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ABSTRACT

SPATIAL AND TEMPORAL GROUPING IN THE
INTERPRETATION OF IMAGE MOTION

FEBRUARY 1992
HARPREET S. SAWHNEY
B.TECH., INDIAN INSTITUTE OF TECHNOLOGY, KANPUR
M.TECH., INDIAN INSTITUTE OF TECHNOLOGY, KANPUR
PH.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Allen R. Hanson

Interpretation of the three-dimensional (3D) world from two-dimensional (2D)
images is a primary goal of vision. Image motion is an important source of 3D
information. The 3D motion (relative to a camera), and the 3D structure of the
environment manifest themselves as image motion. The primary focus of this thesis
is the reliable derivation of scene structure through an interpretation of motion in
monocular images over extended time intervals.

An approach is presented for the integration of spatial models of the 3D world
with temporal models of 3D motion in order to robustly derive 3D structure and
perform tracking and segmentation. Two specific problems are addressed to illustrate
this approach. First, a model of a class of 3D objects is combined with smooth 3D
motion to track, identify and reconstruct shallow structures in the scene. Second, a
specific model of 3D motion along with general spatial constraints is employed for
3D reconstruction of motion trajectories. Both parts rely fundamentally upon the

quantitative modeling of common fate of a structure in motion.



In many man-made environments, obstacles in the path of a mobile robot can be
characterized as shallow, i.e. they have relatively small extent in depth compared to
the distance from the camera. Shallowness can be quantified as affine describability.
This is embedded in a tracking system to discriminate between shallow and non-—
shallow structures based on their affine trackability. The temporal evolution of a
structure, derived using affine constraints, is used for verifying its identity as a shallow
structure and for its 3D reconstruction.

Spatio-temporal analysis and integration is further demonstrated through a two-
stage technique for the reconstruction of 3D structure and motion of a scene under-
going a rotational motion with respect to the camera. First, the spatio-temporal
grouping of discrete point correspondences as a set of conic trajectories in the image
plane is obtained, by exploiting their common motion. This leads to a description
that is reliable when compared to the independent fitting of trajectories. The second
stage uses a new closed—form solution for computing the 3D trajectories from the

computed image trajectories under perspective projection.
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CHAPTER 1

INTRODUCTION

The future success of autonomous robots depends on the intelligent use of vision.
A primary goal of vision is to derive interpretations of the three—dimensional (3D)
world from two-dimensional (2D) images. Variations in the 2D images embody in-
formation about the structure of the 3D world. Motion of the imaging sensor and
of objects in the environment is an important source of these variations. Deriving
descriptions of 3D relationships in the environment through the interpretation of im-
age motion is an important problem in robot vision. The primary focus of this thesis
is on the reliable derivation of scene structure through an interpretation of motion
in monocular images over extended time intervals. Structure is defined in terms of
spatial and temporal models; the output descriptions are in terms of these models.

Given a single static image, an infinite number of plausible inferences about the
imaged 3D environment can be drawn. Work in static image understanding has
concentrated on inventing a plausible set of constraints to impose on the world and
the imaging process to make the problem well-posed. However, metric relationships
between the sensor and the scene cannot be derived without resorting to specific
domain knowledge about the scene. Furthermore, certain coincidences of viewpoint
cannot be resolved from a single view alone. The availability of a second view of
the same scene from a different vantage point can dramatically reduce the number
of solutions to a small finite set. Multiple views (more than two) can further aid

in deriving the 3D information. Moreover, both quantitative and qualitative 3D
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information can be derived from these motion-based fechn.iques without requiring
excessive domain knowledge about the scene.

" In spite of the importance of three-dimensional interpretation from motion, de-
riving reliable scene structure from image motion has proven to be an elusive goal,
due to a variety of practical factors. The problem occurs both in defining the goals
for the 3D interpretation and in choosing a set of constraints and solution methods
to meet the goals. Some of the important goals for image motion interpretation are

discussed briefly in the following sections.

1.1 Goal 1 : From Image Motion to 3D Structure and Motion

One popular goal for the interpretation of image motion has been the 3D recon-
struction of features in the scene based on their measured motion in the image plane.
Within this problem definition, a large effort has been expended on what has come to
be known as the two—frame structure-from-motion problem. That is, given two views
of a scene from different vantage points, the goal is to compute the relative motion
between the scene and the camera, and the 3D coordinates of the scene features. It is
assumed that the correspondences between pairs of image features for the same scene
feature in the two views have already been established, and that there is a single
relative rigid motion between the camera and the scene. Thus, the transformation
between the two views is constrained to be a rigid body transformation. In fact,
rigidity is the minimal constraint that can be imposed to reduce the number of 3D
solutions to a finite set given two views of a scene.

The rigidity constraint is attractive because it potentially allows 3D reconstruc-

tion without apparently resorting to any more knowledge about the scene and the

-3
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motion. However, algorithms based on this constraint alone, lack robustness in prac-

tical situations where:

¢ the field-of-view (FOV) and resolution of the imaging system are limited,
e the translational motion between views is limited, and

e the image measurements are corrupted with noise.

The computation of the 3D motion parameters, independent of the particular algo-
rithm used, is inherently ambiguous ([3, 94]). This has limited the practical applica-

tion of the two—frame techniques.

The rigidity constraint, coupled with specific models of smooth motion, provides
another framework for the goal of 3D reconstruction. This approach has been applied
to many frames of image data related through the motion models. This idea has
had relatively more success because smoothness can be used to relate motion mea-
surements over time. Many viewpoints of the same scene provide robustness in the
presence of noise. However, the problems of validation of the assumed models, and

of reliably tracking objects over time have not been addressed adequately.

1.2 Goal 2 : Tracking and Segmentation

The goals of segmenting a scene into semantically useful object hypotheses, han-
dling multiple motions, and maintaining correspondences of objects over time are also
important for an autonomous robotic system. As was discussed earlier, in address-
ing the problem of reconstruction of 3D motion and structure from image motion,
it has largely been assumed that these segmentation and correspondence problems
have been solved. The reconstruction problem is hard enough on its own; hence rel-
atively little research has been done towards integrating segmentation, tracking and

reconstruction.



Segmentation of a scene into surfaces and objects on the basis of similarity of
their range from the camera, or other ~common structural properties, is useful for
many robotic tasks. This has generally been viewed as a post—processing step which
comes after the 3D coordinates of primitive features like points and lines have been
computed. The need for this grouping cannot be overlooked for tasks like obstacle
avoidance and grasping, where it might be necessary to represent the 3D structure in
terms of surfaces, volumes and their boundaries. Given that the first step of recov-
ering and reconstructing features, such as points and lines, can be quite erroneous,
constructing aggregate structures (surfaces/objects) out of these will be difficult, to
say the least. On the other hand, if the process of scene reconstruction from image
motion is constrained early on by using general structural properties of scenes, it may
be possible to achieve robustness.

In dynamic scenarios, it is inefficient (assuming it could even be done reliably)
to segment objects and surfaces from frame to frame, independent of each other.
Smoothness of motion in most practical situations provides a natural dynamic con-
straint for tracking objects over time and hence maintaining their identity. Most
approaches for this task either use 3D-3D constraints [99] or 2D-2D [27, 30] con-
straints. That is, either the reconstructed 3D structure is tracked under 3D motion
constraints or 2D image features are tracked with purely 2D constraints on their mo-
tion. In the former case, stereo data or some other knowledge of 3D structure is
present (e.g. range data). For image plane tracking, heuristics on the uniformity of
image motion are employed.

Finally, when using specific models of motion, approaches in the past have directly
computed the 3D structure and motion parameters from primitive image measure-
ments (point/line correspondences) [19, 81]. The work described here presents an

alternative approach by building descriptions of image motion based on the assumed
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model of motion, verifying the model as the descriptions are built. Potentially, de-
partures from the assumed model, either due to multiple object motions or due to the
presence of gross outlying errors in the data, can be handled within this alternative
framework.

In our work, we show how general constraints on 3D structure and motion can
be employed to track and segment objects based on expectations of their coherent
behavior in the image plane. Generic 3D constraints are used to model image motion
of objects for tracking, which in turn is used as a verification for the validity of the

constraints.

1.3 Goals of the Thesis

The goal of our work is to develop robust algorithms for the derivation of scene
structure from image motion in a way that is useful for tasks like obstacle avoidance
and 3D model building. Towards achieving that end, we demonstrate the strength
of combining both spatial and temporal constraints in dynamic images to obtain
grouping of image information into coherent 3D structures. With few exceptions,
approaches in the literature have addressed each of the problems related to 3D inter-
pretation of image motion, that were outlined in the previous sections, in isolation.
An objective of this work is to develop techniques that provide an integrated frame-
work for robust tracking, segmentation and 3D reconstruction.

Specifically, this thesis shows how spatial models of the 3D world and temporal

models of 3D motion can be employed to compute:

e robust 3D reconstruction of aggregate structures rather than just individual

point or line features,

e robust correspondence of aggregate structures over time,



¢ a semantically useful segmentation of the scene in terms of 3D structures, and
o 3D trajectories of features from image trajectories of rotational motion.

It is to be emphasized that the models being referred to are not object-specific models
or models for a specific scene. The models are of structure and of motion that are

valid for a wide variety of scenes.

Inherent in the specific algorithms developed here are mechanisms for deciding the °

validity of the constraints. These algorithms demonstrate that posing the problem
of 3D reconstruction as an integrated grouping and parameter estimation problem
addresses the issues of both model validation and reliable reconstruction within the

constraints of the validated model.

1.4 Accomplishments of the Thesis

We have selected two demonstrative problems in scene reconstruction to highlight

the general approach:
1. Scene reconstruction through ‘shallow’ structures.

2. Description and reconstruction of rotational motion through image trajectories.

1.4.1 Scene Reconstruction through ‘Shallow’ Structures

One key problem in computer vision is that of segmenting an ‘object’ from its
‘background’; this is known as the figure-ground segregation problem. Objects have
been variously defined in terms of the uniformity of texture, surface smoothness and
similarity of image motion. We observe that in man-made environments, many po-
tential obstacles can be characterized as being compact; that is, the features in an

object are close to a nominal central point or an axis in contrast with larger scale
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structures in the background. This definition can be used to represent potential ob-
stacles as compact structures in the path of a robot. This property can be quantified
by observing that such objects have limited extent along the direction of view com-
pared to the distances at which an autonomous robot should be capturing them in its
internal representation, that is, these objects are ‘shallow’. Thus, we wish to achieve
the representation of a scene for a mobile robot in terms of shallow structures in the
environment that are distinct from the background. In other words, the assumption
is that for a mobile robot heading directly into the environment, structures that face
it head-on are relevant for obstacle avoidance and path planning. The approach

presented here makes this assumption explicit and uses it quantitatively.

Tracking Shallow Structures

The image projections of a shallow structure in motion relative to the camera,
when sampled closely in time!, are related through a 2D affine transformation. The
motion could be due either to camera motion and/or to object motion. The 3D loca-
tion and the image motion of a shallow structure is completely characterized by the
affine transformation and the corresponding ‘average’ 3D depth of the structure. This
property can be exploited to track, segment and reconstruct shallow structures. If
the 3D motion is assumed to be smooth, the temporal evolution of shallow structures
can be used for their segmentation and 3D reconstruction.

We have embedded a model of shallow structures undergoing smooth motion in
a dynamic tracking framework. The image motion of hypothesized structures is in-
stantiated and predictions of these structures are matched to newly acquired data.

Tracking has to account for measurement errors in the image data and modeling

1Relative to the magnitude of motion.



errors due to departures from the assumed models of 3D motion and structure. Two

techniques in the literature have been adapted for this tracking:

1. Prediction: Kalman filtering is used for recursive state and covariance pre-
diction, and estimation of the dynamically changing state of a hypothesized

structure, and

2. Matching: the covariance normalized Euclidean distance (Mahalanobis dis-
tance) is used to compute the error between the predictions of a structure and

its potential matches in the data of a newly acquired image frame.

These techniques also handle modeling errors in the dynamic models and measure-

ment errors in the data.

Tracking Aids Segmentation and Reconstruction

Consistency of the temporal predictions and the 3D description as determined
by tracking are used as criteria for labeling a hypothesized structure as shallow or
otherwise. In other words, maintenance of an object’s identity over time, within
the constraints defined by the model of shallowness, is used for inferential leverage in
identifying the object as shallow. The essential idea is that if a hypothesized structure
can be consistently tracked and its 3D depth over time is consistent with a shallow
structure model, then the structure is identified as shallow, otherwise it is labeled
non-shallow. Thus, affine trackability leads to segmentation and 3D reconstruction
in this demonstration of the integration of a general spatial model and its temporal
continuity derived from the assumption of smoothness of its 3D motion.

The output representation for each shallow object is as a fronto—parallel plane
(cardboard-cutout) placed at the computed 3D location. Such a representation of

aggregate structures, although only an approximation of an object’s structure, might
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still be adequate for path planning and obstacle avoidance. Robustness in the com-
puted 3D structure is a result of the use of an aggregate structure (e.g. a surface
or a group of surfaces), rather than the traditional use of more primitive features
like individual points and lines. Furthermore, an explicit step of the computation of
3D motion as a first step towards the computation of 3D structure is not required,
thus avoiding some of the inherent instabilities in the general structure—from-motion

problem that will be discussed in the next cha.pter:

1.4.2 Description and Reconstruction of Rotational Motion through
Image Trajectories

The second demonstration of the use of spatial and temporal grouping is in the
reconstruction of 3D trajectories of features in a scene whose motion is induced either
by a fixed—axis rotation of the camera or of objects in the scene. This is motivated
by the problem of acquiring a 3D model of a scene through a constrained motion of

a robotic hand/head carrying a camera.

The reconstruction process consists of two stages:

1. Description of the motion of image features as curved trajectories, and

2. Reconstruction of the trajectories in 3D from the 2D image trajectories.

The 3D parameters are computed from the continuous trajectories that describe
the image motion of discrete image features. This is in contrast with methods that di-
rectly compute the 3D parameters from discrete feature correspondences. The image
trajectories are intermediate descriptors of the 3D motion. The similarity of the mo-
tion parameters across many features is made explicit by the trajectories. An explicit
step of describing the motion of discrete image features as curved trajectories (con-
ics) in the image plane is potentially useful for segmentation of multiple rotations and

rejection of gross errors in the image data, in addition to robust 3D reconstruction.
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Image Trajectories

Describing conic curves, especially when only short segments of the underlying
points of the 3D trajectory are imaged, is known to be unstable. In general, conics
with widely varying parameters can be fit to these short segments, each of which
describes the image data equally well. We address this problem using a grouping
constraint in an algorithm that exploits.spatial proximity of features and the common
motion constraint. The grouping constraint relates parameters of different conics
based on a locally orthographic assumption. The grouping algorithm embeds this
constraint in an incremental hypothesize-and—verify technique to fit the conics. The
algorithm achieves a combined description of a set of the tracked image features rather

than for each of the features independently.

3D Trajectories

A new closed-form solution, under perspective projection, has been developed
to compute the 3D trajectories in the scene from the computed image trajectories.
The particular choice of parameterization of the 3D geometry and motion leads to a
solution which is simpler than those existing in the literature.

In summary, spatial proximity of points and their temporal evolution under ro-
tational motion is translated into a grouping constraint for the description of the
corresponding curved trajectories in the image plane. The 3D description is then

derived from the image trajectories.

1.5 Summary

The previous sections have summarized two demonstrations of our spatial and

temporal grouping approach to the 3D interpretation of image motion. The solution
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to the problems addressed above arise from the application of a genmeral paradigm
for the 3D interpretation of image motion using both spatial and temporal grouping.
The two are related in a common conceptual framework. The endeavor has been to
formalize the notion of common fate of a structure under motion. Common fate as
a cue to various kinds of segmentations has been used both in computational vision
and psychophysics. In our case, shallow structures and the resulting coherence in
their image motion, and the coherence of proximal image features under rotational
motion, are used as common fate constraints for grouping and reconstruction.

The two algorithms which we present can be potentially combined in a single
application. Consider a scenario where a eye—on-hand robot is to steer through
a cluttered environment and then grab a specific object whose detailed 3D model
is not available. A coarse representation of the environment in terms of shallow
structures can facilitate steering without hitting obstacles. Once the vicinity of the
goal is reached, a 3D model of the object to be grasped can be acquired through
a constrained rotational motion. The advantage of our approach is that even when
the object is observed from a small number of viewpoints due to limited availability
of free space, reliable structure can still be derived through grouped trajectories.
Rotational motion provides the added advantage of being able to observe an object
from a relatively large set of disparate viewpoints even when free space is constrained,
thus effectively providing a large baseline. However, combining the two algorithms
into a working system demands further research into areas of active vision and goal-

directed model building.
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1.6 Contributions of the Thesis

The following summarize the major contributions of this thesis:

1. Robust scene reconstruction as aggregate spatio~temporal structures — shallow

structures and 3D trajectories — using spatial and motion models.

2. Object tracking motivated by 3D motion and structure in contrast with tradi-

tional multi-frame token tracking which utilizes heuristics about image motion.

3. Aggregate structure matching in contrast with point/line matching provides
figural constraint for relatively unambiguous matching.

4. Tracking as an aid to segmentation and reconstruction.
5. A grouping algorithm for robust description of combined conic trajectories.

6. A new closed—form solution for the problem of deriving a 3D rotational trajec-

tory from a 2D conic obtained under perspective projection.

1.7 Organization of the Presentation

The next chapter is devoted to a critical analysis of major approaches to 3D
reconstruction and segmentation based on monocular motion. In addition to the
analysis, significant points of departure and a justification of the approach adopted
for the problems addressed in this thesis are also presented. Chapter 3 presents a
description of tracking and identification of shallow structures. Chapter 4 details
the work on image description and 3D interpretation of rotational motion through
image trajectories. Finally, in Chapter 5 we reiterate the salient contributions and
the lessons learned through this work, and then go on to present directions for future

research.

i
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CHAPTER 2

CURRENT APPROACHES

There is a vast body of literature that addresses problems of three-dimensional
(3D) interpretation from image motion. A review of this entire body of work will not
be attempted here. We will briefly categorize various approaches in terms of the issues
addressed and the techniques and inputs used. A few commonly addressed problems
and the constraints used to solve them will be presented to bring out their relationship
to the issues and the techniques adopted in this thesis. For a more comprehensive
overview of the literature, see Barron’s [11] and Aggarwal and Nandhakumar’s [5]
surveys.

There are three broad goals for the interpretation of three-dimensional (3D) scenes

from image motion:

1. Computation of the relative 3D motion between the camera and the environ-

ment, and the 3D structure of the environment.

2. Delineation of objects and surfaces on the basis of similarity of their motion

and structure.

3. Tracking of objects and other entities in the scene which might be in relative
motion with respect to the camera due to ego-motion and/or independent mo-

tion.

This review bases its classification of various approaches according to the goals they

address. A large amount of work in motion understanding has been devoted to the

13
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recovery of 3D motion and the reconstruction of 3D structure, whereas the work on
tracking and on segmentation of semantically important events is scant. With few
exceptions, approaches in the literature have addressed each of the above problems
in isolation. One goal of this review is to motivate the development of techniques in
which tracking, segmentation and reconstruction could be made robust through an
integrated framework.

In addition to a goal-based classification, the different approaches can also be

characterized in terms of:
1. the type of image measurements or image data used,
2. the number of frames used, and
3. the constraints employed to relate the measurements spatially and temporally.

Most approaches use one of the following three inputs as the measurements of

image motion:
1. optical flow;
2. spatio-temporal derivatives of image intensities (the direct approach);
3. correspondence of symbolic tokens, such as lines and points, over time.

The first two measurements use temporal derivatives of image intensities and hence
require image frames which are sampled closely in time. In this thesis, symbolic
tokens and their image motion have been chosen as the measurements. Consequently,
this review is largely limited to those which use token correspondences. For a review

of approaches involving other types of measurements, refer to [36].

3

3
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2.1 Goal 1 : Computation of 3D Structure and Motion

The goal within the 3D reconstruction paradigm is to reliably compute the 3D
structure and motion of the scene from the measured image motion. Most approaches
assume that image motion measurements (feature correspondences or flow fields)
along with their associated confidence measures are already available.

In order to derive the three-dimensional (3D) information from the measured
two—dimensional (2D) image motion, constraints relating the image motion to the 3D
motion and structure have to be imposed. The constraints are used to derive equations
that govern the relationship of the motion of image features to the 3D motion and
structure parameters. Error measures are then derived from the governing equations.
Optimization of the error measures using parameter estimation or search techniques
leads to the solution for the 3D parameters. Various approaches can be grouped

together into two broad categories depending on the type of constraints used:
1. The Rigidity constraint.

2. Models of 3D motion.

2.1.1 The Rigidity Constraint

The rigidity constraint assumes that the image motion is a result of a rigid-body
motion between the camera and the scene across two time instants. The 3D motion
that relates the 2D measurements at any two time instants can be represented as a
rotation around an axis that passes through the origin and a translation in the camera
coordinate system at one of the instants. It is assumed that this constraint is valid
over large patches in the image (or over all of the image). Image measurements in
these patches are then used to constrain the solution for the underlying 3D motion

parameters. Once the motion parameters have been computed, the scene features
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corresponding to the measured image features can be reconstructed if the translation
is non—zero. It is to be noted that for most of the approaches based on the rigidity
constraint alone, the “3D structure” means the 3D coordinates of points and lines in
a suitably chosen coordinate system. Usually no surface or object level properties are

represented.

Motion Parameters

The rigidity constraint is used in various ways to formulate error measures. Three
representative approaches have been chosen for this review because they highlight the

trade—off between computational convenience and reliability of the output parameters.

The E Matrix Approach

Given that a point in the scene is observed from two different vantage points, the
view rays from the two views and the translation vector (baseline) joining the origins
of the two camera positions are coplanar as shown in Figure 2.1. This is called the

coplanarity constraint. It can be expressed as:
t ¢(Rr; X r2)=0 (2.1)

where t is the translation vector, R is the rotation matrix, r; is a view ray in the
first frame and rz the corresponding ray in the second frame. The above equation
can also be written as:

r3TxRr; =0 (2.2)

where Tx is the matrix operator for the cross—product operation with the vector t.
The 3 x 3 product matrix Tx R is called the Essential Matriz or the E-matrix.
Tsai and Huang [90] first compute the E-matrix using eight or more image

correspondences. The rotation and translation parameters are then derived using

3
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Figure 2.1: The Coplanarity constraint.

a Singular Value Decomposition (SVD) of the E-matrix. Longuet-Higgins [56],
Faugeras et al. [33], Zhuang et al. [100], and Weng et al. [94] also first compute
the E-matrix but subsequently use different methods for its decomposition into the
motion parameters.

