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Abstract

In this paper we present a new multivariate decision tree algorithm LMDT, which com-
bines linear machines with decision trees. LMDT constructs each test in a decision tree by
training a linear machine and then eliminating irrelevant and noisy variables in a controlled
manner. To examine LMDT’s ability to find good generalizations we present results for a
variety of domains. We compare LMDT empirically to a univariate decision tree algorithm
and observe that when multivariate tests are the appropriate bias for a given data set, LMDT
finds small accurate trees.



1 Introduction

One commonly used approach for learning from examples is to induce a univariate decision
tree (Hunt, Marin & Stone, 1966; Breiman, Friedman, Olshen & Stone, 1984; Quinlan, 1986).
Each test in a univariate tree is based on one of the input variables and therefore, is restricted
to representing a split through the instance space that is orthogonal to the variable’s axis.
Such a bias may be inappropriate for problems in which the input variables are related
numerically (Breiman, Friedman, Olshen & Stone, 1984; Utgoff & Brodley, 1990). In this
paper we present a new multivariate decision tree algorithm, LMDT, designed to overcome
the bias of univariate splits. LMDT constructs each test in a decision tree by training a
linear machine and eliminating irrelevant and noisy variables in a controlled manner. Two
factors enable LMDT to find good generalizations effectively. Firstly, the method by which
LMDT finds and eliminates noisy or irrelevant variables offers a computationally efficient
approach to finding multivariate splits. Secondly, the linear machine training procedure
enables LMDT to find a good partition of the instance space regardless if the space is or is
not linearly separable.

To evaluate LMDT’s ability to uncover the structure in the data and to find trees with
high predictive accuracy we examine the trees found by LMDT across a variety of classifi-
cation tasks. To understand under what circumstances the bias of a multivariate tree (and
LMDT’s search bias for finding such a tree) is more appropriate than the bias of a univari-
ate decision tree we compare LMDT to a univariate decision tree algorithm, C4.5 (Quinlan,
1987), across these tasks. The results of this comparison show that each approach has a
selective superiority; for some of the tasks LMDT finds significantly more accurate trees
than C4.5 and for others the reverse is true. Because the hypothesis space searched by a
multivariate decision tree algorithm includes the hypothesis space of a univariate decision
tree algorithm we conclude that for some problems LMDT’s search bias for finding a tree is
inappropriate.

2 The LMDT Induction Algorithm

The LMDT algorithm builds a multiclass, multivariate decision tree using a top-down
approach. For each decision node in the tree, LMDT trains a linear machine, based on a
subset of the input variables, which then serves as a multivariate test for the decision node.
A linear machine (Nilsson, 1965; Duda & Hart, 1973) is a multiclass linear discriminant,
which itself classifies an instance. The class name is the result of the linear machine test
with one branch for each possible class at the node. To classify an instance, one encodes it
according to the local encoding information retained in the decision node, and follows the
branch indicated by the linear machine. This process is repeated until a leaf node is reached,
indicating the class to which the instance is assumed to belong.

2.1 Encoding the Input Variables

LMDT can handle instances described by numeric and/or symbolic variables, in which
some of the values may be missing. The linear machine algorithm requires that all variables
be numeric and therefore, LMDT encodes symbolic variables to numeric variables using the
same method as PT2, ensuring that no order is placed on these variables (Utgoff & Brodley,
1990). The encoded symbolic and numeric variables are normalized automatically at each
node. This is done so that it is meaningful to gauge the relative importance of the encoded



variables by the magnitudes of the corresponding weights, which is essential for the variable
elimination mechanism described in Section 2.3. Scaling is accomplished for each encoded
variable by mapping it to standard normal form, i.e., zero mean and unit standard deviation.
LMDT’s approach to handling a missing value is to map it to 0, which corresponds to the
sample mean of the corresponding encoded variable. All encoding information is computed
dynamically at each node and is retained in the tree for the purpose of classifying instances.

