
Eﬁ = Z((roli X Rol2(rozi)) * T‘OIZ)2 (531)
=1
Substituting in equation (5.31) for the new projection rays (7o1:, To2:i) using equa-
tions (5.26) and (5.27) and for the rotation R, and translation Ty, using equations

(5.22) and (5.23) respectively, we can show that:
E} = Ey (5.32)

Therefore, if Ej is minimum for the rotation R.;, and translation T,;,, then Ef is
minimum for the rotation R, and translation T,;, which are related to (Reiz, Te12)
by equations (5.22) and (5.23). The change in relative orientation caused by errors
in estimating the center are predicted by equations (5.22) and (5.23).

Experimentally, these formulae were able to predict moderately well the changes in
relative orientation parameters due to errors in locating the image center” for camera
motions having a significant translation component in the T, (i.e. along the optical
axis) direction. Less success was achieved for predicting errors for camera motions
parallel to the image plane. Note that structure frc;m motion algorithms are especially

non-robust when the motion is chiefly parallel to the image plane.

5.4 Inaccurate Estimates of the Focal Length

The focal length of the lens supplied by lens manufacturers are generally quite
accurate. However, when the lens is focused on points close to the camera (i.e.
when the camera is not focused at infinity) the effective focal length of the system

must be established by a calibration procedure [73]. In this section, the effects of

"Relative Orientation parameters were computed by Horn’s algorithm [35]
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incorrect estimates of the focal length on the output of the pose refinement process
are examined.
The image projection (z,y) of a world point X, given an estimate of translation

T. and rotation R is:

(5.33)

(5.34)

The rotation operator can be represented as a (3x3) matrix:

81
R=| s (5.36)

S3
where s;, 4 =1,2,3 are the vectors corresponding to the rows of the rotation matrix

R.. Substituting (5.36) into (5.35), equation (5.35) can be rewritten as:

o (B Xp b T

; E (SZ'X‘HJ +Tcy)

(5.37)

This is a linear equation in the pose parameters s1, 52, Tz and T, which can be

rewritten as:
2(sy + X + Toy) — y(s1- Xo + To=i0.0 (5.38)

One such equation is obtained for each world / image point correspondence. Given 5
or more point correspondences, we can therefore solve the system of equations and
get estimates of the parameters 81,87, Tex and Toy. The rotation parameters s;, Sa,
however, have quadratic constraints and therefore the system of equations must be
solved by non-linear techniques. Tsai [73] uses the same system of equations in his

camera calibration algorithm. Since the rotation matrix is an orthonormal matrix,
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estimates of its first two rows s; and s; can be used to obtain the third row sj,
using the symmetric and other orthonormal properties of the matrix. The only pose
refinement parameter not determined by the system of equations is therefore the
translation along the optical axis T.

Our goal in this section is to examine the effect of incorrect estimates of the focal
length on the output of a pose refinement algorithm. Equations (5.37) and (5.38)
do not depend on the focal length and consequently an incorrect estimate of the
focal length would not affect the solution of these equations. Therefore, an incorrect
estimate of focal length should affect only the T, parameter of the pose; all other
pafa.meters should not change since their estimation does not depend on knowledge
of the focal length.

In practice [46] we may minimize other error functions to do pose refinement.
Based on the above analysis we hypothesize that an incorrect estimate of the focal
length would only significantly affect the T, component of the pose parameters for
other pose refinement methods as well®. This hypothesis has been supported by
experiments using both synthetic and real data and the pose refinement algorithms
described in Chapter 2 and in [46]. Results of some of these experiments are shown
in Table 5.4.

The experiments were performed using the synthetic, hallway and box image data
sets described earlier. In each case, the pose refinement algorithm was applied using
both the correct focal length and incorrect estimates of the focal length. The incorrect
estimates of the focal length were obtained by multiplying the correct focal length
by a scale. Thus, in Table 5.4, entries in rows with focal length scale 1.0 correspond
to experiments with the correct focal length and entries with rows corresponding to

scale not equal to 1.0 correspond to experiments with incorrect focal lengths. Both

~ BThat is, methods where the pose is not estﬁnated by solving the system of equations defined by
(5.38) but by some other system of equations.
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Table 5.4: Rotation and translation as computed by the pose refinement
algorithm for the same sets of images with different focal lengths.

