Connectionist Modeling and Control
of Finite State Environments

Jonathan Richard Bachrach

COINS Technical Report 92-6

January 1992

CONNECTIONIST MODELING AND
CONTROL OF FINITE STATE
ENVIRONMENTS

A Dissertation Presented

by

JONATHAN RICHARD BACHRACH

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 1992

Department of Computer and Information Sciences

CONNECTIONIST MODELING AND CONTROL
OF FINITE STATE ENVIRONMENTS

A Dissertation Presented

by

JONATHAN RICHARD BACHRACH

Approved as to style and content by:

Andrew G. Barto, Chair

Michael C. Mozer, Member

Roderic A. Grupen, Member

Christopher V. Hollot, Member

W. Richards Adrion, Department Chair
Computer and Information Sciences

To such
supercalifragilisticexpeeallidoescious
parents,

Lou Baby and Santa Fe,
who made my life possible and
filled my life with love.

I love you.

il

ACKNOWLEDGEMENTS

I am indebted to Andy Barto for being such a superior advisor. Above all, Andy
taught me how to write. He patiently read countless drafts and gave bunches of
helpful comments.

I would like to thank the entire UMass Adaptive NetWorks group: Chuck An-
derson. Steve Bradtke, Judy Franklin, Robbie Jacobs, Mike Jordan, Stephen Judd.
Brian Pinette, Satinder, Vijay, and Richard Yee. They have helped me greatly. I
would especially like to thank Robbie Jacobs and Brian Pinette. They both have
been good friends and good critics. Brian has also helped me refine my ideas on
robot navigation.

Dave Rumelhart has been very influencial and generous to me. I spent a year in
his lab as a visiting graduate student. Most of the navigation ideas were developed
with him while visiting his lab. I am constantly awed by his genious.

While in Dave's lab I benefited from my interactions with the other members
of the PDP group: Bo Curry, Richard Durbin, Richard Golden, Chris Kortge. Ben
Martin, Dan Rosen, Charlie Rosenberg, and Peter Todd. During that time I had the
pleasure of working very closely with Richard Durbin. He was extremely helpful and
I benefited enormously from my interactions with him. Richard is one smart man.

Mike Mozer and [have collaborated on ideas for several years now. He has been
very instrumental in my thinking about the ideas presented in this dissertation. Fur-
thermore, he has directly contributed some of these ideas, especially those presented
in Chapter 3. Mike Mozer is one impressive thinking fellow.

Earlier in my graduate career I spent two summers working at GTE labs. There
I had the honor of working with Rich Sutton. Above all, Rich taught me how to be

a good scientist.

v

I had the pleasure of working with Mike Jordan while he was a post doc at UMass.
His thoughts on motor control have been enormously influencial on me. Mike Jordan
is one amazing renaissance fellow.

Finally, this research was supported by funding provided to Andrew G. Barto by
the Air Force Office of Scientific Research, Bolling AFB, under Grant AFOSR-39-

0526, and by the National Science Foundation under Grant ECS-8912623.

\7

ABSTRACT

CONNECTIONIST MODELING AND
CONTROL OF FINITE STATE
ENVIRONMENTS

FEBRUARY 1992
JONATHAN RICHARD BACHRACH,
B.S.. UNIVERSITY OF CALIFORNIA., SAN DIEGO
M.S., UNIVERSITY OF MASSACHUSETTS
Pu.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Andrew G. Barto

A robot wanders around an unfamiliar environment, performing actions and
observing their perceptual consequences. The robot’s task is to construct a model of
its environment that will allow it to predict the outcome of its actions and to determine
what action sequences take it to particular goal states. In any reasonably complex
situation, a robot that aims to manipulate its environment toward some desired end
requires an internal representation of the environment hecause the robot can directly
perceive only a small fraction of the global environmental state at any time; some
portion of the rest must be stored internally if the robot is to act effectively. Rivest
and Schapire [72, 74, 87] have studied this problem and have designed a symbolic
algorithm to strategically explore and infer the structure of finite-state environments.
At the heart of this algorithm is a clever representation of the environment called

an update graph. This dissertation presents a connectionist implementation of the

vi

update graph using a highly specialized network architecture and a technique for
using the connectionist update graph to guide the robot from an arbitrary starting
state to a goal state. This technique requires a critic that associates the update
graph’s current state with the expected time to reach the goal state. At each time
step, the robot selects the action that minimizes the output of the critic. The
basic control acquisition technique is demonstrated on several environments, and
it is generalized to handle a navigation task involving a more realistic environment
characterized by a high-dimensional continuous state-space with real-valued actions
and sensations in which a simulated cylindrical robot with a sensor belt operates in
a planar environment. The task is short-range homing in the presence of obstacles.
Unlike many approaches to robot navigation, our approach assumes no prior map
of the environment. Instead, the robot has to use its limited sensory information
to construct a model of its environment. A connectionist architecture is presented
for building such a model. It incorporates a large amount of a priori knowledge in
the form of hard-wired networks, architectural constraints, and initial weights. This
navigation example demonstrates the use of a large modular architecture on a difficult

task.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . o\ttt ittt ettt e e e e e e e e e e e e e e v

ABSTRACT o o ottt e e e e e vi

LIST OF TABLES . . oot ittt et et et e e e e e e e e s e s e X

LIST OF FIGURES . . . ottt e e e e e e s s e Xi
CHAPTER

1. INTRODUCTION . o e e e s s s s 1

1.1 Partial State Information 2

1.2 Modeling 3

1.2.1 State Estimation and Real-World Issues 10

1.2.2 Connectionist Networks 11

1.2.3 Our Modeling Approach 12

1.3 Control Acquisition e 15

1.3.1 Partial State Information 16

1.4 Navigation o 17

1.5 Organization of the Dissertation 19

2. PREVIOUS MODELING RESEARCH 20

2.1 Techniques Based on Linear System Theory 23

2.2 Connectionist Modeling Methods 27

2.2.1 Delay-Coordinate Models 27

2.2.2 State-Space Models L. 28

2.2.3 Relation of SLUG to Previous Connectionist Architectures . 34

2.3 Finite State Automaton Identification 35

2.3.1 Automata Theory 35

2.3.2 General Systems Theory 36

2.3.3 Computational Learning Theory 38

2.3.4 Relation of SLUG to Finite State Automaton Identification . 40

2.4 Conclusion e e e e e e e 41

viil

3.1 Environments 42

3.2 The Update Graph 16
3.2.1 The Rivest and Schapire Learning Algorithm 49

3.3 Connectionist Approach to Modeling Environments 50

3.4 Training SLUG 51

35 Results L 58

3.6 Comparing SLUG and Other Connectionist Approaches 63

3.7 Limitations of SLUG 70

4. LEARNING TO CONTROL A FINITE STATE AUTOMATON ... 72
4.1 Tralning 73

4.2 SimulationResults L. L 75

4.3 Relation to Other Work 30

4.4 Discussion of Other Possible Approaches 86

5. NAVIGATION ... 88
5.1 Artificial Potential Functions 91

5.2 The Navigation Architecture 93

53 Training 101

5.4 Perceptual Servoing o L Lo 107

55 Results L 108

5.6 Discussion 110

57 Fatwre Work Lo oo 113

5.8 Related Research 119

6. CONCLUSIONS . . . e e e 122
APPENDIX. THE UPDATE GRAPH 126
A.1 The Diversity Representation 126

A2 The Update Graph 129

A.3 The Rivest-Schapire Learning Algorithm 132
REFERENCES i i e e 137

x

Table

1

3.

4.

1.

(1]

(1]

>~ >

1

1

(W)

1

(S

3

—

(8

—

|89

LisT oF TABLES

Page
A Two-Dimensional Categorization of the Various State Representa-
tions for Finite State Environments. 5
Number of Steps Required to Learn Update Graph. 67
Number of Steps Required to Learn Update Graph as the Number of
Units in SLUG Is Varied. 70
The Control Acquisition Architecture was Applied to these Environ-
ments with their Respective Goal States. 75
An Example State/Action Sequence for the Car Radio Environment. 77
Performance of the Control Acquisition Architecture. 79
The Gradient Descent Procedure for Choosing Actions 106
The Gradient Descent Procedure for Perceptual Servoing. 107
Diversity-Based Inference Procedure. 133
Probabilistic Procedure for Determining ¢t = t' Given Tolerable Prob-
ability of Errore. o oo 135

Figure

1.1

LIST oF FIGURES

An Example of the Need for Internal State in the n x n Checkerboard
Environment.

...............................

The 3-Bit Shift Register Environment.

.................

The State Transition Graph Machine for the 3-Bit Shift Register En-
vironment

Connectionist Control Acquisition Architecture.

An Example of a FSA that Cannot Be Accurately Modeled with a
Delay-Coordinate State Representation..

An Example of the Unfolding Procedure which Turns Recurrent Net-
works into Feed-Forward Networks.

The Jordan Feedback Architecture.
The Elman Feedback Architecture.
The Little Prince Environment.
The Car Radio Environment.
An Example of the n-Bit Register Environment.
An Example of the n x n Grid Environment.
An Example of the n x n Checkerboard Environment..
The Mechanics of the Update Graph.
The Update Graph for the 3-Bit Shift Register.

Slug Depicted as a Separate Weight Matrix for Each Action.

SLUG Is Dynamically Rewired Contingent on the Current Action. . .

xi

-1

13

16

[)
(8]

30
33
34

43

3.10

3.11
3.12

3.13

3.14

(1} 1 ot Ut
—~1 o) U -

ot
o)

5.9
5.10

5.11

SLUG’s Weights at Three Stages of Training for the 3-Bit Shift Register
Environment. L L 59

The Underlying z,;; Parameters. 60
The Pattern of Activity in SLUG at Six Consecutive Time Steps. . . 60

Weights Learned by SLUG with Six Units and Unconstrained Weights

for the 3-Bit Shift Register Environment. 63
Weights Learned by SLUG with Three Units and Unconstrained Weights

for the 3-Bit Shift Register Environment. 65
Connectionist Control Acquisition Architecture. 3
Summary of the Control Law and Evaluation Function for the 3-Bit

Shift Register Environment. 6
Two Example Trajectories for the 8 x § Checkerboard Environment. . 77
The Output of the Adaptive Critic at Each of the Squares in the 8 x 8
Checkerboard Environment. 78
Learning Curves for the 4-Bit Shift Register Environment. 81
Control Architectures. 383
The Simulated Robot. L. 88
The Navigation Simulator. 90
The Artificial Potential Function Method. 92
The Navigation Architecture. 94
The Sensor Value Smoothing Process. 96
The Operation Of The Range-Flow Model. 97
The Range-Flow Model Network. 99
Gaussian Interpolation. L oL 100
A CriticNetwork. o e 101
The Clustering Phase. 103
The Response of Single Gaussian Hidden Units Across the Robot’s
Environment. 103

xii

(14
—
(8N4

5.16

Ut
—
-1

ot
P
(07+]

19

(W]

Ot
| S
o

t
SV
i

A4

A5
A.6

The Total Response of All the Gaussian Hidden Units Across the
Robot’s Environment.

Two Examples of Perceptual Servoing in the Door Environment. . . .
The Obstacle Environment.

.......................

Contour Plots of the Outputs of the Homing Critic and the Combined

Homing and Obstacle-Avoidance Critic for the Obstacle Environment.

Contour Plots of the Outputs of the Homing Critic and the Combined
Homing and Obstacle-Avoidance Critic for the Door Environment. . .

Trajectories Formed on the Obstacle Environment Using Only the
Homing Critic.

Trajectories Formed on the Door Environment Using Only the Homing
Critic. e

Trajectories Formed on the Obstacle Environment Using the Homing
and Obstacle-Avoidance Critic.

Trajectories Formed on the Door Environment Using the Homing and
Obstacle-Avoidance Critic.

An Autoencoder Network for Learning a Two-Dimensional Code for
Views. e e e e

The Result of Training an Autoencoder on a Simple Environment
Without Obstacles.

The Influence of Destination on Obstacle-Avoidance.

110

111

113

114

Some Test Equivalence Classes for the 3-Bit Shift Register Environment.127

The Diversity-Based State Variables for the 3-Bit Shift Register Envi-
ronment. oL L L L oL e e e e e e e e e e

The Values for the Diversity-Based State Variables for the Given State
of the 3-Bit Shift Register.

Some Relationships Between Canonical Tests for the 3-Bit Shift Reg-
ister Environment. Lo 0 oo oo

The Update Graph for the 3-Bit Shift Register.

A Series of Steps in the Diversity-Based Inference Process of the Up-
date Graph for the 3-Bit Shift Register Environment.

xiil

129

129

CHAPTER 1

INTRODUCTION

A robot is placed in an unfamiliar environment. It explores the environment by
performing actions and observing their perceptual consequences. The robot’s task
1s to construct an internal model of the environment that will allow it to predict
the outcome of its actions and to determine what sequences of actions it should
take to reach particular goal states. This scenario is extremely general. applying not
only to physical environments, but also to abstract and artificial environments such
as electronic devices (e.g.. a VCR, phone answering machine, car radio), computer
programs (e.g., a text editor), and classical Al problem-solving domains (e.g.. the
blocks world). Any agent—human or connmfer———that aims to flexibly manipulate
its environment toward some desired end requires an internal representation of its
environment because, in any reasonably-complex situation, the agent can directly
perceive only a small fraction of the global environmental state at any time; some
portion of the rest must be stored internally if the agent is to act effectively.

The goal of this thesis is to develop connectionist learning algorithms that can
efficiently construct models of, and controllers for, unfamiliar environments. In
each environment, the robot has a set of actions it can execute to move from one
environmental state to another. At each environmental state, a set of sensations can
be detected by the robot. The sensation values comprise the robot’s view.

A model is used to predict the environment’s behavior, and a controller is used to

determine sequences of actions that efficiently lead to desirable environmental states.

9

=

The modeling task involves constructing a model that mimics the behavior of the
environment in the sense that, given an identical sequence of actions, the model will
vield predictions of the sensations that match those produced by the environment.
Although a model cannot be constructed without carefully exploring the environment,
the emphasis of this thesis is not on the exploration problem. and the most primitive
exploration strategies are assumed. The control task involves producing a minimal

length sequence of actions to reach a particular goal state.

1.1 Partial State Information

We assume that an environment is a discrete-time dynamical system with finite
state set. and we assume the robot has only partial knowledge of the state set, the
state transition function, and the output function. Furthermore, we assume the
robot has only limited knowledge of the current environmental state at any time
step. One central focus of this thesis is on environments with incompletely observed
states. Any particular view can be generated from more than one environmental state;
that is, the mapping from environmental states to views is many-to-one. Whitehead
and Ballard [104] call this problem perceptual aliasing and call a view perceptually
ambiguous if it can represent multiple environmental states.