2.2 Training a Linear Machine

As per Nilsson (1965), a linear machine is a set of R linear discriminant functions that
are used collectively to assign an instance to one of the R classes. Let Y be an instance
description (a pattern vector) consisting of a constant threshold value 1 and the numerically
encoded features, which describe the instance. Then each discriminant function g;(Y') has
the form WYY, where W; is a vector of adjustable coefficients, also known as weights. A
linear machine infers instance Y to belong to class 4 if and only if (V7,7 # 7) :(Y) > g;(Y).

One well known method, for training a linear machine, is the absolute error correction
rule (Duda & Fossum, 1966), which adjusts W;, where 7 is the class to which the instance
belongs, and W, where j is the class to which the linear machine incorrectly assigns the
instance. The correction is accomplished by W; «— W; 4+ cY and W; «— W; — cY, where
c= [ W, Wi TY] , is the smallest integer such that the updated linear machine will classify
the instance correctly. If the training instances are linearly separable, then cycling through
the instances allows the linear machine to partition the instances into separate convex regions.

If the instances are not linearly separable, then the error corrections will not cease, and
the classification accuracy of the linear machine will be unpredictable. Recently, Frean
(1990) has developed the notion of a “thermal perceptron”, which gives stable behavior even
when the instances are not linearly separable. We have applied this idea to a linear machine,
though we have implemented it somewhat differently so that we can embed it within the tree
induction algorithm. Frean observed that there are two kinds of errors that are problematic.
First, as shown in the upper left portion of Figure 1, if an instance is far from the decision
boundary, and would be misclassified, then the decision boundary needs a large adjustment
in order to remove the error. On the assumption that the boundary is converging to a good
location, relatively large adjustments are considered counterproductive. To achieve stability,

Frean calls for paying decreasing attention to large errors, which we achieve by using ¢ = E-i-Lk’

where k = I'gv_v,z_}%"_;’)ﬂ’_'l, and annealing B during training. The second kind of problematic
error occurs when a misclassified instance lies very close to the decision boundary, as shown
to the lower right of the decision boundary in the figure. As k approaches 0, c approaches
1 regardless of 8. Therefore, to ensure that the linear machine converges, one also needs to
anneal the amount of correction ¢ that one will make regardless of k. We accomplish this by
annealing ¢ by 3, giving the correction coefficient ¢ = 73%

Table 1 shows the algorithm for training a thermal linear machine. We have specified
that B be reduced geometrically by rate a, and arithmetically by constant b. This enables
the algorithm to spend more time training with small values of 8 when it is refining the
location of the decision boundary, but there is no other justification for this annealing rule.
Also note that g is reduced only when the magnitude of the linear machine decreased for the
current weight adjustment, but increased during the previous adjustment. Here, we define



Figure 1. Nonseparable Instance Space

Table 1. Training a Thermal Linear Machine
1. Initialize 8 to 2.
2. If linear machine is correct for all instances or 8 < 0.001, then return.

3. Otherwise, pass through the training instances once, and for each instance Y that would be
misclassified by the linear machine and for which k < 8, immediately

(a) Compute correction ¢, and update W; and W;.

(b) If the magnitude of the linear machine decreased on this adjustment, but increased on
the previous adjustment, then anneal 8 to af — b. Default values are a = 0.999 and
b = 0.0005.

. Go to step 2.

1N

the magnitude of a linear machine to be the sum of the magnitudes of its constituent weight
vectors. This criterion for when to reduce 8 is motivated by the fact that the magnitude of
the linear machine increases rapidly during the early training, stabilizing when the decision
boundary is near its final location (Duda & Hart, 1973).

2.3 Eliminating Variables

In the interest of producing an accurate and understandable tree that does not evaluate
unnecessary variables, one wants to eliminate variables that do not contribute to classification
accuracy at a node. Features that are noisy or irrelevant may impair classification, and
LMDT finds and eliminates such features. When LMDT detects that a linear machine is near
its final set of boundaries, it eliminates the variable that contributes least to discriminating
the set of instances at that node, and then continues training the linear machine.