The methods based on the E-matrix are efficient in that they are non-iterative,
but the computed motion parameters are very sensitive to errors in the input point
correspondences (39, 82]. This is due to a fundamental flaw in the E-matrix approach.
When solving for the E-matrix, all its components are assumed independent. This
results in a least—squares problem which is linear in the matrix components. But
there exist dependencies between the constituent terms of the E-matrix because it is
the product of an anti-symmetric matrix and an orthonormal rotation matrix. Weng
et al. [92] show that a 3 X 3 matrix, E, satisfies the requirements for being an essential

matrix if and only if one of the eigenvalues of EET is zero and the other two are equal.
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When the E-matrix is computed by ignoring this constraint, another matrix has to
be found which is nearest to the computed matrix and also satisfies the constraints
(42]. The rotation and translation corresponding to this constrained matrix can be far
from the true ones even with moderate amounts of noise in the image measurements.

Thus, the E-matrix approaches have been largely of theoretical interest only.

Solution of R and t Directly

Horn [43] directly solves for the translation and rotation using the departure from
coplanarity (Figure 2.1) as an error measure. The quaternion representation for
rotations is used. Starting from an initial guess, the resulting constrained’ non-
linear least squares problem is solved using the Gauss-Newton [38] method. It is
suggested that initial guesses can be automatically generated by sampling the space
of rotations, and the solution(s) with the least residual error can be chosen.

Bruss and Horn [21] and Adiv [2] compute the motion parameters differently.
Assuming small rotations between two time instants, the displacement vectors in the
image plane are represented as a function of the motion parameters and the image
coordinates?:

-X 7 (F+ER) Irfo -x
e N R R A L
(2.3)
where a and (3 are the z and y components of the displacement vectors, f is the
effective focal length, (X,Y) and (X’,Y") are the two image projections of the same
point in the scene whose depth is z, and €2 and t are the rotation and translation
vectors. The z-axis points along the optical axis of the camera into the scene and

the z and y axes are parallel to the image plane.

1The translation vector is constrained to be of unit magnitude due to the scale ambiguity between
its magnitude and the range of points in the scene.

?These equations are a modified form [98] of the authors’ image velocity equations.

fv'«ﬁ
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The motion parameters, 2 and t, are computed by minimizing the sum of squared
errors between the measured displacement vectors and the analytical ones given by
Equation 2.3. First, the depth z is eliminated. The resulting error measure is linear
in the rotation parameters if the translation is known. Bruss and Horn propose an
iterative gradient—descent technique for the minimization, whereas Adiv employs a
systematic search of the two—dimensional space of unit translation vectors to find the
motion parameters which correspond to the least residual error. Heeger and Jepson
[39] use the same error measure as well as a sampling of the space of unit translations.
However, they add the residual errors obtained from many small patches all over the
image instead of computing them globally. The advantage is that for each small patch
and each direction of translation, some computations can be precomputed and the
rest can be done in parallel.

Longuet-Higgins and Prazdny [57], and Koenderink and van Doorn [49] were
among the first to derive the differential form of Equation 2.3 for image velocities.
They analyzed the structure of the image flow fields at length and showed how the
3D motion and structure parameters could be derived using motion parallax ([72]),
and also using the derivatives of the flow field. -

The techniques described above lead to an improvement in the computed motion
parameters compared to the E-matrix methods {39, 82]. However, limitations due to
certain inherent ambiguities cannot be overcome by any of these approaches; this is

discussed presently.

2.1.2 Discussion on Two—Frame Motion Analysis

The two—frame techniques constrain the solution of the rigid-body rotation and
the translation using motion measurements from the whole image or a substan-

tial part of it. However, the success of these depends critically on having a large
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field-of-view camera, a significant amount of translation and significant variations of

depth in the scene [2].
Spetsakis and Aloimonos [82] show that techniques which use the coplanarity

constraint as an error measure encounter a local minimum. The resulting translation
vector points approximately towards the centroid of the image region under consider-
ation for any arbitrary true translational vector. The residual for this local minimum
can be as low or lower than that of the minimum corresponding to the correct solu-
tion [78]. However, this problem can be handled by normalizing the error measure
appropriately ([2, 29, 82]).

A more severe problem is the ambiguity between translations parallel to the image
plane and rotg.tions in depth. This problem is severe when the translations are parallel
to the image plane, there is noise in the image data and the field—of-view is small
(less than about 40°) [79, 94]. In such situations, differences in the image motion due
to the rotational and the translational components of the 3D motion are small almost
everywhere in the image plane. This problem could be alleviated to a certain extent
by increasing the resolution of the imaging system. However, within the current

practical limitations, it is a serious problem.

2.1.3 Structure Computation

The unreliability in the computation of motion parameters, at least for the cases
of inherent ambiguities, can seriously affect the estimation of the 3D st.ructure of the
scene. Each image correspondence or displacement vector along with the computed
motion parameters leads to its own depth measurement. This estimate can be very
erroneous, in general, because not only does it depend on a single image measurement
but also on the unreliable estimate of motion. Thus, a natural extension of these
techniques is to improve the structure estimate by considering more image frames in

which a large part of the scene remains visible over the sequence.
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Multi—frame Structure

In principle, multi-frame estimation of structure would incorporate tracking of the
scene features over time, in order to maintain their correspondence. However, reliable
solutions of scene structure, even with the correspondences assumed, has proven to
be hard. The integration of structure estimation and tracking in the domain of
monocular motion analysis has rarely been attempted.

One way to use multiple frames is within a dynamic refinement of the estimate
of structure. Cui and Weng [28] use both the current estimate of structure and
the new frame of image measurements to find the best motion parameters which
relate the most recent pair of frames. Subsequently, the structure estimate for the
new frame is refined. They use a recursive Kalman filter technique for the dynamic
estimation of structure and motion. In every new frame, the current estimate of
structure is used to compute the motion parameters for all the feature measurements.
The new motion parameters are then used to obtain a combined estimate of structure
by fusing the current estimate and the new one. Oliensis and Thomas [67] observe
that Cui and Weng ignore the correlation of errors between the 3D estimates of all
the scene features, thus weighting certain directions in the structure parameter space
incorrectly. These correlations are induced by the errors in the computed motion
parameters. They incorporate these correlations into their work, although doing
so results in a significantly greater computational cost for updating the structure
parameters. However, unlike Cui and Weng, Oliensis and Thomas do not constrain
the solution of the motion parameters for every new frame by the current structure
estimate. Thus, they treat each motion estimation problem independently. These
techniques have been shown to improve the estimates of structure, but only in cases
where the inherent ambiguities in the embedded two-frame motion estimation are

not severe. The two—frame motion ambiguities can bias the solution for the motion
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parameters away from the true solution. Even the covariance-based error modeling
of the resulting structure estimates using Kalman filtering is unable to handle such
errors.

Spetsakis and Aloimonos [82] formulate a batch estimation problem for both the
structure and motion parameters over many frames in contrast with the recursive
technique of [28, 67]. Given that m points in the scene are imaged from n different
vantage points, they formulate the constraint that for every pair of frames, the cor-
responding rotation R and translation t should be such that the bundle of rays for

each observed point in the scene is coincident in the scene (Figure 2.2 from [82]).All

e Frame m

Frame 1 _%’

Figure 2.2: The multi—frame bundle of rays.

the pairwise R’s and t’s, with nested constraints amongst triples, can be computed

by minimizing an error measure which measures the departure of the measurements

8
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from this constraint. However, the resulting optimization problem is complex and no
good techniques are presented for its solution.

In a recent work [89] on multi-frame structure, Tomasi and Kanade also combine
the solution for the motion and the structure parameters in a single batch estimation
problem. The measured image correspondences over many frames are combined into
a matrix whose factorization into a singular value decomposition with appropriate
constraints leads to both the 3D shape and the motion parameters. This technique
is simple and elegant. All the spatial and temporal measurements are accounted for
by a single least squares solution in which the singular value decomposition leads to
the optimal motion and structure parameters [31]. However, the work in its current
form is limited to orthographic projection and has been applied to real data with
large focal length cameras and for objects far way from the camera. The performance
under perspective projection with wide variations in the depth of objects in a scene
is not known.

There have been many efforts for the incremental estimation of 3D motion using
known structure or stereo cameras ([61, 99]), or for the refinement of 3D structure
with completely known motion ([15, 62]) or a partially known 3D scene ([51]). These
have not been reviewed because the interest here is in those approaches which do not
assume specific models of the scene or knowledge of the motion parameters, or use

binocular/multi-ocular vision.

2.1.4 Discussion on Multi-Frame Structure Estimation

The approaches discussed here for multi-frame structure estimation assume no
models for 3D structure and motion apart from the rigidity constraint. Structure
estimates are obtained by triangulation between successive frames after the com-

putation of the 3D motion parameters. The experimental results presented in the
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approaches discussed indicate that to achieve a significant improvement in the es-
timation of 3D shape from general motion under perspective projection, disparate
viewpoints are necessary. It is well known that reconstruction of 3D points using
triangulation over two frames introduces errors largely in the depth component for
a given error in the image measurements. Furthermore, Oliensis and Thomas have
shown that errors in the computed motion parameters also introduce correlated errors
across all the 3D points. This suggests that if new viewpoints of the same scene are
chosen so that these induce correlated errors in directions which are nearly orthogonal
to the directions of existing errors, then the shape estimates might improve. More

analytical and experimental work needs to be done to conclusively show this.

2.1.5 Reconstruction Using Models of 3D Motion

Many approaches to 3D reconstruction assume specific models of 3D motion in
addition to the rigidity assumption. In general, these approaches assume that many
point correspondences over a number of image frames are available. It is also assumed
that these points are images of 3D points lying on an object moving with the modeled
motion.

The essential idea behind motion model based reconstruction is that image motion
of features over extended time frames are expected to conform to projections of an
object with unknown structure undergoing the modeled 3D motion. This idea can
be applied in situations where either the camera is allowed to move only within the
constraints of the modeled motion, or when both the rotational and translational
components of the camera motion are smooth enough that the motion can be well
approximated by only a few low order terms of its Taylor series expansion. The model
of motion is enforced on either a set of intermediate motion parameters derived on a

two—frame basis, or directly on the 2D feature correspondences.
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Weng et al. [93] compute a series of two—frame transformations (sets of rotations
and translations) and then fit a general precessional model of motion which they call
the Locally Constant Angular Momentum (LCAM) model. Asada et al. [9] also
fit a smooth global model of motion over the pairwise computed parameters. The
robustness of these approaches is questionable because the two—frame computations

themselves can be highly unstable as discussed earlier.

Shariat [81] uses models of uniform translational and rotational motion with the
additional constraint that the frames are sampled uniformly in time. Constraints are
separately formulated not only for each type of motion, but also for each type of data
set. For each situation, the minimum set of necessary constraints are formulated and

the parameters are computed by exact solutions of the resulting non-linear equations.

Broida (18] models the motion of a smoothly moving object as the translation of
the origin of an object—centered coordinate system and the rotation of the object in
this system. The time—varying position of the object is expressed as a Taylor series
whose coefficients represent variations of arbitrary order. Points in 3D are assumed
to move with a motion corresponding to derivatives of a reasonable order (typically
uniform velocity). Then, the square of the difference between the expected image
projections of these points and their measured locations in a number of image frames is
formulated as an error measure. This error measure is optimized to find those motion
and structure parameters which correspond to a minimum. Both recursive Kalman
estimation techniques and batch estimation methods have been used. Superior results

are reported with the batch estimation methods.

2.1.8 Discussion of Motion Analysis with Motion Models

The advantage of imposing specific models of motion on the observed motion of
smoothly moving objects is that the number of unknown motion parameters does

not grow with the number of frames. In contrast, in multi-frame reconstruction
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from two-frame motion estimates, every new frame introduces a new set of motion
parameters. When using models of motion, a fixed set of parameters is assumed
to describe the complete trajectory of a moving object independent of the number
of frames observed. Thus, the larger the number of frames considered, the more
overconstrained the problem becomes, and hence the effect of random errors in the
observations over time can be effectively counteracted.

A second motivation for fitting models of smooth motion to the observed image
data is the possibility of describing object motion in its natural frame of reference
rather than in some arbitrar’ily chosen coordinate system. Consider a ball spinning
around its own axis. The natural description of such a motion is an axis of rotation
passing through the origin of an object—centered coordinate system and the rotation
of points around this axis. However, methods based on the computation of motion on
a two-frame basis involve first computing a number of rotations and translations in
a camera—centered system, and then discovering that a rotation around a fixed axis
with no translation is a more succinct description.

In the approaches discussed above, the parameterization of the motion models
inherently is a natural parameterization. Thus, if the imaged object undergoes a
motion that is describable with a natural set of parameters, then that description is

achieved. However, the question of validity of the assumed model in general situations

has not been addressed.

2.2 Goal 2 : Object, Boundary and Surface Segmentation

Delineation of regions in the image which correspond to a single rigid motion is
necessary before the techniques discussed above for 3D reconstruction can be applied.
Segmenting independently moving objects, even without the subsequent goal of their

3D reconstruction, can be useful for tracking and servoing. When only the camera is
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moving through a static scene, there is a single rigid motion between the entire scene
and the camera. However, even in this situation it is useful to obtain a segmentation

of the scene in terms of planar patches and other surface descriptors.

Image motion can also be used for the identification of depth (occluding bound-
aries) and orientation discontinuities. Thus, interpreting image motion as the projec-
tion of the motion of independently moving objects or of surface patches and their

boundaries is an important goal.

2.2.1 Multiple Motion Segmentation

Fennema and Thompson [34], in one of the earliest works on motion segmen-
tation, use the brightness constraint equation to cluster image pixels with similar
image velocities. Connected components of image pixels whose spatio-temporal in-
tensity gradients correspond to a cluster of z and y velocity components are labeled as
coherently moving regions. This method can segment 2D objects translating parallel
to the image plane (parallel to the zy-plane).

Adiv [1] segments a displacement field computed over two-frames into regions,
each of which corresponds to a rigid motion of a single object/surface patch in the
scene. The algorithm is divided into two stages. First, a Hough transform is used to
segment the image motion into patches, with each patch describing an affine approx-
imation of a rigid planar motion. In general, this leads to an oversegmentation of
the flow field but keeps the computational complexity relatively low. Subsequently, a
hypothesize-and-test algorithm is used to group together connected components of
these patches into regions, each of which corresponds to a general rigid motion. The
constraints used for the second step are those which were presented in Section 2.1.1

on 3D reconstruction.

‘Both the above techniques are velocity (displacement) based and use only two

frames of information.
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2.2.2 Boundary Segmentation

Clocksin [25] presented a theoretical work on the labeling of various boundary
types (viz. convex, concave, occluding etc.) in flow fields on a spherical imaging
surface. Signatures of range profiles across the various types of boundaries were
related to the profiles in the spherical flow fields. Thus, in this work 3D boundary

types are derived from the image flow.

Boundaries can also be defined as discontinuities in the 2D flow. These possi-
bly correspond to depth and orientation discontinuities or object motion boundaries.
Hildreth [40] proposed the use of discontinuities in the normal flow of similarly ori-
ented zero—crossings for labeling image regions as boundaries. Similarly, Thompson
et al. [87] use zero—crossing detectors to identify changes in direction and/or magni-
tude in the vector-valued flow fields. Spoerri and Ullman [83] use statistical tests on
the local velocity histograms to detect motion boundaries. In all these approaches,
it is assumed that the image flow varies smoothly within patcheé which are projec-
tions of smooth su;'faces moving rigidly, and that it changes abruptly across occlusion

boundaries or boundaries between independently moving objects.

Black and Anandan [12] use robust estimation techniques to model departures
from spatial and temporal continuity of the flow. They compute the optical flow
dynamically over a sequence of images and label occluding boundaries in the process.

Theirs is the only work in motion boundary detection which uses multiple frames.

2.2.3 Surface Segmentation

The work on surface segmentation using motion is largely limited to planar patch
segmentation. Murray and Buxton [64] perform a global optimization based on a
maximum a posteriori (MAP) estimate of a planar facet model. Adiv [1] also segments
a flow field into patches which correspond to a planar patch flow. This is a step

towards general rigid body segmentation in his work.

3
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Faugeras and Lustman [32]4use point and line tokens to divide a scene into token
sets. Each set represents a planar patch moving over two frames. A seed set of four
tokens initiates a planar patch hypothesis which is then extended by a hypothesize—
and-test algorithm. |

All the above algorithms use two frames of information only. Extensions to dy-

namic segmentation and estimation over a sequence of images has not been attempted.

2.2.4 Discussion

Delineation of objects from their background, labeling depth and orientation dis-
continuities and segmenting 3D surfaces from image motion have proven to be hard
problems in their generality. In order to pose the figure-ground segregation problem
in motion analysis, objects have to be characterized as distinct from their background.
Similarity of image motion and that of 3D motion have been used as criteria for delin-
eating multiple motions. However, the use of extended temporal informa.tion has not
been attempted. This is largely the case with boundary and surface segmentation
as well. In other words, use of 3D motion and structure constraints in addressing
motion-based segmentation tasks as a dynamic analysis has largely been left unex-

plored.

2.3 Goal 3 : Feature and Object Tracking

For an autonomous intelligent system, tracking features and objects in a dynami-
cally changing environment is necessary for maintaining identity (correspondence) of
objects over time. Maintaining identity is important because many observations of
the same entity can be related over time to obtain reliable estimates of its structure

and motion, and also to predict its future course. Dynamic identity maintenance with
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closely sampled image frames can substantially reduce errors in correspondence while
keeping the computational cost of search and matching low.

Sethi and Jain [80] find trajectories of point tokens in an image sequence. Smooth-
ness of image motion over time is used as a heuristic. They formulate a path coher-
ence function which measures the similarity of motion of the point features across two
consecutive time instants. This function is embedded in an iterative optimization al-
gorithm which establishes correspondence of m points over n frames by maximizing
the path coherence for the whole sequence. Rangarajan and Shah [70] present a non-
iterative algorithm for finding point trajectories in images. They minimize a prozimal
uniformity function which measures the deviations from uniformity of velocity, and

proximity of position of a set of points over successive time instants.

Rehg and Witkin [71] formulate the 2D tracking problem with a deformation
model for the 2D motion and a set of energy-based match criteria for matching the
image features. A model of uniform 2D translation provides the temporal prediction.

Papanikolopoulos et al. [68] control a robotic arm to track 2D objects which Lie
and move in a plane parallel to the image plane. At each time instant, optical flow
computed by the method of sum-of-squared—differences (SSD) (7] is used to solve for
the 2D motion of an object. This motion serves as an error signal for the controller
which corrects for the motion bringing the object back to the desired position in the
image plane.

Crowley et al. [27] and Deriche and Faugeras [30] use a locally—constant accel-
eration model of image motion for tracking individual line segments over a sequence
of frames. A dynamic model is maintained for each line segment. The segment’s
position is predicted and matched dynamically to the newly acquired data for every
frame.

Burt et al. [22] suggest a hierarchical framework for tracking and segmentation.

An affine transformation is used to describe the motion of planar patches in rigid

1 3

.3
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motion. Decomposition into multiple motions is done using the mechanism of locking
onto a dominant motion and then subtracting out the other components. A frequency
domain analysis of the mechanisms underlying this one-component-at-a—time decom-

position is presented in [23].

Discussion

All the approaches reviewed above use 2D transformations to compute image
motion and subsequently use heuristics for the smoothness of image motion to track
image entities over time. There is no attempt to relate tracking constraints to 3D

structure and motion within the tracking framework.

2.4 Relationships to Our Work

The primary objective of this work also is the computation of reliable scene struc-
ture from dynamic images. The goals of tracking, segmentation and reconstruction
are all addressed but with some differences in the problems posed and the methods

adopted for their solution.

2.4.1 Structure Reconstruction

First, in contrast with the 3D reconstruction approaches discussed in Section 2.1,
we endeavor to capture the definition of an aggregate 3D structure defined in terms of
primitive features like lines and points. We observe that for tasks like obstacle avoid-
ance for autonomous navigation in man-made environments, it may not be necessary
to compute the 3D structure of the scene in terms of the coordinates of most points
in the scene. It is also reasonable to assume that scenes in such environments consist
of small scale structures, which could be potential obstacles, along with extended

structures which fill the background. This work poses the reconstruction problem



32

as that of direct reconstruction of these aggregate structures and not of individual
points/lines. In principle, it is possible to group points and lines into aggregate struc-
tures for objects and surfaces and their background. However, as discussed above, the
task of reliably deriving 3D coordinates of points and lines has proven to be difficult
even when it is assumed that correspondences over time are available and the regions
of the image under consideration contain measurements only from a single rigid body
motion. In contrast, an advantage in our approach is that it integrates dynamic
tracking and robust 3D reconstruction without the need for an explicit computation

of the 3D motion parameters.

2.4.2 Segmentation and Tracking

Second, a recurring theme in 3D interpretation from images is that of identifying
what an ‘object’ is, as distinct from its background. Gestalt psychologists tried to
capture this notion in dynamic scenes using the notion of common fate. The idea of
common fate in terms of the similarities of image velocities has been quantified in
the segmentation work of Fennema and Thompson [34] and Hildreth [40]. However,
similarity of image velocities is inadequate to capture the notion of common fate of ob-
jects/surfaces that undergo the same 3D motion. Adiv{2] in his work on segmentation
of multiple object motions did characterize regions of images undergoing common 3D
motion. However, his work was limited to using two frames of information whereas
delineation of such regions and the maintenance of the identity of the corresponding
3D object over time should both be addressed for a practical system.

In defining structure as an aggregate of primitive features, the objective is to
define the common fate of an object in terms of a coherent 3D spatial structure which
manifests itself as a coherent spatio-temporal image structure under the assumption

of smooth motion. The goals are to identify objects which have a common fate in

3
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the above sense, to reconstruct their 3D structure, and to dynamically maintain their
identity over time.

In order to achieve these goals, we use general models of 3D structure like compact-
ness and planarily, and combine these with a general model of smooth motion. The
evolution of the spatial model under motion is dynamically tracked, leading to a seg-
mentation and reconstruction of the scene in terms of these models. This framework
integrates the problems of tracking, segmentation and reconstruction in a framework
of spatial and temporal grouping in dynamic images. The ability of a structure to
be predicted and tracked consistently under its assumed model becomes a basis for
its segmentation and reconstruction as the corresponding 3D structure. Thus, the
output of our system is a scene description in terms of segmented compact and/or

planar structures at their respective locations with respect to the camera.

In contrast, none of the approaches discussed above for planar patch segmentation
uses dynamic multi-frame techniques. The other techniques discussed for tracking use
image plane constraints only and hence are useful for 3D segmentation and tracking

of objects only after the correspondences have been established.