FOCAL| TRANSLATION ROTATION
LENGTH ANGLE AXIS
SCALE[ T.] T,] T. deg. |  A.| A, A

SYNTHETIC DATA
1.000 | 4.004 | -3.994 | 60.011 | 120.015 | -0.577 | 0.577 | 0.577
0.928 | 4.013 | -4.002 | 58.048 | 120.016 | -0.577 | 0.577 | 0.578
HALLWAY IMAGE
1.000 | 4.055 | -3.942 | 39.926 | 119.808 | -0.576 | 0.574 | 0.582
0.928 | 4.023 | -3.962 | 37.382 | 119.344 | -0.579 | 0.574 | 0.580
1.045 | 4.072 | -3.932 | 41.509 | 120.066 | -0.575 | 0.574 | 0.583
BOX IMAGE
1.000 | -8.256 | 74.647 | 620.313 | 132.833 | -0.178 | 0.952 | -0.250
1.100 | -8.344 | 74.801 | 684.354 | 132.627 | -0.177 | 0.952 | -0.249

the translation and rotation results of the pose are shown in Table 5.4. The rotation
is shown by its angle-axis representation. The axis vector is a unit vector. As can be
seen from Table 5.4, the only large change in any of the pose parameters for any of
the experiments is in the T, component of the translation.

Although poses can be obtained whose projection fits the original image data
fairly well in the case of incorrect estimates of the image center, this is not the case
for incorrect estimates of focal length. Changing the focal length causes the projection
of 3D points to be dilated or contracted by a constant amount while changing the T,
component of the translation causes the image projections to dilate or contract based
on their depth from the camera. As we have seen, however, the minimum of the pose
error functions, given incorrect estimates of focal length, leads only to a significant
change in T,. This property of poor fits makes it comparatively easier to calibrate

imaging systems for focal length as compared to calibrations for the image center.



CHAPTER 6

CONCLUSIONS

The goal of this thesis was to develop algorithms to infer 3D information from
a sequence of 2D images. Algorithms were developed to robustly determine the 3D
location and orientation of a robot (pose determination) and to locate new points
in a 3D world coordinate system (model acquisition). A key assumption made was
that the knowledge of a partial 3D model would greatly benefit the accuracy with
‘which the robot, and new points or landmarks in the 3D world, could be located. We
believe this assumption was borne out by the experimental results presented earlier.
The robot was located with an average accuracy of 0.3 feet in the indoor environment
and new points were located with an average accuracy of 1.7 %. These results are far
superior to the accuracy obtained by traditional structure from motion techniques.
In this chapter, the main contributions of this thesis to both the pose determination
problem and the model acquisition problem are summarized. Also discussed are

related unsolved problems and possible avenues for future research.

6.1 Pose Determination

A sequence of algorithms were presented in this thesis for pose determination
using both point and line correspondences. Each successive algorithm was able to
perform more robustly than the previous.algorithms over a wider range of input noise

scenarios. First, existing least-squares techniques for pose determination from point
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and line tokens were improved upon. Least-squares techniques which minimize ro-
tation and translation simultaneously (“R-and_T”) were developed and shown to be
far superior to the earlier techniques which solved for rotation first and then transla-
tion (“R_then_T”). In the case of line token data, it was assumed that end-points of
image lines cannot be reliably extracted. Algorithm “R_and-T_img” minimized the
error in aligning model line segments with corresponding infinitely extended image
lines. In contrast, algorithm “R.and_T_mod” minimized the error in aligning image
line segments with corresponding infinitely extended model lines. We showed exper-
imentally that algorithm “R_and_T_mod” performed more robustly than algorithm
“R.and.T.img’ when there was significant fragmentation in the line data.