Model building and control are particularly difficult when the robot does not
have access to the complete state of the environment. In many cases, the robot’s
current view will not suffice for the particular task because the model and controller
might have to output different values in different environmental states having the
same or similar views. As an example, consider the problem of learning to predict
the view after taking a particular action in the 4 x 4 checkerboard environment shown
in Figure 1.1. Half the squares in the environment yield the same sensations and are
thus perceptually ambiguous (assuming the robot sees only one square at a time).
For example, the two squares labeled A and B in Figure 1.1 yield exactly the same

view, and without some mechanism to disambiguate these squares, it is impossible

Figure 1.1. An Example of the Need for Internal State in the n x n Checkerboard
Environment. The checkerboard environment consists of an n x n grid of squares.
The robot occupies a particular square and can sense the landmark in that square. if
any. There are a number of unique landmarks distributed in a checkerboard pattern
across the grid. These are depicted as the numbers in the squares. Half of the squares
have no landmark and are indistinguishable from each other. At each time step the
robot can move either up. down, left. or right one square. Movement off one edge of
the grid wraps around to the other side.

to learn a model of this environment. Without such a mechanism, a model must
predict—incorrectly—that the next view after moving right starting in the squares
labeled A and B will be the same; whereas in fact, the actual next view would be

landmark 2 and landmark 3 respectively. In order to solve this problem. the learning

system must represent the state of the environment in some fashion.
1.2 Modeling

A learning system can represent the environment’s state by constructing a model
of the environment. The learning system is trained to produce a model with infernal
states that correspond to environmental states and that serve to distinguish the
perceptually ambiguous environmental states. A state representation captures the
salient aspects of the unbounded history of the environment’s behavior necessary
to predict the environment’s future behavior. We present two canonical representa-

tions that correspond to the extremes of the representational spectrum. These are

4
the delay-coordinate representation and the state-space representation. (These two
techniques are discussed in greater detail in Chapter 2.) Each succinctly encodes an
environment's past behavior.

In the delay-coordinate representation, the environment’s state is encoded as a
fixed number of past actions and views. Engineering techniques that use this repre-
sentation include adaptive filters [105] and DARMA (Deterministic Auto Regressive
Moving Average) models [30). Note that some FSA's cannot be accurately modeled
using a delay-coordinate state representation. (See Chapter 2 for an example of such
an FSA.)

Because of this limitation, we restrict our attention to the state-space represen-
tation, where the state of the environment is represented in the model as the value
of a vector of state variables. In this case, the state representation corresponds
to the particular encoding of the environmental state by the state variables. The
many state-space approaches for building models of finite state environments can
be compared and contrasted along two main dimensions that refer to the state
representation. The first dimension pertains to the range of values that can be
taken by each state variable. Two representations are distinguished: the discrete
representation in which the range of each state variable is a finite set, and the
continuous representation in which the state variales are real-valued. For the purposes
of this discussion and without loss of generality, the state variables in the discrete
representation are Boolean variables. The second dimension concerns how states are
assigned to patterns of values of the state variables. Again two representations are
distinguished: the localist representation. which assigns each environmental state to
an individual state variable, and the distributed representation, which encodes each
environmental state as a pattern of values across multiple state variables. Table 1.1
summarizes the four possible combinations of range and encoding distinctions we

have made. In the following text we are concerned with three of these, which

(1]

Table 1.1. A Two-Dimensional Categorization of the Various State Representations
for Finite State Environments. The first dimension refers to the range of each
state variable, and the second dimension refers to the encoding of state across state

variables. Machines that update the values on these state variables are listed in three
of the entries.

| || Localist] Distributed |
Discrete State Transition Graph Machine | Update Graph
Continuous State-Space Model
SLUG

we call the discrete-localist approach. the discrete-distributed approach, and the
continuous-distributed approach.

It is equally important to discuss the mechanism by which the values of state
variables are calculated. For the purposes of this dissertation. we consider a restricted
class of machines that update the values of the state variables. (For now we do not
consider the important problem of how the robot’s sensations can be predicted based
on the internal state of the machine.) The state variables’ values are updated using a
network of primitive machines. where each machine updates one of the state variables.
Each primitive machine computes the value of its state variable as a function of the
robot’s chosen action and the values of state variables associated with other machines

in the network to which it is connected.

Figure 1.2. The 3-Bit Shift Register Environment. White squares indicate that the
bit is on. and shaded squares indicate that the bit is off. The leftmost square is
enclosed in a bold frame to symbolize that it is a sensation.

We describe an example machine for each main representational approach shown
in Table 1.1 We call these machines the discrete-localist machine. the discrete-distributed
machine, and the continuous-distributed machine. Note that although continuous-
distributed machines are not FSA's, theyv can represent the behavior of FSA's. In
order to facilitate comparisons. we define the size of a machine to be the number of
primitive machines of which it is composed plus the number of connections between
the primitive machines. We illustrate these various machines and their associated rep-
resentations by considering the 3-bit shift register environment shown in Figure 1.2.
In this environment, the robot senses the value on the leftmost bit of an n-bit shift
register, can rotate the register left or right, and can flip the leftmost bit.

In a discrete-localist machine for the 3-bit shift register, each state of the register
is represented by a state variable. The value of the state variable corresponding to
state ¢ of the register is one if the register’s state is ¢ and is zero otherwise. Thus,
only one state variable has value one at any time step. The values of state variables
in this discrete-localist representation can be updated using a state transition graph
machine, where each node in the graph is a primitive machine with one state variable.
Labeled links connecting each node of the graph to other nodes correspond to the
actions that the robot can execute to move between environmental states.

Associated with each node is a set of discrete-valued sensations that can be
detected by the robot when the environment is in the corresponding environmental

state. Figure 1.3 shows the state transition graph machine for the 3-bit shift register

-1

F F

F

110
F

L R

L P

101
R P

Figure 1.3. The State Transition Graph Machine for the 3-Bit Shift Register Envi-
ronment. Each box represents a state with the shade of the box coding the single
sensation value for that state. A shaded square indicates that the leftmost bit is off, a
light square that the leftmost bit is on. The transitions are depicted as arrows labeled
with the actions, where L is shift left. R is shift right. and F is flip the leftmost bit.
environment. Each node is identified by the corresponding environmental state,
labelled by the settings of bits in the shift register. This environment has 2° = 8
states, one for each of the possible settings of the bits in the register. Here, there
is only one sensation, the value of the leftmost bit. which is depicted in Figure 1.3
by the shade of the node. Each link between nodes is labeled with one of the three
actions: flip (F). shift left (L), or shift right (R).

The state transition graph machine is one way to represent the behavior of the
environment. If the state transition graph machine is known, one can predict the
sensory consequences of any sequence of actions. Further, the state transition graph
machine can be used to determine a sequence of actions needed to obtain a certain
goal state. For example, if the robot wishes to turn on all the bits in the register. it

should follow a link or sequence of links in the state transition graph machine that

lead to the node in which all the bits are on.

3

Although one might try developing an algorithm to learn a state transition graph
machine, Schapire (in ref. [87]) presents several arguments against it. * Most im-
portantly, the state transition graph machine does not take advantage of all the
regularities present in the environment. For example. in the n-bit shift register, the
action F has the same behavior independently of the value of the unobservable bits
(i.e., the bits other than the leftmost bit), yet in the state transition graph machine
of Figure 1.3, knowledge about F must be separately encoded for each bit and in the
context of the particular values of the other bits. Thus. the simple semantics of an
action like F must be encoded repeatedly for each of the 2" distinct states. The size of
a state transition graph machine is insensitive to this kind of environmental regularity.,
and consequently. the running time of any learning algorithm that produces a localist
machine is equally insensitive.

As an alternative, one could construct a distributied machine that utilizes fewer
primitive machines than environmental states. where the representation of each envi-
ronmental state is distributed across the state variables of these primitive machines.
The hope is that the distributed machine would be smaller than the size of the state
transition graph machine, that is. there would be fewer state variables and fewer
connections needed. In the shift register environment. the bits of the shift register
form a discrete-distributed state representation. A distributed machine using this
state representation would have n state variables instead of the 2" needed for the
state transition graph machine. (Distributed machines are discussed in more detail
below, in Chapter 3, and in the Appendix.)

One common approach (cf. Kohavi [14]) is to first construct the state transition
graph machine. and using this graph. to then create a more compact distributed

machine. Although the end product of this process is a smaller machine, the problem

1Schapire actually presents arguments against developing an algorithm to learn a state transition
graph, but the same arguments apply to algorithms for learning state transition graph machines.

9

1s that thellea.rning time would still be a function of the size of the state transition
graph machine instead of the size of the more compact distributed machine. 2

A better approach—the approach taken in this thesis—is to learn a distributed
machine directly. Rivest and Schapire [72, 74. 87] developed a discrete-distributed ma-
chine, called an update graph. that is a network of primitive FSA's. The update graph
maintains a particular discrete-distributed state representation. called the diversity
representation. (The details of the diversity representation and the update graph
are presented in Chapter 3 and in the Appendix.) Rivest and Schapire developed
a learning algorithm that explores the environment and incrementally constructs an
update graph.

The third approach to constructing an environment model is the continuous-
distributed approach. This approach is typified by traditional engineering methods,
where the problem of constructing a model is called system identification. We consider
one particular continuous-distributed machine from the engineering literature called
a state-space model. Other engineering approaches are discussed in Chapter 2. In
contrast to the primitive FSA machines used in the discrete approach. the primitive
machines used in the traditional state-space model calculate the values of their state
variables as real-valued linear functions of the selected action and the values of the
state-variables of the machines to which they are connected. These functions are con-
structed using a set of real-valued parameters, which we called weights. The number
and interconnectivity of these primitive machines is fixed a priori. Constructing a
state-space model amounts to first choosing the number and interconnectivity of the
primitive machines and then choosing a set of weights that gives the best prediction
performance. This last step is called parameter estimation in the engineering litera-

ture. It differs significantly from Rivest and Schapire’s symbolic learning algorithm

2The usual approach actually produces the state transition graph as the intermediate result, but
the complexity arguments still apply.

10
which constructs a graph of primitive machines by incrementally adding new machines
and their connections.

Our connectionist method. called SLUG. performs Subsymbolic Learning of Up-
date Graphs. It is related to both the Rivest and Schapire approach and the tra-
ditional engineering approaches. We show that our connectionist method offers
complementary strengths and new insights into the problem of building a model
of a finite state environment. SLUG is a continuous-distributed method utilizing a
connectionist network that shares many of the qualities of the engineering approach:
it uses real-valued state variables. a fixed network topology, parameterized primitive
machines, and parameter estimation to select weight values. In contrast to the
traditional engineering approach. SLUG uses primitive machines, called units, that

calculate the values on their state variables using a nonlinear function. We discuss the

SLUG in Section 1.2.3.

1.2.1 State Estimation and Real-World Issues

Before going into more detail. we first address a problem related to the con-
struction of an environment model: the problem of setting a model’s state to most
closely correspond to the environmental current state. This problem is called stafe
estimation in the engineering literature, and it is necessary because only part of the
environmental state or a function of the environmental state is directly measurable
and/or the available state information is noisy. The engineering approach views
this as an optimization problem. Rivest and Schapire propose a different approach
for solving this problem in the discrete case, and we discuss their technique in the
Appendix.

It is important to point out that parameter and state estimation are particularly
difficult for autonomous robots acting in the real world (cf. Kaelbling [38]), where

the robot is continually receiving inputs and executing actions in its environment.

11

The robot must be able to keep up with the important events in the environment
and thus cannot spend an unbounded amount of time in computing each action.
Tllel'ef01‘e, any algorithm must operate within a fixed time frame. In addition, an
autonomous robot generally neither has access to a reset command, which places the
environment in a known state, nor an undo command, which restores the state of
the environment to the state existing prior to the execution of the last action. Thus,
a state estimation algorithm must perform while the robot s continually interacting

with its environment.
1.2.2 Connectionist Networks

The proposed connectionist approach differs from the traditional engineering
approach by using a novel class of parameterized nonlinear network models. Connec-
tionist networks are composed of simple differentiable nonlinear processing elements
called units. The units are connected to each other and pass activity through weighted
connections. Each unit computes its activity as a nonlinear function of a set of
parameters, called weights, and its inputs: its output is transmitted to other units to
which it is connected. The units. connections, and weights constitute a connectionist
network.

Gaussian and logistic units are two popular unit types. A Gaussian unit computes
its output as follows:

—zv(w)—xjjg
o2

y=e , (1.1)

where y is the output of the unit, w; is the j* weight of the unit, z ; is the j™ input,
and o is the variance parameter. The logistic unit computes its output as follows:

1

= — . 1.2
Y e (-2

The activities of the input units serve as the inputs to the network, while the activities

of the output units provide the output of the network. Units that are neither input

nor output units are called hidden units. Feedforward networks are networks without

12
cycles in their connection graphs. Recurrent networks have cycles. that is. they
contain feedback connections in addition to feedforward connections.

Connectionist networks have a number of attractive properties (as pointed out
in ref. [6]) that make them appropriate for learning models of, and controllers for,
nonlinear systems. They can be implemented in fast parallel hardware. gradient
calculations useful for parameter estimation can be computed very efficiently with
the back-propagation algorithm (developed by le Cun [48]. Parker [65]. Rumelhart,
Hinton, and Williams [83], and Werbos [101]), and learning rules for connectionist
networks are predominantly on-line algorithms. All these properties make networks
attractive for real-time processing. Given enough units. networks can represent any
function to any desired degree of accuracy (Hornik. Stinchcombe, and White [32]).
Because of the statistical nature of connectionist learning rules, connectionist net-
works are able to learn in spite of noise in the examples, and they can also learn
to approximate probabilistic functions in a principled fashion [31]. Furthermore,
connectionist networks provide a variety of methods for encoding prior knowledge in
the form of particular architectures. weight constraints, and initial weights. Finally,
connectionist networks provide the flexibility to enhance the representation of the
inputs without modifying the basic learning procedure. For example. the basic
back-propagation learning algorithm applies to a large class of networks with various

network architectures and unit types.

1.2.3 Owur Modeling Approach

Our basic learning architecture is a recurrent network as shown in Figure 1.4.
The network is composed of a fixed number of units, called state units, that serve
as the state variables of the model. Some of these units are called observable state
units and serve to predict the sensations. The remaining state units are called hidden
state units and serve to encode state information useful for predicting the sensations

and disambiguating perceptually ambiguous environmental states. The state units

13

Predicted
Next View

Figure 1.4. The SLUG Architecture. In this architecture there is one set of weights
for each action. The weights are determined by the current action.

are fully connected to each other yielding a fully-connected recurrent network. Each
unit has a separate set of weights for each of the robot’s available actions. and the
weights at any moment are determined by the chosen action. The outputs of the
network are computed using a weighted sum involving the current weights (i.e., the
weights for the chosen action) and the previous output of the state units. Although
nonlinearities are introduced by the operation of choosing a set of weights based on
the chosen action, the behavior of the network at any one time step is linear.

The technique called back-propagation in time [33] is used to modify the weights
of the network to improve prediction performance. It is an algorithm for calculating
the gradient of an error measure with respect to the weights of recurrent networks.
In this case, the error measure is the squared error between the predicted and the
actual sensation values.

In order to produce better state estimates, the actual instead of the predicted
values of the sensations are used for computing the model’s next state, where the

sensations are assumed to be noise-free. In keeping with Williams and Zipser [106],

14

this technique is called feacher Jorcing. The combination of hoth back-propagation

I time and teacher forcing provides a means for performing parameter and state

estimation simultaneously.

A unique feature of this type of network architecture is that a special case of it,
called SLUG, can learn an update graph realization of an FSA. An update graph
has a natural and direct connectionist implementation. It has a number of beneficial
properties that differentiate it from typical connectionist representations of FSA.
After training, because the activities and weights are discrete, SLUG can perfectly
predict the sensations infinitely far into the future. Additionally. the state units are
readily interpretable within the update graph formalism. Many formal and empirical

results exist (cf. Rivest and Schapire [73. 87]) that lend intuition and rigor.