2.4.3 Motion—model Based Reconstruction

Third, this work provides an alternative approach to 3D reconstruction using a
model of rotational motion. In general, it is expected that 3D reconstruction based
on models of motion using many image frames will perform better than two—frame
motion based methods. This is borne out by the results of Broida [18] and the results
discussed in Chapter 4. However, none of the approaches discussed in Section 2.1.5,
address the question of validating the assumed model of motion from the observed
data. The observed image data is expected to correspond to the assumed model and
based on this expectation, the model parameters are derived from the data. This is

what we call direct 8D parameter estimation. Direct parameter estimation approaches
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have to pose complex non-linear optimization problems. These, in general, tend to be
sensitive to initial guesses and noise in the data. It is not clear how these approaches
will handle gross errors in the data (outliers) or multiple instances of the same motion
or instances of multiple models of motion.

In our work on rotational trajectories, an alternative to the direct 3D parameter
estimation approach has been adopted. The stress is on both the robust derivation of
scene structure and motion and on building a description of image motion which can
potentially address the problems discussed above. Spatial and temporal grouping is
used to build a description of a discrete set of point correspondences in the image plane
in terms of continuous curves or image trajectories. The image trajectories can be
used for both a qualitative interpretation of motion for grouping similar motions, and

for quantitative estimation of the parameters of the corresponding 3D trajectories.
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CHAPTER 3

TRACKING, IDENTIFICATION AND
RECONSTRUCTION OF SHALLOW
ENVIRONMENTAL STRUCTURE

Detecting obstacles in the path of a mobile robot is an important, and yet gen-
erally unsolved, problem in the area of autonomous visual navigation. Autonomous
navigation would be greatly benefited if 3D representations of surfaces could be de-
rived using vision. This work deals with 3D reconstruction from monocular vision.
Much of the work in recovering scene structure from monocular vision has concen-
trated on deriving depths of points, lines or pixels but has, unfortunately, achieved
only limited success. Both the motion and structure computations suffer from inher-
ent ambiguities [3] in many realistic scenarios and also are very sensitive to noise in
correspondences or flow extraction [90]. The recovery of aggregate 3D structures is
generally left to some later stage in which features are grouped into surface patches.
In this chapter, we demonstrate that useful quantitative inferences about the scene
structure can be derived if descriptions are based on generic assumptions about the
world over and above rigidity of motion. The motion could be due either to camera
motion and/or to object motion.

A major line of research has been to track lines or points over two or more frames,
followed by the application of a structure from motion technique to the resulting
correspondences (33, 43, 94]. The tracking of image tokens over time has been largely

based on heuristics about the motion of these tokens in the image plane. For instance,
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locally constant acceleration in time and similarity measures over image tokens have
been employed [27, 30]. As the 3D structure of the scene and the motion of the
camera are both confounded in the motion of the image tokens, heuristics about
image motion can easily break down. The approach described here employs generic
assumptions about the 3D motion and structure to compute descriptions of aggregate
structures in the imaged scene. This is a significant difference from the tracking
algorithms developed by Crowley et al. [27] and Deriche and Faugeras [30] who
employ only partially valid heuristics involving 2D motion. In our work, generic
model-matching, common fate grouping and prediction-based tracking are integrated
in a single dynamic framework for describing scene structure over time.

Furthermore, an advantage of the approach described here is that 3D structure
information is derived reliably without the intermediate step of explicit computa-
tion. of the 3D motion parameters. Recall that the well-known inherent ambiguities
([3, 94], Chapter 2) in the process of decomposing the image motion into a 3D rotation
and a translation can lead to large errors in the 3D structure estimation.

The goal here is to discover aggregate structures in the imaged scene which can
be characterized as shallow structures. Shallow structures are 3D structures with the
property that the difference in depth within the whole structure is small compared
to its distance from the camera. Figure 3.1 shows an image of a hallway. This
scene consists of compact structures like the cones and the trash can, and extended
structures like the walls, the floor and the ceiling. When viewed from distances
at which it might be desirable for a mobile robot to represent these internally, the
variation in depth within these structures is small compared to their average distances
from the camera. That is, the structures can be characterized as shallow at distances
where the path planner for the robot might need an internal representation of the

structures.
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Figure 3.1: A Hallway scene with shallow and non—shallow structures.

In this work, constraints derived from the shallowness property are employed to
identify shallow structures among the larger scale structures in the background. A
general formulation is developed and a dynamic algorithm is presented which works
over a sequence of images captured by a camera undergoing smooth motion. Hypoth-
esized shallow structures are dynamically tracked under the shallowness assumption.
Within a temporal window of a few frames, true shallow structures are extracted from
the set of hypothesized aggregate structures on the basis of both the consistency of
predictions in tracking and the depth of the structure. In other words, temporal evolu-
tion of a hypothesized structure is used to verify its consistency within the constraints

of spatial shallowness.
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Shallow structures are shown to be affine describable over time. Instead of clus-
tering image features into shallow structures on the basis of this property applied
over only two frames, the idea of affine trackability is applied dynamically to each
hypothesized shallow structure. The key idea in this work is that affine trackability
can be used to segment shallow structures in a scene and to reconstruct these in 3D.
Two important insights have been developed within an estimation theoretic frame-
work for the problem of robust shallow structure tracking. First, it is observed that
matching of an aggregate structure as a whole is generally unambiguous in compar-
ison with independent matching of features within the structure. Representation of
a structure as a state vector along with the associated covariance matrix that allows
for uncertainties in modeling and measurements, provides a natural representation
for the aggregate structure as a whole that is suitable for model matching. Second,
in order to circumvent the high dimensionality of this representation in matching, a
nice decoupling of the structure parameters is shown to lead to a matching problem
of less complexity.

The 3D location and the dynamics of the entire aggregate structure are directly
represented instead of the depth of more primitive tokens like points and individual
lines. The derived description of the scene can be viewed as a set of fronto—parallel
planes (cardboard cut-out surfaces) of constant depth, one for each shallow object in

the scene.

3.1 Overview

This presentation is broadly divided into three parts.

1. A Formulation of Affine Describability and Trackability of Shallow Structures.

1
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2. An Algorithm for Shallow Structure delineation.

3. Experimental Results.

3.1.1 Affine Describability and Trackability

First, it is shown that if the rotations of the camera between two image frames are
small, then the image projections of a shallow structure can be approximated by a
four-parameter affine transformation — scale change, rotation around the optical axis
and translation in the plane [86]. This is called affine describability. A model of errors
for 2D line tokens is developed which is used to compute the affine parameters and
their covariances. These computed affine parameters with their associated covariances
represent the 2D dynamic parameters of a hypothesized shallow structure.

Second, affine motion of a shallow structure in the image plane is used to main-
tain its identity over time by tracking the structure dynamically. This is called affine
trackability. Tracking involves both predicting the structure’s appearance at every
instant and finding its match in the newly acquired image data. Matching the pre-
diction to the data for the structure as a whole is shown to be resilient to errors in
prediction and modeling. These errors are a result of approximations in modeling the

motion and structure, and measurement errors in the image data.

3.1.2 Tracking Algorithm

The goal is to declare a hypothesized structure as shallow or non-shallow on the
basis of its trackability as an affine structure. Tracking is done within a framework of
Kalman filtering and model matching. The affine parameters are used in a dynamic
model of the image motion of a shallow 3D structure. Matching is done using the
predictions from this model and the actual data. Newly matched data is then used

to refine the estimates of the model. The tracking algorithm consists of two phases.
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In an initial bootstrap phase, each line in a newly hypothesized structure in frame 1
is matched to a frame 2 line using the method described in [96]. Using this two frame
correspondence, two state vectors are instantiated for the hypothesized structure —
one is a vector of the location and the second of the affine motion parameters. The
location vector specifies the image location of the structure in terms of its constituent
lines and the current estimated depth.

The tracking phase consists of prediction, matching and updating. Once a model
of the hypothesized structure has been instantiated, its affine motion state at frame ¢
is used to predict the motion between time ¢ and ¢+1. The predicted motion is used
to predict the location at ¢-+1. Using this predicted location, a search is performed
in frame ¢+1 to obtain candidate matches for the structure as a whole. For each
candidate match, its Mahalanobis distance [30, 58] is computed with respect to the
predicted model as a whole and the best match above a threshold is selected. This

match is then used to update its state.

The prediction of motion parameters is based on an assumption of approzimately
uniform motion between successive frames. To model departures from uniformity,
modeling error is added to the predicted motion parameters with the result that
the covariances of the predicted model effectively encode perturbations around the
predicted parameters.

The algorithm incorporates the notion of model persistence over time [27]. Oc-
clusions, deocclusions, overgrouping and undergrouping of lines are very frequent
occurrences in a sequence of images. To handle these effectively, the model remains

instantiated even when an adequate match is not found for a few frames.

3.1.3 Experimental Results

Results of shallow-structure tracking and delineation are presented on image se-

quences which were captured with a camera mounted on a Denning robot vehicle. The
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sequences illustrate the power of the incremental tracking approach. For instance, the
power of aggregate model-matching as opposed to individual line matching is demon-
strated. In addition, it is shown that the algorithm can be applied to independently
moving objects as well, if they satisfy the shallow structure constraint. This follows
from the nature of the assumptions and models. A scene is modeled as a collection of
locally shallow structures which potentially move independently with a rigid motion
relative to the camera. The motion could be due either to camera motion and/or to

object motion.

3.2 Relationship to Previous Work

The approach developed in this work has been inspired by the work of Crow-
ley et al. [27] and Deriche and Faugeras [30] on multi-frame tracking of line segments
in images, and by the structure from looming idea of Williams and Hanson [96], but
goes beyond the framework developed by either of them. In [27] and [30], a locally-
constant acceleration model is used for tracking of individual 2D line segments over a
sequence of frames. Each model represents the location and dynamics of a single line
segment and is kept current using a prediction and matching technique within the
Kalman filtering framework. This model can lead to tracking errors even for simple
cases of motion, such as a uniform translation in depth, especially in images where
more than one line of similar orientation appears proximally in the image plane!. In
contrast, the model defined here assumes both a property of 3D structure (shallow-
ness) and smooth motion of the camera. The affine motion of a shallow structure
provides a more exact trackability constraint. A shallow structure, being a collec-

tion of primitive tokens (lines and points), provides implicit figural context for more

1 A sitnation which is not uncommon in buildings and hallways.
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robust matching than just the primitive tokens. In addition, tracking in our work is
used for segmentation and 3D reconstruction.

Williams and Hanson [96)], in their work on flow-predicted line correspondences,
have demonstrated that for translations in depth, reliable depth can be computed by
measuring the temporal magnification (looming) of lengths and regions at approxi-
mately constant depth. Their method was demonstrated on manually selected virtual
line segments and regions in the image. Automatic segmentation and temporal-
persistence in tracking was not addressed. For instance, their system had limited
ability to recover from undergrouping/overgrouping errors, and no ability to handle
occlusions. Further, it did not assume or utilize motion continuity over time for
tracking. Since it was based directly on the computed image displacements, it han-
dles fairly arbitrary kinds of motions if the displacement fields are sound. The work
presented here differs in that the notion of shallowness of depth of a structure has
been formalized into a constraint which is utilized to automatically identify shallow
structures in the scene. For motion with a significant component in depth, reliable
depth of the structure can be computed from its scale parameter, which is related to
looming and divergence.

A different approach for representing the scene as image regions corresponding to
surfaces at different depths has been developed by Nelson and Aloimonos [66]. The
divergence of the flow field between a pair of frames is used to divide various regions
in the image into surfaces at different depths with respect to the camera. Reliable
computation of flow and its divergence requires textured surfaces. In many real-
world navigation scenarios, like a robot moving down a hallway, most surfaces are
smooth and featureless with only a few reflectance edges. In such situations, occluding
contours and significant reflectance edges are a reliable source of geometric cues. Qur

work uses the temporal evolution of such geometric image tokens. Furthermore,
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figural cues can be very naturally integrated within the framework of tracking of
aggregate structures consisting of line and/or point tokens.

One of the earliest attempts at describing the scene as planar patches and its
subsequent segmentation into multiple object motions was that of Adiv [1]. His
approach employed the constraints on image flow from the rigid motion of a planar
patch to group image regions, each region corresponding to such a motion. The input
used was sparse or dense image flow and the associated confidence measures between
a pair of images [8]. Again, since the method is based on image flow, it is not very
reliable when the scene is composed primarily of textureless surfaces. Furthermore,
Adiv’s approach was limited to descriptions based on only two image frames and
extensions to multiple frames has not been proposed.

Faugeras and Lustman [32] also suggest an approach for reconstructing the scene
as planar patches based on line tokens. The relationship between a pair of image
projections of a set of lines on a plane is derived as a projective transformation
involving the plane and motion parameters. However, no clear algorithm is given for

using this constraint to obtain the desired segmentation.

3.3 Shallowness as Affine Describability

In this and the next two sections, we show how projections of shallow structures
are affine transformable over time, and present the solution for their affine parameters.
Furthermore, a match measure is developed for matching predictions against the data
while accounting for measurement and prediction errors.

Given a set of 3D points whose extent in depth §Z about a nominal point Z, is
small compared to Z, and assuming that the rotations between two image frames

are small, then the transformation of the projections of the point sets between the
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two time instants can be accurately approximated by a four—parameter affine trans-
formation. Subscript i for the ith point is dropped in the derivation for notational
convenience. A camera—centered coordinate system is chosen in which the X'Y-axes
are in the image plane and the Z-axis points into the scene along the optical axis of
the camera. The origin is the center of projection and lies on the optical axis with
the image plane a focal length away from it along the positive Z—axis. The following

notation is adopted:

P, p : 3D vector [X,Y,Z] of an imaged point at t and the corresponding
2D image vector (z,y).
P, p' : The3D vector [X',Y',Z'] at t + 1 and the corresponding 2D image
vector [z, 9]
Zo, Zy : The depths of the 3D centroids of the point set at t and t + 1.
8Z : Eztent in depth around the centroid.
8 : Scale defined as Zy/Z,.
R : The small angle approzimation to the 3 x 3 rotation matriz
formed out of [wz,wy,w,).
R, : The 2 x 2 rotation matriz for rotations around the z — azis.
T : The 3D translation vector [T, Ty, Tz
2, T,p : The 2D vectors |wy, —w.] and [Ty, T,], respectively.

f : The ef fective focal length of the camera given a square image.

The weak perspective projection equation for a shallow structure, approximated to

the first order, can be written as,

1 1 §Z
—p ~ —(1-—)P 3.1
P Zo( Zo) (3.1)
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The rigid body transformation between the two 3D vectors is:
=RP+T (3.2)

Using these two equations, the relationship between the projections at the two instants

can be written as:

1, Z 82 87,1 Zo 8Z 5Z 7.1

T,D (3.3)
Since our assumption is that the rotations, field—of-view and z_{,[Tt’ T,,]T are small,
the second and higher order terms can be ignored and this transformation can be

approximated as follows:

1, 1 1
=p'~-=sR.,p+t, t=s2+=T.p 3.4
f f Zg (3.4)

which is a four-parameter affine transformation (also called a similarity transforma-
tion). We emphasize that these assumptions are easily satisfied in most visual motion
scenarios using commonly available CCD cameras. For instance, rotations up to 0.1
radians (about 5 degrees), FOVs of up to 25 degrees (ma.xlmum of about 0.2) and
translations in the X and Y directions of up to 1 unit for objects as close as 10 units,
satisfy these assumptions. Similarly, structures possessing a 7 Z ratio of 0.1 or less

can be reasonably characterized shallow and therefore affine describable over time.

3.4 Does Affine Describability Imply Shallowness ?

The above formulation shows that if, for a structure in 3D, a fronto—parallel plane
(parallel to the image plane) is a good approximation, and if the motion between two
image frames is small, then its motion in the image plane can be approximated by a
four-parameter affine transformation. The question in the context of 3D reconstruc-
tion is whether this transformation is a sufficient condition too, that is, whether affine

transformable patterns in the image plane correspond to shallow structures.
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For the four-parameter transformation derived above, the answer to the question
of existence and uniqueness is straightforward. There is always a unique fronto-
parallel plane at a distance given by the scale parameter whose projections are the
image patterns. However, there is no unique rigid motion which can be derived
because the 2D translation parameters are a combination of the 3D rotation and

translation parameters.

In addition to the issue of uniqueness, we have to say how well the reconstructed
structure corresponds to some real structure. Unfortunately, there is one configuration
of points for which the reconstruction can have an arbitrarily large error. For a
purely translational motion, consider the point at the focus of expansion/contraction
(FOE/FOC) and any other set of points which are projections of 3D points lying at
an arbitrary constant depth. For this total configuration of points, the transformation
is affine even though there may be an arbitrarily large difference between the depth of
the point at the FOE/FOC and the remaining points. However, this is a degenerate

case and can generally be avoided.

3.4.1 General 2D Affine Transformation

In the above formulation, we have chosen to approximate a 3D shallow structure
by a fronto-parallel plane. What is the resulting description if a plane of arbitrary
orientation is chosen to approximate a shallow structure? It can be shown that the
four-parameter 2D affine description generalizes to a six-parameter 2D transforma-
tion for the approximation with an arbitrarily oriented plane. It is well known that
the object-plane-to-image—plane transformation for a planar object under weak per-
spective projection is a six-parameter 2D affine transformation [52]. In other words, if
a shallow structure is approximated by an arbitrary plane and not by a fronto—parallel
plane, then the transformation from the object plane coordinate system to the im-

age coordinate system is a general 2D affine transformation. Further, under rigid

3
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motion, projections of this structure over two time instants are also related through
an affine transformation. Thus, projections of planar approximations of arbitrary

shallow structures can be related through a general 2D affine transformation.

Given a general 2D affine transformation, what can be said about the corre-
sponding 3D motion and planar parameters? In the context of object recognition,
Huttenlocher [44] has shown that given a 2D affine transformation between a model
plane and the image plane, a 3D similarity transformation (up to a reflection) that
relates the model plane and its image can be recovered. In other words, the relative
orientation (up to a reflection), translation (parallel to the image plane) and distance
along the optical axis (inverse scale) of the model plane with respect to the image
plane can be recovered. However, this result is not directly useful for the case of mo-
tion where the model plane is not available and the affine tranformation relates two
image projections of an unknown plane. For shape from textons, Kanade and Kender
[48] showed that given the affine transformation between the image projections of two
planar patches, the relative orientation can be recovered only if the absolute orien-
tation of one of the patches in the camera coordinate system is known. The scale
can be recovered only if the slant of one patch is known or if the slants for both the
patches are equal. Extending this to the case of motion, it is evident that the relative
orientation and scale cannot be recovered in general from the six-parameter affine

transformation.

3.5 Solving for Affine Parameters and Their Covariances

Given a set of line correspondences in two frames, we wish to compute their
affine motion parameters. Although the following derivation is for lines, it is easy
to generalize it for a combined set of lines and points. The error measure is general

enough to support a range of image measurement models — from strict line segments
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with absolutely reliable endpoints (equivalent to point tokens) to lines with infinite
extent (absolute uncertainty in the longitudinal location of endpoints). As shown in

Figure 3.2, the error measure is a sum of the parallel and perpendicular components

Affine  Transformed
Line of Frame ¢

1

[

~ffrr—r————— —_——

I I Frame ¢+] Line

Figure 3.2: The parallel and perpendicular error components.

of the vectors joining the corresponding endpoints of the line in frame £ 4 1 and the
affine transformed line in frame ¢ [4]. The parallel and perpendicular directions are
defined with respect to the line in frame ¢ + 1.

Equation 3.4 can be rewritten in pixel coordinates as follows:
p=Dr,+t (3.5)

where the matrix D = [ : —: ] is the data matrix which is constructed using the
point p = [z y]T in frame t. Vector r, = [scosw, ssinw,|T is the product of

scale s and rotation, w,, around the optical axis. With this simplification, the error
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measure, for a pair of corresponding lines 3, is,
2
E; = ,2-:1 wy[(Dijr, + ¢ — pi;) - nil* +w,[(Dyrs + £ —p;) - L] (3.6)
Here j refers to endpoint 1 or 2, w;; and wy; are the weights for the perpendicular
and parallel error components, respectively, and n} and I} are the unit normal and
direction, respectively, of the line in frame ¢ + 1. It is clear from Figure 3.2 that
the first term in the above equation is the weighted perpendicular distance between
the affine transformed endpoint of a line at ¢ to the corresponding line in the next
frame. The second term is the weighted longitudinal distance. The weights associated
with each of the error components can be chosen appropriately for both points and
lines extracted from the image data. In order to model a circular uncertainty region
associated with an extracted point token, w,; can be set equal to wy,. If w); is set to 0,
then the error measure captures the error model for lines represented as infinite lines.
Similarly, measurement errors for line segments can be represented by appropriate
choices of the two weights. For example, for lines typically w,; is much larger than
w),, reflecting the known noise characteristics of most line extraction algorithms. In
general, the weights can be suitably chosen depending on the type of token used and
the associated noise model of the extraction process.
For a set of token correspondences, the unknown parameters r, and ¢ can be found
by minimizing ¥; E;. Through a series of simple algebraic manipulations it can be

shown that the following linear system gives the solution:
M,y Mg t|_| v,
Mlz‘-; M53 L - ‘034 (3.7)

where?

2In the following we drop the subscript j for the endpoints and assume the error term for each
line includes both endpoints.
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M13 = M1 + M3 N M1 = 2,101_‘73 n; D M3 = Zt w",l'l'TD, 3
My = M + My, My = Y wyn; n:T , M, = ¥; wll-lll
Mg = My + Mg, My = 3; w_,_.DT'n n'TD Mg = 3 ‘w"‘D‘Tl:l:TD
P, = v, + v, v, = Y,wyn0n p‘ , v, = Yw kP
v, = v + v,, v, = S;w,.DininTp,, v, = z,w,,,p?z;sz 2

The vector r, computed from Equation 3.7 can be further decomposed into the

two parameters s and w;.