However, the least-squares algorithms failed catastrophically when outliers were
present in the match data. It was noted that outliers in the pose determination prob-
lem arise frequently due to either incorrect correspondences or gross errors in the
3D model. Two sets of robust algorithms for pose determination were developed to
handle data contaminated by outliers. The first algorithm “Tuk_wts” minimized a
non-convex objective function in which the effect of outliers was bounded by satu-
rating the objective function after a threshold error value. The algorithm converged
to the correct answer within ten iterations for many of our experiments. However,
the “Tuk_wts” algorithm was susceptible to initial estimates and could settle into
local-minima. This is due to the local optimization technique used by the “Tuk_wts”
algorithm to minimize Tukey’s error function.

A useful task for future work would be to develop a global optimization method for
minimizing Tukey’s error function. The optimization method must be computation-
ally efficient and thus techniques based on simulated annealing would not be useful.
Two possible directions to investigate are Blake and Zisserman’s “Graduated Non-

Convexity Algorithm” [10] and the continuation methods used by Leclerc (48], both
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developed for optimizing similar error functions but for different problem domains.

The second set of algorithms “Med_R.and_T_.img” and “Med_R.and_T_mod” de-
veloped here were not as sensitive to imitial estimates. These minimize the Least
Median Square (LMS) of the residual error functions across all landmarks. They are
capable of performing correctly in situations where the number of outliers is less than
50% of the number of data points. The average time complexity of the LMS-based
algorithms was substantially reduced using random subset selection methods.

The robust pose determinations algorithms were formulated by extending the
least-squares algorithms. Thus, the computational performance of the least-squares
algorithms is an important issue. All the least-squares algorithms developed here
used the Gauss-Newton technique for minimizing non-linear objective functions. In
most of our experiments this technique required only a few iterations (typically 4
or 5) to converge to the correct answer for reasonable initial estimates. It was also
easy to modify this technique to incorporate prior uncertainties of the initial pose
estimate using covariance matrices. Finally, for applications where no initial estimate
is available, a composite algorithm using both the “R_then_T” and the “R_and.T”
algorithms was developed. The initial estimates were obtained from a uniform sam-
pling of the rotation space. Experimentally, it was found that 12 initial samples of
the rotation space sufficed to find the optimal estimate.

To determine the optimal pose parameters it is important to accurately model
the image measurement noise. The pose algorithms presented in this thesis can be
improved by more accurate modeling of this noise. The least-squares algorithms
presented earlier are optimal when the measurement noise is gaussian. The robust
algorithms also assume that the non-outlier data are corrupted with gaussian noise.
In the experiments, the standard deviation of the measurement noise was assumed to

be same for all data elements, although this assumption may not be valid everywhere
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in the image. For instance, in the outdoor images (see Figure 2.10), the measurement
noise in locating the walkway line is considerably higher than the measurement noise
in locating the roof line of the building. Therefore, it is important to model the
feature extraction (e.g. line-extraction) process and compute estimates of the noise
parameters. This is not a trivial task and it depends on various factors, such as
image sensor noise, intensity structures neighboring the image feature, the particular
line extraction algorithm used, etc.. Deriche[14], for instance, computes the noise
in locating image lines from the noise in locating the component edge elements. He
assumes the location of edges in the image to be corrupted by zero-mean gaussian
noise. Using the intensity contrast across the edges, the second order statistics of
the noise is calculated. His scheme however, assumes the noise across neighboring
image edges to be independent; in addition no influence from neighboring image lines
or other intensity structures is taken into account. It remains to be demonstrated

whether such assumptions can be reasonably made.

6.2 Model Acquisition

Model acquisition is an important and rich problem in computer vision. The
approach adopted in this thesis was one of model extension and refinement. A par-
tial model of the environment is assumed to exist and this model is extended and
refined over a sequence of frames. New features are located by triangulation using
the displacement of image tokens and the poses of the object computed from model-
image feature correspondences for the sequence of image frames. Since the partial
model may be noisy, the least-squares pose determination techniques were extended
to optimize for errors in both the image and model data. The estimation of the 3D

points was done using both batch and sequential Kalman filter based methods. An
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advantage of using pose recovery was that the world coordinate system provided a
stable and independent coordinate system in which integration of data from multiple
image frames was done. New 3D points were located in four real data sequences with
average errors less than 1.7%. These results as noted earlier are far superior to those
obtained by the traditional structure from motion techniques employed in computer
vision.