Others have taken similar approaches to the modeling problem. Our approach is
related to more traditional engineering approaches such as state-space and DARMA
models. These relations are elaborated in Chapter 2. The idea of back-propagation in
time has been used to model nonlinear dynamical systems [79]. Recently. a real-time
variant of this procedure was developed and demonstrated by Bachrach [3]. Mozer [55],
Robinson and Fallside [76]. and Williams and Zipser [106]. Rivest and Schapire [73, 87]
explore a learning algorithm for inferring update graphs using a discrete-distributed
representation (as opposed to the continuous-distributed representation used in this
thesis). Giles et al. [26] discuss a bilinear recurrent network for learning regular
languages. Whitehead and Ballard [104] discuss an alternative approach for dealing
with the problem of perceptually ambiguous environmental states. In their formula-
tion, they separate the perceptual state from the environmental state. For instance,
the environmental state might be the position of the robot in its environment, and
the perceptual state might be the orientation of the robot’s sensors. An unrealistic
requirement on their approach—one that does not hold in the environments that

we consider—is that each environmental state must have at least one perceptual

state that yields an unambiguous view. that is, a view unique to that environmental

15
state. Unlike their approach. our technique does not require this assumption and
will work in environments where their technique fails. Chapter 3 expands on the
relationship between the proposed approach and similar approaches taken by others.

Mozer and Bachrach have reported on some of the work presented in this disserta-

tion [57, 58, 60. 59, 5].
1.3 Control Acquisition

Having discussed methods for learning a model of the environment, we turn to a
control acquisition architecture that can use this model to determine a minimal length
sequence of actions to follow to reach a particular goal state. We call the particular
control task addressed in this thesis the homing task (which is an example of what
is called an optimal regulation task in the control literature). It involves producing
actions that cause the environment state to change from an arbitrary starting state to
a given goal state in minimum time. A technique is described for training a controller
to perform the homing task. This training process is referred to as control acquisition.

The robot acquires the desired homing behavior using a learning paradigm called
reinforcement learning. It is useful to distinguish this paradigm from another learning
paradigm called supervised learning. In supervised learning, the robot is given desired
actions, whereas in reinforcement learning, the robot is given only reinforcement
signals, which do not directly specify the desired actions. In the latter case, the robot
must estimate the desired action by comparing given reinforcement signals for various
actions taken over time.

As an additional difficulty, the robot must solve a sequential decision task whose
objective is to maximize a performance measure that evaluates its behavior over an
extended period of time. Although the performance measure evaluates the efficiency
of a homing trajectory, the robot is given only a signal that indicates when it is

located at the goal. From this limited reinforcement signal, the robot must determine

a minimal length sequence of actions necessary for homing. This poses a difficult

16

Time to Goal
/]

Adaptive
Critic

Sensation
Predictions

Model

T __|

Hidden State

Action Sensations

Figure 1.5. Connectionist Control Acquisition Architecture.

credit assignment problem because the consequences of the actions reveal themselves

over time and interact with the consequences of other actions.
1.3.1 Partial State Information

In order to make the control acquisition task more realistic, we consider the impact
of partial state information on control acquisition. As an example of the difﬁculfy of
partial state information, consider the problem of learning to go to the home square,
labeled 2, in the 4 x 4 checkerboard environment shown in F igure 1.1. As before,
the two squares A and B on opposite sides of square 2 vield exactly the same view.
Without some mechanism to disambiguate these squares it is impossible to learn an
optimal control rule for this environment.

To handle the problem of partial state information we propose a control acqui-
sition architecture that uses the model described in Section 1.2.3 to determine a

minimal sequence of actions required to reach a goal state. The architecture consists

of a model and an adaptive critic as shown in Figure 1.5. The adaptive critic associates

17
the model's current state with the expected time to reach the goal state. At each
time step, the action is chosen which minimizes the output of the adaptive critic. The
adaptive critic is trained using a temporal difference (T'D) method to make successive
predictions of time to reach the goal state decrease by one and to make the prediction
at the goal state zero.

The proposed control acquisition technique was motivated by the work of other
researchers. Barto, Sutton, and Anderson [8] and Sutton [94. 95) developed the
temporal difference method which is related to a technique invented by Samuel (85].
Sutton. Barto, and Anderson [8] and Barto [6] demonstrate a direct reinforcement
learning technique involving the temporal difference method for training a controller.
Watkins [99], Sutton [94], Barto [6]. and Kaelbling [38] discuss reinforcement learning
issues and methods. Whitehead and Ballard [104] discuss the partial state information
problem in control acquisition and propose a mechanism to handle it. Werbos (102]
developed a control network, called the 3-net archi tecture, involving an adaptive critic,
model, and controller which is most similar to the proposed control network. Jordan
and Jacobs [36] and Werbos [102] discuss a related control network, called a 2-net
architecture, involving an adaptive critic and a controller. These and other related

approaches are elaborated in Chapter 4.

1.4 Navigation

In chapter5, we describe simulations of a cylindrical robot with a sonar belt in
a planar environment. The navigation task is short-range homing in the presence of
obstacles. A control acquisition architecture is used for navigation which incorporates
a large amount of a priori knowledge in the form of hard-wired networks, architectural
constraints, and initial weights. This architecture, with critic and model, is basically

the same as shown in Figure 1.5. This example demonstrates the use of a large

modular architecture on a difficult task.

18

We study this task in order to consider the complexities of more realistic envi-
ronments characterized by high-dimensional continuous state-spaces and real-valued
actions and sensations. This portion of this dissertation does not address the problem
of partial state information: we assume that all environmental states are perceptually
unambiguous. We make this simplification in order to bring to the foreground the
issues of control acquisition in high-dimensional continuous state-spaces. Of course,
we would eventually like to merge the techniques developed in this portion of this
dissertation with those developed to handle partial state information.

The navigation task requires the solution of a number of problems. The sensory
information forms a very high-dimensional continuous space, and successful homing
generally requires a nonlinear mapping from this space to the space of real-valued
actions. Furthermore, training networks with logistic hidden units is not easy in this
problem. Instead we use networks with Gaussian hidden units. but because the state
space is high-dimensional and continuous it is impractical to just uniformly distribute
the receptive fields of these Gaussian units throughout the state space. Instead we use
Gaussian units whose initial weights (and thus receptive fields) are determined using
expectation maximization. This is a soft form of competitive learning (cf. Nowlan [63)
and Durbin [19]) that, in our case, creates spatially-tuned units.

Unlike many approaches to robot navigation, our approach assumes no prior
map of the environment. The robot has to use its limited sensory information to
construct a model of its environment. Given this sensory information, models of
the robot’s environment are much more difficult to learn than models for the FSA
environments discussed in Section 1.1. For this reason we use a hard-wired model
whose performance is good in a wide range of environments. Here the philosophy is to
learn only things that are difficult to hard-wire.? Finally, it is difficult to reach home

using random exploration, thereby making simple trial-and-error learning intractable.

3Note that, in the future, when we consider even more realistic environments involving perceptual
ambiguity and/or realistic sensors, it will be necessary to construct models.

19
The solution to this problem involves building a nominal initial controller that chooses
straight-line trajectories home.

Our approach is related to other navigation research as follows. The basic ap-
proach is strongly related to our control acquisition approach and related research (see
Section 1.3). Our approach is also related to a more traditional technique for navi-
gation that uses potential functions (see Latombe [47] for an overview). Briefly, our
approach differs from the usual potential function technique in two fundamental ways.
First, our technique involves learning and can adapt the robot’s behavior to produce
efficient trajectories. Second. our technique does not require explicit object models;
it constructs representations directly from the sensory information. Our approach is
similar to the subsumption architecture proposed by Brooks [13]. Our approach and
that of Brooks both involve the orchestration of multiple behaviors through the use
of multiple experts, but in contrast to the subsumption architecture, ours involves
learning and continuous mappings constructed with connectionist networks. Recent
work by Mahadevan and Connell [51] and Maes and Brooks [50] propose preliminary
learning techniques for the subsumption architecture. See Chapter 5 for an expanded

discussion of related research.
1.5 Organization of the Dissertation

This dissertation elaborates methods and presents empirical results concerning
modeling and control. Chapter 2 describes related research by others addressing
the issues of modeling FSA environments with partial state information. Chapter 3
presents our approach to modeling FSA environments with partial state information.
Chapter 4 presents a method of control acquisition for these environments. Chapter 5
describes an approach to learning to navigate in a simulated environment. Chapter 6
summarizes the research presented in this dissertation, briefly discussing the contri-

butions, problems, and directions for future research. The Appendix discusses the

update graph in more detail.

CHAPTER 2

PREVIOUS MODELING RESEARCH

This review covers system-identification methods for modeling systems with in-
complete state information. including techniques for both state estimation and param-
eter estimation. This chapter is organized into three different sections representing
approaches from Linear Systems Theory, Connectionism. and F SA Identification,
where FSA Identification includes research from automata theory, general systems
theory, and computational learning theory. Before we discuss these three different
approaches, we first introduce some preliminary concepts.

For the purposes of this review it is important to relate the problem of learning
a model to the problem of training a machine to recognize a particular language.
Many researchers study this latter problem, and it turns out that there exists an
isomorphism between these two problems in the single sensation, discrete-time. finite-
state case. Let actions be letters in the alphabet. action sequences be strings, and
sensations be the output of the recognizer. Let the output of the recognizer be called
the accept signal. The model can be designed to answer the question of whether
a given string is in the language. In order to answer this question, the model is
first set to an initial state, and a string is presented to the model as a particular
action sequence. The accept signal is true if the input string is in the language and
false otherwise. For every language there exists a model that accepts only strings in
that language, or equivalently, outputs a true accept signal when a string is in the

language. A particularly relevant class of languages, called regular languages, is the

class of languages that can be recognized by FSA [44].

21
It is useful to categorize the modeling techniques according to the state represen-
tation employed (see Chapter 1 for more details). In keeping with the engineering
terminology, the environment will be called the system. When a function from current
sensations and current action to next sensations cannot accurately model a system,
then it is necessary to represent state information of the system. A state representa-
tion captures the salient aspects of the unbounded history of the system’s behavior
necessary to predict the system'’s future behavior. Two canonical representations are
presented that correspond to the extremes of the representational spectrum. These
are the delay-coordinate representation and the state-space representation. Each
succinctly represents a system’s past behavior.
In the delay-coordinate representation, the system’s state is encoded as a fixed

number of past inputs and outputs of the system. In particular,
y(k) = h(w(k),u(k —1)....,u(k = D,). y(k — Doy(k=2)..... y(k -D,)). (2.1)

where (i) are the actions chosen at time 7 for ¢ = k. k — 1..... k— D, his the
output function. §(k) is the prediction of the model at time &, y(7) is the output of
the system at time ¢ for i =k~ 1,k -2.... k ~ Dy,.D, >0, and D, > 0.

There are FSA's that cannot be accurately modeled using a delay-coordinate state
representation. Figure 2.1 shows an example of such a FSA. This FSA cannot be
accurately modeled using a delay-coordinate state representation because knowledge
that the last D, actions were 3 and the last D, sensations were 0 is not helpful
in predicting the response to an applied o regardless of the values of D, and D,.
The state into which the machine passes after the application of the arbitrarily long
sequence of a333... 3 is uniquely determined by the response to the first symbol

included in this sequence.

In the state-space model, the system’s state is encoded over a fixed number of

state variables. In particular,

z(k) = gla(k-1).u(k-1)) (2.2)

&
(S

B

Figure 2.1. An Example of a FSA that Cannot Be Accurately Modeled with a
Delay-Coordinate State Representation. This particular FSA has 3 states labeled
0.1, and 2 and 2 input actions a and 3. The shade of the each box codes the single
sensation value for that state, where a shaded square codes a sensation value of 1,
and a light square codes a sensation value of 0.

y(k) = flz(k)), (2.3)

where (k) is a vector of the values of the state variables at time k, and ¢ is the next
state function. Both the delay-coordinate and state-space model techniques can be
extended to handle the case where the system is stochastic.

The delay-coordinate representation can always be transformed into a state-space
model by constructing the state representation as a vector of delayed values of system
inputs and outputs. The g function can be represented as a linear operator using a
matrix which shifts the state variables in the same fashion as the tapped delay line.
Each state variable receives its next value from one other variable or from the system
input or output.

In contrast, a state-space model cannot always be transformed into a delay-
coordinate representation. Although a state-state model can be transformed into a
delay-coordinate representation when f and g are linear, when f and ¢ are nonlinear,
then this is not always possible. Intuitively this is true because the state-space model

can contain hidden state variables that keep their initial values indefinitely, whereas

a delay-coordinate model has no such mechanism (see Gill [27] for more details). The

23
“state variables” in the delay-coordinate model are past values of either the system’s
input or output.

The state-space and delay-coordinate representations occur in many different
disciplines. They will be used to describe various techniques in the following sections.
Finally, the SLUG architecture will be described within these frameworks.

In the state-space model there is a range of state representations. that is, en-
codings of state in terms of values of state variables. The two extremes are the
localist state representation and distributed state representations. In the research
to be reviewed there is a strong division between researchers that favor the localist
state representation and those that employ the distributed state representation. For |
the most part, the engineering and connectionist approaches utilize distributed state
representations, and in automata theory, general systems theory. and computational
learning theory the localist state representation predominates. This results from the
fact that the FSA identification and computational learning theory approaches typi-
cally infer the underlying FSA utilizing one state variable (or datum) per state, while
the engineering and connectionist approaches usually just restrict representations to

a finite number of state variables.

2.1 Techniques Based on Linear System Theory

Most of the classical system-identification techniques deal exclusively with linear
dynamical systems, but for completeness, the basic ideas are reviewed. These ap-
proaches typically assume a certain amount of a priori knowledge about the system
to be identified. This knowledge is converted into the choice of model inputs and
outputs and constraints on the mathematical form of the model. In order to identify
nonlinear systems, traditional approaches typically involve a model that is a linear

function of handcrafted feature vectors that code nonlinear functions of the sensations.

This permits the use of parameter and state estimation schemes for models that are

24
linear in the parameters. which are generally well-behaved with many mathematical
results providing guidelines for their use.

Examples of linear techniques that use the delay-coordinate representation are
adaptive filters [105] and DARMA (Deterministic Auto Regressive Moving Average)
models [30]. This formalism can be generalized to nonlinear models, which will be
discussed in Section 2.2. Adaptive filters have tunable parameters, and the state of
the system is represented in delay coordinates as a buffer of past mputs and outputs,
called a tapped delay line. The simplest form of a filter, called a Finite Impulse

Response (FIR) filter, is defined as:
D,
gilk) = bk —). (2.4)
s

where g7;(k) is the j" output of the filter at time k. uj(k—17)is the j* input to the filter
at time k — ¢, b;; is a parameter. and D, is one less than the size of the tapped delay
line. Widrow and Stearns [105] describe an on-line learning rule, called LMS (least
mean squared), that finds weights that minimize the expected mean squared error
between the output of the filter and its desired output. Back-propagation generalizes
the LMS algorithm.