3.5.1 Modeling Uncertainties in Image Lines

Lines extracted in images are more reliable in their lateral than in their longi-
tudinal locations. The unreliability of their endpoints is, in general, due to over-
grouping/undergrouping, occlusions/deocclusions and corner effects of the intensity
surface. The uncertainties in the endpoints of a line can be modeled as variances,
ojj and o} which are the parallel and perpendicular uncertainties respectively in a
coordinate system aligned with the line as shown in Figure 3.3. If the orientation of
the line in the image coordinate system zy is 6, then the corresponding uncertainties
in any endpoint can be expressed as [30]:

ojf cos? § + o sin’ § (ot — 0% ) cosfsin§
Ay = (3.8)

o2 — a2 )cosfsinb olsin® 9 + o2 cos? 8
ll 1 1l i

3.5.2 Covariances of the Afine Parameters

If w); and wy; are chosen to be the reciprocal of the perpendicular and parallel
variances (o} and ojj), then Equation 3.6 represents a standard weighted linear least
squares problem. Its solution, given in Equation 3.7, can be written concisely as

MiotVags = Vo, where the new symbols have the obvious correspondence with their

—3
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Figure 3.3: The model for noise in lines. Parallel and perpendicular endpoint
uncertainties.

expansions in the equation. Using a standard result for the covariances of the output
parameters of a least squares problem [85], the covariances of the affine parameters
can be written as

Apt = M} (3.9)

where Ag. ¢ is the 4 X 4 covariance matrix of the affine parameters r, and t.

This completes the discussion of the estimation of affine parameters and their co-
variances, given correspondences between noisy measurements of a set of line pairs in
two frames. In the next section, a representation for aggregate structures is developed

and a match measure for comparing two such structures is derived.
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3.8 Aggregate Structure Representation and Matching

It is emphasized that an aggregate structure refers here to any set of lines (and/or
points), shallow or non-shallow, and hence is called a hypothesized structure. The
constituent lines of such a structure are used in two distinct ways by the algorithm

— as infinite lines for motion computation and as line segments for prediction and

matching. Each use imposes its own requirements on the representation of a line and"

consequently, on the representation of a hypothesized aggregate structure.

Given a set of correspondences obtained by matching the prediction of an ag-
gregate structure with its appearance in a newly acquired frame, the affine motion
parameters are solved for by treating the lines as infinite lines, that is, w,; = 1 and
wy; = 0 in Equations 3.6 and 3.7. This leads to the most accurate affine parameters
possible for a set of lines even when lines break or grow, or become partially occluded,
since only the transverse position of the lines needs to be accurate.

For prediction and matching, this is not sufficient, especially when a model in-
cludes only a small number of lines. In particular, it can be shown that for small line
sets, the longitudinal image location of the affine projected lines in frame ¢ + 1 can
be quite erroneous with respect to the data lines even when the residual error for the
affine solution based on the perpendicular error is small (Section 3.8). Thus, if the
idea of shallowness is to be fully exploited for matching, then lines with infinite ex-
tent cannot be used. Moreover, although the extent and location of a line is relatively
unreliable, this information still imposes a strong constraint on its motion when the
uncertainties are modeled correctly.

Thus, we employ both requirements in different phases of the algorithm to achieve
a representation appropriate for both aggregate structures and their constituent lines.
It is easily shown that if lines are treated as infinite when solving for the affine param-

eters, then a minimum of three lines not intersecting at a single point overconstrain
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the solution. In fact, any set of parallel lines or any set of lines all intersecting in a sin-
gle point lead to an infinite number of solutions. Consequently, a primitive aggregate
structure is defined as a set of three (or four) lines. The degenerate configurations are
automatically detected when solving for the affine parameters. We emphasize here
that the algorithm and its implementation are not restricted to sets of only three
lines. However, this is the minimum number sufficient for simple shallow structure

segmentation while keeping the complexity of matching to a minimum.

3.6.1 Representing Lines and Aggregate Structures
Each line is represented as a finite line segment with the four-tuple

lL=[2m ym 0 l]T

where (Zm, Ym) is its midpoint, § the orientation and [ its length. Given the model

of perpendicular and parallel uncertainties, the covariance matrix for the model of a

segment is:
0 0
Al, =1 o0 o 202 /12 0 (3.10)
0 0 0 2o'|"|'

where A,y is the 2 X 2 endpoint covariance matrix of Equation (3.8). It was shown
by Deriche and Faugeras [30] that in this representation the covariance matrix for
a given line is independent of its position in the image plane. Also, the midpoint
uncertainties are uncorrelated with the orientation and length; this will be used to
advantage in the matching.

Each aggregate structure of three lines is represented as a hypothesized 3D struc-

ture in two parts. Its image projection is a 12 x 1 vector,

MIloc=[$m1 Ym1:---Tm3a Ym3 0, L...0; 13]T = [MmT MNT]T (3-11)
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composed of the three line segments. All the midpoints have been concatenated. Its
3D location is represented as its currently estimated depth Z. Note that this 13 x 1
representation (image location and depth) completely defines an aggregate shallow

structure in 3D; it is called the location state of the structure in the following.

The dynamics of the structure are represented by the current four affine motion
parameters (Equation 3.7), their covariance matrix, the total residual error (Equa-
tion 3.6) and a projection error. Recall that the residual error measures only the error
in the transverse positions between lines in frame ¢ + 1 and the affine transformed
lines in frame ¢. In addition, to measure the total image location error for the affine
projected aggregate structure, a projection error is defined which measures the sum
of the Mahalanobis distances [30, 58] between the affine projections of line segments

in frame ¢ and the corresponding lines in frame ¢ + 1. That is,
3

— T -

merTproj = g(':'!.’ ~lsassproj-i) (Al:,,i +A13¢ﬁ_mj_‘.) Y(Us; = U8agsproj—i)
(3.12)
where U is the vector for the ith line segment in frame ¢ + 1, and lgzy_,,;_; is
the vector for the affine projected corresponding line of frame ¢{. The Mahalanobis
distance between two state vectors is the covariance normalized Euclidean distance

between them.

These location and motion state vectors completely describe the current loca-
tion and the current affine motion parameters of a given structure along with their

associated covariances.

3.6.2 Model Matching with Measurement and Prediction Errors

For the purposes of the development in this section, it is assumed that the pre-
dicted affine parameters and their covariances for a hypothesized aggregate structure
at time ¢ + 1 are available from its past history. The specific prediction model used

is discussed in Section 3.7.
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Sources of Error

The process of matching the predicted model structure with potential aggregate

matches must account for three sources of error:
1. Measurement uncertainty in the image data on which the prediction is based.
2. Departures from modeled predictions of motion, (e.g. non—uniform motion).

3. Error in affine description due to departures from a fronto—parallel plane for the

real shallow structure.

First, each of these sources of error is discussed independently from the point of view
of how they affect the location and affine motion models of an aggregate structure. In
the next section, it is then shown how all these sources of uncertainty are incorporated
into a unified error model through the covariances of the predicted model.

It is possible to account for measurement uncertainties by propagating the covari-
ances of a line in the previous frame and those of the predicted affine parameters
into the covariances of the predicted line. The problem with this approach is that
if each line is matched individually to its potential match set, in effect each line is
allowed a perturbation within the limits of its variance independent of the other lines
in the model. This is not desirable since beyond the individual line measurement
uncertainties, model matching should incorporate the perturbation of the model as a
whole when searching for the best match.

In order to model deviations from uniformity of motion in the prediction process
for the motion of aggregate structures, we now analyze the typical imaging scenario for
possible non-uniformities. Assume that the camera is mounted on a mobile platform?®

and the sequence of frames is sampled uniformly in time under smooth motion. The

3Like the Denning vehicle used in all our experiments.
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most signiﬁc;.nt source of error in this scenario is excessive rotation around either
of the three axes. These errors typically occur due to two major causes — (i) the
rotations induced due to non-uniformity of torque on the wheels or differential slipping
and (ii) the small differential slants and tilts (small bumps, shallow depressions and
ramps) on an otherwise planar ground plane. Out of the three rotations, those in
depth (w, and w,) are the dominant source of error in prediction for small FOV
cameras [1]. Consequently, errors in rotation in depth are modeled as uncertainties
in certain of the affine motion parameters. In addition, it is to be emphasized that
uncertainties due to errors in the other motion parameters also can be handled within
the framework of dynamic prediction and matching with uncertainties.

It was shown in Equation 3.4 that the 3D rotations w, and w, lead to translations
in the image plane under the shallowness constraint. The non-uniformity of motion
is primarily accounted for by adding a diagonal covariance 2 x 2 matrix, A;__, to
the already computed covariance, At,.., » for the predicted affine translation vector.
This is equivalent to adding plant noise to the dynamic model in a Kalman—filter [37)].
Similarly, uncertainties in the prediction of the other two parameters (s and w,) due
to motion uncertainties can be modeled by increasing their measurement covariances.
An advantage of handling non—uniformity in this way is that it provides a principled
method for mode]l matching while allowing for modeling uncertainties.

-The third source of error, approximation of a structure by a fronto~parallel plane,
can also be modeled by allowing for uncertainties in the predicted parameters. In this
case, however, the constituent‘ lines in the structure will be affected independently
and not as a whole model. Each line can be the projection of a real 3D line that lies
in front or behind the reconstructed plane with equal probability. The parameters
of a predicted line that are most likely to be affected by this are the scale and the

orientation.
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A Model Match Measure

If we consider the complete specification of the model as the 12 x 1 image location
vector of Equation 3.11 and match this model as a whole using the Mahalanobis
distance as the match measure, it requires the inversion of a 12 x 12 covariance
matrix for every match to be checked. This is not very practical. However, from
the discussion in the previous section, the major uncertainty is expected to be in the
prediction of the translation parameters. The translation parameters affect only the
location of the midpoints for each of the lines and not their orientation or lengths.
Thus, the 12 x 1 vector was separated in Equation 3.11 into a 6 x 1 sub—vector of
midpoints and a 6 x 1 sub-vector of orientations and lengths.

Now we show that computing the propagated covariances of the 6 x 1 vector of
midpoints achieves resilience to errors in prediction, due to the non-uniformity of
motion, as expected. Assuming that at time instant ¢, rg,, 4 and ¢preq are the affine
parameters for the predicted motion between ¢ and ¢ + 1, the predicted vector of
midpoints can be written in terms of T8pred and ¢,,.4, and the data lines in frame ¢

(using Equation 3.7) as follows:

Mrln = ﬂ{[)_)?‘,wcd + Iptp,.ed ) (313)

1 [ 1 ! 1 1T
Mm - [zml Ym1+:-Tms ym3]

Mp =[Dy, DL, Drs]"  Ip=[L L L]
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Using the above equations, it is easy to derive the covariance matrix of the 6 x 1

vector M.
Apg = RaigApRy, + MpAr,  Mp + IpAy, I (3.14)

where R, = Rotation_Matriz(w,, ] is the 2 x 2 rotation matrix for angle w,_,.,,
Ruig = diag[R, R, R,] (a matrix with the 2 x 2 rotation matrices for w,,,, along
its diagonals and zeros elsewhere), Ap = diag[Ama Ama Amg| where A, ; is the
2 x 2 midpoint covariance matrix for the ith model line of the previous frame, and

Ap, . and At,,.., , are the 2x 2 covariances of the predicted affine parameters. A"'ama

Spr
and Atr .4 have been considered independent for convenience. A similar form could
easily be derived under the assumption that they are correlated.

In order to provide insight into how this combined covariance matrix of midpoints
actually encodes the model uncertainties due to motion non-uniformity, consider the
last term in Equation 3.14. It was discussed above that modeling errors are added

to Ay, to account for perturbations. The last term thus transforms Ay into the
pred pred

6 x 6 matrix

Atpred Atpred Atpred
Ay

pred
Atpred Atprcd Atpred

pred Atprcd

Thus, the modeling errors induce covariances across the lines in the predicted model
and achieve the coupling desired for the search for an appropriate match. This has the
effect of allowing the model to rigidly translate within a given region of uncertainty
and still find a good match if one exists.

The match measure is the Mahalanobis distance between the 6 x 1 midpoint vectors
(M, and M,, of Equation 3.11), and the orientations and lengths of the constituent
lines in the predicted model and the potential match structure. That is, mmeas is

given by,
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mmeas = (M, — Mn)"(App + AMm)"l(M,'n - M)

+ Zsj [(Aa; + Ag;) (6 — 6:)® + (A + Ay) 72 (l - l;)’] (3.15)

i=1
Here A M, is the covariance matrix of midpoints of the potential data matches with
the three 2 x 2 3A.y’s (Equation 3.8) along its diagonals. Agr, Ag;, Ay and Ay, are the
variances in orientations and lengths of the constituent lines in the predicted and the

potential match structures.

3.7 Shallowness as Affine Trackability

In this section, we use the formulations of affine describability and model-matching
developed earlier to design an algorithm to decide whether or not a hypothesized
structure is shallow based on its trackability as an affine structure.

As mentioned earlier, we are interested in applying the system to man-made en-
vironments where most surfaces are smooth and largely textureless, and lines provide
a fairly complete description of the image in terms of surface boundaries and signif-
icant surface markings. In general, shallow structures in the image are composed of
only a few lines. Thus we cannot rely on Hough-like clustering techniques over two
frames, where every primitive structure votes for a set of affine parameters and sets of
structures with similar parameters are clustered as shallow structures [1]. However,
the evolution of a hypothesized structure over time is an alternative source of mea-
surement which can be used to check the validity of a shallowness hypothesis, even
when it involves a set of only a few lines. The essential idea is that if a hypothesized
structure can be consistently tracked and its 3D depth over time is consistent with

a shallow structure model, then the structure is identified as shallow, otherwise it is

labeled non—-shallow.
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3.7.1 Cycle of Prediction and Matching

A hypothesized aggregate structure, as defined in Section 3.6, undergoes a cycle
of prediction and matching over a sequence of frames, with both the location and
dynamic state vectors updated for each frame, before it is declared shallow or non-

shallow. The process consists of the following phases:
o Bootstrap Phase
e Tracking Phase consisting of Prediction, Matching and Update.

Bootstrapping occurs only once for every new structure instantiated in any frame.
The three parts of the tracking phase are repeated cyclically. Instead of always repre-
senting the motion and depth between consecutive frames, a moving window of, say
m, frames is considered. The first frame in this window is called the anchor frame.
The anchor frame for a freshly instantiated structure is its frame of instantiation. For
every newly acquired frame in the window the motion parameters are computed and
depth represented with respect to the anchor frame. This improves reliability of mo-
tion and location computations over time because the magnitude of motion starting
from the anchor frame increases successively with every newly acquired frame. The
following description assumes that the translation possesses a z—component (transla-
tion in depth) along with the z and y components. It can be easily modified for the
cases when the z—component is zero. Also, a non—zero z—component of translation
is necessary if the scale parameter is to be used for depth computation. It is also
expected that the magnitude of the translation, say T, is known; otherwise all depth

computations are with respect to a scale of unity.*

4Recall that this scale factor is not recoverable with any monocular motion algorithm.
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Bootstrap Phase

For a newly instantiated structure (nominally a triple of lines), the motion of
the structure is unknown. The line tracking algorithm of Williams and Hanson [96],
which matches lines to their displacement field-based predictions, is used ‘to generate
correspondences in frame 2. A sample of this matching is shown in Figure 3.4. In
many instances, the flow-based predictions can lead to multiple matches. These are
disambiguated by choosing the one with the best match measure of Equation 3.15.
Using the correspondences thus derived, the initial affine motion parameters and their

covariances are computed (Equations 3.7 and 3.9).

Figure 3.4: Bootstrap matching using flow. Lines in bold are frame 1 lines and
those in lighter gray are frame 2 lines. The displacement vectors approximately along
the length of the lines are shown as lines with arrows.
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Tracking Phase

In the prediction phase of tracking, at time ¢, the motion parameters between the
current anchor frame 1 and frame ¢ in the current window are used to predict the
motion between frames ¢ and £+ 1. The covariances are propagated into frame ¢ +1 as
well. The predictions assume uniformity of motion but non—uniformity is dealt with
by modeling the uncertainties in the predictions within the framework developed in

Section 3.6.2. So the motion parameters between ¢ and ¢ + 1 are,

1 -3
et = 1/(1 +33)
wzp'ed = Wy / (t - 1)
1
tpred = : — lt (3.16)

Under the assumption of small rotations, these provide fairly good predictions for
uniform motion. From the computed covariances of the affine parameters =, and
t in Equation 3.9, the covariances of the predictions can be easily derived. These
are called Ar‘m . and Atre 38 in Section 3.6.2. It was shown there how these are
employed to handle deviations from uniformity.

The predicted affine motion parameters are used to project each line in the ag-
gregate structure at frame ¢ into its position in frame ¢ + 1 to obtain the predicted
structure. Around each predicted line, a window query is performed to obtain po-
tential matches for each line. Let L, L, and L3 be the three potential match sets
for each line respectively in an aggregate triple of lines. Then all the triples from the
product set L; X L, X L3 are matched against the prediction.

In the matching phase, the match measure of Equation 3.15 is computed for each
potential data triple against the prediction, and the best triple below a threshold is
chosen as the match. This threshold depends on the model of measurement errors in

lines, the allowable non-uniformity in motion, and the extent to which the real 3D
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structure is not a fronto—parallel plane. If all the errors are assumed to be Gaussian,
then the Mahalanobis distance of Equation 3.15 has a chi-squared distribution with
the appropriate degrees of freedom [10]. A threshold on this distance can be chosen by
using the chi-squared value corresponding to a desired level of confidence in accepting
a match. However, it is not reasonable to assume that all the sources of error are
Gaussian. For instance, errors in prediction arising from the departure of a structure
from being a fronto—parallel plane cannot, in general, be modeled as Gaussian. This
is especially true when the structure consists of a small number of tokens as is the
case here. In such situations, the error in modeling the structure dynamics can be
systematic. Ideally, an on-line determination of this process noise [63] is desirable
so that a threshold for this source of error can be automatically chosen based on the
allowable departure from shallowness. In order to accomplish this, more theoretical
work along the lines of adaptive filtering needs to be done. In our implementation, the
chi-squared values have been used in conjunction with an experimentally determined
threshold. It is to be emphasized that in all the experiments, the tracking has been
found to be robust for the choice of the same threshold throughout.

Once an acceptable match is found, the model’s new motion parameters are com-
puted between the anchor frame and the current frame using the newly found matches.
This is called the update phase. The covariances of the current location vector and
the computed affine parameters are also recomputed. Since depth is a part of the
location vector, it is also updated. Additionally, the variance-weighted sample mean
and sample dispersion of depth are updated by incorporating the new measurement.

An acceptable match may not be found in the current frame due to failures of line
grouping, occlusions and motion discontinuities. The algorithm allows for graceful
handling of many of these conditions by upgrading the current prediction to model

status whenever a suitable match is not found. That is, the prediction serves as the
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best current model in the absence of a good match to the data. A counter which keeps
track of the number of frames missed is also incremented. In addition, the variances
of the model’s motion parameters and those of the line segments for its potential
matches in the next frame are increased, and consequently, the search window for the
next prediction/matching phase is expanded. If a match is re-acquired after a lapse
in the previous frame, the motion variances and the window size are reduced, but not
below the levels at the start of tracking.

There is an issue of computational complexity versus the temporal persistence of
a model when a match is not found. After every frame in which a match is not found,
the search windows become larger thus increasing the number of potential matches.
This leads to an increase both in the computational expense for matching and the
possibility of false matches. In general, there is no theoretically sound mechanism
to address this problem because a combination of failures can always be designed to
defeat any mechanism. However, any practical system, in which this algorithm is
embedded, can place hard computational bounds on the time spent on search. If this
maximum limit is reached then it might be reasonable to abandon the current model
being tracked. For instance, consider the case where an object is occluded and either
remains occluded for a large number of frames, or undergoes a significant change in
motion (say reverses direction) while it is occluded. In general, the actual position
of the object could i)e far away from the predicted location when it is reacquired by
the system. In such a case, it seems reasonable to abandon the current model and to
reinstantiate a new model for the object when it is again seen in the image.

The last three cycles of the tracking phase discussed above are repeated for every
new hypothesized aggregate structure within its window of frames. If 1) it has been
tracked for more than half the frames in the window, and 2) its depth dispersion is

within an allowed limit, and 3) its projection error (Equation 3.12) for all matched
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frames is less than a threshold, then it is declared as a shallow structure, else it is not

and is dropped from further consideration.

3.7.2 The Algorithm

The algorithm presented above can be applied to image data in either an inter-
active mode or in an automatic mode. In the interactive mode, a set of manually
selected lines is presented to the algorithm as a hypothesized shallow structure. The

algorithm tracks the structure as described above and declares it shallow or otherwise.

In the automatic mode, triples of lines all over the image are instantiated as hy-
pothesized aggregate structures and the algorithm automatically cycles through them
and labels any given structure as shallow or non-shallow. We employ proximity and
convexity as generic heuristics to create triples of line tokens as aggregate hypotheses.
In most man-made environments, appearances of objects can be described as convex
regions or a union of significant convex regions enclosed by boundaries. Each pair
of line segments in a triple should be completely contained in the half-space defined
by the remaining line extended infinitely. Some amount of tolerance is allowed in
testing for the half-space containment in that a small part of the line can straddle
the half-space defining line and still qualify. Triples passing this convexity test are
represented as hypothesized models and the above algorithm is applied to each one.
The result is a labeling of structures in the scene as shallow and non-shallow.

The complexity of extracting triples out of image lines is O(n?), where n is the
number of lines. This can be considerably improved upon by using proximity as
a heuristic. Around each endpoint of a line, all lines within a given distance are
chosen, and the convexity test is applied to these sets of lines. The complexity of
spatial queries based on proximity is O(1) if the image lines are pre—processed and
are hashed into a spatial grid defined over the image plane [20]. It is reasonable to

assume, and we have found it to be so in our experiments, that the number of lines
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in the proximal line sets is bounded by a small constant. Thus, the complexity of
finding triples is almost always O(n) with a fairly small constant (small compared
to n). Consequently, the number of approximately convex triples found is also O(n).
We will present specific numbers to illustrate this in the next section.

The inner core of the algorithm for either mode of application is the same and is
presented here.

Given a set of lines constituting a hypothesized shallow structure in frame 1, the
following tracking algorithm is applied. The tracking is done for a few frames before
the structure is labeled. Also, the first frame in the sequence is the anchor frame,
that is, the affine parameters are computed between this frame and every new frame.
This improves reliability of motion and depth computations over time because the
magnitude of motion displacement starting from the anchor frame is expected to
increase with every newly acquired frame.

Various steps of the algorithm are:

Step 1: Bootstrap

Compute the line matches for frame 2 using flow-based predictions [96].

Compute the affine motion parameters and their covariances.

(Equations 3.7 and 3.9).

Instantiate a model with its location and motion states.

If (less than 3 matching lines found) declare Non-trackable and exit.
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For every new frame ¢, Repeat until frame m processed:

Step 2:

Step 3:

Prediction

Compute the predicted parameters between time ¢ and time ¢ + 1.

(Equation 3.16).

Project the current model lines at ¢ into predicted lines at ¢ + 1.

Compute the covariances of the predicted model using the covariances
of motion and data at ¢, and the model noise covariances accounting for

non-uniformity (Equation 3.15).