During the process of eliminating variables, the most accurate linear machine with the
minimum number of variables is saved. When variable elimination ceases, the test for the
decision node is the saved linear machine. There are two cases in which a linear machine
based on fewer variables is preferred. The first is when the accuracy of a linear machine based
on fewer variables is either higher than the best accuracy observed thus far or if the drop in
accuracy is not significantly different than the best accuracy, as measured by a t-test at the
.01 level of significance. In this case the linear machine based on fewer variables is saved and
if the accuracy is higher, then the system updates its value for the best accuracy observed



thus far. In the second case the algorithm is avoiding underfitting the data and will eliminate
variables until the number of instances is greater than the capacity of a hyperplane (Duda &
Hart, 1973). To this end, if the number of unique instances is not twice the dimensionality
of each instance, then the linear machine with fewer variables is preferred.:

We measure the contribution of a variable to the ability to discriminate by using a mea-
sure of the dispersion of its weights over the set of classes. A variable whose weights are
widely dispersed has two desirable characteristics. Firstly, a weight with a large magnitude
causes the corresponding variable to make a large contribution to the value of the discrim-
inant function, and hence discriminability. Secondly, a variable whose weights are widely
spaced makes different contributions to the value of the discrimination function of each class.
Therefore, one would like to eliminate the variable whose weights are of smallest magnitude
and are least dispersed. To this end, LMDT’s dispersion measure computes for each variable
the average squared distance between the weights of each pair of classes and then eliminates
the variable that has the smallest dispersion. This measure is analogous to the Euclidean
interclass distance measure for estimating error (Kittler, 1986).

A thermal linear machine has converged when the magnitude of each correction to the
linear machine is larger than the amount permitted by the thermal training rule for each
instance in the training set. However, one does not need to wait until convergence to begin
discarding variables. The magnitude of the linear machine asymptotes quickly, and it is
at this point that one can make a decision about which variable to discard. To determine
this point we use the following heuristic: if the ratio of the magnitude of the entire error
correction to the magnitude of the linear machine with the largest magnitude observed thus
far is less than a for the last n instances, where n equals the capacity of a hyperplane,
then the linear machine is close to converging. Empirical tests show that setting a = .01 is
effective in reducing total training time without reducing the quality of the learned classifier.

2.4 Relationship to Other Methods for Finding Multivariate Tests

The problem of finding multivariate splits for decision trees has been studied in both pat-
tern recognition and machine learning. Kittler (1986) describes several approaches for linear
feature combination. In this framework, LMDT performs a sequential backward selection
(SBS) search for a good combination of features. An SBS search is a top down search method
that starts with all of the initial features and tries to remove the feature that will cause the
smallest decrease in accuracy as measured by a criterion function. A criterion function is
a figure of merit reflecting the amount of classification information conveyed by a feature
(Kittler, 1986). However, instead of selecting the feature to remove by finding which feature
causes the minimum decrease of some criterion function, LMDT removes the feature with
the lowest weight dispersion. This reduces the time required to search for a set of features
by a factor of n; instead of comparing n linear machines, where n is the number of features
in the linear machine, LMDT compares two linear machines.

CART (Breiman, et al. 1984) and PT2 (Utgoff & Brodley, 1990) both perform a SBS
search for the best set of features to use as a test in the decision tree. CART searches at
each node for the linear discriminant that maximizes the reduction of a discrete impurity
measure. Once a set of weights has been found, CART calculates, for each variable, the
increase in the node impurity if the variable is omitted. If the smallest increase is less
than a preset threshold, then the variable is omitted and the search continues. Note that



Figure 2. The “L” Problem

after each individual variable is omitted, CART searches for a new threshold, but leaves the
weights for the input variables unchanged. After CART determines that further elimination
is undesirable, the set of weights is recalculated for the remaining features. One problem with
this approach is that after a variable is eliminated the relative importance of the remaining
variables may change. Therefore, one should recalculate the weights after each variable is
eliminated to avoid eliminating variables erroneously. This problem is most apparent in data
sets where the variables are not linearly independent. LMDT and PT2 both recalculate the
weights after each elimination. However, PT2’s training procedure for finding weights can be
computationally prohibitive because if one is using the absolute error correction rule without
thermal training, in conjunction with the Pocket Algorithm (Gallant, 1986), it is uncertain
how long it will take to find the optimal weight vector or even a good weight vector.