A more complicated filter is an adaptive recursive filter, also known as an Infinite

lImpulse Response (IIR) filter, which can be described as follows:

Du Dy
gilk) =3 bjiwi(k =) + 3 ajigi(k = i), (2.5)
i=0 =1

where a;; is a parameter. These filters are more powerful than FIR filters because they
also include the filter's past outputs in their tapped delay lines. Again, Widrow and
Stearns describe a learning algorithm that minimizes expected mean squared error,
but in this case they show that the algorithm does not necessarily find the globally

optimal solution.

The DARMA model is the same as an IIR adaptive filter and the same learning

algorithms apply. DARMA models with enough tapped delay lines can represent

25
any linear dynamical system to given accuracy [30]. Finally, DARMA models can be
extended to the stochastic case and learning algorithms can be derived [30].

State-space models employ a state vector x instead of the fixed delay coordinate

state representation. One such model is called the stochastic linear state-space model.

Consider a system described by:

z(k) = (k- Da(h 1)+ Ak~ Du(k = 1) + v(k-1) (2.6)
y(k) = H(k)a(k)+ w(k), (2.7)

where x(k) is the vector representing the state of the svstem at time k. u(k) is the
vector input to the system at time k. y(k) is the vector output by the svstem at
time &, matrices ®(k), A(k), and H (k) are matrices whose entries are parameters at
time &, and {v(k)} and {w(k)} are zero mean stationary white noise processes with
covariance of a certain form (see Goodwin and Sin [30] for more details).

State estimation is necessary with state-space models because the state cannot
always be read directly from the environment. Kalman filtering is one procedure for
estimating the state of a stochastic linear state-space model. In Kalman filtering, the
parameters of the state-space model are assumed to be known (i.e., ®, A. and H are
fixed and known a priori), and only the state of the model is unknown. (For more
details consult Goodwin and Sin [30] and Elbert [20].) A Kalman Filter provides a
way of updating the state estimates after the occurrence of the observables y(k) so as
to minimize the squared error between the actual state and the estimated state of the
system. The Kalman filter is computationally tractable because the internal variables
can be computed recursively and some of them can be precomputed when appropriate.
The algorithm is much less computationally intensive than other approaches which
usually involve large matrix inversions.

KNalman filtering is a powerful technique and can be generalized in a number of

ways. The extended Kalman filter is a technique for estimating the state of a nonlinear

stochastic dynamical system. The idea is to employ normal Kalman filtering on the

26
system linearized around the current state estimate. (See Elbert [20]. Ljung and
Soderstrom [49]. or Goodwin and Sin [30] for the details.)

Techniques exist for handling both parameter estimation and state estimation,
that is, for estimating the values of the @, A and H matrices as well as the value of .
One technique involves creating a more complicated state-space model where the state
and parameters of the original model are now the state of the new model. The addition
of the parameters makes the new state-space model nonlinear and thus requires the
extended Kalman filter. Another technique for performing both parameter and state
estimation involves switching between standard parameter estimation and Kalman
filtering. Initially, the Kalman filter produces the estimated state, g, for the initial
parameters. 8. This state is then input to the parameter estimator which produces
new parameters, 8;. These are then input to the Kalman filter resulting inz,. This
process is repeated until some criterion is met.

SLUG can be related to the linear state-space and delay-coordinate representa-
tions presented in this section. SLUG can be cast into the state-space framework

using a time-varying state-transition matrix as follows:

8
—
Erd
~—

I

®(u(k — 1))k —1) (2.8)

y(k) = Hax(k), (2.9)

where ®(u(k — 1)) is the n x n transition matrix corresponding to the input to the
system, or equivalently, to the action chosen at time step k — 1, and H is an m x n
projection matrix: H = [I|0], where [is the m x m identity matrix.

An interesting special case of SLUG, called the update graph, can be viewed as a
generalized tapped delay line (see Chapters 1 and 3 for more details about SLUG, and
see Chapter 3 and the Appendix for more details about the update graph formalism).
Like the tapped delay line, at each time step, each of the update graph’s state variables

receives its value from only one other state variable. This state update behavior is

determined by the action taken at that time step and can be described by the state

27

transiti trix T i
ition matrix ®. In the case of the update graph. ® has a special form where
n each row there is exactly one element containing a 1 and there are zeroes in the

remaining elements. The element ®,; containing a 1 effectively selects the appropriate

state variable j from which to update a given state variable ;.

2.2 Connectionist Modeling Methods

In order to mimic a dynamical system. a network must represent the state of
the system. Two approaches to this problem are presented: networks that have
a delay-coordinate state representation and networks that have a state-space rep-
resentation. Two different connectionist architectures with delay-coordinate state
representations are presented. These architectures are different from the traditional
engineering designs because the output of the model is a nonlinear function of this
state representation. Then a series of architectures and learning algorithms for
learning state-space models are presented. All of the learning techniques presented
are gradient descent algorithms; the weights are adjusted in proportion to the gradient
of the performance criterion with respect to the weights. The algorithms differ in the

accuracy of the approximation to this gradient.

2.2.1 Delay-Coordinate Models

McClelland and Elman present a connectionist architecture for speech recognition
called the Trace Model [53]. Their network architecture is based on the interactive
processing idea championed in the earlier reading model [34, 81], where the activations
of the units are updated by both a bottom-up and top-down process. This architecture
is extended to include a tapped delay line filled with all the speech data from the
beginning of an utterance. In their system there must be a delay line large enough to
accommodate the longest utterance. Also note that this is not a learning system. In

order to overcome the deficiencies of the basic delay-coordinate approach, feature

detectors are duplicated at each temporal position to get translation invariance,

28
and feature detectors are “fuzzed out” to achieve scale invariance. Sejnowski and
Rosenberg [89] present a similar system. called NetTalk, that learns to translate text
to phonemes. Their architecture involves a. feed-forward network with a large tapped
delay line for the text and uses back-propagation to adjust the weights.

Waibel et. al [98] introduce an architecture. called a Time-Delay Neural Network
(TDNN), that is used to solve a speech recognition learning task. It is designed to
cope with temporal relationships of events. and the features it learns are invariant
under time translations. The architecture is a tapped delay line design where each
unit receives a moving window of past values of the outputs of units feeding into
it. They improve on the adaptive filter method by allowing feed-forward networks
of these tapped delay line units (e.g., the output units receive a moving window of
past values of the inputs to the network as well as the outputs of the hidden units).
Translation invariance is achieved by constraining the weights to be the same at each
of the delays. Unfortunately, the “Time Delay” approach can only represent that an
event occurred a fixed number of steps ago within its temporal window. Because this
representation is fixed, it fails when the time scale of the speech changes because the

spacing between speech events differs.

2.2.2 State-Space Models

Rumelhart, Hinton, and Williams [79] present an extension to back-propagation
that allows the training of arbitrary recurrent networks. In turn, these recurrent net-
works can be used to model nonlinear dynamical systems. The back-propagation algo-
rithm can only be directly applied to nonrecurrent networks. It requires an unfolding
procedure to handle recurrent networks (see Rumelhart, Hinton, and Williams [79] for
a full account). Unfolding a network turns any recurrent network into a feed-forward
network by making copies of each unit for each discrete time step. The recurrent

links connecting unit a to unit 3 are then converted to feed-forward connections

by terminating the link on a copy of unit 8 at the next time step. Figure 2.2

29
shows an example of this procedure applied to a fully recurrent network consisting of
two units. The resulting unfolded network is now a feed-forward network where the
back-propagation procedure can be applied. This procedure is called back-propagation

m time and is the learning algorithm used in this thesis (see Chapter 3 for more

details).

Back-propagation computes the gradient of the performance criterion with respect
to the weights; back-propagation in time permits the choice of the desired accuracy
of the approximation to this gradient. If the network is unfolded once for every
time step in the simulation. then back-propagation in time will compute the exact
gradient. Unfortunately, because the network can only be unfolded a finite number
of times, this technique will only apply to a limited class of learning tasks: tasks in
which the sequence of training examples can be divided into finite sequences between
which the network is reset to a certain initial state. Grammatical inference problems
involving strings of bounded length are examples of problems where this training
regimen is feasible. For problems where the network is continuously running and
there is no logical boundary between sequences of training examples, the particular
number of unfoldings must be chosen: the larger the number of unfoldings, the better

the approximation to the true gradient.

Watrous and Shastri [100] use a special architecture that uses back-propagation
in time to learn to discriminate between two words based solely on time-varying
spectral data. They use a network architecture. called “temporal flow”, with an
input, hidden, and output layer. The input layer is fully connected to the hidden
layer, which is in turn fully connected to the output laver. Both the hidden and
output layers have self-recurrent connections on each of their units (i.e., a feedback
connection from a unit to itself). The self-recurrent connections perform temporal
integration of the speech and the representations built by the network. Notice that

this architecture cannot represent every possible FSA because of the simplicity of the

feedback connections.

30

Figure 2.2. An Example of the Unfolding Procedure which Turns Recurrent Networks
into Feed-Forward Networks.

Pearlmutter [66] presents a continuous time generalization of back-propagation
in time. Like back-propagation in time. his algorithm can learn trajectories through
state space and requires that the network be unfolded in time during training. His
work differs from back-propagation in time in that his networks are defined in terms
of differential equations.

Bachrach [3, 4] report on methods for training simple reverberatory circuits to
act as memory devices. Specifically, Bachrach examines a connectionist unit. called
a sticky-bit, that excites itself through a recurrent connection and can be “set”
or “reset” like a SR flipflop. This kind of memory is different from the kind of
long-term memory that is stored in connection weights. The problem is to learn
when to set or reset these bits in a variety of paradigms. This knowledge would
be stored in connection weights. My algorithm is real-time, computes the exact
gradient without unfolding the network, and allows for arbitrarily old inputs to
influence weight changes. Bachrach uses fixed feedback weights and a symmetric
logistic output function (ranging from —1 to +1). This overcomes some of the

limitations of single unit feedback systems discussed in Watrous and Shastri. The

effective search effort in weight space is reduced because each unit starts out with

31
two well-behaved symmetric attractors., W ithout more complicated machinery the
sticky-bits are limited in their representational power. In particular, the combination
of sticky-bits and a feed-forward network cannot represent arbitrary FSA: more
feedback connections are necessary.

Mozer [55] derived a similar real-time back-propagation rule for self-recurrent
units. He uses a variation of the sticky-bit learning algorithm using units with tapped
delay lines and outputs that are exponentially decaying traces of the usual logistic
outputs. A real-time gradient algorithm is derived for this output function. This
algorithm is used to learn “wicklefeatures™ similar to the handcrafted input features
given to the verb past tense model of Rumelhart and McClelland [82]. The main
drawback with this approach is that Mozer's units necessarily have limited memory
because eventually their outputs decay away. In contrast the sticky-bit can latch onto
an event indefinitely.

Williams and Zipser [106). Bachrach [3], Robinson and Fallside [76], and others
developed a real-time learning algorithm for recurrent networks that computes the
exact gradient without unfolding. Their algorithm applies to a continuously running
arbitrarily connected network. The network is continuously running since each unit
samples its inputs on every weight update cycle and a unit can have a teaching signal
at any cycle. Each unit can be connected to any other unit in the network and
any unit can receive input from the environment. The algorithm is nonlocal because
it keeps a derivative of every weight with respect to the output of every unit. On
the positive side, the storage requirements are determined solely by the size and
connectivity of the network and are independent of time. Unlike back-propagation
in time, the distance in time to back-propagate error does not have to be specified.
Unfortunately, the storage size is on the order of the third power of the number of

units and the computation time is on the order of the fourth power of the number of

units. Thus, the exact gradient is computed at a great computational cost.

32
1 Al .

Giles, Sun, Chen, Lee, and Chen present a higher-order recurrent network for
grammatical inference [26]. The network is a higher-order design but differs from
SLUG in a number of respects. Instead of having the input selects a linear function,
the input selects a particular semi-linear functions. In particular, their network

computes its output as follows:

x(k) = g(Wopz(k - 1)), (2.10)

where ¢ is the logistic function. The output of their network is interpreted as the
acceptance or rejection of the input string instead of the prediction of the sensations
at the next time step. Their learning algorithm resets the state of the network
before each string is presented and only updates the weights after each string is
presented when the teacher declares whether the string is in the language. Finally.
state estimation is not performed by their algorithm.

Jordan [34] investigates coarticulation and sequence learning in fixed feedback
back-propagation networks. Jordan's network architecture is shown in Figure 2.3.
The network has one output layer and one hidden layer with feed-forward connections
from the plan units and context units to the hidden units. and from the hidden units to
the output units. There are feedback connections from the output units to the context
units, where each output unit is connected to one context unit and there are the same
number of context units as output units. There are also full feedback connections
from the context units to themselves. (Notice that the diagram only shows the self-
recurrent connections.) The weights on the feedback connections from output units
to context units and from context units to context units are fixed. Jordan’s learning
algorithm approximates the gradient with standard back-propagation through the
feed-forward portion of the network. This approximation ignores the contribution

of the recurrent connections. This amounts to performing back-propagation in time

with no unfoldings.

33

Plan Inputs

Context Units

Figure 2.3. The Jordan Feedback Architecture.

Jordan considers problems requiring the learning of sequences. The outputs
of context units form exponentially decaying traces of the outputs of the network:
the network learns sequences specified by the plan units by learning to produce
different outputs for different contexts. Under this formalism Jordan's system can
solve learning tasks such as learning to model up/down counters and more impressive
tasks involving coarticulation. Jordan’s class of tasks is slightly different than tasks
in this thesis. Jordan focuses on problems in which the inputs are fixed while the
network generates a sequence, whereas the focus of this thesis is on problems where the
inputs change over time. Unlike SLUG there are no hidden state variables in Jordan's
architecture. This severely limits the representational power of this architecture. In
particular. this architecture cannot implement all FSA.

Elman’s [21] recurrent network, shown in Figure 2.4, is based on the Jordan's se-
quential network. It differs in that the only feedback connections are from the hidden

units to the context units; there are no feedback connections from the context units

to themselves. By using the nonlinearity in the hidden units. this architecture can

34

Input Units

Figure 2.4. The Elman Feedback Architecture.

represent all FSA. Like Jordan's learning algorithm. Elman’s learning algorithm also
approximates the gradient by back-propagating only through the feed-forward section
of the network. This makes learning in this architecture very slow and unreliable for
difficult tasks. Servan-Schreibner, Cleereman. and McClelland [90] apply the Elman
network to the problem of learning a regular language. Unfortunately, their technique

takes on the order of 200.000 time steps to learn a simple language.

2.2.3 Relation of SLUG to Previous Connectionist Archi-
tectures

SLUG differs from the other architectures in three main respects. First, SLUG
is a time-varying linear system, and important techniques from linear systems theory
apply. Second, a special case of the network architecture encourages the discovery
of a certain symbolic structure called an update graph. Within the update graph
formalism the state units are readily interpretable, and many empirical results exist

that lend intuition and rigor. Third, a fair amount of a priori knowledge about

the relationship between actions can be encoded as weight constraints. The explicit

35
representation of the effects of actions on the internal state as separate weight matrices
greatly facilitates this process.

SLUG most resembles the higher-order architecture proposed by Giles et. al [26].
It differs from their work in that: (1) the emphasis is on modeling and control of
dynamical systems instead of grammatical inference, and (2) the training procedure

and architecture differ.