Find potential match sets, L;, L, and L3 of data lines for each
predicted model line: (a) within the model line’s search window,
and (b) selecting data lines within a orientation (typically, 15°)
of the model line.

Form the product set L; x L, x L3 from the potential

match sets for each line.

For each element of this set, compute the Mahalanobis distance between
the element and the predicted model (Equation 3.15).

Choose the best match below a threshold.

67
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If (none) increment no-match—count else decrement

no-match—count.

Step 4: Update

If match found then

Compute the new affine parameters between frame 1 and the matches in

frame ¢ + 1 and the associated covariances.

Update the sample weighted-mean and dispersion for the depth parameter
in the model.

else

Promote the prediction to model status with increased modeling noise

(Equation 3.14).

end Repeat.

Step 8: If no-match—count, depth-dispersion and merrp,,; (Equation 3.12)
are all less than their thresholds (Section 3.7.1),

then declare model set as shallow else non-shallow.

The threshold for depth-dispersion is in general chosen to be some percentage
(typically, 10 or 20) of the mean depth. Threshold for merrp,; is chosen based on

3
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considerations which were discussed in Section 3.7.1. It is reasonable to allow the no-

match—-count to be a fraction (typically 1/3) of the number of frames in a window.

3.8 Experimental Results

The implementation of our algorithm was greatly facilitated by the use of a Lisp
based database called the ISR [20] running on a TI Explorer II. The aggregate struc-
tures and their potential matches are instantiated through spatial queries and repre-

sented by ISR token sets.

3.8.1 Tracking Results

We present the tracking results on two image sequences, cones-seq and room-seg-
1, both of which were captured with a SONY B/W AVC-D1 camera, with effective
FOV 24 by 23 degrees mounted on a Denning robot, and digitized to 256-by—242
pixels. The camera moved into the scene with a translation magnitude measured
to be approximately 1.95 feet for the cones-seq, and 0.39 feet for the room-seg—1
between successive frames. Four image frames for each of these sequences are shown
in Figures 3.5 and 3.6, respectively. It is emphasized that the effective motion is
neither purely translational nor uniform. In each frame lines are extracted using
Boldt’s [14] line grouping system. A window of six frames is used for most of the
results here. However, for the room-seq—1, some interesting aspects of the algorithm
are shown with ten—frame windows.

For both sequences, Figures 3.8-3.16 are to be read left-to-right and top-to—
bottom. In each figure, panels a) and b) show the hypothesized aggregate of lines
overlaid in black or white on the first and the last images, respectively. Panel c)
shows the structure highlighted in bold and overlaid on lines in frame 1. Panel d)

highlights the corresponding structure in frame 2; the correspondence was derived in



a) Image Frame 1 b) Image Frame 3
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c) Image Frame 4 d) Image Frame 6

Figure 3.5: Four image frames of the cones-seq. Frames 1, 3, 4 and 6.
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a) Image Frame 1 b) Image Frame 5

AR

c) Image Frame 8 d) Image Frame 10

Figure 3.6: Four image frames of the room-seg-1. Frames 1, 5, 8 and 10.
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the bootstrap phase using flow-based line tracking [96]. Subsequently, corresponding
to each frame in the sequence, each panel, starting with panel e) onwards, depicts
matching for each successive frame. Only the region around the structure of interest
is expanded and shown in detail. The prediction windows for each line are shown as
shaded areas. The central spine of these windows is the actual prediction. Thin lines
show all the lines in and around the region of interest. Lines of medium thickness
show the union of sets of potential matches for each line. If a match is found in a
frame, it is drawn using bold lines. Note that the match thresholds and window sizes

have been kept the same for all the experiments with the two sequences.

Figure 3.7 shows the image motion of the lines on the doorway at the far end of
the hallway in the cones—seq over six frames. It is clear from the up and down motion
of the image lines over time that the motion is definitely not uniform. Even on the
smooth surface of the floor in the hallway, slight undulations lead to rotations in depth
and around the optical axis. Figure 3.8 shows the tracking of the three-line structure
defining the doorway. For this structure, the matching is fairly unambiguous, and

this example sets up a reference for comparison with other tracking examples.

Figure 3.9 depicts tracking of three lines on a cone. An interesting event happens
in frame 4 (panel f); the left line of the cone is merged with a door line in the
background by the line grouping system. No match is found for the structure in this
frame, but its prediction persists. In the next frame, the lines separate again and
the match is successfully found. This is an example of how the system is resilient
to overgrouping errors. In general, such failures which occur due to coincidence of
viewpoint are not expected to persist over time. Thus, model persistence in the

absence of reliable data can handle these situations.

Finally, for the cones—seq, Figure 3.10 shows the attempt at tracking a non-shallow
structure. Two lines on a cone and one on a structure in the background have been

chosen for this illustration. The figure illustrates the fact that an affine description

3
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Figure 3.7: Motion of the doorway lines in the cones-seq. Image motion of the
doorway lines from frames 1 to 6. Frame 1 lines are in the lightest shade and frame 6
in the darkest. The up and down motion in the image plane shows the non—uniformity
of motion.
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Figure 3.8: Tracking of the doorway in the cones-seq. Tracking over six frames
is shown. a), b): First and the last image frames with the triple highlighted; c), d):
Highlighted shallow triple overlaid on lines in frames 1 and 2. The correspondence in
frame 2 was obtained using flow-based prediction in frame 1. (contd. nezt page)
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Figure 3.8: (contd.) e)—h): Matching and tracking in frames 3—6. The shaded
areas are the search windows with the central spine being the position of predicted
lines. The thinnest lines are all the lines in the background in the region of inter-
est, medium thickness lines are the candidate matches, and the boldest lines are the
matches found.
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a) Image Frame 1 b) Image Frame 6

Figure 3.9: Tracking of a shallow triple in cones-seq. Tracking over six frames
is shown. a), b): First and the last image frames with the triple highlighted; c), d):
Highlighted shallow triple overlaid on lines in frames 1 and 2. The correspondence in
frame 2 was obtained using flow-based prediction in frame 1. (contd. nezt page)
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e) Frame 3 f) Frame 4

g) Frame 5 h) Frame 6

Figure 3.9: (contd.) e)~h): Matching and tracking in frames 3—6. The shaded
areas are the search windows with the central spine being the position of predicted
lines. The thinnest lines are all the lines in the background in the region of inter-
est, medium thickness lines are the candidate matches, and the boldest lines are the
matches found. f): No match found due to overgrouping of the left cone line in frame
4; g) Recovery from error by model persistence in frame 5.
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is inadequate for describing the motion of a non-shallow structure. This is made
explicit by the non-trackability of the structure over time. The structure is tracked
up to frame 3 but beyond the fourth frame, the predictions deviate from the data
and hence the model is lost. The deviation from shallowness is readily apparent in
that the computed depth of the structure indicates that it is receding from (notice
the shrinking size of the structure in the figure) rather than approaching the camera
(i.e. depth is negative). The predictions in frames 5 and 6 are explicitly shown using
dotted lines to contrast them with the data.

Figure 3.11 illustrates that the use of lines as infinite lines (lateral positions only),
when only small sets of lines are used for computing the affine transformation, is
inadequate for affine tracking (Section 3.6). Panel a) shows two corresponding line
sets for a non-shallow triple in frames 1 and 2 of the cones—seq; bold lines are in
frame 1 and shaded ones in frame 2. In panel b) the shaded lines are the frame 2 lines
again and the bold ones are the frame 1 lines projected using the affine parameters
computed between frames 1 and 2. The projected lines nearly lie along the frame 2
data lines but their longitudinal positions are incorrect. Thus, if predictions based
on an affine transformation are to be used for discriminating between affine trackable
and non-trackable structures, then measuring only the lateral error and ignoring the
longitudinal error is incorrect. In order to show this further, Figure 3.12 shows a
similar depiction of a shallow structure with good longitudinal and lateral alignment
of the projected and the data lines.

Figure 3.13 shows the results of tracking a four-line shallow structure for the
room—seq~1. Figure 3.14 shows the image motion of a sample four-line structure to
give an idea of the motion in the room-seg-1. The motion of the structure is shown
from frames 3 to 8; the lightest shade is used for frame 3 and the darkest for frame

8. The motion discontinuity between frames 6 and 7 is apparent from the figure.

1
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a) Image Frame 1

\

c) Frame 1

Figure 3.10: Non—trackability of a non-shallow triple. Two lines on a cone
and one of the doorway lines in the background. a), b): First and the last image
frames with the triple highlighted; c), d): Highlighted shallow triple overlaid on lines
in frames 1 and 2. The correspondence in frame 2 was obtained using flow-based
prediction in frame 1. (contd. nezt page)
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g) Frame 5 h) Frame 6

Figure 3.10: (contd.) Non-trackability of a non—shallow triple. The shaded
areas are the search windows with the central spine being the position of predicted
lines. The thinnest lines are all the lines in the background in the region of inter-
est, medium thickness lines are the candidate matches, and the boldest lines are the
matches found. f)-h): No match found. The prediction is shown as dotted lines in
frames 5 and 6.
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a) b)

Figure 3.11: Longitudinal error in affine projection of a non—shallow struc-
ture. a) Frame 1 triple in bold and Frame 2 shaded. b) Frame 2 triple shaded and
the affine projected Frame 1 triple bold.

a) b)

Figure 3.12: Longitudinal error in affine projection of a shallow structure.
a) Frame 1 triple in bold and Frame 2 shaded. b) Frame 2 triple shaded and the
affine projected Frame 1 triple bold.
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In Figures 3.15 and 3.16, the window is extended to ten frames to show how the
algorithm handles a motion discontinuity (Figure 3.15) and an independently moving
object (Figure 3.16) which is occluded/deoccluded during its course of motion.

In Figure 3.15, a shallow triple is tracked. Note that in frame 5 (panel g), a
break in one of the lines occurs with the result that the matching fails but the correct
model is reacquired in the next frame. Also, note that this triple is surrounded by
a similar triple throughout the sequence (they are on the same planar surface). In
frame 3, the right hand side line of the predicted triple (the central spine of the vertical
shaded region in the figure) lies almost along the position of the corresponding line
in the incorrect triple. A matching algorithm based on individual line matches would
have matched to the incorrect data line, but because of covariance based aggregate
matching in the algorithm, the tracking system matches to the correct triple. Between
frames 6 and 7 (panels h and i), there is a change in the motion; it is as if the robot
started going up a gently sloping “hill”. Consequently, the prediction and the data
move in opposite directions. Although no match is found in frame 7, the prediction
persists with expanded windows and variances and the model is reacquired in frame 8.

Finally, for the room-seq-1, we demonstrate the algorithm on an independently
moving object with occlusions. Figure 3.16 shows an object constructed from Lego
blocks being tracked as it goes behind another surface (in frame 5) and re-emerges
(in frame 8) as the camera moves towards it (see also Figure 3.6). Note that the non-
uniformity in motion mentioned above, between frames 6 and 7, further complicates
the tracking because during these frames the object remains hidden and the error
in prediction increases dramatically. However, the object is still reacquired when it
re—emerges in frame 8 (panel j). This example serves as a demonstration of the algo-

rithm’s potential use in sequences containing both camera motion and independent

object motions.

2
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Note that the mechanisms of model persistence and model uncertainties have
been demonstrated to successfully handle all the three types of tracking failures —
line grouping errors, motion discontinuity and occlusions. The related issue of com-
putational complexity of matching and the allowable limits on model persistence were
discussed in Section 3.7.1.

3.8.2 Segmentation and Reconstruction Results

The algorithm in Section 3.7.2 was applied to the cones—seq and the room-seg-1 to
identify the shallow structures in the scene. Line triples were automatically selected
to hypothesize aggregate structures. Each of these was tested for affine trackability
resulting in its labeling as a shallow or a non—shallow structure. Figures 3.17 and 3.18
show the structures identified as shallow by the algorithm in the two sequences. In the
cones-seq and the room-seq-1, 121 and 79 triples were found out of a total number
of 167 and 180 lines, respectively. This supports our hypothesis in Section 3.7.2 that
the order of the number of triples found using pruning by proximity is typically closer
to linear than cubic in the number of total lines.

In the cones-seq, the two cones in the center of the image behind the trash can
are merged together as a single shallow structure. This is because a) they are close
to the FOE, and b) are far enough away so that their image motion is small.

The depth of some salient structures was measured with a tape measure. Ta-
bles 3.1 and 3.2 show a comparison of this ground truth with the computed depths
for the cones-seq and the room-seq-1, respectively. The objects referred to in the
tables are labelled in Figures 3.19 and 3.20. The average percentage depth errors for
the cones—-seq and room-seq—1 are 3.8% and 3.4%, respectively.

Now we present results of depth computation using the four-parameter affine
description for planar objects in a scene which are at a variety of slant angles. The

results are illustrated on an image sequence, called the comp-seq. Two image frames
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a) Image Frame 1 b) Image Frame 6

c) Frame 1

Figure 3.13: Tracking of a shallow 4-line structure in the room-seg-1. a),
b): First and last image frames with the structure highlighted; c), d): Highlighted
structure overlaid on lines in frames 1 and 2. The correspondence in frame 2 was
obtained using flow-based prediction in frame 1. (contd. nezt page)
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e) Frame 3

g) Frame 5 h) Frame 6

Figure 3.13: (contd.) Tracking of a shallow 4-line structure over six frames
in the room-seqg—1. The shaded areas are the search windows with the central spine
being the position of predicted lines. The thinnest lines are all the lines in the back-
ground in the region of interest, medium thickness lines are the candidate matches,
and the boldest lines are the matches found.
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Figure 3.14: Motion of a sample structure in the room-seq-1. Image motion of
the structure from frames 3 to 9. Frame 3 lines are in the lightest shade and frame

9 in the darkest. A motion discontinuity is shown by the change in direction after
frame 6.
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a) Image Frame 1 Image Frame 10
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c) Frame 1

Figure 3.15: Tracking of a shallow triple in the room-seq—1. Shown for ten
frames. a), b): First and the last image frames with the triple highlighted; c), d):
Highlighted shallow triple overlaid on lines in frames 1 and 2. The correspondence in
(contd. nezt page)

frame 2 was obtained using flow—based prediction in frame 1.
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e) Frame 3 f) Frame 4

g) Frame 5 h) Frame 6

Figure 3.15: (contd.) Tracking of a shallow triple over ten frames in the
room-seq—1. The shaded areas are the search windows with the central spine being
the position of predicted lines. The thinnest lines are all the lines in the background
in the region of interest, medium thickness lines are the candidate matches, and the
boldest lines are the matches found. g) No match found due to line breaking. h)
Recovery from line break in frame 5. (contd. nezt page)
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i) Frame 7 j) Frame 8

|
|

k) Frame 9 l) Frame 10

Figure 3.15: (contd.) Tracking of a shallow triple over ten frames in the
room-seg-1. i) No match found due to motion discontinuity. j) Recovery from mo-
tion discontinuity between frames 6 and 7.
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a) Image Frame 1 b) Image Frame 10
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Figure 3.16: Tracking of an independently moving object. Tracking shown over
ten frames in the room-seg-1 with camera motion also present. a), b): First and last
image frames; c), d): Highlighted shallow triple overlaid on lines in frames 1 and 2.
The correspondence in frame 2 was obtained using flow-based prediction from frame
1 (contd. nezt page)
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g) Frame 5 h) Frame 6

Figure 3.16: (contd.) Tracking of an independently moving object. The shaded
areas are the search windows with the central spine being the position of predicted
lines. The thinnest lines are all the lines in the background in the region of inter-
est, medium thickness lines are the candidate matches, and the boldest lines are the
matches found. e), f) Matching in frames 3 and 4. g), h) No match found due to
occlusion. (contd. nezt page)
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k) Frame 9 1l) Frame 10

Figure 3.16: (contd.) Tracking of an independently moving object. i) No
match found due to occlusion. j) Reacquisition of the object after occlusion in frames
5, 6 and 7.
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of this sequence are shown in Figure 3.21. The approximate translation-in-depth
between consécutive frames is 1.4 feet. The depths of some salient structures in
the scene were measured from the camera in its position in frame 1. Recall that
the affine transformation reconstructs a shallow structure as a fronto—parallel plane.
So, for structures that have a large slant, the ground truth depths are the average
depths. Figure 3.22 shows some labelled objects and Table 3.3 shows the measured
and computed depths. The depths are computed over six frames of the sequence. The
average absolute percentage error is 2.3%. These results suggest that when rotations
are small, the fronto—parallel approximation for highly slanted shallow structures can

also be computed robustly by the four-parameter affine approximation.

3.9 Summary

In this chapter, we have presented a framework for the integration of spatial
constraints on generic object structure and temporal constraints on smooth motion
to achieve a semantically useful description of a scene from a sequence of images. A
motivation for characterizing many objects as shallow in man-made environments is
presented. The motion of shallow structures in the image plane can be described by an
affine transformation. Instead of clustering image features, observed over two frames,
into an object hypothesis that is consistent with a shallow structure interpretation,
we use the temporal evolution of a hypothesized structure to verify its consistency
within the constraints of a shallow structure. Temporal evolution is characterized
by the trackability of a structure under the affine constraint. Thus, a scene can be
divided into shallow and non-shallow structures through the use of tracking as a

verification process.

Tracking and dynamic estimation of the affine parameters of a shallow struc-

ture also lead to a reconstruction of the structure from changing scale (depth from
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looming). The reconstruction of the shallow structure is as a fronto—parallel plane
placed at a depth that is equal to the estimated depth. That is, the representation
of shallow structures is in terms of cardboard cut—outs facing the camera for each
shallow structure. An important advantage of this method is that structure recon-
struction is achieved without the intermediate step of explicitly computing the 3D
motion parameters (rotation and translation) between successive frames. The recon-
structed structure is only an approximation, however, to the average depth of the
corresponding true environmental structure. Nevertheless, the robustness of depth
of the approximate structure representation might prove to be useful for tasks like
obstacle avoidance, where the exact shape of an object may not be of consequence so

long as collisions with it can be avoided.

We have also shown that tracking of a structure, which is formed as an aggregate
of image features, is resilient to many of the common sources of errors in feature
extraction and modeling of motion. Specifically, it is shown that fof shallow struc-
tures, predictions of their image motion can be based on 3D constraints and not on
heuristics about the image motion of features. This leads to a simple method of han-
dling uncertainties in the modeling of 3D motion. Furthermore, matching predictions
to newly acquired data of a model as a whole is more reliable than isolated feature
matching.

The tracking, identification and reconstruction of shallow structures are demon-
strated on real image sequences. Illustrations of how the system handles errors in
feature extraction, and motion discontinuity are presented. Furthermore, it is also
shown how the algorithm can track independently moving objects imaged with a
moving camera. Tracking errors due to feature extraction errors, motion discontinu-

ity and occlusions are handled in a single framework of covariance based prediction

and matching.
Future directions of this research are presented in Chapter 5.



Figure 3.17: Shallow structures identified in the cones—seq.
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Figure 3.18: Shallow structures identified in the room-seg—1. Shown in
white and light gray outlines.

thick
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Figure 3.19: Labelled objects in the cones-seq. Shown in frame 1 lines.
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Table 3.1: Depth results for the cones-seq. Computed vs. Measured Depths of

some Objects in the cones-seq (in feet).

| Object | Meas. Z | Comp. Z | Error (%) |

Cone 1 20.0 20.24 1.2
 Cone 2 25.0 25.91 3.6
[ Can 30.0 31.69 5.6
Cone 3 35.0 36.77 5.1
Cone 4 40.0 40.72 1.8
Cone 5 45.0 47.80 6.2
Cone 6 60.0 63.84 6.4
Door 87.1 87.70 0.7
[ Average Abs. Error 3.8% |
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Table 3.2: Depth results for the room-seq-1. Computed vs. Measured Depths of
some Objects in the room—seg-1 (in feet).

Object || Meas. Z Comp. Z | Error (%) |
1 8.3  8.02 -3.4 |
2| 134 12.48 6.9
3| 1457 14.6 02
4 18.98 18.78 -1.1
5 " 11.57 11.78 1.8
6 19.04 18.01 -5.4
7| 20.35 19.16 538
8 " 20.35 19.84 -2.5
[ Average Abs. Error T 3.4%]
" | y
|

Figure 3.20: Labelled objects in the room-seq—1. Shown in frame 1 lines.

13
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a) Image Frame 1 b) Image Frame 6

Figure 3.21: Two image frames of the comp-seq. Frames 1 and 6.




Figure 3.22: Labelled objects in the comp—seq. Shown in frame 1 lines.

Table 3.3: Depth results for the comp-seg. Computed vs. Measured Depths of

some Objects (in feet).

Object Meas. Z

Comp. Z

" Error (%)

1 29.28
2 31.23 31.04 -0.61
3 33.23 34.37 3.13
4 25.68 25.94 1.01
5 35.83 34.24 -4.44
6 28.18 28.29 0.39
7 43.23 44.88 3.82
8 43.23 42.05 -2.73
Average Abs. Error 2.3%
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CHAPTER 4

DESCRIPTION AND RECONSTRUCTION FROM
IMAGE TRAJECTORIES OF ROTATIONAL MOTION

In many applications, it is desirable to automatically build internal models of the
environment and/or objects by moving a camera in a constrained motion. One such
motion is rotational motion that can be carried out even without the availability of
a large work space. For instance, in industrial settings, a cartesian arm can pick
up and rotate objects around some arbitrary axis. Internal models of these objects
could be built by capturing a sequence of images of this motion from a fixed camera.
Alternatively, a robotic arm, which holds a camera, could be rotated to build models

of otherwise completely unmodelled environments.

In this chapter, we present a new technique for reliably computing 3D structure
from a sequence of images of a scene undergoing a relative rigid—-body rotation with
respect to the camera. We do not assume knowledge of the parameters of motion but

only that the motion is rotational around an arbitrary axis in space.

First, a closed—form solution has been developed for the 3D motion and structure
parameters of a point given its image trajectory from rotational motion under per-
spective projection. For this technique to work on real images, it is necessary that
image trajectories of points tracked over many frames be described reliably. We show
that even when 80-100 degrees of an arc of a 3D trajectory is imaged, its description
as a curve in the image plane is very unreliable for computing the 3D parameters.
Consequently, a new grouping algorithm is developed which exploits common con-

straints across many trajectories to obtain robust combined fits to a group of these.

101
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The trajectories thus obtained lead to a dramatic improvement in the reliability of
the derived 3D parameters and hence to reliable 3D reconstruction. Application of
both the grouping algorithm and the closed—form solution for 3D reconstruction to

real image sequences is demonstrated.