3 An Empirical Comparison of LMDT to C4.5

To examine LMDT’s ability to find a good generalization of the examples this section
provides an empirical evaluation of the LMDT algorithm. Section 3.1 demonstrates the
need for multivariate tests and illustrates LMDT’s ability to uncover linear structure in the
data. Section 3.2 presents results for a variety of classification tasks and compares the trees
produced by LMDT to a univariate decision tree algorithm, C4.5, across the dimensions of
size, accuracy and time spent learning.

3.1 Uncovering Structure

Consider the “L” problem, shown in Figure 2. One wants an algorithm to be able to find
one segment of the decision boundary at the root node, and the other at the root of a subtree,
thereby uncovering the linear structure of the data. The LMDT algorithm does exactly that,
due to thermal training of the linear machine at each node. As the linear machine at the root
begins to move toward one of the segments, misclassified instances from the other segment
have decreasing effect, allowing the linear machine to find one of the segments without being
misled by the distant points. A thermal linear machine avoids interaction between different
linear functions. In contrast, a least-mean-squares training rule (Duda & Hart, 1973) would
place a boundary through the middle of the data, thereby obscuring the structure.

In addition, the “L” problem is characteristic of situations where permitting multivariate
splits enables a decision tree algorithm to induce a better generalization than using only
univariate splits and is therefore the appropriate bias. A decision tree algorithm that permits



Table 2. Description of the Data Sets

Domain Number of Number of Number of Data Missing
Classes Instances Attributes Type Data
Clevland 2 303 13 N,S yes
Glass 6 214 9 N no
Iris 3 150 4 N no
Letter Rec. 26 20,000 16 N no
Pixel Seg. 7 3210 19 N no
Votes 2 435 16 B yes

only univariate splits would require a large number of tests to classify the training instances
correctly. Indeed, given 40 instances from this domain, C4.5 induces a tree of 21 nodes and
22 leaves. The size of a univariate tree for problems like the “L” problem is dependent on the
grainsize of the problem; an increase in the number of instances, clustered near a separating
hyperplane, increases the number of splits necessary to classify the data correctly. However,
the increase in the number of splits does not ensure an increase in accuracy for previously
unseen examples.

3.2 Results for a Variety of Domains

We present results for six data sets. These data sets were chosen to represent a mix of
symbolic and/or numeric attributes, missing values, binary class tasks and multiclass tasks.
A description of each of the data sets can be found in Table 2. The Clevland data set consists
of 303 patient diagnoses (presence or absence of heart-disease) described by 13 attributes
(Detrano, et al. 1989). The Glass domain involves identifying glass samples taken from
the scene of an accident as one of six classes. The Iris data set, Fisher’s classic data set,
contains 50 examples of three different types of iris plants. One class is linearly separable
from the other two, and the latter two are not linearly separable from each other. For
the Letter Recognition task the objective is to identify a black-and-white rectangular pixel
display as one of the 26 capital letters in the English alphabet (Frey & Slate, 1991). In the
pixel segmentation domain the task is to learn to segment an image into seven classes. Each
instance is the average of a 3x3 grid of pixels represented by 19 low-level, real-valued image
features. In the Votes domain the task is to classify each member of Congress, in 1984, as
Republican or Democrat using their votes on 16 key issues.