2.3 Finite State Automaton Identification

This section describes a variety of techniques for learning FSA models of envi-
ronments. These approaches are meant as a small sampling of the large number of
techniques from automata theory. general systems theory, and computational learning
theory. A common property of the approaches from automata theory and general
systems theory is poor computational complexity in both space and time. The first
three approaches involve exhaustive search through the space of FSA’s. The majority
of the techniques presented in this section learn state transition graphs. The last
two approaches from general systems theory are more computationally practical and
involve delay-coordinate representations.

In this section a few generalizations of the FSA model are presented. When the
state transition mapping is one-to-many then the FSA is called a non-deterministic
FSA or NFSA. When the state transition mapping is stochastic then the FSA is
called a probabilistic FSA. Some of the techniques to be presented produce models

from these classes.

2.3.1 Automata Theory

Kohavi [44] describes a technique for identifving FSA. Various restrictions are
placed on the machine to be identified as follows: the set of possible inputs must

be known; the upper bound, n, on the number of states of the machine must be

known; the machine is assumed to be reduced, that 1s, 1t has the minimal number

36
of states; the machine is assumed to be strongly connected, that is, every state can
be reached from every other state. The technique involves constructing the state and
output tables for all machines having n or fewer states. The tables are concatenated
together in a particular way to form a new table called the direct-sum table. A homing
sequence 1s constructed for the direct-sum table, which identifies the final state of the
machine and, in turn, the machine itself (see Kohavi [44] for details). A homing
sequence 1s a sequence of input symbols which uniquely identifies the state reached
by the automaton at the end of the homing sequence. This technique is obviously
impractical because the number of machines is staggering even for small n.

Booth [11] also describes an algorithm for inferring minimal FSA. The same
restrictions are placed on the machine to be identified as Kohavi. The basic algorithm
can be summarized as follows: observe the response of the machine to a particular
input sequence; form all the partial state diagrams with at most n states that
could reproduce the exhibited behavior: apply another input sequence and use the
behavior of the machine under investigation to extend or eliminate the proposed
partial state diagrams: continue this process until obtaining a complete state diagram
that describes the machine under investigation. It is important to make a number of
observations about the algorithm. Because of the finite state property the algorithm
always terminates. At first the input sequences are chosen at random and then
later input sequences are chosen so as to eliminate one or more of the partial state
diagrams and to determine the unknown transitions associated with one or more of
the states. Finally, the algorithm is computationally inefficient because at any point
in the modeling process there could be an exponential number of machines with at

most n states that are consistent with the input sequences.

2.3.2 General Systems Theory

Gaines [24] describes a technique, called ATOM, for inferring probabilistic FSA.

The technique involves an exhaustive search of NFSA starting with 1-state machines.

37
The output of the procedure is the list of admissible 1-state automata. the list of
admissible 2-state automata. etc. where an admissible automata is one that accepts
the strings in the language. The search ends when no more admissible models are
found or more often after a predetermined amount of time. A non-deterministic model
is converted to a probabilistic model by filling in the transition probabilities from the
relative frequencies of the transitions from the training information. The algorithm

1s 1mpractical because the search time grows exponentially with the number of states.

Witten [109] presents a technique for learning NFSA. The technique employs
the delay-coordinate representation of state. In Witten's formulation there is one
observed symbol per time step. The algorithm constructs length-k models by con-
structing states corresponding to the overlapping k—1 tuples occurring in the training
sequence. A length-k model will not generate strings of length less than & that
have not occurred in the training sequence. The parameter k corresponds to the
length D of the delay-coordinate representation and provides a nice tradeoff hetween
model simplicity defined in terms of state count and the goodness of fit. The first
model is formed by creating all overlapping & — 1 tuple states and then marking
transitions between states which occur consecutively. The model can then be reduced
by coalescing states which have the same output and the same successor state. An
algorithm is presented for incrementally uixlating the model when a counter-example
is discovered. The resulting model will not necessarily be the smallest NF SA. but no

minimization procedure exists for non-deterministic models.

Klir [41, 42] describes a technique for learning a probabilistic FSA. His technique
employs the delay-coordinate representation of state. A matrix. called the activity
matrwx, is constructed with the values of all observable variables over a segment
of D past time steps. The states are defined to be possible values of the activity
matrix. A procedure is described for estimating the state transition probabilities.

An algorithm is proposed for choosing the best size for the activity matrix based on

the reduction of uncertainty the delayed variables provide. F inally techniques are

38
suggested for reducing the complexity of the resulting model through the removal of
states and transitions. The algorithm involves estimating a large number of transition

probabilities and computational complexity grows exponentially with the size of the

sampling mask.

2.3.3 Computational Learning Theory

Computational learning theorists are primarily interested in the algorithmic prop-
erties of learning tasks, and a goal of these researchers is to find computationally
efficient algorithms. They have studied the modeling problem considered in this
thesis under the guise of inferring a regular language or. equivalently, inferring the
structure of an FSA. They have shown that this problem proves to be both interesting
and difficult.

Consider the problem of inferring an FSA consisten: with a finite set of jn-
put/output pairs. This learning paradigm is called the passive learning protocol.
Angluin (1] and Gold [29] have shown that the problem of inferring a minimal FSA
using the passive learning protocol is NP-complete. More recently, other researchers
have shown that with the passive learning protocol even finding an approximate
solution is intractable [67]. where an approximate solution is a solution that has a
particular probability of beingAa. correct one. Finally, it has been shown that these
results are independent of the representation used for the FSA (39].

These results have led researchers to search beyond passive learning for learning
protocols involving active experimentation. A number of researchers [28, 2, 87] have
developed polynomial-time learning algorithms involvin g active experimentation. An-
gluin [2] characterizes the experimentation as queries. Two types of queries are
proposed: membership and equivalence queries. The membership query asks an
oracle whether a given string is accepted by the FSA. The equivalence query asks

an oracle whether the inferred FSA is equivalent to the correct FSA and if not, the

oracle responds with a counter-example string. Angluin’s inference procedure runs in

39
time polynomial in the automaton’s size and the length of the longest minimal length
counterexample.

Rivest and Schapire [73, 87] also obtain a polynomial-time algorithm through
the technique of active experimentation. In contrast to Angluin, Gold, and others,
they are interested not in the task of inferring regular languages, but in the modeling
problem stated earlier. Unlike the grammatical inference task. they assume no ability
to reset the FSA to a known state. nor the ability to undo actions. Their inference
procedure plans experiments that test the equivalence of state variables. where the
values of all the state variables encode the state. New state variables are created
when a proposed state variable is found to be inequivalent to all other state variables.
The number of these state variables is called the di versity of the environment, and
their state representation is called a di versity representation. The basic result is that
the algorithm is polynomial in the diversity of the environment instead of the number
of states of the environment. They claim that for many “natural” environments the
diversity is much smaller than the number of states. Their polynomial-time result
applies only to a restricted class of FSA's with the permutation property: FSA's in
which every action sequence, «. has a fixed inverse, «~'. that, when executed, returns
the FSA to the state it was in before executing the original action sequence. They
also present a heuriét-ic algorithm that applies to all environments. Their work is
presented in detail in the Appendix.

Rivest and Schapire [75] extend Angluin’s algorithm to the case where the algo-
rithm has no means of resetting the machine to the start state. They describe an
algorithm that with a probability 1 — & learns an arbitrary FSA in time polynomial in
the automaton’s size, the length of the longest counterexample, and log(1/6). They
also present a similar algorithm that learns a diversity representation of the FSA.
Rivest and Schapire use new techniques based on homing sequences to overcome the

absence of the ability to reset the automaton. The state is identified by the sequence

of FSA outputs produced during the execution of the homing sequence. They improve

40
the bounds of their earlier work for learnin g diversity representations for permutation
environments by a factor of D3/ log D. where D is the diversity.

Porat and Feldman [70] present a provably correct algorithm for inferring a FSA
from lexicographi‘cally ordered examples. The basic algorithm constructs a FSA by
iteratively examining the lexicographically ordered positive and negative examples.
At each step of the way, the algorithm ensures the consistency of the most recent
example with respect to the latest FSA. If the new example is inconsistent. then
either state transitions are deleted or a new state is added. After a new state is
added all the previous examples must be checked for consistency with the new FSA.
They show that their learning algorithm runs in time polynomial in the number of
states. Their algorithm has modest space requirements because of the ordering of
the examples; the algorithm can remember previous examples just by keeping track
of the current example. Porat and Feldman argue that their algorithm is amenable
to connectionist networks hecause of its polynomial space requirements. Unfortu-
nately, unlike typical connectionist algorithms. the resulting algorithm exhibits only
a marginal amount of parallelism. cannot handle any noise. and requires a great deal

of global synchronization and delegation.

2.3.4 Relation of SLUG to Finite State Automaton Identi-
fication

A number of themes distinguish the techniques from automata theory, general
system’s theory, and computational learning theory from SLUG. First. except for
the work of Rivest and Schapire. the models produced by these techniques employ a
discrete-localist state representation. In comparison SLUG utilizes a continuous-
distributed state representation. Second, most of the models produced by these
techniques are not functional until after learning is complete. In contrast SLUG

can be used for prediction throughout training. Third, with the exception of the

work of Rivest and Schapire, these models do not incorporate a mechanism for state

41
estimation. Instead they rely on the availability of a reset mechanism which places
the system into a specified initial state. F nally. the learning techniques reviewed are
primarily serial algorithms, that is they consider and update only one hypothesis at
each time step. In contrast. SLUG permits a large degree of parallelism because it

considers and updates many hypotheses in parallel at each time step.
2.4 Conclusion

Relevant modeling research by others on similar problems was presented in this
chapter. A variety of research was covered including work from engineering. connec-
tionism, automata theory. general systems theory. and computational learning theory.

SLUG has been inspired by these various approaches: SLUG is a hybrid approach,

borrowing techniques from both engineering and FSA identification.

CHAPTER 3

MODELING FINITE STATE
AUTOMATA

The architecture of our connectionist network model is based on a representation
of finite-state environments developed by Rivest and Schapire {72, 74. 87]. Rivest
and Schapire have also developed a symbolic algorithm to infer this representation
by exploring the environment. We have taken a connectionist approach to the same
problem, and we show that the connectionist approach offers complementary strengths
and new insights into the problem.! We begin by describing several environments of

the sort we wish to model.

3.1 Environments

In each environment, the robot has a set of discrete actions it can execute to
move from one environmental state to another. At each environmental state, a set of
discrete-valued sensations can be detected by the robot. Descriptions of five sample
environments follow, the first four of which come from Rivest and Schapire [37]. Note
that in these environments. environmental states are not distinguished by unique

sensory configurations; hence, the environmental state cannot be determined from

the sensations alone.

IThis research was conducted in collaboration with M. C. Mozer and is reported in refs. [59, 60,
58, 5).

43

Figure 3.1. The Little Prince Environment.
The Little Prince Environment

The robot resides on the surface of a 2D planet (Figure 3.1). There are four
distinet locations on the planet: north, south. east. and west. To the east. there is a
rose; to the west. a volcano. The robot has two sensations. one indicating the presence
of a rose at the current location. the other a volcano. The robot has available three
actions: move to the next location in the direction it is currently facing. move to the
next location away from the direction it is facing. and turn its head around to face

in the opposite direction.
The Car Radio Environment

The robot can fiddle with knobs on a radio that receives only three stations. It can
recognize the tvpe of music that the radio is playving as either classical. rock. or news
(Figure 3.2). It can tune in a station with left-scan and right-scan buttons. which
scan from one station to the next with wraparound. The robot can also manipulate
a set of two presets, X and Y. It can save the current station in either preset. and it

can recall a setting in either preset.

44

News

Auto Tune Set Station

Figure 3.2. The Car Radio Environment.

Figure 3.3. An Example of the n-Bit Register Environment. White squares indicate
a bit is on. and shaded squares indicate a bit is off. The bold square on the left is the
only bit that the robot can sense.

The n-Bit Shift Register Environment

The robot senses the value on the leftmost bit of an n-bit shift register as shown
in Figure 3.3. It can rotate the register left or right. The robot can also flip the

leftmost bit.

The n x n Grid Environment

A robot is placed in an n x n grid with wraparound as shown in Figure 3.4. The
robot occupies a square and faces in one of four geographic directions: north, south,
east, or west. It can move forward one square or rotate 90° left or right with the
left-turn or right-turn actions. Each square is colored either red, green, or blue and

the robot has sensors that detect the color of the square it is facing. Moving forward

Figure 3.4. An Example of the n x n Grid Environment.

not only changes the robot’s position. but also paints the previous square the color

of the square the robot now occupies.

The n x n Checkerboard Environment

The checkerboard environment consists of an n x n grid of squares as shown in
Figure 3.5. The robot occupies a particular square and can sense the landmark in that
square. if any. There are a number of unique landmarks distributed in a checkerboard
pattern across the grid. These are depicted as the numbers in the squares. Half of
the squares have no landmark and are indistinguishable from each other. At each
time step the robot can move either up. down, left, or right one square. Movement

off one edge of the grid wraps around to the other side.
3.2 The Update Graph

Rather than trying to learn a state transition graph machine, Rivest and Schapire
suggest learning a discrete-distributed machine. called an update graph. The advan-
tage of the update graph is that in environments with many regularities. the size of the

update graph can be much smaller than the size of the state transition graph machine,

46

Figure 3.5. An Example of the n x n Checkerboard Environment.

for example, 2n versus 2" state variables in the n-bit shift register environment.? The
Appendix presents Rivest and Schapire’s formal definition of the update graph. Rivest
and Schapire’s definition is based on the notion of fests that can be performed on
the environment, and the equivalence of different tests. In this section, we present an
alternative, more intuitive view of the update graph that facilitates a connectionist
interpretation.

Consider again the 3-bit shift register environment. To model this environment.
the essential knowledge required is the values of the bits. Assume the update graph
has a node for each of these environment variables, and each node has an associated
value indicating whether the bit is on or off.

If we know the values of the variables in the current environmental state, what
will their new values be after taking some action, say L? The new value of the leftmost
bit, bit 0, becomes the previous value of bit 1: the new value of hit 1 becomes the
previous value of bit 2; and the new value of bit 2 becomes the previous value of bit
0. As depicted in Figure 3.6L, this action thus results in shifting values among the
three nodes. mimicking the intuitive behavior of a shift register. Figure 3.6R shows

the analogous flow of information for the action R. Finally, the action F should cause

>The potential disadvantage is that in degenerate, completely unstructured environments, the
size of the update graph can be exponentially larger than the size of the state transition graph
machine.

47

A L R F

Figure 3.6. The Mechanics of the Update Graph. Panel A shows the 3-bit shift
register and the update graph without links. White squares indicate a bit is on. and
shaded squares indicate a bit is off. The observable leftmost bit is emphasized with a
thicker box. Panels L. R. and F depict the result of performing the designated action
in the shift register environment and the corresponding computation of the update
graph.

the value of leftmost bit to be complemented while the values of the other bits remain
unaffected (Figure 3.6F). In Figure 3.71. the three sets of links from Panels L. R. and
F of Figure 3.6 have been superimposed and have been labeled with their associated
actions.

One final detail: the Rivest and Schapire update graph formalism does not make
use of the “complementation™ link. To avoid it. one may split each node into two
values, one representing the value of a bit and the other its complement (Figure 3.7C).
Flipping thus involves exchanging the values of bit 0 and bit 0. Just as the values
of bit 0, bit 1, and bit 2 must be shifted for the actions L and R. so must their
complements.