4.1 Previous Work

It is well-known that 3D structure can be derived from images of a scene under-
going relative rotational motion with respect to the camera if the axis of rotation
does not pass through the origin of the camera coordinate system. Algorithms for
this problem of 3D interpretation from monocular motion can be broadly divided
into two categories — two—frame and multi-frame. Two-frame algorithms first com-
pute the relative orientation — the translation and rotation — between the camera
positions at two time instants [1, 33, 43, 90]. Then the relative orientation is used
to compute the 3D location for each imaged feature. In addition to advantages and
disadvantages specific to instances of these algorithms, the two—frame methods suffer
from two major problems. First, for some motions, there are inherent ambiguities
in the computation of relative orientation from noisy image correspondences (3, 92].
Rotation and translation parallel to the image plane is one such case. Second, with
just two frames of imaged features, the structure computation for each is based only
on a single measured displacement vector. Thus, even a small amount of noise in
the measurement can make the depth estimate quite inaccurate. Moreover, when
both rotation and translation parallel to the image plane are present, the motion
estimates are biased due to the inherent ambiguities; consequently, it is unlikely that
use of multiple frames will improve the depth estimates. These aspects of two~frame
reconstruction, and multi-frame reconstruction based on the two—frame motion com-

putation, were discussed at length in Chapter 2.
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Furthermore, two—frame methods inherently do not describe motion in its natural
frame of reference. For instance, a pure rotation around an axis mot through the
camera origin can be described only as a rotation around a parallel axis through the
origin and a translation. In principle, the more natural pure rotational description is
derivable from many two—frame computations. However, given that these estimates

can be biased, it is unlikely that the natural description thus derived will be robust.

In the following discussion, only those multi—frame reconstruction methods which
use models of motion are considered, due to the relevance of these methods to the
approach developed in this chapter. A broader review of two-frame and multi-frame

reconstruction techniques is presented in Chapter 2.

Weng et al. [93] use a model of 3D motion that describes precession (rotation
around an axis that itself rotates around a fixed axis, for instance, the motion of a
spinning top). However, they fit their model to rotations and translations derived
from many two—frame computations. In other words, for each pair of image frames,
a 3D relative orientation is computed and then a number of these are reconciled
using the model. Thus they potentially suffer from the instabilities of the underlying

two—frame estimates. Their results are presented only with 2D motion data.

Shariat [81] employs a model of constant rotation and translation with uniform
sampling of the image frames. His method uses only a specific number (minimal) of
points and frames and is not easily extensible to arbitrary amounts of data. Broida
[19] generalizes the motion models to a Taylor series expansion of the translational
and rotational components. The sampling of frames can be non-uniform. He min-
imizes the error between the expected and measured positions of imaged features.
The 3D motion and structure parameters for each feature are solved for in a single
optimization stage. Convergence is slow, and in general, the multi~-modal objective
function can be sensitive to initial guesses. Results presented for real image sequences

of uniform motion match well with the ground truth.
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Webb and Aggarwal [91] solve for parameters of rotational motion using ellip-
tical descriptions of image trajectories. However, their results are valid only for
orthographic projection. Further, their ellipse fitting algorithm does not exploit any
common constraints across more than two trajectories to derive robust fits. Thus,
their 3D estimation fails quite badly with noisy data, as they themselves report. Also,
orthographic projection cannot give 3D structure when the motion is parallel to the
image plane. In this case, rotation around an arbitrary axis parallel to the optical
axis can be decomposed into a rotation around the optical axis and a translation per-
pendicular to it. Neither of these motions provide any structure information under
orthographic projection. |

Jaenicke [45] applies Webb’s method to radar doppler images. Under orthography,
three of the five parameters of each elliptical trajectory are constrained to be the same
for all trajectories. He derives the common parameters of each trajectory by averaging
those for the independent trajectories. The averaging for each parameter is done in
succession. That is, after computing an averaged parameter, the fitting process is
repeated and the averaging for the next parameter is done on the newly derived set.
This works only if the individual trajectories themselves are slight deviations of the
correct ones, which is the case in his examples. In contrast, our trajectory grouping
does not rely on the goodness of the individual fit parameters, as in general these
will be far from the correct ones, which is the case in all our examples. Moreover, we
exploit both the spatial and temporal extents of the input point correspondences. If
one point is tracked for a fewer number of frames and hence a smaller extent of the
3D arc is available, its individual trajectory may be very erroneous. But by fitting
trajectories to groups of point correspondences simultaneously (combined fitting), the
trajectory of each point may be strongly constrained by another spatially proximal

one even though they lie on distinct trajectories. Consequently, the spatio-temporal
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extents of short and noisy point tracks mutually constrain their trajectories leading
to robust descriptions.

In the context of model-based object recognition and pose estimation, both the
problems of fitting ellipses to the image data, and that of recomstructing a 3D cir-
cular feature on a plane given its corresponding elliptical projection in the image,
have been addressed [35, 60]. Marimont [60] presents a closed—form solution to the
reconstruction problem. However, the 3D solution presented here is ;nuch simpler
due to the particular parameterization chosen for the problem. Forsyth et al. [35]
use projectively invariant measures of conic sections for fitting ellipses and for object
recognition. However, they assume that most of the elliptical curve is present in the
image data. It is not clear how their method will perform when objects are occluded

or when only small fractions of the 3D trajectory are imaged.

4.2 Overview of the Approach

The 3D interpretation problem is divided into two distinct stages. It is shown that
under perspective projection, the image trajectory of a circular rotational trajectory
in 3D space is a general conic section. The first stage, the trajectory description stage
(called TRAJ-DESC), takes as its input discrete point correspondences tracked over
time for many points. For each point, the set of temporal correspondences is called
a Point Track. A set of point tracks is grouped into a set of Point Trajectories
based on the goodness of a combined fit error measure. The output of this stage
is a conic curve describing each of the grouped point tracks. The second stage, the
3D estimation stage (called 3D-EST), uses the closed—form solution developed in
this work and applies it to the image point trajectories to output the 3D motion
and structure parameters. The different stages of input, processing and output are

schematically depicted in Figure 4.1.



106
+F
-+
3
:'_'- — -
-+
+
+
e
2D 2D k)]
Point Track Point Trajectory Trajectory

Figure 4.1: The stages of processing of rotational trajectories.

There are two distinct advantages in dividing up the problem into these two steps.
First, a number of image frames for a single point are utilized in its trajectory de-
scription. This alone should lead to improvement in 3D depth estimates as opposed
to methods which use only a small number of frames. This improvement is achieved
through implicit averaging of random noise in the image features by fitting a contin-
uous best-fit curve to the discrete correspondences. Second, in contrast with other
multi—frame methods, the optimization problem is handled at the trajectory grouping
stage. Experimental results show that the resulting error surface at this stage has a
larger basin of convergence to the correct solution. That is, the common grouping
constraint is strong enough that the initial guesses generated automatically by the
incremental grouping algorithm seem to avoid the wrong local minima and largely

converge to the correct solution.
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This approach differs from most 3D structure—from-motion algorithms in its em-
phasis on an explicit stage of describing image motion over many frames by means of
trajectories, prior to the computation of 3D motion and structure. It is our position
that the local information provided by optical flow or displacement fields must be
translated into extended-time descriptions of the motion of large-scale spatial struc-
tures in order to achieve reliable 3D reconstruction. Furthermore, the extended-time
descriptions can also serve as a representation for perceptual organization in dynamic
images to aid in the detection of occlusions and multiple object motions [88, 91].

The approach taken here has compelling parallels with Stevens’ [84] idea of cap-
turing global geometric organizations in Glass patterns through grouping. The point
tracks used as input to the algorithm (Figures 4.19 and 4.21) are like temporally
generated spatial Glass patterns. The grouping process exploits both their spatial
and temporal aspects. Their common fate, in terms of the same 3D motion, is made
explicit through the grouped trajectory descriptions.

The next section is devoted to the development of a closed—form solution to the
3D reconstruction problem (algorithm 3D—EST). Section 4.4 presents the trajectory
description algorithm (TRAJ-DESC) and section 4.5 describes experimental results

on some real image sequences and their comparison with other algorithms.

4.3 The 3D Estimation Problem

This section presents a solution to the 3D reconstruction of rotational motion.
Reliable image trajectories (e.g. Figures 4.22 and 4.23) expected as input to this
solution technique are obtained through the grouping algorithm described in the next
section. Its discussion is deferred because some results developed in this section will
aid in the understanding of the grouping constraints. It is assumed that the intrinsic

parameters of the camera are known and for simplicity, that the image is square.
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en the conic trajectory that describes the motion of a point in the image, the

Giv

problem here is to determine the orientation and location of the rotation axis and the

location and radius of the corresponding 3D trajectory.

4.3

oo

oy

.1 Formulation

An outline of the approach to the 3D estimation problem follows:

o It is shown that the perspective projection of an arbitrary circular trajectory in

3D is a general conic section.

e Given this conic projection, a closed—form solution for the 3D parameters is
derived using the eigencomponents of the symmetric matrix representing the

conic. An apparent eight-fold ambiguity is shown in the solution.

o Six of the eight possible solutions are rejected by invoking the scene-in—front-

of-image constraint or because they duplicate the other solutions.

¢ The remaining two—fold ambiguity is resolved by constraining different 3D tra-

jectories to share the same axis of rotation.

The set of parameters defining the problem geometry as depicted in Figure 4.2 is:

Unit vector along the rotation azis.
Location vector of the rotation azis, given by the point where the azis

intersects a plane normal to it that passes through the origin.

7T : (=,y,2), Location vector of a 3D point.

d : Location of the center of the circular 3D trajectory, given by its signed
distance from the point ¢ and measured positive in the + z — direction.

k Radius of the circular 3D trajectory, k > 0.
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Figure 4.2: Geometry of a point’s rotation.
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f : Focal length of the camera.

R : (X,Y, f), image vector in homogeneous pizel coordinates.

This parameterization separates the motion and structure parameters.
A vector is represented as ¥, a unit vector as ¥ and the corresponding column
vector as v. Quantities enclosed in square brackets , e.g. [M], represent matrices.

From Figure 4.2, it is evident that the motion geometry is constrained by

(F—-8)—dib)e (i —3) - did) = K (4.1)
fieb = d (4.2)
eb=0 beb=1 (4.3)

The index 7 refers to a 3D point in the scene. For notational convenience, it is dropped
in the following treatment .

The perspective equation in homogeneous coordinates is:

-

— r
R=f 7ol (4.4)
From Equation 4.2, using similar triangles:
d g
F==—=R 4.5
=243 - (45)
(The degenerate case where d = 7eb = 0 causes no difficulty and is discussed later.)

Substituting Equation (4.5) into Equation (4.1) and rearranging terms, we get

dz - - R‘.a
(Re by ° Teld cec (4.6)

After multiplication by (fi . j,)z , this can be expressed as the following quadratic form:

RT[ &[1) - d[ cb” + beT | + (cTe — & — k) [bbT] |JR =0 (4.7)

4 3
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This equation represents a general conic in X and Y, the image plane coordinates.
Thus, given the circular 3D trajectory of a point, the ezpected image projection is

determined by the following matrix:
[Megp] = [ #2[I]) — d[ebT + beT] + (cTe — & — k*)[bbT] | (4.8)

The image trajectory is an ellipse if the full 3D trajectory lies on the positive z side
of the zy-plane’s half-space (Figure 4.2). It is a hyperbolic arc when the 3D circle
intersects the zy—plane in exactly two points. The four possible directions leading to
these intersections determine the four asymptotes in the image plane. Finally, when
the 3D circle is tangent to the zy—plane, the imaged arc is a section of a parabola.
Again, the two possible directions of approach towards the tangent point generate
the two unbounded paths in the image. In the latter two cases, the image trajectory
is not closed. In the case of an ellipse, the trajectory may be either a closed curve —
a complete ellipse — or an open partial ellipse.

In order to obtain a solution, a minimum number of points and frames are required.
The rotation axis can be specified using a minimum of four parameters [73]. Two
additional parameters (d and k) specify each 3D point relative to the axis. Thus, for n
3D points, there are 2n+4 unknowns, of which only 2n+3 can be determined because
of the ambiguity in scale discussed in the next subsection. Each image point in each
frame gives one constraint equation (Equation 4.7). Therefore, one 3D point imaged
in five frames, two 3D points imaged in four frames, or more than two 3D points all
imaged in more than two frames, provide adequate constraints for a solution'. In
practice, in order to obtain a robust solution in the presence of noise, more data is

necessary.

1Note that this is different from Shariat’s [81] calculations because we do not assume constant
rotational speed or uniform sampling.
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Having shown that the image trajectory of a 3D point in rotational motion is a
conic section, we now show how its 3D parameters can be derived from the parameters

of its image trajectory.

4.3.2 Solution

Let [M.om) be the symmetric 3-by-3 matrix representing a conic trajectory in the
image plane. [Mcom) is computed using the trajectory grouping algorithm described in
Section 4.4.2. The corresponding expected trajectory in terms of the 3D parameters
d, k, &and b is represented by the matrix [M..p] of Equation (4.8). Any scalar
multiple of [M,.,] represents the same image curve, so that the 3D parameters can
only be recovered up to a scale factor. (Note, however, that the data matrix [Mcom)
has an intrinsic scale factor related to the units of X and Y per unit focal length.
This factor is recoverable but does not affect the solution for the 3D parameters,
hence is ignored in the following treatment). Thus, only the ratios dn, kn, ¢, and b

are recoverable, where

d k - c
=1 kn=— Cn=é
€| €]

€]

This is the well-known ambiguity of scale in 3D reconstruction from monocular mo-

d, = cle,=1 (4.9)
tion although it appears here in a different form. It is assumed here that the rotation
axis does not pass through the origin, i.e. that ¢'is not the zero vector. The case when
¢ is zero can be characterized from the image data, and will be treated separately.

[Mezp] is written in terms of the scaled parameters as:
[Mezp] = [ d[I] — dn[eab™ +bef] + (1—df — k7)[b07] | (4.10)

Now the 3D variables in [M,,p] are derived from the computed data matrix [Meom).
Consider the generic case in which the axis does not pass through the origin.

Dropping the subscript for the normalized parameters, [Mczp] is rewritten as:

[Mep] = [ (1] — d[cbT +bcT] + (1 —d? — k?)[bb7] | (4.11)

-3
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First the eigenvalues of [M.,] are derived. It is a standard result in linear algebra
that the eigenvalues of a matrix are invariant to rotations of the coordinate system.
Since b and ¢ are orthogonal, these can be transformed to [0 0 1] and [0 10 ], re-
spectively, in a rotated coordinate system. [M.zp] of Equation (4.11) has the following

simple form in this rotated system,

&0 0
M ]=|0 & —d
0 —d 1-kK?

but its eigenvalues remain the same as the original matrix.

The three eigenvalues of this matrix are:

Al = d2 (4.12)
A = —;-((1+d’—k"')+\/(1+d’—k3)3+4d’k’) (4.13)
b o= 3 (U+d—B)-(I+ 8- Ry +48 ) (4.14)

It is evident that A; and A; have the same sign. The sign of A3 is different, except in
the degenerate case when d is zero for an image trajectory that is a degenerate conic,
i.e. a straight line segment. By suitably normalizing the computed matrix [Meom)],
one of its eigenvalues can be made negative and the other two positive. Hence the
negative eigenvalue can be uniquely identified with A;. Also, the larger of the two
positive eigenvalues can be uniquely identified with A;, which one can show is always
larger than ), except possibly in the degenerate case.

The three eigenvalues of [M.om] can therefore be assigned unambiguously to A,
A2 and A3, corresponding to Equations (4.12), (4.13) and (4.14), respectively. The 3D
parameters, d and k, can be solved for in terms of these eigenvalues. Let v; = A2/,

and 42 = A3/A; . Then,

1

&2 =
NM+72—Nn7-—1

kz = —’h’rgdz (4. 15)
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Thus d and k are determined up to a sign ambiguity in d. Sign ambiguities of the
solution are discussed in the next section.

Now, b and ¢ are determined from the eigenvectors of [Mcom). It is evident from
Equation (4.11) that one of the eigenvectors of [Mesp] is a vector n, normal to the

plane formed by b and ¢. Since n, satisfies,
[Mezpln, = dn, = Mn, (4.16)

it is associated with the eigenvalue A;. The other two eigenvectors n, and n;, with
the associated eigenvalues A; and Ag, respectively, must span the plane formed by b

and c, since all the eigenvectors are mutually orthogonal. Therefore,
é=cosO Az +5sinfAs b=sinb Az — cosd s (4.17)
for some §. Further,
[Mezple = d’c—db = Mzcosf n,+ A3sinf ny (4.18)

[Mezp)d = —dec+(1—-Fk)b = Asind n, — Azcosf ny (4.19)

Substituting Equation (4.17) into (4.18) and (4.19), we obtain,

£-2 4 d _ M—(1-F)
d  h-F (1-F)-r d

tand =

(4.20)

which are all equivalent expressions. Thus, tanf can be computed in closed form
in terms of the image parameters up to the sign ambiguity in d. It follows that b
and ¢ can also be obtained in closed form up to sign ambiguities, by solving for the
eigenvectors n; and n; of the image conic matrix, which are identified unambiguously
by their respective eigenvalues.

Hence, apart from the sign ambiguities, all the 3D parameters of a trajectory can
be uniquely computed in terms of the eigenvalues and eigenvectors of [Mom], the

matrix computed from the image trajectory.

3 ¥ 3 ’_3 _
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The case of the axis passing through the origin (|¢] = 0) can be similarly analyzed
([78] and Appendix A). It can be distinguished from the generic case because two of
the eigenvalues will be identical. Pairing the expected and the computed eigenvalues
uniquely as before, the axis direction can be computed as the eigenvector correspond-
ing to the distinct eigenvalue. Note that only the ratio k/d is computable in this

case.

4.3.3 Multiple Solutions

There are two solutions for d in Equation (4.15). For each of these, there are
four solutions for b and ¢ from the four sets of signed values of n; and n; in Equa-
tion (4.17). The four solutions corresponding to one sign of d are depicted pictorially
in Figure 4.3 and those corresponding to the opposite sign are shown in Figure 4.4.
For each sign of d, the four solutions are obtained by reflecting b and ¢ across each of
n,; and ns. The eight solutions can be grouped into two sets of four solutions each.
The four solutions within each set differ only in the signs of b, ¢ and d. For each
solution in one set, there is a corresponding solution in the other which is distinct
from the first in the sense that it cannot be obtained from the former by a simple

sign reversal. The two sets, each corresponding to the same k, can be written as:

Sl = {{bhcl:dl}: {_bla_clydl}: {bh—clv—dl}s {-blach—dl}}
S2 = { {bs,c3,d1}, {~bs,—cC2,d1}, {bs,—c3,—dr}, {—b2,€2,—dr}}

It is clear from Equation (4.11) that the different signed values for the parameters
within each set lead to the same computed matrix. To see the relation between the
corresponding solutions in S; and S;, refer to Figure 4.5. For each solution in S,
the corresponding solution in S; is obtained by reflecting each of {b;,¢;} in S; across

any one of the eigenvectors, nz or ng. Figure 4.5 depicts one of these reflections
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Figure 4.3: Four solutions corresponding to +d. + ve and - ve denote positive
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Figure 4.4: Four solutions corresponding to —d. + ve and - ve denote positive
and negative, respectively.



118

Figure 4.5: Two distinct solutions for one point.

across ng?. The result of this reflection again yields a matrix with the same sets of
eigenvalues and eigenvectors. Hence, given the measured image conic matrix, these
eight indeed are the solutions. Within the constraints of Equation (4.3), these are
the only possible solutions because they exhaust all options in the representation
of the given matrix in terms of its eigencomponents, which in turn is a complete
representation.

The apparent eight-fold ambiguity found above is not real. Since {b,c,d} and
{-b, ¢, —d} represent the same point along the rotation axis, four of the above solu-
tions simply duplicate the other four. This ambiguity is eliminated by always choosing
the 2—~component of b to be positive. This leaves two solutions in each set. We next

impose the constraint that a 3D point must lie in front of the image plane in order to

?Incidentally, Shariat’s [81] claim that the dual axis direction is a reflection of the first solution
across the line joining the focal point and the center of the 3D trajectory is incorrect because this
line is clearly not an eigenvector of [M..,] of Equation (4.11).

v
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be imaged [43]. From Equation (4.5), this implies that 8 = 3‘3 must be positive. If
the parameter set {b,c,d} satisfies this constraint, then the alternate set {—b,c,d}
cannot. Thus, two more solutions are eliminated, one from each set. The remaining
two solutions, one from each set, cannot be disambiguated from the image trajectory
of one point alone.

However, image trajectories of many 3D points rotating rigidly around a common
axis can be used to resolve this ambiguity. The true solution for the axis will be
common to all the points, while the other, incorrect solution will be unique for each
3D point. The true solution is therefore easily picked out. The mismatch among the

incorrect solutions is illustrated in Figure 4.6 for two points. The figure shows two

b

Figure 4.6: Unique solution as the common solution of two points.
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sets of distinct eigenvectors, {ns, ns} and {n3,n3}; one set each for the two points.
One solution, say by, is common to both the points. The second solution for each
point, b; and b3, respectively, is obtained by reflecting b, across the eigenvectors ng
and n3. These reflected solutions are in general different for each 3D point because
the eigenvectors {n3,ng} and {n3},n3}, of the matrix [Mcm|, are different (except
when the axis b passes through the origin, which is handled differently as shown
earlier). Similarly for other points as well, the eigenvectors are distinct, hence the
dual solutions obtained as reflections of the true solution are distinct.

The correct solution is found by clustering the sets of solutions obtained from
several image trajectories. In general, out of the two solutions obtained for each
trajectory, one set of solutions will form a dense cluster around the ideal solution.
The solutions in the other set will either be spread out or there will be clusters of
subsets of the solutions. Thus, the correct solution can easily be picked out by locating
a compact cluster within which the solutions of all or a majority of trajectories is
represented. The algorithm developed by Collins and Weiss [26] for clustering vectors
on a unit sphere is used. The algorithm was originally developed for locating multiple
vanishing points in images. Here the problem is simpler because only one cluster needs
to be located.

After obtaining the estimates of b, ¢, d and k, the 3D vector for any point in
any frame can be estimated by projecting its image vector onto the computed 3D

trajectory. The 3D estimation algorithm can be summarized as follows:

For each trajectory found

Step 1: Find the eigencomponents of the matrix [Mcom] that represents

the conic image trajectory.

]
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Step 2: Compute the two solutions for b and ¢ and the corresponding d and k.

The solution presented in Section 4.3.2 is used.

end for.

Step 3: Cluster the two sets of solutions over all trajectories.

Find the cluster that includes most trajectories within a small spread.

Step 4: Compute the best b and ¢ by a least squares fit to the cluster.