Various performance measures for each of the tasks are reported in Table 3. Each reported
measure is the average of ten runs. To achieve an estimate of the true error rate, for five of
the tasks, we performed a ten-fold crossvalidation for each run (Weiss & Kulikowski, 1991).
The data were split randomly for each run, with the same split used for both algorithms. For
the letter-recognition task, we used the traditional training set of 16,000 instances and the
test set of 4,000 instances (Frey & Slate, 1991). The measures reported are: the number of
the original input attributes that ever need to be evaluated somewhere in the tree (Unique
Attrs.); the number of test nodes in the tree (Nodes); the total number of leaves in the tree
(Leaves); the average number of encoded variables per linear machine (Avg vars/LM); the
number of epochs need to converge to a tree that classifies the training instances correctly
(an epoch is equal to the number of instances in the training set.); the number of bits needed



Table 3. Comparison of LMDT to C4.5
Domain Alg Unique Nodes Leaves Avg. Epochs Bits Accuracy

Attrs. vars /LM
Clevland LMDT 6.1 2.8 3.8 3.4 78(1180) 282 77.55
Clevland C4.5 10.9 45.8 46.8 576 1273 72.29
Glass LMDT 7.2 3.6 13.5 4.3  32(206) 974 54.46
Glass C4.5 8.6 38.9 39.9 469 1330 67.75
Iris LMDT 2.0 1.3 3.3 1.8 5(99) 124 93.93
Iris C45 3.7 8.0 9.0 53 202 93.80
Letter Rec. LMDT 16.0 516 1673 3.1 33(1859) 109,404 88.40
Letter Rec. C4.5 16.0 1147 1148 780 49,895 86.90
Pixel Seg. LMDT 15.9 8.3 23.5 5.6 32(1001) 2751 95.10
Pixel Seg. C4.5 105  40.2 41.2 231 2009 96.80
Votes LMDT 4.6 1.6 2.6 3.4 29(1376) 176 94.75
Votes C4.5 6.7 7.4 8.4 85 224 96.30

to represent the classifier (Bits); and the percentage of the test instances classified correctly
(Accuracy). If the difference in the accuracy for the test set is statistically significantly
different for the two algorithms, then we highlight this difference by reporting the higher
accuracy in bold-face type. The test for significance is a ¢-test at the .01 level of significance.

The time required to find an LMDT tree is naturally greater than the time required
for a C4.5 tree because the hypothesis space of multivariate decision trees is larger than
the hypothesis space of univariate decision trees. To compare the difference, we report
the number of epochs for each of the algorithms. For the LMDT trees we report both the
number of instances used to update the linear machine and the number of instances observed
(reported in parentheses). We cannot give a theoretical bound for the time LMDT requires
to learn a decision tree as the algorithm for training a linear machine is nondeterministic.
For both algorithms we count the number of times each training instance is examined. All
of the training instances are examined at the root of the tree, however, at each subtree, the
algorithm examines only a portion of the instances. The number reported in Table 3 is the
sum of the number of instances observed at each node in the tree divided by the size of the
training set. This count is fair because although C4.5, while searching for a test at a subtree,
may only examine part of each instance, the same is true of LMDT.

It is not meaningful to compare the size of the two types of trees using measures such as
the number of nodes or the number of leaves; the size of an LMDT node can be of greater
complexity than a C4.5 node. To compare the size of the trees, we use the Minimum Descrip-
tion Length Principle (MDLP) (Rissanen, 1989), which states that the best “hypothesis” to
induce from a data set is the one that minimizes the length of the hypothesis plus the length
of the data when coded using the hypothesis to predict the data. Here a hypothesis is a de-
cision tree and the data is the training set. The best hypothesis is the one that can represent
the data with the fewest number of bits. To represent the data we must code both the tree
and the error vector. The details of the coding procedure are given in Appendix A.