The experimental results showed that knowledge of a few points can greatly in-
crease the accuracy of 3D structure recovery in comparison to traditional algorithms
from motion and stereo analysis. However, the accuracy of the model extension pro-
cess depends on the initial accuracy of the model points. To make the system less
sensitive to the initial accuracy of the model points, one possible solution is to couple
methods of motion analysis with those of pose recovery. In the approach adopted
in this thesis, new points are located by triangulation and the relative orientation
between consecutive image frame pairs is determined from the computed poses. How-
ever, the relative orientation can also be computed from the image correspondences
of unmodeled points. This information was not exploited here and could potentially
be used to devielop algorithms minimizing composite objective functions having both
pose determination and motion analysis error terms. The problem lies in constructing
optimal objective functions which are not too complex for efficient minimization.

If the initial model points have a large amount of noise, then the poses determined
for any batch of frames will be highly correlated. In this case, the 3D location
estimates of new points will be correlated both across all points and also all frames.
To fully account for this correlation, covariance matrices equal in size to the number
of points times number of frames will have to be inverted. In our case, it is assumed
that the initial points do not have large noise and hence the cross-correlations can

be ignored. But for larger amounts of noise, it may not be possible to ignore these
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effects. These cross-terms are exactly what Oliensis and Thomas [61] incorporate in
their motion analysis paper and the same could be done for the model extension and
refinement algorithms presented here.

The noise in the 3D model was assumed to be gaussian. However, this assumption
depends significantly on how the initial model was constructed. For instance, in some
scenarios, the gaussian assumption is met for parts of the model but the various parts
may be skewed with respect to cach other. Thus the techniques for model extension
and refinement need to be broadened to handle various kinds of model noise.

The model extension and refinement algorithms presented in this thesis were for
point tokens. The point tokens were corner points obtained from intersection of
image lines. However, some of the image corner points do not correspond to actual
3D points. Thus techniques to detect these invalid corner points must be developed.
A method suggested by Harris and Pike [32] is to examine the estimated covariances
of the tracked corner points. The uncertainty ellipsoids of the valid corner points
are aligned while those of the invalid corner points are skewed. This is related to
the notion by Oliensis and Thomas [61] that the errors in the 3D reconstruction of
points are correlated. This problem could also be avoided if 3D lines and curves were
reconstructed instead of 3D points.

The terms model extension and refinement are slightly abused in this paper. Model
extension and refinement are not limited to just locating new tokens in the scene.
Ultimately, it is desired to build 3D surface and volumetric models and integrate the
new 3D measurements with the existing higher order models. For distant objects
moving closer to the mobile platform, the surface model must evolve over time as the

detail present in the object emerges.
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6.3 Sensitivity Analysis

Finally, the sensitivity of pose determination and model extension to incorrect
estimates of camera parameters (focal length and image center) was analyzed. It
was theoretically claimed and demonstrated experimentally that for small field of
view systems, offsets in the image center do not significantly affect the location of the
camera and the location of new 3D points in a world coordinate system. Errors in the
focal length signiﬁcantly; affect only the component of translation along the optical
axis in the pose computation. Future work in this direction would be to analyze the
sensitivity of the pose determination and model extension process to lens distortion

and other large field of view effects.



APPENDIX A

DIFFERENT WAYS OF REPRESENTING 3D
ROTATION

The rotation operator in equation (2.31) can be expressed in many ways [41, 71].
Each gives rise to different non-linear expressions for “E”. Some ways would require
non linear equality constraints to be satisfied. Some are unconstrained but give rise to
complex objective functions, which must be minimized. A minimum of 3 parameters
is needed to represent rotation, but this leads to non-unique representations. It has
been proven that to represent 3D rotation uniquely at least 6 parameters are needed
[71]. We now describe some of the common representations and build the motivation

for our final choice of representation.

Orthonormal Matrix : This is one of the most common ways of representing 3D

rotation. Here rotation is specified by a 3 x 3 orthonormal matrix:

T11 Ti2 T3
R= |71 122 723 (A1)
731 732 733

To be an orthonormal matrix, the following equality constraints must be satis-

fied.