For each point in a desired frame ¢

Step 5: Compute the corresponding 3D vector, 7; using Equation 4.5.
Find the 3D vector nearest to #; that also lies on the reconstructed

3D trajectory.

end for.

4.4 Image Trajectory Description

4.4.1 Independent Conic Fitting

In principle, it should be possible to fit conic curves to each of the point tracks
obtained by tracking each point over a number of frames. Ideally, if 360 degrees or a
large fraction thereof of the 3D trajectory are available in the image, then even with
noise, trajectories can be accurately described independent of each other. But in

practical situations, due to self-occlusions or to limit the amount of data to realistic
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levels, only a small part of the full trajectory, typically 50-100 degrees, is available.
Given this scenario, conic curves can be very ‘creative’ when used to describe trajec-
tories independently. Typically, a whole family of curves can equally well describe
the same track.

We observed the above behavior quite dramatically in our experiments. The input
for the experiments is a set of point tracks derived from temporal point correspon-
dences over many frames. Points are defined as intersection of lines forming plausible
corners. However, any other method of reliably defining trackable point features
would be acceptable. Two well-known methods were used to fit conic sections in-
dependently to the point tracks. First, Bookstein’s [16] closed—form least squares fit
was used (see Appendix B for details). In this method, the square of the implicit
defining equation of a conic is used as an algebraic distance measure for the distance
of a point to a conic. This measure is minimized with an appropriate positive definite
norm imposed on the parameters of the conic [16]. The optimal parameters can be
found through a closed-form solution. Results of using this method on sample sets
of point tracks for rotational data from two image sequences is shown in Figures 4.7a
and 4.8a. The trajectories are shown overlaid on the first frame of lines extracted
for each sequence. Leaving the details of how these sequences were captured to the
results section, it is to be noted that all the trajectories should correspond to a single
axis of rotation and should be elliptic given that all the 3D trajectories were fully in
front of the image plane (Section 4.3.1). However, the unstable nature of the conic fits
is evident from the figures. Not only is there no coherence amongst the fit parameters
of different point tracks, but for one sequence (Figure 4.7a) most of the trajectories
are hyperbolic instead of elliptic.

A similar behavior is reported by Porrill [69]. Porrill shows the instability of the
ellipse fitting problem by plotting the confidence regions for the fits to small sections

3

13

.3

1

.13



!

3 ~—3 ~—34 —3 —3 —3a —43a —3 —3a 1

—3 ~ a4 — 3 T3 T3 713

123

of the point data. Both he and Sampson [74] point out that the algebraic distance
measure introduces a significant bias in the fit because it underestimates the actual
distance of a point from a conic in high curvature regions. Consequently, the fitting
algorithm tries to locate the input set of points in regions of high curvature on the
fitted conic, thus keeping the distance measure low.

Furthermore, Porrill [69] and Sampson [74] suggest correcting the fitting bias by
using a first order distance measure instead of the algebraic distance measure. In
order to determine whether this would lead to a better fitting algorithm for the
same data set, an algorithm based on the first order measure was developed. Note
that now the fitting method is iterative and no longer closed—form [69, 74]. The
iterative algorithm used a quasi-Newton unconstrained optimization algorithm as
implemented in Numerical Recipes in C [95]. Results of this on the two data sets are
shown in Figures 4.7b and 4.8b. It is evident from the figures that although Athere
is an improvement in the fits, they still do not exhibit enough stability to make the
common motion explicit. As a result, the 3D parameters derived from these fits are
quite erroneous as will be shown in Section 4.5.2. While there might not be a bias
in the results (as suggested by Porrill), there is still enough instability in the fitting
process to render the results useless for any 2D grouping or 3D estimation based on
the fits.

We emphasize that these failures are inherent in the computation of curve descrip-
tions of noisy and quantized data obtained from imaging short segments of trajectories
and not an intrinsic failure of the algorithms for independent fits. This became the
point of departure for the investigation into methods for obtaining combined fits in

such imaging scenarios.
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b) Conic fits using the first--order distance.

Figure 4.7: Sample independent conic fits for the boz-seq. (a) Algebraic and
(b) first-order distance solutions overlaid on frame 1 lines and the point tracks.
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b) Conic fits using the first--order distance.

Figure 4.8: Sample independent conic fits for the room-seq-2. (a) Algebraic
and (b) first-order distance solutions overlaid on frame 1 lines and the point tracks.
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4.4.2 Grouping Algorithm

The goal of the grouping algorithm is twofold — to obtain reliable trajectory fits
to individual image point tracks and to make the similarities or dissimilarities across
trajectories explicit. Robust fits to point tracks result in accurate estimation of 3D
parameters. Explicit description of similarities across trajectories provides a basis
for grouping various trajectories into a single object motion, detecting outliers, and
possibly for detecting multiple object motions.

This algorithm is an incremental algorithm. At any stage, there is a set of point
tracks already grouped together. The next track to be tried is picked using a grouping
schedule discussed below. A least-squares fit over an error measure is performed on
this new set. Using the best-fit parameters, an acceptability criterion is used to
accept or reject the most recent track.

The algorithm is based on the following two observations:

1. Image trajectories resulting from 3D trajectories proximal in space can be well
approximated by constraining three of their five individual parameters to be
common across all of them. They should be of the same orientation and eccen-

tricity and their centers should be collinear.

2. Point tracks which lie on non-overlapping segments of their corresponding
trajectories constrain their combined fit better than ones which overlap (Fig-

ures 4.10-4.13).

The first constraint follows from a locaﬂy orthographic approximation for the
projection of 3D trajectories. If two or more trajectories are proximal in space, then
the corresponding image trajectories will have approximately collinear minor axes
and the same eccentricities. This constraint is used to derive an error measure for

the goodness—of-fit of trajectories over the participating point tracks. Note that this

3
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constraint is not used as an a priori constraint to be satisfied by all the trajectories.
Sets of trajectories which satisfy this constraint within reasonable fitting errors are
discovered automatically by the algorithm.

The second observation is employed as a heuristic to design a grouping schedule
that automatically selects the tracks to try next at any given stage of the incremental
algorithm.

To derive a joint error measure for the tracks under consideration at any stage,
conic sections are parameterized to make their common and distinct parameters ex-

plicit as shown in Figure 4.9. The collinearity of centers, and the common orientation
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Figure 4.9: Conic section parameterization illustrated for an ellipse.

is represented by a line parameterized by p and 6. The third common parameter is

e, the eccentricity. The two distinct parameters for trajectory ¢ are [;, the location



128
of the conic center along the common line and a;, the length of the x-intercept. The

equation of a conic section in terms of this parameterization is,

f(z,9; p,0,e,,8) = (zcosd+ysinb—p)’(1—e’)+
(—zsind +ycosd —)? —a?(1—€®) = 0 (4.21)

where (z, y) are the image coordinates of points along the ith track. A first—order

measure of the distance of a point from a conic curve is defined as,

Fy= If(zih ‘.‘Iit)/ Ivf(zih ‘!Iit)“ (4'22)

where the subscript it refers to the ¢th frame of the ith track. The following mini-

mization leads to the optimum parameters for the trajectories of the current set:

min > Z Fi(p,0,e,1;,a;) (4.23)

pdiediai

A Conjugate Gradient algorithm [95] with scaling among the variables p, & and e
is used for the optimization. Having found the best-fit parameters for the current
set, an acceptability criterion is applied to decide whether to accept the last point
track or not. The residual error for each track resulting from the application of its
newly found combined-fit parameters is computed. If this error for each track in the
set is within an experimentally determined scale factor of its residual error from the
independent fit, then the most recent track is accepted in the current group and the
process is repeated for the next track [2, 24]. Otherwise, the repetition is done with
the next track after rejecting the current one.

This acceptability criterion is reasonable because even though the parameters
of independent fits may be erroneous, the resulting error residual is a measure of
how well the underlying track can be described as a conic curve. When combining
the description of a set of point tracks, the trade—off is between the compactness of

description and the residual error. This is similar to the minimum description length
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formulation of image segmentation problems [53]. Each new point track included
in a combined description reduces the number of parameters by three. For n tracks,
individual descriptions require 5n parameters whereas a combined description requires
only 3 + 2n parameters. But the addition of a new track can increase the residual
error. However, if the residual error from the combined—fit description does not

increase substantially or decreases, then it is better to accept a track as grouped.

Now we discuss the design of the grouping schedule. The essential goal here is to

describe image trajectories which reflect the 3D geometry accurately.
Through the grouping schedule, the goal is for short noisy point tracks to pro-

gressively constrain their mutual fits, avoiding arbitrary local minima in the process.
One heuristic we apply is that tracks, even when short, mutually constrain their tra-
jectories better if they cover a larger span around their trajectories without overlap
than if they do with any overlap. For instance, the point tracks in Figure 4.10 provide
a stronger constraint for the correct combined description than those in Figure 4.11.
Further, tracks which are proximal are more likely to satisfy the grouping criterion
and hence should be tried first. Tracks which do not overlap and are proximal are
given preference over those which are distant in the image. For example, the tracks
shown in Figure 4.12 are tried before those in Figure 4.13. Note that this grouping
schedule is designed only to define an ordering on the whole set of tracks input to
the algorithm. The goal is to force early consideration of those tracks which provide
the strongest mutual constraints, thus reducing the possibility of false minima and
forcing the generation of good initial guesses for the successive optimization steps.
However, no point tracks are left untried but each one is picked at a stage governed
by this schedule. Thus, in general, rapid convergence to the correct combined-fits is

achieved.
To implement this grouping schedule, each track is projected on the four sides of

the XY -rectangle defined by the image plane as shown in Figures 4.10-4.13. Thus,
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Figure 4.10: Case of small overlap along projections. Two point tracks with
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Figure 4.11: Case of large overlap along projections. Two point tracks with
large overlap along projections.
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each track has four projections — X,,, Xy, Y; and Y; — some of which could be zero.
For all the tracks in the current grouped set and for each untried track in the current

cycle, the sum of the following measure along each side is computed:
gsm, = span, — overlap, — gap,, p € {u,d,l,7} (4.24)

where span, is the sum of connected projections along the side p, overlap, is the sum
of overlaps amongst the projections of all tracks along p and gap, is the gap between
projections as shown in the figures. A new point track that minimizes
Y gom, (4.25)
p € {udlr}
with the current grouped set is chosen to be tried next.
An outline of the TRAJ-DESC algorithm follows:

Step 1: Fit conics to each point track independently and record the error residual.

Step 2: Set niry = 2. ( Start with an initial set of 2 ).

Step 3: Set the current set to include only the track with the longest arc length.

A polygonal approximation is used for the arc length.

Repeat until ( No more tracks left ungrouped ) or
( All tracks have been tried for this cycle )

Step 4: Add to the current set the track that minimizes the sum of the

gsm measure of Equation 4.25 along with the tracks already in the set.
Call this new track the niryth track.

m!
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Step 5: Solve the optimization problem of Equation 4.23 for the current set

and obtain the best—fit parameters.

Step 6: If the fit error for each track is within a scale factor of its independent

residual,

then accept the current set as grouped and increment niry by one,

else reject the last track in the current set.

end repeat.

At start—up, the initial guess for the optimization step, Step 5, is generated from
the parameters of the track with the longest arc-length. Subsequently, whenever a
new track is assimilated, the initial guess for the next step is the current set of best-fit
parameters for the grouped tracks. In our experiments, we have rarely encountered
local minima. This implies better convergence properties for this formulation and the
combined—fit error measure compared to one where 3D parameters are directly solved
for from the image data. Furthermore, the grouping schedule progressively constrains

the combined fits, generating initial guesses which lead to fast convergence.

4.5 Experimental Results

Results of the trajectory grouping algorithm, TRAJ-DESC, and the 3D esti-
mation algorithm, 3D-EST, on two image sequences are presented in this section.
Both sequences were digitized with a GOULD frame grabber that outputs 512 by 484
pixel images. These were reduced further to 256 by 242 pixels for our experiments.
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The first sequence, called the room-seg-2, is a set of images taken inside a robotics
laboratory. Objects in the scene varied in depth from 10 to 30 feet. Twenty-five
frames were captured with a SONY B/W XC-77 camera mounted on a PUMA arm
which in turn was mounted on a platform at one end of the room. The effective field
of view (FOV) of the lens—camera and grabber systems was found to be 42 by 40
degrees using the method of Lenz et al. [55]. The arm was rotated with the axis
of rotation nearly parallel to the optical axis of the camera as constrained by the
configuration of the gripper. The distance between the optical axis and the rotation
axis was measured to be about 1.7 feet. The angle of rotation between consecutive
frames was 4 degrees. Two frames of this sequence are shown in Figure 4.14.

For the second sequence, called the boz-seq, a rectangular chequered box was
clamped at the end of a cartesian robot arm. A stick which pierced the box along
its longest dimension was used to grip the box. The box was rotated by the arm
around this stick-axis, while the camera looked down obliquely at it. Using a SONY
B/W AVC-D1 camera, with effective FOV 24 by 23 degrees, a sequence of 20 frames
was captured. The approximate angle of rotation between consecutive frames was 3.6
degrees. The range of depths in this scene was about 550 to 700 mm. Two image
frames are shown in Figure 4.16.

To gener;a.te point tracks, corner-like points defined by line intersections were
tracked using the line-tracking system of Williams et al. [96]. This system tracks
lines obtained from the line-extraction algorithm of Boldt et al. [14] by predicting
their appearances in successive frames using the displacement field output of the
algorithm by Anandan [8]. The displacement fields between frames 1 and 2 of room-
seg—-2and boz-seq are shown in Figures 4.15 and 4.17, respectively. Figures 4.18 and
4.20 show a sample set of tracked lines overlaid on frame 1 lines for the respective
sequences. Figures 4.19 and 4.21 depict the respective point tracks that form the
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input to the algorithm TRAJ-DESC described earlier. Figures 4.19 and 4.21 un-
derscore the similarity between the problem of making a common motion explicit
amongst these motion-generated “Glass patterns” and the perceptual organization

of geometric structure in Stevens’ [84] Glass patterns.

4.5.1 Trajectory Grouping Results

Figures 4.7 and 4.8 show the results of fitting trajectories independently to sample
sets of points for the room-seq—2and boz-seq, respectively. As was discussed earlier, it
is graphically evident from these figures that there apparently is nothing in common
between the motion of the points generating these trajectories. This is amply borne
out by the highly inaccurate results obtained for the 3D depth of these points (e.g.

see Tables 4.2 and 4.4).
Algorithm TRAJ-DESC was run on 30 point tracks obtained from the room-seq—

2. Figure 4.22 shows the output of this algorithm on two sample sets consisting of 8
point tracks. There is a visually dramatic improvement in the nature of the resulting
trajectories. The common axis of rotation becomes explicit by the collinearity of
the minor axes of the trajectories. This makes the resulting 3D parameters very
accurate. Note that for this sequence, where the rotation is nearly parallel to the
image plane, the grouping constraint described in Section 4.4.2 is globally valid. The

image trajectories in this case are e:fpected to be nearly circular.

Figure 4.23 shows similar results for the boz-seq. Again, in contrast with the
independent fits (Figure 4.7), the new trajectories make the common 3D motion of
the underlying points explicit by the approzimate collinearity of the minor axes of
various groups. Note that for this case of motion, under perspective projection, the
minor axes should not be collinear globally. The algorithm was tried on 50 point
tracks obtaining the maximally grouped tracks. Five of the groups consisting of 18

tracks are shown in Figure 4.23.
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a) Image Frame 1 b) Image Frame 13

Figure 4.14: Two frames of the room-seq—2. Frames 1 and 13.
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Figure 4.15: Displacement field for the room-seq—2. Sub—sampled field (16x16)

between frames 1 & 2.



a) Image Frame 1
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b) Image Frame 13

Figure 4.16: Two frames of the boz-seq. Frames 1 and 13.
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Figure 4.18: Tracked lines for the room-seg-2. A sample set overlaid on frame 1

lines.

Figure 4.19: Sample point tracks for the room-seq—2. Corner points are tracked.
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Figure 4.21: Sample point tracks for the boz—seq. Corner points are tracked.



Combined conic fits -- Sample set.2.

Figure 4.22: Combined conic fits for the room-seq-2.
frame point tracks. Overlaid on image frame 1.
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Combined conic fits -- Sample set 2.

Figure 4.23: Combined conic fits for the boz-seq. Fits to sample 20-frame point
tracks. Overlaid on image frame 1.
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4.5.2 3D Estimation Results

The 3D trajectory parameters were computed from the closed~form solution de-
veloped in Section 4.3.2 using the trajectories shown in Figures 4.22 and 4.23. The
3D results are in the form of distances (magnitudes of the reconstructed 3D vectors)
and depths (Z component of the vectors) to points, and the rotation axis direction,
b, and location, é. These are found by the algorithm given at the end of section 4.3.3.
The reference distances were obtained by actually measuring these from the camera
while the reference depths were computed using the pose estimation algorithm of
Kumar and Hanson [50]. A model of the reference points was built in a fixed world

coordinate system for the latter.

Room Sequence

For the room-seq—2, the reference distances and depths were computed for a set
of twelve points, called the sample set, labelled in Figure 4.22 3. The distances are
accurate to about 0.1 feet. Given the accuracy in measuring the 3D coordinates, the
depths computed from Kumar and Hanson’s pose estimation algorithm in the camera
frame are accurate to about 2 percent; these were used as reference depth estimates
for comparison purposes. The scale for algorithm 3D—EST, the |C | of equation
4.9, was measured and also computed from the pose. The estimated scale was 1.67
feet. Recall that this scale cannot be computed by any ﬁonocdu motion algorithm
without the knowledge of the true distance to a point or the magnitude of effective
translation (which in our case is related to | |).

In Table 4.1, the 3D reconstructions for the sample set of 12 points, selected

from the grouped trajectories, are compared with the measured and pose computed

3Trajectories for only some of the points from the sample sets of both sequences are shown in the
figures to avoid clutter. However, all the points have been labelled.

R
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distances. In both the comparisons, the average percentage error is between 2 to 3

percent and all the errors are below 5 percent.

Table 4.1: 3D distance comparisons for the room-seq—2. Comparison of 3D
distances computed by Rotational Trajectories with true distances and pose computed
distances for 12 sample points of the room-seq-2 (in feet).

Point True Rot. Error Pose Rot. Error

Num. || Distance | Distance | (%) | Distance | Distance | (%)
1 18.25 18.54 1.59 18.46 18.54 0.43
2 17.94 17.47 -2.62 17.79 17.47 -1.80
3 19.59 19.75 0.82| 19.40 19.75 1.80
4 19.90 19.75 -0.75 20.00 19.75 -1.25
5 22.65 22.84 0.84 23.36 22.84 -2.22
6 29.29 28.28 -3.44 29.12 28.28 -2.88
T 25.65 24 .87 -3.04 25.31 24.87 -1.74
8 26.25 25.55 -2.67 26.80 25.55 -4.66
9 14.90 14.83 -0.47 15.06 14.83 -1.63
10 14.60 14.61 0.07 14.53 14.61 0.55
11 14.35 156.12 5.37 14.52 15.12 4.13
12 14.70 15.19 3.33 14.70 15.19 3.33

| Avg. Abs. Err. 2.08% | A_—vg. Abs. Err. 2.19% |

In Table 4.2, the tremendous improvement achieved by TRAJ-DESC vis-a-vis
the independent fits is demonstrated by comparing the 3D distances for the sample set
computed from independent fits with those from grouped fits. The large improvement
in accuracy obtained by the latter is evident from the comparison.

It was mentioned earlier that two—frame algorithms can be very unreliable in com-
puting depth estimates especially when there is significant rotation and translation
parallel to the image plane [3, 94]. This is indeed the case for the room-seq—2. Depths
for the sample set were computed using Horn’s [43] relative orientation algorithm. It

was run on a set of 22 points spread out over the image; the sample set is a subset of
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Table 4.2: Independent vs. grouped fit 3D distances for the room-seg-2. 3D
Distances from Independent (Ind.) Fits vs. Grouped (Gpd.) Fits for the 12 sample
points compared with true distances for the room-seg-2 (in feet).

Point True Rot. Dist. Error I Rot. Dist. Error

Num. | Distance | Ind. Fit | (%) Gpd. Fit (%)
1 18.25 5.98 6723 18.54 1.59
2 17.94 9.73 -45.76 | 17.47 -2.62
3 19.59 5.60 -71.41 19.75 0.82
4 19.90 4.68 -76.48 19.75 -0.75
5 22.65 7.96 -64.86 22.84 0.84
6 29.29 5.01 -82.90 28.28 -3.44
] 25.65 6.71 -73.84 24.87 -3.04
8 26.25 13.40 -48.97 25.55 -2.67
9 14.90 3.44 -76.91 14.83 -0.47
10 14.60 5.93 -59.38 14.61 0.07
11 14.35 4.65 -67.60 15.12 5.37
12 14.70 5.86 -60.14 15.19 3.33

| Avg. Abs. Err. 66.29% || Avg. Abs. Err. 2.08% |

this set. To minimize the effects of noise, frames 1 and 19 were chosen, as the average
image motion between these was as large as 99 pixels with a standard deviation of
22 pixels. The effective translation magnitude between the two frames is about 1.7
feet. This translation, being almost parallel to the image plane, results in an image
motion of about 30 pixels for a point approximately 15 feet in depth. In Table 4.3,
the distances for thé sample set obtained from the two—frame algorithm are compared
against the trajectory results, using the measured distances as a reference. One qual-
itative reason for the bad performance of two—frame computations for this motion is
that, with noise, there is an ambiguity between rotations in depth and translations
parallel to the image plane [3]. It should be emphasized here that the estimates ob-

tained from two-frame computations cannot be improved even if they are averaged
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Table 4.3: Two—frame vs. trajectory 3D distances for the room-seq-2. Two—
frame 3D Distances vs. Trajectory 3D Distances for the 12 points compared with
True Distances for the room-seq-2 (in feet).

Point True Two—frame Error Rot. Error

Num. | Distance lI Distance (%) " Distance (%)
1 18.25 "10.54 -42.25 [ 18.54 1.59
2 17.94 10.32 -42.47 17.47 -2.62
3 19.59 10.72 -45.28 19.76 0.82
4 19.90 10.90 -45.23 19.75 -0.75
5 22.65 11.59 -48.83 22.84 0.84
6 29.29 12.79 -56.33 28.28 -3.44
7 25.65 12.01 -563.18 24.87 -3.04
8 26.25 12.34 -52.99 25.55 -2.67
9 14.90 9.22 -38.12 14.83 -0.47
10 14.60 9.12 -37.53 14.61 0.07
11 14.35 9.09 -36.66 15.12 5.37
12 14.70 9.04 -38.50 15.19 3.33

Avg. Abs. Err. 44.78% || Avg. Abs. Err. 2.08% |

over many pairs of frames over time. For the room-seg-2, for example, averaging over
a number of pairs leads to no improvement in results.