The results in Table 3 show that LMDT finds trees for the Clevland and Letter Recog-
nition tasks that are statistically significantly more accurate than those C4.5 finds, whereas
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C4.5 finds more accurate trees for the Glass and Votes tasks. The difference in the accuracies
for the Iris and the Pixel Segmentation tasks are not significant. The size of the trees, as
measured by the number of bits required to code the tree, is not consistent with the MDLP.
We conjecture that this is due to the fact that our codings are not provably optimal.

4 Conclusion and Directions for Future Work

The objective of creating a multivariate decision tree algorithm is to overcome the re-
striction of univariate trees to tests that represent splits that are orthogonal to the variables’
axes. However, the results in Section 3 demonstrate that for some data sets the bias of a
univariate decision tree is more appropriate. Although a univariate tree is a special case
of a multivariate tree, LMDT’s bias for finding such a tree may be inappropriate for some
tasks, because it may not find a univariate test when it should. LMDT’s variable elim-
ination method is a greedy search procedure and suffers from a problem inherent in any
hill-climbing procedure; it can get stuck on local maxima. Therefore, although the hypothe-
sis space LMDT searches includes univariate decision trees, the heuristic nature of LMDT’s
search may result in selecting a test from an inappropriate part of the hypothesis space.

A solution to this problem would be to determine the appropriate bias dynamically for
each test in the tree. The perceptron tree algorithm (Utgoff, 1989) is one example of a system
that tries to determine the appropriate representational bias for the instances automatically.
Specifically, the algorithm first tries to fit a linear threshold unit(LTU) to the space of
instances. If the space is not linearly separable, then the bias of an LTU is inappropriate
and the system searches for the best univariate test. However, for some instance spaces,
the best test may be based on a subset of the variables. From our results we conclude that
a multivariate decsion tree algorithm should employ a dynamic control strategy for finding
the appropriate representational bias for each test in the decision tree. Specifically, rather
than search the space of multivariate tests using a fixed bias (like LMDT), such a system
would have the capability to focus its search using heuristic measures of the learning process
(Brodley, 1992).

The problem of bias is not restricted to decision trees. It is a well known problem that
the ability of a chosen algorithm to induce a good generalization depends on how well the
hypothesis space underlying the learning algorithm and the bias for searching that space
fit the given task. Given that different algorithms search different hypothesis spaces, it
is not surprising then that one algorithm finds better hypotheses than others for some,
but not all tasks. Given a task for which there is no a priori knowledge as to what the
appropriate hypothesis space should be, a learning algorithm should itself determine what
is the appropriate bias.
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Appendix A

To determine the number of bits required to code a consistent hypothesis we need to code
both the hypothesis induced by the learning algorithm and the errors that the hypothesis
makes. To code the error-list we use Cover’s (1973) enumerative encoding scheme. To code
each type of decision tree we use a recursive, top-down depth first procedure making the
assumption that the receiver of the code knows the order of the attributes. For the following
discussion let k equal the number of classes, let n equal the number of attributes and let
V(a;) equal the number of distinct values for attribute a;. For both algorithms we need one
bit to indicate if the node is a leaf or a test. To code a leaf we need loga(k) bits.

Coding a C4.5 Test: We use one bit to indicate if the attribute tested is discrete or
continuous and log.(n) bits to specify the attribute. If the tested attribute is discrete, then
we code the value of each branch, which takes log,(V(a;)) bits. Note that when coding the
current node’s children we need only use logy(n — 1) bits, to specify an attribute, because a
discrete attribute is never re-tested in the subtree. We code the value of a continuous test as
a real number. We assume that the left branch corresponds to less-than and that the right
branch corresponds greater-than-or-equal-to range value.

Coding an LMDT Test: If the node is a linear machine, then we need k bits to
specify which classes have a linear discriminant at this node in the tree. We code each linear
discriminant as a vector of real numbers To represent an attribute that has been eliminated
we code its weight as 0.

Coding Real Numbers: We first reduce the precision necessary to retain the same
accuracy. We code the integer part of the number separately from the fractional part, using
Elias’ (1975) asymptotically optimal prefix code.
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