Z"'?j = 1.0 (A.2)

j=1
3
> rijri; =00  where i #k. (A.3)
Jj=1
det(R) = 1.0 (A.4)
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Note that for any matrix “R” which satisfies the first two constraints, its de-
terminant will be either +1.0 or -1.0. The determinant of “R” must be +1.0
to represent a rotation operator. When the determinant of “R” is -1.0 it rep-
resents a reflection. In our solution process, the determinant constraint need
not be explicitly observed. If we obtain a solution where the determinant of
the “R” matrix is -1.0, all the elements of “R” and “T” in equation (2.31) can
be mutliplied by -1.0 to obtain a solution in which “R” represents a rotation.
Thus, if “R” is represented as an orthonormal matrix, the objective function
given by equation (2.31) becomes a quadratic function of 12 unknowns with 6
quadratic equality constraints to be satisfied. The rotation matrix gives us 9 of

the 12 unknowns; the translation vector gives the remaining 3.

Axis and Angle : The rotation of a vector “p” by angle “6” about axis “w” is

given by Rodrigue’s formula :

?' = (cos8)p + sinb(w x p) + (1 — cosf)(w - p)w (A.5)

Here, “w” must be a unit vector. So, a quadratic equality constraint must
) q q N

be satisfied. Therefore, if “R” is represented by axis and angle, an objective
function given by equation (2.31) is obtained, which contains trignometric terms

of power 2 and higher and a quadratic equality constraint must be satisfied.

There are two variations of the above method for representing rotations. As
described above, we require 4 terms to represent the rotation. Both of the fol-
lowing variations require only 3. First, the axis could be represented by two
spherical coordinates, in which case, a high order trignometic objective function
is obtained with no constraints. The three terms would be the two spherical
coordinate angles representing the axis and the angle of rotation about the axis.

Second, the constraint requiring the axis vector to be a unit vector could be
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removed. The magnitude of the axis vector would then be the angle of rota-
tion about the axis. This is also an unconstrained representation of rotation.
For large rotations it leads to a complicated trignometric objective function.
However, for small rotations, it leads to a unconstrained linear operator and is
therefore used by us to represent small rotations. Note, in the axis angle repre-

sentation, negating both the axis and the angle represents the same rotation.

Euler angles : Here, 3D rotation is represented by 3 succesive rotations about each
of the 3 coordinate axis, respectively. The order of the rotations is: first rotate
by angle ¥ about the z-axis, then by angle ¢ about the y-axis and finally by
angle 8 about the x-axis. Each of these rotations can be specified by a 3 x 3
matrix, whose elements are trignometric functions of the angle of rotation. The

final rotation matrix is given by the following equation:

1 0 0 cos(¢) 0 —sin(e) cos(y) —sin(y) 0
R=10 cos(§) —sin(8) 0 1 0 sin(y) cos(y) 0
0 sin(6) cos(f) sin(@) 0 cos(¢) 0 0 1

(A.6)

Representing rotations by Euler angles results in an unconstrained minimization
problem, although the objective function becomes an extremely complicated
trignometric function. Euler angles are often used in engineering applications

as they can be measured by instruments and also are easy to picture.

Quaternions : Here rotations are represented by a 4D vector g. The quaternion
“q” can be thought of as a scalar g, and a vector g,. It is related to the axis w

and angle § representation in the following manner:
go = cos(6/2) gy = sin(8/2)w (A.7)

Rotation of a vector p using quaternions is given by p' = qopo ¢~, where “o”

denotes quaternion multiplication.
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The complex conjugate of g is ¢° = (go, —qv). Quaternion multiplication of two

quaternions is given by the following equations:

(Po@le = (PoGo = Pu1gu1 — Pu2duz — Pu3gu3)
(Poq@)er = (PoGu1 + Pv1Go + Pv2Qus — PuaGu2)
(Poq)vz = (PoGvz — Pv1Gus + Pv2do + Puadu1)

)

(P o Q)v3 = (pOQvS + Pv1GQu2 — Pv2qu1 + Pu3lo

(90, v) and (—go, —g») represent the same rotation, while (g, ¢») and (o, —gv)
represent opposite rotations. For a 4-tuple to represent rotation it must be a

unit vector, i.e., the following constraint must be satisfied:
g5+ g + g0+ 453 = 1.0 (A.8)