The least-squares axis direction vector computed by 3D—EST for the room-seg-
Zs (0.0113, —0.0049, 0.9999). The average spread of all the vectors around this best
estimate is 0.228 degrees. The best location estimate is (0.9095, 0.4156, —0.0076)
and the average spread is 9.078 degrees. The reason for the higher variance in the
location estimates is that the trajectories are nearly circular and their centers are
concentrated in a relatively small region. For nearly circular curves, the orientation
of the minor axis is ambiguous. So for the trajectories of this sequence, the positions
of the centers can be shifted slightly without changing their circularity or size. This
ambiguity in the orientation of the collinear centers and their location leads to a larger

variance in the axis location vector estimates for different points. In contrast, the size
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or the eccentricity (i.e. circularity here) of trajectories is estimated unambiguously.

Hence, the 3D distances and the axis direction are found very precisely.

Box Sequence

For the boz-seq, the (z, y, z) coordinates of a set of points were measured on
the three faces of the box to within 1mm. Again, given the accuracy of these mea-
surements, it is not unreasonable to use depths estimated from pose as the reference
depths for the comparisons [51]. The magnitude of ¢, the scale for SD-EST, was

estimated to be 569.66mm.
In Table 4.4, the depth estimates from independent and grouped fits for a sample

set of 12 points are compared. The points are labelled in Figure 4.23. Again, the
significant improvement in depths from the latter is evident. The percentage errors
in depth computation by 3D-EST are well within 2 percent with the average at
approximately 0.87 percent.

Horn’s algorithm was run over 40 points in two frames (1 and 8) between which
the average image motion was 17 pixels with a standard deviation of 7 pixels. Depth
results for the sample set are compared to those obtained from 3D—EST in Table 4.5.
For this case, the two—frame depth results are good with an average percentage error
of approximately 4 percent. This suggests that one might improve the two-frame
results over many pairs. To test this, the depths for the points in the sample set
were computed for six pairs of frames with frame 1 as the anchor (all the depths
were computed in frame 1). On averaging these, it is seen that the depth errors are
slightly lower than those obtained from the trajectory algorithm. This is also shown
in Table 4.5.

The best axis direction was computed to be (0.1521, —0.8340, 0.5303) with an
average spread of 1.512 degrees among the individual estimates. The best axis location

was estimated to be (—0.0692, 0.5261, 0.8476) with a spread of 1.203 degrees. In
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Table 4.4: Independent vs. grouped fit 3D depths for the boz-seq. 3D Depths
from Independent (Ind.) Fits vs. Grouped (Gpd.) Fits for 12 sample points com-

pared with Pose Depths for the boz-seq (in mm.).

Point Pose Rot. Depth Error Rot. Depth | Error

Num. | Depth Ind. Fit (%) Gpd. Fit (%)
1 591.38 257.71 -56.42 | 588.89 -0.42
2 666.34 572.13 -14.14 665.84 -0.08
3 621.78 664.52 6.87 617.77 -0.64
4 640.66 353.75 -44.78 635.02 -0.88
5 637.68 726.36 13.91 637.71 0.01
6 647.94 370.81 -42.77 650.89 0.46
7 656.56 603.94 -8.01 661.89 0.81
8 639.99 974.83 52.32 653.80 2.16
9 709.68 675.07 -4.88 700.74 -1.26
10 614.79 56.93 -90.74 603.58 -1.82
11 602.34 527.88 -12.36 606.16 0.63
12 628.94 11.18 -98.22 636.52 1.21

| Avg. Abs. Err. 37.12%:" Avg. Abs. Err. 0.87% |

Table 4.5: Two—frame vs. trajectory 3D depths for the boz-segq. Two-frame
Depths vs. Trajectory 3D Depths for the 12 points Compared with Pose Depths for
the boz-seq (in mm.).

| Avg. Err. 4.39% | Avg. Err. 0.87% ||

Point | Pose || Two—frm. | Error [ Rot. Error Two—frm. | Error

Num. | Depth Depth (%) | Depth (%) Avg. Depth | (%)
1 591.38 613.88 3.80 || 588.89 -0.42 591.68 0.05
2 666.34 || 694.42 4.21 || 665.84 -0.08 666.44 0.02
3 621.78 648.36 4.27 || 617.77 -0.64 624.91 0.50
4 640.66<H 667.46 4.18 || 635.02 -0.88 641.54 0.14
5 637.68 665.04 4.29 || 637.71 0.01 639.58 0.30
6 647.94 679.23 4.83 || 650.89 0.46 651.68 0.58
7 656.56 687.45 4.70 || 661.89 0.81 658.75 0.33
8 639.99 '667.96 437 || 653.80 2.16 642.31 0.36
9 709.68 744.84 4.95 || 700.74 -1.26 714.42 0.67
10 614.79 644.11 4.77 || 603.58 -1.82 618.49 0.60
11 602.34 626.85 4.07 || 606.16 0.63 604.80 0.41
12 628.94 655.33 4.20 || 636.52 1.21 630.46 0.24

Avg. Err. 0.35% |
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this sequence the trajectories are highly eccentric (average eccentricity computed to
be approximately 0.8) so the directions of major and minor axes are well-defined.
Hence, as expected, the variances in the estimates of both the direction and location

are small.

4.6 Summary

In this chapter, techniques for spatial and temporal grouping are developed for
the problem of reconstruction of 3D trajectories of point features in a scene from
image trajectories generated through rotational motion. A new technique for reliably
computing 3D structure from a sequence of images of a scene undergoing a relative
rigid-body rotation with respect to the camera is presented. For structure reconstruc-
tion, intentional rotational motion between the scene and a camera can be carried out
by either a camera mounted on a robotic arm or by rotating objects on a platform
with the camera fixed. Qur approach is an alternative to two traditional approacheé
for reconstruction: structure estimation over many frames using two—frame motion
and structure estimates, and 3D structure and motion estimation based on specific
models of 3D motion directly from discrete point correspondences.

The approach presented here decomposes the 3D reconstruction problem into that
of first describing image motion as curved trajectories (conics) in the image plane from
the discrete point correspondences, and subsequently reconstructing the 3D trajec-
tory from the image trajectories. It is shown that in realistic imaging scenarios when
only small segments of the 3D trajectory are imaged, descriptions of individual im-
age trajectories are very unstable. There is a need to constrain the 2D trajectory
descriptions of many imaged features into combined descriptions to achieve robust
image trajectories and the reconstructed 3D trajectories. A grouping algorithm is

developed which uses a grouping constraint to automatically select trajectories of
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features and combine them into a description that is more compact than their in-
dividual descriptions while keeping the residual errors within limits of the expected
noise levels. ‘

The improvement in trajectory descriptions is substantiated by the accuracy of
the reconstruction of the corresponding 3D trajectories. A new closed—form solution
for the reconstruction of a 3D circular trajectory from the corresponding imaged conic
trajectory, under perspective projection, is presented. This solution is applied to im-
age conics obtained through the grouping algorithm. Results on real image sequences
from both stages show an ability to achieve reliable 3D reconstruction. Furthermore,
for rotations around an axis approximately parallel to the optical axis, significant
improvement in 3D reconstruction is achieved in contrast with the inaccurate results
from standard two-frame structure-from-motion algorithms. In addition, it is also
argued that the incremental grouping algorithm for describing image trajectories is
potentially useful for segmenting multiple object motions.

The improved performance of the algorithm developed in this chapter over pre-
vious approaches again underscores our claim that the combination of spatial and
temporal constraints leads to more robust 3D reconstruction than either alone.

Future directions for this research are presented in the concluding chapter of this
thesis (Chapter 5).



CHAPTER 5

SUMMARY AND FUTURE WORK

A major goal for the research described in this dissertation was to demonstrate the
integration of spatial and temporal constraints over extended-time image sequences
to compute robust scene structure from image motion. Two demonstrative problems
were selected to highlight the integration of spatial and temporal constraints — one
in which constraints on object structure are combined with those from smoothness
of motion, and another in which a model of rotational motion is combined with
constraints from spatial proximity and continuity. The major contributions of the

work in the design of algorithms for the two problems can now be summarized.

5.1 Major Contributions

We have shown that combining spatial constraints of a shallow structure with the
temporal constraints of smooth motion leads to a robust 3D reconstruction of shallow
objects in the scene without requiring the intermediate step of the computation of 3D
motion. This intermediate step of decomposition of image motion into a rotational
and a translational component can lead to large errors in the subsequent computation
of 3D structure due to certain inherent ambiguities in the computation of 3D motion.

In order to use the shallow structure constraint without a priori knowledge of
the location of shallow structures in the image, an identification of such structures is

required, along with a mechanism for maintaining their identity over time. The results
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presented in Chapter 3 show that tracking within a Kalman filtering framework, and
model-matching provide a sound framework for the identification of shallow structures
and for maintenance of their identities over time. An important contribution of the
work is the use of 3D motion and shallow structure constraints to track aggregates
of image features which potentially are shallow structures. This is in contrast with

traditional token tracking which utilizes heuristics about the image motion of tokens.

We have shown that incorporating motion modeling and measurement uncertain-
ties into the mechanism for tracking aggregate structures provides resilience to errors
due to token extraction, motion discontinuities and occlusions. Aggregate structures
provide implicit figural constraints for relatively unambiguous matching. Incorporat-
ing uncertainties for the structure as a whole leads to reliable matching in compar-
ison with those methods that match and track individual tokens without using the
aggregate figural context. Aggregate structure matching using a statistical distance
measure like the Mahalanobis distance would in general involve the inversion of large
covariance matrices. However, we showed in Chapter 3 that decomposing the state
vector that represents an aggregate structure into components that are almost inde-
pendently affected by modeling and measurement uncertainties, requires the inversion

of only small matrices.

The trackability of an aggregate structure is used as a criterion for its identifica-
tion as a shallow structure. The integration of the spatial constraint of shallowness
with the temporal constraint of smooth motion allows the use of tracking as a process
of verification of the structural constraints. Predictions for non—shallow structures,
under the affine constraints valid for shallow structures, lead to large errors in track-
ing. These errors can be used to label an aggregate structure as shallow or otherwise.

Furthermore, tracking also leads to an incremental refinement of its depth estimate.

The efficacy of the central claims of this thesis are further demonstrated by con-

sidering the problem of reliable 3D reconstruction of a scene undergoing a rotational
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motion relative to a camera. Points in the scene describe conic trajectories in the
image plane under perspective projection. The goal is to describe the discrete point
correspondences in the image plane as conic trajectories that can subsequently be used
for the reconstruction of the corresponding 3D trajectories. An important contribu-
tion here is a grouping algorithm that combines the image trajectory descriptions of a
set of point features to achieve robust image trajectories. The algorithm is motivated
by the unreliable trajectories that are obtained when point trajectories are processed
independently.

The advantage of describing trajectories by the grouping algorithm is further
demonstrated by the promising 3D results obtained on real image sequences. A
contribution here is a new closed—form solution for the problem of reconstruction of a
3D trajectory from a 2D conic image trajectory obtained under perspective projection.
The solution is simpler than those available in the literature partly because of the
particular parameterization chosen for the 3D geometry of the problem.

5.2 Directions for Further Research

The shallow structure representation achieved in this work can be useful for ob-
stacle avoidance and path planning. Its utility can be further enhanced if visibility
cues can be utilized to distinguish between shallow holes and surfaces. In the context
of stereo reconstruction, some work towards representing free and filled space using
Delaunay triangulation has been done by Le Bras-Mehlman et al. [17]. In addition,
combining the shallow structure constraints with the figural organization of occluding
boundaries [97] is another promising area of further research. We have used convexity
heuristics to instantiate potential shallow structures. However, occluding boundaries
and figural constraints can provide reliable information in a static image for object

delineation. This static image constraint can be combined with dynamic testing for
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shallowness to achieve an organization of occluding contours and figures into shallow

and non-shallow structures.

Our work has used point and line tokens as the primitive image measurements
for the subsequent 3D interpretation. In relatively unstructured outdoor scenarios,

these tokens may not be consistent descriptors of structure in images over time.

" Presence of texture can be utilized in these domains along with occluding boundaries.

Thus, extensions to shallow structure tracking and reconstruction for handling image
intensity regions, along with points and lines, is another research direction that could

make the algorithm more widely applicable.

Shallow structure reconstruction is a partial derivation of scene structure in terms
of fronto—parallel planes. The ultimate goal of 3D reconstruction from motion is the
description of the scene in terms of surface patches with the boundaries — depth and
orientation — made explicit. To be able to achieve this, there is a need to conduct
research in two directions. First, representations for 3D surface shape and motion
need to be investigated so that a stable representation of shape can be separated
from the changing coordinate system of the camera. For discrete point features un-
der orthographic projection, this has been achieved in the recent work of Tomasi
and Kanade [89]. Second, appropriate image representations for matching images of
surface patches and their boundaries under coordinate transformations need to be
derived. Use of discrete features like points and lines leads to only a sparse recon-
struction. Interpolation of this sparse 3D data to obtain surfaces is a hard ill-posed
problem. Moreover, in a sequence of images, the motion of significant discrete struc-
tural features and the deformation of intensity patches both embody information

about 3D shape and motion.

In a recent work on stereo correspondence and surface reconstruction, Jones and
Malik [46, 47] used outputs of linear derivative filters to derive surface orientation

and location. Images can be represented using outputs of oriented filters at a num-
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ber of spatial scales applied all over each image. These outputs implicitly encode
the spatial frequency and orientation information available in an image. A fruitful
area of research can be the derivation of surface structure over time through warping
and matching these filter outputs. Alternatively, moments of intensity regions can be
utilized [59]. For instance, computation of the affine transformation using moments
and invariant axes has been shown in [54]. These image representations, when com-
bined with suitable motion and shape representations, might provide some handle on
the challenging problem of motion-based description of a scene in terms of smooth
surfaces while preserving discontinuities by demanding weak continuity constraints
[13]. Imposition of controlled continuity surface smoothness constraints on the 3D
information inferred from motion data will avoid the heuristic continuity constraints
currently used for the computation of optical flow.

Certain issues in shallow structure reconstruction need further exploration. First,
how can the transition from a shallow to a non-shallow model for an approaching
object be handled. The need here is to dynamically estimate the modeling error in
affine description of a structure being tracked. Second, more extensive testing in
a variety of imaging scenarios is required to further establish the robustness, and
pinpoint the areas of brittleness for the algorithm.

Finally, at an abstract level, the ideas developed in the shallow structure work and
the rotational trajectories work could be combined. The affine constraint provides
a basis for describing scene structure and motion in the small. Looking for possible
groupings amongst affine describable patterns by describing smooth trajectories in
the parameter space could be useful for segmenting multiple motions and separating

rigidity from non-rigidity.
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APPENDIX A

SOLUTION FOR THE ROTATIONAL TRAJECTORY
WHEN THE AXIS PASSES THROUGH THE ORIGIN

When the rotational axis passes through the origin, the matrix which represents

an image conic can be written as:
[Mezp] = [ d*[I] — (& + K)[b57] | (A.1)

This matrix can be normalized by d, assuming it is non-zero, and can be written in
terms of the ratio k/d (which is recoverable). The solution for the special case when

d is zero follows trivially from the non—zero case. The normalized matrix is:
k2
(Me) = [[1] - (14 5657 ] (A2)
The eigenvalue—eigenvector pairs for this matrix are:
kv
A1 = —(2') Az = 1 A3 = 1 (A3)

n,=b n,=n, ny=mn,

where n; and n3 are any two independent vectors in a plane normal to b. Note that
two eigenvalues are identical and the third one is of a different sign and magnitude.
In the more general case where the rotation axis does not intersect the origin this
redundancy of the eigenvalues does not occur.

In order to recover the 3D parameters of the trajectory from the image data, we

compute the eigenvalues of the matrix [M.m) derived from the conic fit algorithm.
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If two of the eigenvalues are same and the third one is different in magnitude and of
opposite sign, this implies that the trajectory is of a point rotating around an axis
passing through the origin. Let the eigenvalues of [Mcom| be A1, and Az = As. Since
[Meom] = [Mezp] (after adjustment of the scale factor a), these eigenvalues can be
identified with the eigenvalues of [M..p) calculated above. Then,

2
S=%/M (A4)

and b is the unit eigenvector for A;. Without loss of generality, b can be forced to lie
in the hemisphere of positive z directions. Then a unique sign for 5 can be determined
by invoking the fact that the imaged 3D trajectory must lie in front of the camera.
For the more general case, the resolution of this type of sign ambiguity is discussed
in Chapter 4.

Hence, for this case there is a unique, closed—form solution for the circular trajec-

tory in space given [Mcom), the conic section fit to the image point sequence.
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APPENDIX B

CONIC CURVE DESCRIPTION

A plane conic curve can be written in an implicit algebraic form as follows:
f(z,y) = Az®+ Bzy+Cy*+Dz+Ey+F = 0 (B.1)

or equivalently,
f(z,9) = 27Qz+2Th+F = 0 (B.2)

where,

o= %] -l +- 15

This is a homogeneous equation in six variables. It constrains its six defining
parameters only up to a scale factor. An advantage of representing a conic in this form
is that the particular type of conic emerges out of the parameters obtained through
a best fit. A negative discriminant, B®* — 4AC, implies that the conic is an ellipse,
a positive one implies that it is a hyperbola and an identically zero discriminant is
a parabolic form. Degenerate forms like the linear and circular are special instances
of parabolic and elliptical forms, respectively. One requirement for a curve-fitting
routine is that the parameters of the fit be covariant with respect to rotational and
translational transformations of the coordinate system [6]. That is, if we rotate and
translate the image coordinate system through a rotation R and a translation T which
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transforms each point z into z’ as z = Rz’ + T, then @, h and F should transform

as follows:

Q' = R'QR

k' = 2RTQT + Rh

F' = TPQT +T*h+ F

In other words, if the fitting algorithm computes @, A and F as the conic parame-
ters in the original coordinate system, then in the transformed coordinate system, the
resultant parameters should be Q’, A’ and F'. One way to achieve this is to use the
Euclidean distance between a point and the corresponding curve as an error measure
which, when minimized over the conic parameters, leads to the optimum parameters.
But the distance of a point to a conic is expressible exactly as a quartic equation [65]
which leads to a complex optimization function. So approximate distance measures

are used.

B.1 Algebraic Distance Measure

One simple error measure for conic fitting is the algebraic distance measure.
It is assumed that |f(z;,:)| is an approximation to the distance measure. Then,
¥: f(2i,¥:) is minimized over the whole set of sponsoring points in the six-dimensional
parameter space. Of course, a constraint on the six defining parameters is imposed
to fix the scale. The algebraic measure f2(z;,y;) is a scalar, and is invariant to the
coordinate transformations. Consequently, the variation of the constraining norm de-
termines if the fitting algorithm for this algebraic distance measure is covariant with

the coordinate transformations.
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The magnitude of the six-dimensional parameter vector can be constrained to be

unity. Then the optimization problem becomes

mgn pTSp subjectto pTp=1 (B.3)
where,
p = [ABCDEF]|T isthe siz— dimensional parameter vector,
m; = [z} 2 y? 2 v 1]|7 is the image measurement vector, and
S =

z m;m? is the scatter matriz, each term of which is the dyadic
i

product of a measurement vector.

The solution to this minimization problem [41] is the unit-norm eigenvector corre-
sponding to the smallest eigenvalue of S. Unfortunately, this simple scheme does not
satisfy the covariance requirement. The unit-norm condition on the parameter vector
is not covariant with the coordinate transformations.

Bookstein [16] suggests the use of inherently covariant measures of a conic as con-
straining norms. It is well known that the forms A + C and B? — 4AC are covariant
under the Euclidean group. The following lowest order positive definite invariant
can be formed from these quantities: (A + C)? + (B? —4AC)/2 = A* + B*/2 + C2.
Bookstein suggests setting the value of this norm to 2, leading to the following opti-

mization problem:

mzi’n p*Sp  subjectto pTNp=1 (B.4)

where S is the scatter matrix as before and N = diag( 1, 1/2, 1, 0, 0, 0 ).
Bookstein solves this in closed—form by partitioning the matrices S and N and

the vector p. Let,

[ Su S N1 o0
S‘[Sn sz,] N‘[o o]
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N1=diag(1,1/2,1) p=[p.T p. |

where the matrices S and N are partitioned as 3-by-3 sub-matrices and the vector

p is partitioned into 3-by-1 vectors. Thus, we have the following problem:

ngn pTSp = PxTSuP; + 2P1T512pz + PzTSzzp,

subject to p,TN1p1 =2
For any fixed p,, pT Sp is minimal when,
Ps = —S53 S1p, (B.5)
This implies that
P’ Sp = p{(S1 — 51255 Sa1)p1 = PSPy (B.6)

This is to be minimized with p,” N;p, = 2. The solution to this is the eigenvector of

matrix NSy, corresponding to that eigenvalue which minimizes the fit error.

B.2 First Order Distance Measure

One problem, in general, with the algebraic distance measure examined above is
that it underestimates the distance to a conic in high curvature regions of the conic
[74]. The level curves of the algebraic distance measure, f(z,y), are closely packed
in low—curvature regions and sparsely packed in high—curvature ones as illustrated in
Figure B.1. So, when there is considerable noise in the data, Bookstein’s algorithm,
based on f(z,y), may result in a bad fit as it tries to place the input set of points in

high curvature regions of the conic.
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Figure B.1: Hyperbolic and elliptic level curves.

An improvement over the algebraic distance measure is a first order distance
measure. Assuming that the points in the input data lie close to a level curve of
f(z,y) with level 0, it can be assumed that V f(=;,y;) is a good approximation to the
gradient at (z;,;) even when (z;,y;) does not exactly lie on f(z,y) = 0. Given this
observation, a first order approximation to the distance of a point from the conic is
| F(zi, %:)/ |V f(2i,%:)||- We can use the sum of squares of these distances over all the
points i as an error measure to be minimized by the fitting algorithm. Note that no
explicit constraint on the fit parameters need be imposed in this method as the scale
factor gets factored out by taking the ratio of the two terms. Now the unconstrained

minimization problem is:

. » G CR DN {CRD g (B.7)
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where f(z,y) is as in Equation (B.1) and

Vi) = 22w, e (.4)

= (24z+ By+ D)i + (2Cy+ Bz + E)j

Starting with the solution computed by Bookstein’s algorithm as an initial guess,
this minimization can be carried out by using any unconstrained non-linear iterative
optimization technique. We have used the BFGS-DFP quasi-Newton routine from
Numerical Recipes in C [95].
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