Given the update graph in Figure 3.7C and the value of each node for the current
environmental state, the result of any sequence of actions can be predicted simply
by shifting values around in the graph. Thus, as far as predicting the input/output

behavior of the environment is concerned, the update graph serves the same purpose

as the state transition graph.

Figure 3.7. The Update Graph for the 3-Bit Shift Register. Panel I shows the
complete “intuitive™ update graph for the 3-bit shift register environment. Panel C
shows the complete update graph (without complementation links) for the 3-bit shift
register environment.

For every finite state environment. there exists a corresponding update graph.
In fact. the update graph in Figure 3.7C might even be viewed as a distributed
representation of the state transition graph in Figure 1.3. In the state transition
graph, each environmental state is represented by one “active™ node. In the update
graph, each environmental state represented by a pattern of activity across the nodes.

A defining property of the update graph is that each node has exactly one
incoming link for each action. This property, which we call the one-inpui-per-action
property, has no intuitive justification based on the description of the update graph we
have presented, but see Mozer and Bachrach [60] or Schapire [37] for an explanation.
The one-input-per-action property clearly holds in Figure 3.7C; for example, note
that bit 0 gets input from bit 0 for the action F. from bit 1 for L. and from bit 2 for
R.

In the n-bit shift register environment. it happens that each node has exactly one
outgoing link for each action (the one-output-per-action property). The one-input-per-

action and one-output-per-action properties jointly hold for a class of environments

19
Rivest and Schapire call permutation environments. in which no information is ever
lost (i.e.. each action can be undone by some fixed sequence of actions). Update
graphs of non-permutation environments. such as the car radio environment. do not
possess the one-output-per-action property. Thus, one must not consider the one-
output-per-action property to be a defining characteristic of the update graph: to do

so would restrict the set of environments one could model.

3.2.1 The Rivest and Schapire Learning Algorithm

Rivest and Schapire have developed a symbolic algorithm (hereafter. the RS
algorithm) to strategically explore an environment and learn its update graph rep-
resentation. They break the learning problem into two steps: (a) inferring the
structure of the update graph, and () inferring the values of each node in the update
graph. Step (b) is relatively straightforward. Step (a) involves formulating explicit
hypotheses about regularities in the environment. These hypotheses are concerned
with whether two action sequences are equivalent in terms of their sensory outcome.
For example. two equivalent action sequences in the 3-Bit Register environment are LL
and R because shifting left twice yields the same value on the leftmost bit as shifting
right once, no matter how the bits are initially set. By conducting experiments in
the environment, the RS algorithm tests each hypothesis and uses the outcome to
construct the update graph.

For permutation environments (described in the previous section), a special ver-
sion of the RS algorithm is guaranteed to infer the environmental structure—within
an acceptable margin of error—in a number of moves polynomial in the number of
update graph nodes and the number of alternative actions. The general case of the
RS algorithm makes fewer assumptions about the nature of the environment. but has
no proof of probable correctness.

If only one hypothesis is tested at a time, the RS algorithm is “single minded”

and does not make full use of the environmental feedback obtained. Consequently.

50
Rivest and Schapire have developed heuristics to test multiple hypotheses at once.
These heuristics can improve the efficiency of the basic algorithm by several orders
of magnitude [74]. Because reasonable performance is achieved only by incorporating
special—and potentially problematic—heuristics to make better use of environmental
feedback. it seems worthwhile to explore alternative methods whose natural properties
allow them to evaluate multiple hypotheses at once. We have pursued a connectionist
approach, which has shown promising results in preliminary experiments as well as

suggesting a different conceptualization of the update graph representation.

3.3 Connectionist Approach to Modeling Environments

SLUG is a connectionist network that performs Subsymbolic Learning of Update
Graphs. Before the learning process itself can be described. however, we must first
consider the desired outcome of learning. That is. what should SLUG look like
following training if it is to behave as an update graph? Start by assuming one
unit in SLUG for each node in the update graph. The activity level of the unit
represents the value associated with the update graph node. Some of these units
serve as “outputs” of SLUG. For example. in the 3-bit shift register environment, the
output of SLUG is the unit that represents the value of the leftmost bit. In other
environments (e.g., the little prince environment). there may be several sensations in
which case several output units are required.

What is the analog of the labeled links in the update graph? The labels indicate
that values are to be sent down a link when a particular action occurs. In connectionist
terms. the links should be gated by the action. To elaborate, we might include a set of
units that represent the possible actions; these units act to multiplicatively gate the
flow of activity between units in the update graph. Thus. when a particular action
is to be performed, the corresponding action unit is turned on, and the connections

that are gated by this action are enabled.

51
If the action units form a local representation, i.e.. only one is turned on at a
time, exactly one set of connections is enabled at a time. Consequently, the gated
connections can be replaced by a set of weight matrices, one per action (as shown
in Figure 3.8). To predict the consequences of a particular action, say F. the weight
matrix for F is simply plugged into the network and activity is allowed to propagate
through the connections. In this manner. SLUG is dynamically rewired contingent
on the current action. Figure 3.9 shows SLUG executing the action sequence LFLR.
The effect of activity propagation should be that the new activity of a unit is
the previous activity of some other unit. A linear activation function is sufficient to
achieve this:

z(t) = U",,,mm(f -1). (3.1)

where a(t) is the action selected at time #, Wy is the weight matrix associated
with this action. and 2(7) is the activity vector that results from taking action «(t).
Assuming weight matrices which have zeroes in each row except for one connection
of strength 1. the activation rule will cause activity values to be copied around the
network.

Although nonlinearities are introduced by the operation of rewiring SLUG based
on the current action, the behavior of SLUG in a single time step is indeed linear.
This is handy because it allows us to use tools of linear algebra to better understand

the network’s behavior. We elaborate on this point in Mozer and Bachrach [60].

3.4 Training SLUG

We have described how SLUG could be hand-wired to behave as an update graph.
and now we turn to the procedure used to learn the appropriate connection strengths.
For expository purposes. assume that the number of units in the update graph is
known in advance. (This is not necessary, as we show below.) SLUG starts off
with this many units, s of which are set aside to represent the sensations. These s

units are the output units of the network; the remainder are hidden units. A set

<t
[SV]

o = 0
0 000100
_ 1010000 &
£ 2 001000 —
o 0 100000
" 1 000010 2 2
2 000001] K|
From Unit
012012 = —
1 | 0 1
0 010000
_ 1001000 dLa T I
£ 2 100000 |
o 0 000010
" 1 000001 2 2
2 000100
From Unit
012513 = =
1 0 1
0 001000
_ 1100000 R 1
£ 2 010000 _
o 0 000001
" 1 000100 2 2
2 000010

Figure 3.8. SLUG Depicted as a Separate Weight Matrix for Each Action. The left
side of the figure shows the separate weight matrices, and the right side shows the
connections having nonzero weights.

owjL —>

Figure 3.9. SLUG Is Dynamically Rewired Contingent on the Current Action. SLUG
1s shown executing the action sequence LFLR.

of weight matrices, {115}, is constructed—one per action—and initialized to random
values. To train SLUG, random actions are performed on the environment and the
resulting sensations are compared with those predicted by SLUG. The mismatch
between observed and predicted sensations provides an error measure. and the weight
matrices can be adjusted to minimize this error.

This procedure in no way guarantees that the resulting weights will possess the
one-input-per-action property. which is required of the update graph connectivity
matrices. We can try to achieve this property by performing gradient descent not
in the {W,} directly, but in an underlying parameter space, {Z,}, from which the
weights are derived using a normalized exponential transform:

e::a,'J/T

e 3.2
S €7aik/T’ (3.2)

Wyi; =

where w,;; is the strength of connection to unit 7 from unit j for action a, z,;; is the

corresponding underlying parameter, and T is a constant. This approach ® permits

3This approach was suggested by the recent work of Bridle [12], Durbin [17], and Rumelhart [78],
who have applied the normalized exponential transform to activity vectors; in contrast, we have
applied it to weight vectors.

54
unconstrained gradient descent in {Z,} while constraining the w,;; to nonnegative

values and
Z Weij; = 1. (33)
!
By gradually lowering T' over time. the solution can be further constrained so that
all but one incoming weight to a unit approaches zero. In practice, we have found
that lowering T is unnecessary hecause solutions discovered with a fixed T" essentially
achieve the one-input-per-action property.
Below. we report on simulations of SLUG using this approach. which we will refer
to as the version of the algorithm with consirained weights. and also simulations run

with unconstrained weights. In the latter case.
Weij = Zaij- (3.4)
Details of the Training Procedure

Before the start of training. initial values of the z,;; are randomly selected from
a uniform distribution in the range [—1.1]. and the w,;; are derived therefrom. The
activity vector £(0) is reset to 0. At each time 7. the following sequence of events

transpires:

1. An action, a(?), is selected at random.

o

The weight matrix for that action, W,. is used to compute the activities at {.

x(t). from the previous activities x(t — 1).

3. The selected action is performed on the environment, and the resulting sensations

are observed.

4. The observed sensations are compared with the sensations predicted by SLUG
(i.e.. the activities of the units chosen to represent the sensations) to compute a

measure of error.

6.

-1

[es]

55
The back-propagation algorithm (Rumelhart et al. [S0]) is used to compute the
derivative of the error with respect to each weight, dE/dw,;;. Because SLUG
contains recurrent connections and back-propagation applies only to feedforward
nets. the “unfolding-in-time™ procedure of Rumelhart et al. is used. This proce-
dure is based on the observation that any recurrent network can be transformed
into a feedforward network with identical behavior. over a finite period of time.
The feedforward net will have a laver of units corresponding to the units of
SLUG at each time step: the top layer of the feedforward net represents x(1).
the layer below represents @(t — 1). below that (¢ — 2). and so on back to a
layer that represents @(f — 7). (We discuss the choice of 7 below.) The weights
feeding into the top layer are 11, 4. the weights feeding into the layver below that
are 1l (4-1). and so forth. Back-propagation can be applied in a direct manner
to this feedforward network. The error gradient for some action i, JE /I, is
computed by summing the back-propagated error derivatives over all layers { of
the feedforward net in which the action corresponding to that layer. a(!). is equal

to i.

The error gradient in terms of the {11} is transformed into a gradient in terms
of the {Z,}. With constrained weights (Equation 3.2). the relation is

OF wy; OF _Z()_E
Ozai; T |Owe; G Oair

Waik (3.))

With unconstrained weights (Equation 3.4), the mapping is simply the identity.

. The {Z,} are updated by taking a step of size § down the error gradient:
oFE
A (3.6)
a:ﬂij

The {W,} are then recomputed from the new {Z,}.

. The temporal record of unit activities, (t—¢) for 7 = 0... 7, which is maintained

to permit back-propagation in time, is updated to reflect the new weights. This

56
involves recomputing the forward flow of activity from time t — 7 to 7 for the

hidden units. (The output units are unaffected because their values are forced,

as described in the next step.)

9. The activities of the output units at time ¢. which represent the predicted
sensations, are replaced by the observed sensations. This implements a form
of teacher forcing (Williams and Zipser [108]). A consequence of teacher forcing
is that the error derivative for weights feeding into the output units at times
t — 1.t =2 etc. should be set to zero in Step 5: that is. error should not be
back-propagated from time ¢ to output units at earlier times. It is not sensible to
adjust the response properties of output units at some earlier time / to achieve
the correct response at time ¢ because the appropriate activation levels of these

units have already been established by the sensations at time 7.

Steps 5 and 8 require further elaboration. One parameter of training is the amount
of temporal history. 7, to consider. We have found that, for a particular problem,
error propagation bevond a certain critical number of time steps does not help SLUG
to discover a solution more quickly. although any fewer does indeed hamper learning.
In the results described below. we arbitrarily set 7 for a particular problem to one
less than the number of nodes in the update graph solution of the problem. Informal
experiments manipulating = revealed that this was a fairly conservative choice. To
avoid the issue of selecting a value for 7, one could instead use the on-line recurrent
network training algorithm of Williams and Zipser [107].

To back-propagate error in time. a temporal record of unit activities is main-
tained. However, a problem arises with these activities following a weight update:
the activities are no longer consistent with the weights—i.e., Equation 3.1 is violated.
Because the error derivatives computed by back-propagation are exact only when

Equation 3.1 is satisfied, future weight updates based on the inconsistent activities

.-
T

T
are not assured of being correct. Empirically, we have found the algorithm extremely
unstable if we do not address this problem.

In most situations where back-propagation is applied to temporally-extended
sequences. the sequences are of finite length. Consequently. it is possible to wait
until the end of the sequence to update the weights. at which point consistency
between activities and weights no longer matters because the system starts afresh at
the beginning of the next sequence. In the present situation, however, the sequence
of actions does not terminate. We were thus forced to consider alternative means
of ensuring consistency. One approach we tried involved updating the weights only
after every. say. 25 time steps. Immediately following the update. the weights and
activities are inconsistent, but after 7 time steps (when the inconsistent activities
drop off the activity history record). consistency is once again achieved. A more
successful approach involved updating the activities after each weight change to force
consistency (Step 8 on the list above). To do this. we propagated the earliest activities
in the temporal record. (¢ — 7). forward again to time t. using the updated weight
matrices. ?

The issue of consistency arises because at no point in time is SLUG instructed
as to the state of the environment. That is, instead of being given an activity
vector as input. part of SLUG’s learning task is to discover the appropriate activity
vector. This might suggest a strategy of explicitly learning the activity vector, that
is. performing gradient descent in both the weight space and activity space. However.,
our experiments indicate that this strategy does not improve SLUG's rate of learning.

One plausible explanation is the following. If we perform gradient descent in just

4Keeping the original value of x(f — 7) is a somewhat arbitrary choice. Consistency can be
achieved by propagating any value of =(f — 7) forward in time, and there is no strong reason for
believing x(t — 7) is the appropriate value. We thus suggest two alternative schemes, but have not
vet tested them. First, we might select x({ —7) such that the new x(1—i), i =0...7—1, are as close
as possible to the old values. Second, we might select ®(f — 7) such that the output units produce
as close to the correct values as possible. Both these schemes require the computation-intensive
operation of finding a least squares solution to a set of linear equations.

58
weight space based on the error from a single trial, and then force activity-weight
consistency, the updated output unit activities are guaranteed to be closer to the
target values, assuming a sufficiently small learning rate. Thus. the effect of this
procedure is to reduce the error in the observable components of the activity vector,
which is similar to performing gradient descent in activity space directly.

A final comment regarding the training procedure: in our simulations, learning
performance was better with target activity levels of —1 and +1 (indicating that the
leftmost bit of the shift register is off or on. respectively) rather than 0 and 1. One
explanation for this is that random activations and random (nonnegative) connection
strengths tend to cancel out in the —1/ + 1 case. but not in the 0/1 case. For other

arguments concerning the advantages of symmetric activity levels see Stornetta and

Huberman [93].

3.5 Results

Figure 3.10 shows the weights in SLUG for the 3-bit shift register environment at
three stages of training. The "step™ refers to how many moves SLUG has taken. or
equivalently. how many times the weights have been updated. The bottom diagram in
the figure corresponds to the update graph of Figure 3.7C". To explain the correspon-
dence. think of the diagram as being in the shape of a person who has a head, left and
right arms, left and right legs. and a heart. For the action L, the head—the output
unit—receives input from the left leg, the left leg from the heart. and the heart from
the head, thereby forming a three-unit loop. The other three units—the left arm,
right leg, and right arm—form a similar loop. For the action R, the same two loops
are present but in the reverse direction. These two loops also appear in Figure 3.7C.
For the action F, the left and right arms, heart, and left leg each keep their current
value, while the head and the right leg exchange values. This corresponds to the

exchange of values between the bit 0 and bit 0 nodes of the Figure 3.7C.