Representing rotations by quaternions, the objective function becomes a fourth
degree poloynomial. The solution also has to satisfy a quadratic equality con-
straint. With quaternions [34] however, it is easy to compose rotations. Another
advantage of using quaternions is that given a 4D vector which does not satisfy
the unit magnitude constraint, it is easy to find the closest unit quaternion to
it. This is useful for us. In our formulation, large rotations are represented
by quaternions. At each iteration in the search for the minimum of the ob-
jective function, small rotations are represented by a 3D vector for rotation
axis and angle. Quaternions are formed from these 3D vectors and composed
with the current estimates for the rotation. This results in an unconstrained

minimization problem.
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UNIFORM SAMPLING OF THE ROTATION

Horn [35] presents a uniform way of sampling the rotation space. His sampling
is based on the rotation groups of regular polyhedra. Two sets of samplings of the
rotation space in quaternion form are presented below (derived from [35]). The com-

ponents of the unit quaternions may take on the values 0 and 1, as well as the

following:

b= — c=—— Bil
In the first set, there are 12 unit quaternion samples and they form the twelve elements

of the rotation group of the tetrahedron:

TN T ) Tl P 5 S« P OSSO /AN T S
(B, - B by b (B by b=h) (B by b By (G b —by. —b)
(B =it B sb)s % (B =by ibsa=bltil(brie=by =B D) by ~=b, —b, —B)

In the second set, there are 24 unit quaternion samples and they form the twenty four

elements of the rotation group of the octahedron and the hexahedron(cube):

(o2 0,05 ) SR, T ER]E AN S S RS ORR NSO < 0,0 1)
(0:c 5 018y @) s Usp il Bim=) . (06 e Basee 6] © (00 e, 0, —e)
(0, g g 0 (0 e~ 0) e M0, %e) e, - 0, B, —¢)
(afur Dy se,0) 1t (ofF T0Ei=epr S0) A (efvves L0mD) wildefi e, 0, 0)
(b, b b b)) (b, b b, —b) (b, b b b)) (b, b, —b, —b)
(b, —=b, b b) (b, —b, b, —b) (b, —=b, —b, b) (b, —b, —b, —b)

Horn [35] also gives the 64 rotation samples for the rotation groups of the icosahedron

and the dodecahedron.
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APPENDIX C

LINEAR SYSTEM THEORY

Some facts from linear system estimation theory are reviewed [70]. An unknown
parameter vector £ with “p” elements is related to a set of “n” noisy observations ¥
by the following equation:

AF=§+7 (C.1)

where 7 is zero-mean Gaussian noise with covariance matrix V. Assume that this set
of equations is an over-constrained system. Then the Best Linear Unbiased Estimate

(BLUE) of the unknown vector Z is given by:
z=(ATV1A) ATV Yy (C.2)
The covariance matrix “P” of the output parameters is given by:

P = (ATV-14)! (C.3)

C.1 Hat Matrix

If the covariance matrix V is an identity matrix then equation (C.2) can be rewrit-

ten as:
&= (ATA)' ATy

z is estimated by the psuedo-inverse of matrix A.
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Subsituting for  in equation (C.1), the final fitted value of ¥ is:
§= A(ATA) ATy = Hy

where H is the Hat Matrix. The Hat Matrix is useful for detecting leverage or
influential observations in a linear system. It is a square matrix with dimension equal
to the length of the vector 7 (i.e. the number of observations: “n”). The Hat Matrix
H relates the final fitted values of § to the original measurements. The diagonal
entries of the hat matrix, which must lie between 0 and 1, signify the influence an
observations has on its own final fit. The sum of diagonal entries equals “p” (the
number of unknown variables). Ideally all observations should contribute equally to
every observation’s final fit. If there is equal contribution by all observations, then
each diagonal values of the hat matrix would equal 2 However, if some observations
are more influential in the final fit, then their diagonal values are higher. Typically,

observations are considered to have high leverage if hy > %f
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