Ut
o

Step 0

Step 1000

Step 2000

Figure 3.10. SLUG’s Weights at Three Stages of Training for the 3-Bit Shift Register
Environment. Step 0 reflects the initial random weights. Step 1000 reflects the weights
midway through learning, and Step 2000 reflects the weights upon completion of
learning. Each large diagram (with a light gray background) represents the weights
corresponding to one of the three actions. Each small diagram contained within a
large diagram (with a dark gray background) represents the connection strengths
feeding into a particular unit for a particular action. There are six units, hence six
small diagrams within each large diagram. The output unit, which indicates the
state of the light in the current room. is the protruding “head” of the large diagram.
A white square in a particular position of a small diagram represents the strength
of connection from the unit in the homologous position in the large diagram to the
unit represented by the small diagram. The area of the square is proportional to the
connection strength, with the largest square having the value 1.

60

I R ' F

Figure 3.11. The Underlyving =,;; Parameters. These parameters correspond to the
weights in the bottom diagram of Figure 3.10. White squares indicate positive values,
black squares negative values. The largest square represents a value of 4.5.

The weights depicted in Figure 3.10 are the w,;;’s. These weights are derived
from the underlving parameters z,;;. The values of z,;; corresponding to the weights
at Step 2000 are shown in Figure 3.11. The normalized exponential transform maps
Zqij values in the range —oo — 400 to values in the range 0 — 1.

In addition to learning the update graph connectivity, SLUG has simultaneously

learned the correct activity values associated with each node for the current state of

Action F Action R Action L Action L Action R

R

Step 2000

ce

Step 2001

S e SRR

Step 2002 Step 2003 Step 2004 Step 2005

Figure 3.12. The Pattern of Activity in SLUG at Six Consecutive Time Steps. White
squares indicate a unit with activity level of +1. black squares a unit with activity
level —1. The arrangement of units in this figure matches the arrangement of weights
in the previous two figures. Thus, the output unit is the protruding “head™ of each
diagram. The transition between two consecutive states arises from performing the
action printed between the two states.

61
the environment. Armed with this information. SLUG can predict the outcome of
any sequence of actions. Indeed. the prediction error drops to zero. causing learning
to cease and SLUG to become completely stable. Figure 3.12 shows the evolution
of activity in SLUG at six consecutive time steps. At Step 2000. the value of the
leftmost bit is 1. as indicated by the white square in the diagram’s head. When the
action F is performed. the head and right leg exchange values while all other units
maintain their current value. Between Steps 2001 and 2005. the action sequence RLLR
is executed. Because shifting left and right are complementary actions. SLUG’s state

at Step 2005 is the same as at Step 2001.

SLUG shows two advantages over other connectionist approaches to learning
finite-state automata (e.g.. Elman [22]; Pollack [68]: Servan-Schreiber. (‘leeremans,
and McClelland [91]). First, because the ultimate weights and activities are discrete.
SLUG can operate indefinitely with no degradation in its ability to predict the future.
Other connectionist networks have the drawback that states are not represented
discretely. Consequently. minor numerical imprecisions can accumulate. causing the
networks to wander from one state to another. For example. Pollack [68] trained
a network to accept strings of the regular language 1% (i.e.. any number of 1's).
However, the network would accept strings containing a 0 if followed by a long enough
string of 1's. The network would eventually “forget™ that it was in the reject state.
SLUG with constrained weights is not susceptible to this problem, as illustrated by
the fact that the state at Step 2001 in Figure 3.12 is eractly the same as the state
at Step 2005. The second advantage of SLUG over other connectionist approaches
is that the network weights and activities can readily be interpreted—as an update

graph. Consequently, the correctness of SLUG's solution can be assessed analytically.

To evaluate SLUG, we examined its performance as measured by the number
of actions that must be executed before the outcomes of subsequent actions can be
predicted, that is, before a perfect model of the environment has been constructed.

One means of determining when SLUG has reached this criterion is to verify that

62
the weights and activities indeed correspond to the correct update graph. Such a
determination is not easy to automate: we instead opted for a somewhat simpler
criterion: SLUG is considered to have learned a task by a given time step if the
correct predictions are made for at least the next 2500 steps. In all simulation results
we report in this paper. performance is measured by this criterion—the number of
time steps before SLUG can correctly predict the sensations at the 2500 steps that
follow. Because results vary from one run to another due to the random initial weights.
we report the median performance over 23 replications of each simulation. On any
replication. if SLUG was unable to converge on a solution within 100.000 steps. we
stopped the simulation and counted it as a failure.

Now for the bad news: SLUG succeeded in discovering the correct update graph
for the 3-bit shift register environment on only 15 of 25 runs. The median number of
steps taken by SLUG before training terminated—either by reaching the performance
criterion on successful runs or by reaching the maximum number of steps on failed
runs—was 6.428. Even on failed runs. however. SLUG does learn most of the update
graph. as evidenced by the fact that after 10.000 steps SLUG correctly predicts
sensations with an average accuracy of 93%.

With unconstrained weights. SLUG’s performance dramatically improves: SLUG
reaches the performance criterion in a median of 298 steps. From our experiments.
it appears that constraints on the weights seldom help SLUG discover a solution. In
the remainder of this article, we therefore describe the performance of the version
of SLUG with unconstrained weights. In Mozer and Bachrach [60], we consider why

constraining the weights is harmful and possible remedies.

63

L R F

Figure 3.13. Weights Learned by SLUG with Six Units and Unconstrained Weights
for the 3-Bit Shift Register Environment. White squares indicate positive weights.
black negative.

3.6 Comparing SLUG and Other Connectionist Approaches

With unconstrained weights. SLUG suffers from the two drawbacks common to
other connectionist approaches that we described earlier. TFirst. slight inaccuracies
in the continuous-valued weights and activities can cause degeneration of SLUG's
predictive abilities in the distant future. Consequently, it is essential that SLUG
converge on an exact solution. To assist towards this end. we scaled down the
learning rate, 1. as SLUG approached a solution. (That is. y was set in proportion
to the mean squared prediction error.) The second advantage lost when weights are
unconstrained is that, although SLUG learns effectively. the resulting weight matrices,
which contains a collection of positive and negative weights of varying magnitudes. is
not readily interpretable (see Figure 3.13).

The loss of these two benefits might seem to indicate that SLUG is no better than
other connectionist approaches to the problem of inducing finite-state environments,
but comparisons of SLUG and a conventional connectionist recurrent architecture
indicate that SLUG achieves far superior performance. The “conventional™ archi-
tecture we tested was a three laver network consisting of input. hidden. and outpul

units, with feedforward connections from input to hidden and hidden to output layers

64
as well as recurrent connections within the hidden layer (Bachrach [3]; Elman [22];
Mozer [56]: Servan-Schreiber et al. [90]). Input units represent the current sensations
and an action. output units represent the sensations predicted following the action.
Our experiments using the conventional architecture were spectacularly unsuccessful.
We were unable to get the conventional architecture to learn the 3-bit shift register
environment on even one run. despite our best efforts at varving the number of
hidden units, the number of steps 7 through which error was back-propagated. and
learning rates in every conceivable combination. We lowered our sights somewhat and
attempted to train the conventional architecture on a simpler environment. the little
prince environment. The conventional architecture was able to learn this environment
on 24 of 25 replications, with a median of 27, 867 steps until the prediction task was
mastered. In contrast, SLUG learned perfectly on every replication and in a median
of 91 steps.

Besides testing the conventional architecture on the environment inference prob-
lem. we also tested SLUG on problems studied using the conventional architecture. ®
Servan-Schreiber et al. [90] have worked on the problem of inferring regular languages
from examples. which is formally identical to the environment inference problem
except that an exploration strategy is unnecessary because sample strings are given
to the system. They trained the conventional architecture on strings of a language.
After 200,000 sample strings. the network was able to reject invalid strings. In
contrast, SLUG required a mere 150 training examples on average before it mastered
the acceptability judgement task.©

The fact that SLUG achieves considerably better performance than conventional

connectionist approaches justifies its nonintuitive network architecture, dynamics,

5This comparison was performed in collaboration with Paul Smolensky.

5The training procedure was slightly different for the two architectures. Servan-Schreiber et al.’s
network was shown positive examples only, and was trained to predict the next element in a sequence.
SLUG was shown both positive and negative examples, and was trained to accept or reject an entire
string. We see no principled reason why one task would be more difficult than the other.

Figure 3.14. Weights Learned by SLUG with Three Units and Unconstrained Weights
for the 3-Bit Shift Register Environment.

and training procedure.” Thus. Rivest and Schapire’s update graph representation,
which motivated the architecture of SLUGL. has proven beneficial. even if what SLUG

(with unconstrained weights) learns does not correspond exactly to an update graph.
Interpreting unconstrained solutions discovered by SLUG

One reason why the final weights in SLUG are difficult to interpret in the case of
the 3-bit shift register environment is that SLUG has discovered a solution that does
not satisfy the update graph formalism; it has discovered the notion of complemen-
tation links of the sort shown in Figure 3.71. With the use of complementation links,
only three units are required. not six. Consequently. the three unnecessary units are
either cut out of the solution or encode information redundantly. SLUG’s solutions are
much easier to understand when the network consists of only three units. Figure 3.14
depicts one such solution, which approximates the graph in Figure 3.71. Ignoring the
connections of small magnitude, the three units are connected in a clockwise loop
for action L. a counterclockwise loop for action R, and the output unit toggles its

value while the two internal units maintain their values for action F. Although a

"It remains to be seen which properties of SLUG that differ from the conventional connectionist
approach are crucial for SLUG’s improved performance. One key property is undoubtably the gating
connections between actions and state units. See Giles et al. [26] for a related architecture that also
shares this property.

66
comparison of Figures 3.14 and 3.7] might seem to indicate that the connections of
small magnitude in Figure 3.14 introduce noise. this is in fact not the case. The
solution discovered by SLUG is exact—it predicts sensations accurately because the
effects of these connections exactly cancel out. SLUG also discovers other solutions in
which two of the three connections in the three-unit loop are negative. one negation
canceling out the effect of the other. Allowing complementation links can halve the
number of update graph nodes required for many environments. This is one fairly
direct extension of Rivest and Schapire’s update graph formalism that SLUG suggests.

Treating the update graph as matrices of connection strengths has suggested
another generalization of the update graph formalism. Because SLUG is a linear
system. any rank-preserving linear transform of the weight matrices will produce an
equivalent system, but one that does not have the local connectivity of the update
graph. Thus. one can view the Rivest and Schapire update graph formalism as
one example of a much larger class of equivalent solutions that can be embodied
in a connectionist network. While many of these solutions do not obey constraints
imposed by a symbolic description (e.g., all-or-none links between nodes), they do
vield equivalent behavior. By relaxing the symbolic constraints. the connectionist
representation allows far greater flexibility in expressing potential solutions. See

Mozer and Bachrach [60] for a further elaboration of this point.

Comparing SLUG and the RS Algorithm

Table 3.1 compares the performance of the RS algorithm and SLUG for a sam-
pling of environments. ® In these simulations, we ran the version of SLUG with
unconstrained weights. All runs of SLUG eventually converged on an adequate set
of weights. The learning rates used in our simulations were adjusted dynamically

every 100 steps by averaging the current learning rate with a value proportional to

8We thank Rob Schapire for providing us with the latest results from his work.

67

Table 3.1. Number of Steps Required to Learn Update Graph.

Environment Size of Median Number

Update of Actions

Graph | The RS Algorithm | SLUG
Little Prince 4 200 91
Car Radio 6 27,695 | 8.167
3-Bit Shift Register 8 408 298
4-Bit Shift Register 9 1,388 | 1.509
5 x5 Grid 27 583,195 fails
32-Bit Shift Register 32 52,436 fails
6 x 6 Checkerboard 36 96.041 | S.142

the mean squared error obtained on the last 100 steps. Several runs were made to
determine what initial learning rate and constant of proportionality vielded the best
performance. It turned out that performance was relatively invariant under a wide
range of these parameters. Including momentum in the back-propagation algorithm
did not appear to help significantly. ®

In simple environments, SLUG can outperform the RS algorithm. These results
are quite surprising when considering that the action sequence used to train SLUG is
generated at random, in contrast to the RS algorithm. which involves a strategy for
exploring the environment. We conjecture that SLUG does as well as it does because
1t considers and updates many hypotheses in parallel at each time step. That is. after
the outcome of a single action is observed, nearly all weights in SLUG are adjusted
simultaneously. In contrast, the RS algorithm requires special-purpose heuristics that
are not necessarily robust in order to test multiple hypotheses at once.

A further example of SLUG’s parallelism is that it learns the update graph
structure at the same time as the appropriate unit activations, whereas the RS

algorithm approaches the two tasks sequentially. During learning, SLUG continually

*Just as connectionist simulations require a bit of voodoo in setting learning rates, the RS
algorithm has its own set of adjustable parameters that influence performance. We experimented
with the RS algorithm, and without expertise in parameter tweaking, were unable to obtain
performance in the same range as the measures reported by Rivest and Schapire.

68
makes predictions about what sensations will result from a particular action. These
predictions gradually improve with experience, and even before learning is complete,
the predictions can be substantially correct. The RS algorithm cannot make predic-
tions based on its partially constructed update graph. Although the algorithm could
perhaps be modified to do so, there would be an associated cost.

In complex environments—ones in which the number of nodes in the update
graph is quite large and the number of distinguishing environmental sensations is
relatively small—SLUG does poorly. Two examples of such. the 32-bit shift register
environment and the 5 x 5 grid environment. cannot be learned by SLUG whereas
the RS algorithm succeeds. An intelligent exploration strategy seems necessary in
complex environments: with a random exploration strategy. the time required to
move from one state to a distant state becomes so great that links between the states
cannot be established.

The 32-bit shift register environment and the 5 x 5 grid environment are extreme:
all locations are identical and the available sensory information is mea ger. Such envi-
ronments are quite unlike natural environments. which provide a relative abundance
of sensory information to distinguish among environmental states. SLUG performs
much better when more information about the environment can be sensed directly.
For example, learning the 32-bit shift register environment is trivial if SLUG is able
to sense the values of all 32 bits at once (the median number of steps to learn is only
1209). The checkerboard environment is another environment as large as the 32-bit
shift register environment in terms of the number of nodes SLUG requires, but it is
much easier to learn because of the rich sensory information.

Noisy environments. The RS algorithm originally could not handle environments
with unreliable sensations, although a variant of the algorithm has recently been
designed to overcome this limitation (Schapire [86]). In contrast, SLUG, like most

connectionist systems, deals naturally with noise in that SLUG’s ability to predict

degrades gracefully in the presence of noise. To illustrate this point, we trained

69
SLUG on a version of the little prince environment in which sensations are registered
incorrectly 10% of the time. SLUG was still able to learn the update graph. However,
to train SLUG properly in noisy environments, we needed to alter the training
procedure slightly, in particular. the step in which the observed sensations replace
SLUG's predicted sensations. The problem is that if the observed sensations are
incorrectly registered, the values of nodes in the network will be disrupted. and SLUG
will require a series of noise-free steps to recover. Thus. we used a procedure in which
the predicted sensations were not completely replaced by the observed sensations. but

rather some average of the two was computed, according to the formula
(1 —w)p; + woy. (3.7)

where p; and o; are the predicted and observed values of sensation 7, and w is a
weighting factor. '® The value of w is a function of SLUG's performance level, as
measured by the mean proportion of prediction errors. If SLUG is making relatively
few errors. it has learned the correct environment model and « should be set to
0—the observed value should be ignored because it is occasionally incorrect. However,
if SLUG is performing poorly. the prediction p; should not be relied upon, and w
should have a value closer to 1. Rather than computing w as a function of SLUG's
performance, another possibility is to adjust w via gradient descent in the overall
error measure.

Prior specification of update graph size. The RS algorithm requires an upper
bound on the number of nodes in the update graph. The results presented in
Table 3.1 are obtained when the RS algorithm knows in advance exactly how many
nodes are required. The algorithm fails if it is given an upper bound less than
the required number of nodes, and performance—measured as the number of steps

required to discover the solution—degrades as the upper bound increases above the

1A more principled but computationally more expensive technique for updating the predicted
sensations can be derived using Kalman filtering theory (Gelb [25]).

Table 3.2. Number of Steps Required to Learn Update Graph as the Number of Units

in SLUG Is Varied.

Units in | Median Number of
SLUG Steps to Learn
Update Graph
4 2028
6 1330
8 1509
10 1496
12 1484
14 1630
16 1522
18 1515
20 1565

required number. SLUG will also fail to learn perfectly if it is given fewer units
than are necessary for the task. However. performance does not appear to degrade
as the number of units increases beyond the minimal number. Table 3.2 presents
the median number of steps required to learn the 1-bit shift register environment
as the number of units in SLUG (with unconstrained weights) is varied. Although
performance is independent of the number of units here, extraneous units greatly
improve performance when the weights are constrained: only 4 of 25 replications of
the 4-bit shift register environment simulation with 8 units and constrained weights
successfully learned the update graph, whereas 19 of 25 replications succeeded when

16 units were used.

3.7 Limitations of SLUG

The connectionist approach to the problem of inferring the structure of a finite-
state environment has two fundamental problems that must be overcome if it is to be
considered seriously as an alternative to the symbolic approach. First. using a random
exploration strategy, SLUG has no hope of scaling to complex environments. An

intelligent strategy could potentially be incorporated to encourage SLUG to explore

7l
unfamiliar regions of the environment. One approach we are currently investigating,
based on the work of Ciohn et al. [14]. is to have SLUG select actions that result
in maximal uncertainty in its predictions, where uncertainty is defined as how far a
predicted sensation is from one of the discrete sensation values. Second, our greatest
successes have occurred when we allowed SLUG to discover solutions that are not
necessarily isomorphic to an update graph. One virtue of the update graph formalism
1s that it is relatively easy to interpret: the same cannot generally be said of the
continuous-valued weight matrices discovered by SLUG. However. as we discuss in
Mozer and Bachrach [60]. there is promise of developing methods for transforming

the large class of formally equivalent solutions available to SLUG into the more localist

update graph formalism to facilitate interpretation.

CHAPTER 4

LEARNING TO CONTROL A FINITE
STATE AUTOMATON

In this chapter we discuss a control acquisition architecture that uses a model
to determine a minimal length sequence of actions to reach a particular goal state.
The architecture consists of a model and an adaptive critic. The basic architecture
1s shown in Figure 4.1 and will be called the control network. The model maps its
current state and the current action to the predicted next. state, and the adaptive
critic maps the model’s next state to the expected time to reach the goal state. The
model’s state consists of both predicted sensations and hidden state information.
corresponding to the output and hidden units of SLUG.

At each time step the control action is chosen which minimizes the output of
the adaptive critic. This is done by using-the control network to evaluate, at each
time step, each possible control action. The control network computes a prediction
of the time to reach the goal state if that particular action were taken in the current
state. The control network performs this computation in two parts: first, the model
computes the state ¢ predicted to result from taking that particular action; second,
the adaptive critic computes the prediction of the time to reach the goal state from

state ¢. The action which results in the minimum prediction of time to reach the goal

state is then performed.

73

Time to Goal
/]

Adaptive
Critic

Sensation
Predictions

Model

T |

Hidden State

Action Sensations

Figure 4.1. Connectionist Control Acquisition Architecture.

4.1 Training

In our experiments. our training procedure is divided into two phases. First.
the model is trained during an exploration phase using the unconstrained version of
SLUG. The weights of SLUG are then fixed. In the second phase. the control network
is trained to produce optimal trajectories from arbitrary initial states to a particular
goal state. This phase involves a series of trials which begin and end in the goal state.
At the beginning of each trial, the robot explores for a fixed number of steps by taking
actions selected randomly from a uniform distribution. The number of such steps is
chosen to be the number of states in the environment. This number was chosen so
that there is a nonzero probability of the exploration phase ending in any particular
environmental state. This places the robot in a random state. which we regard as

the initial state for the remainder of the trial. ' During the rest of the trial, the

!There are two motivations for this wandering procedure. First, in a learning situation with
minimal supervision, the robot needs to get into the initial state on its own; it cannot depend on

4
robot performs the actions that produce minimal predictions of the time to reach the
goal state according to its current model and adaptive critic. In order to encourage
exploration during control trials, the robot sometimes (with probability 0.25 at each
time step in all the simulations ?) selects alternative actions instead of selecting the
action that is best according to the current predictions. This exploration strategy is
not optimal. but provides the necessary exposure to the state space. Sutton [96] and
Watkins [99] present more sophisticated techniques for exploration. Throughout the
entire control acquisition phase—during wandering and during the control trials—the
model constantly updates itself to reflect the current state of the environment.

The adaptive critic is trained using a temporal difference (TD) method developed
by Sutton [94. 95]. A system using this method learns to predict by maintaining
consistency across successive predictions and by forcing the prediction to agree with
any available training signals. In the case of predicting the time to reach the goal
state, the adaptive critic is trained to make successive predictions decrease by one
and to make the prediction at the goal state zero. The robot receives a reinforcement
signal that indicates when it is located at the goal; the reinforcement signal is 1 when
the robot is located at the goal and 0 otherwise. Finally, the adaptive critic is trained
only when the robot actually selects the action that currently looks best and not
when the robot takes exploratory steps (see Watkins [99] for justification).

The adaptive critic is implemented as either a one-layer or two-layer network with
a single linear output unit. The hidden layer is unnecessary for the little prince and
n X n checkerboard environments. The adaptive critic’s optional hidden layer consists

of logistic units with outputs ranging from —1 to +1.

a supervisor to place it in a random initial state. Second, the model needs to reflect the current
environmental state. If the robot is placed in a random state, substantial effort would be required to
identify the environmental state. However, by starting at the goal state and wandering from there,
the robot can maintain continual knowledge of the environmental state.

2 After trying a few different probabilities, 0.25 was found to produce the shortest learning times.

~1
(V7

Table 4.1. The Control Acquisition Architecture was Applied to these Environments
with their Respective Goal States.

Environment Goal State

Little Prince Robot on the north location fac-
ing east

Car Radio Playing Classical. Rock in pre-

set X, and News in preset Y
3-Bit Shift Register | Bit pattern 101

4-Bit Shift Register | Bit pattern 1010

4 x 4 Checkerboard | Square (1,1)

6 x 6 Checkerboard | Square (2,2)

8 x 8 Checkerboard | Square (3,3)

We use the 3-bit shift register environment to illustrate the control acquisition
architecture. Initially, an unconstrained SLUG model of this environment was con-
structed with the techniques described in Chapter 3. Next, using the units of SLUG
as inputs to an adaptive critic network, the critic was trained to indicate the minimal
number of time steps to achieve the bit pattern 101 from any possible initial bit
pattern. Once trained. the control network implicitly defines a control law that
specifies the shortest (or equivalently minimal time) action sequence required to

achieve the goal state.

4.2 Simulation Results

The control acquisition architecture was applied to the environments listed in
Table 4.1. In all the environments, goal states were chosen to be indistinguishable
from other states based only on the sensations. For example, to be considered in the
goal state in the car radio environment, the robot must have the rock station stored
in preset X, the news station stored in preset Y. and must be listening to the classical
station. In the n x n checkerboard environment. the goal location is a particular

square that does not contain a landmark and that is located in the middle of the grid.

The coordinates given in Table 4.1 are relative to the bottom left square (0,0).

76

Critic Output

Figure 4.2. Summary of the Control Law and Evaluation Function for the 3-Bit Shift
Register Environment. Each state is depicted as a 3-bit shift register where grey
denotes a value of 0 in a particular cell. white a value of 1. Arrows indicate some
of the possible transitions from one state to another. Solid arrows correspond to the
optimal actions: dashed arrows correspond to suboptimal actions.

Figure 4.2 summarizes the resulting control law and evaluation function learned
for the 3-bit shift register environment. All states of the shift register are shown.
including the goal state. 101. which is at the bottom of the figure. Each state is
depicted as a shift register with the corresponding bit settings. where grey denotes a
value of zero. and white denotes a value of one. The states are depicted in decreasing
order from top to bottom in terms of the output of the adaptive critic for that state
(i.e.. expected minimum number of time steps needed to reach the goal state). This
figure summarizes the implicit control law by showing the optimal transitions {rom
state to state. For example. suppose the robot is in state 100 and is going to choose
the best next action. The robot could choose action L resulting in state 001 with
value 1. or action R resulting in state 010 with value 2. or action F resulting in state
000 with value 3. The best action available to the robot, according to the model and
adaptive critic, is L which is shown with the solid line; the suboptimal actions (F and

R) are shown by dotted lines in Figure 4.2.

-~1
~1

Table 4.2. An Example State/Action Sequence for the Car Radio Environment.

State action
current preset X preset Y
classical classical classical scan left
news classical classical | store in preset Y
news classical news scan left
rock classical news | store in preset X
rock rock news scan left
classical rock news —

H
HEERRND
NERENEN
EDEDEDE

Figure 4.3. Two Example Trajectories for the 8 x 8 Checkerboard Environment. Each
trajectory is shown as a sequence of shaded squares connected by line segments and
ending in the goal square.

During non-exploratory ;steps, the robot chooses the estimated optimal action
given the current state. For example, if the shift register starts in state 000, the
optimal action sequence is FLF. This trajectory is depicted in Figure 4.2 as a sequence
of bold arrows connecting state 000 to state 101 via states 100 and 001.

As a further demonstration of the control network, we describe the behavior of
the network on the car radio and 8 x § checkerboard environments after training. In
the car radio environment, the robot learns to store the proper stations in the presets

and then to play classical music. One example sequence of state/action pairs is shown

in Table 4.2.

=T

(v s

Figure 4.4. The Output of the Adaptive Critic at Each of the Squares in the 8 x §
Checkerboard Environment. The evaluations are portrayed with white being the
smallest time to goal and black being the largest time to goal.

In the 8 x 8 checkerboard environment. the goal state was chosen to be square
(3,3). The resulting controller is able to choose optimal actions from each square
in the grid. i.e.. actions that move it one step closer to the goal position. Figure 4.3
shows two trajectories for this environment. and Figure 4.4 shows the relative output
of the adaptive critic in all the squares. The evaluations decrease steadily to zero at
the goal square (3,3).

To evaluate the control acquisition architecture, we examined its performance as
measured by the total number of actions that must be executed before the system
produces optimal goal-seeking behavior. The total number of actions include wan-
dering actions, exploration actions. as well as actual control actions during which
learning occurs. The system was considered to have learned a task by a given time
step if the optimal control actions are taken for at least the next 2500 actions. In
order to judge whether a control action was optimal. a table of the minimum number

of time steps needed to reach home for each state was constructed prior to training.>

30ne might wonder why we need an adaptive critic if we can construct a table. First, an adaptive
critic permits the learning of minimal length sequences of actions in nonstationary environments.
Secondly, an adaptive critic permits the learning of minimal length sequences of actions for larger
environments for which constructing a table is impractical.

Table 4.3. Performance of the Control Acquisition Architecture.

Environment #of | #of | Learning [Median Number Needed to

Env. | Hidden Rate Learn Optimal Behavior

States | Units Actions Trials

All Control

Little Prince 4 0 0.100 20 8 2
3-Bit Shift Register 8 S 0.050 4443 778 373
4-Bit Shift Register 16 16 0.020 7662 1937 282
Car Radio 27 16 0.010 | 12512 2199 355
4 x 4 Checkerboard 16 0 0.001 6061 1114 262
6 x 6 Checkerboard 36 0 0.001 | 57915 5692 1327
8 x 8 Checkerboard 64 0 0.001 | 106507 STTT 1446

An action that changes the environmental state from to y was considered optimal
if the minimum number of time steps needed to reach home from state y is one less
than the minimum number needed from state x. For each environment. several runs
were made to determine the learning rate for the adaptive critic that vielded the best
performance. Because results varied from one run to another due to the random initial
weights, we report the median performance over 25 replications of each simulation.
On all replications, the control network was able to converge to an optimal solution.

Table 4.3 reports the performance of the control acquisition architecture for the
environments listed in Table 4.1. Table 4.3 lists the number of environmental states,
the number of logistic hidden units contained in the adaptive critic network (where
0 in this column means that a hidden layer was unnecessary), and the learning
rate used for training the adaptive critic. Table 4.3 also reports the median total
number of actions, number of control actions, and number of trials needed to learn
to produce optimal behavior. Because the control network was only trained during
control actions, the number of control actions equals the number of weight updates.
The results of Table 4.3 do not include the time needed to train the model.

Because of the large number of wandering and exploratory actions, the ratio

of the number of control actions to the total number of actions is small. More

80
sophisticated wandering and exploration procedures would substantially increase this
ratio. Figure 4.5 shows some learning curves for the 4-bit shift register environment.
The curves demonstrate that the system rapidly learns the majority of the control

law and then takes significantly longer to learn the residual behavior.
4.3 Relation to Other Work

In this section only a small sample of the connectionist control literature is
covered. Consult Barto [6] and Narendra [61] for more comprehensive overviews
of this subject. In this section. the focus is on the methods utilized in our control
acquisition architecture.

Supervised learning requires an informative teacher that can provide appropriate
target values. Unfortunately, in control tasks the environment can rarely give the
desired control signals. Jordan and Rumelhart [37] describe a technique that permits
supervised learning to be applied in these cases. The technique, called forward
modeling, involves building a model of the environment. and it allows the controller
to be optimized in terms of a performance criterion defined in distal coordinates.

Consider the problem of learning the inverse kinematics of a multi-joint robot
arm with excess degrees of freedom (as described in Jordan and Rumelhart [37)).
The inverse kinematics is a mapping from a spatial position vector @ to the joint
angles 8 necessary to move the endpoint of the arm to that position. Learning the
inverse kinematics directly is difficult when there are excess degrees of freedom because
there are many joint angles that result in the same position. Standard function
approximation techniques would tend to learn the average of the joint angles for a
given position. Unfortunately, the average might not be a valid solution. As an
additional difficulty, the teaching signal provides desired positions and not desired

joint angles. Therefore, the learning algorithm mu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>