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Abstract

Existing methods for constructive induction usually isolate feature genera-
tion from problem solving, and do not exploit information about the purpose
for which features are created. This paper describes a theory of feature gen-
eration that creates features using both a domain theory and feedback from a
concept learner. An evaluation function can then be learned using these fea-
tures that is able to direct a problem-solver. The theory has been implemented
in a system called Zenith, which has been applied to two domains. Zenith is
able to generate useful features for each domain, given only a domain theory
and the ability to solve problems in the domain.
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1 Introduction

- In his pioneering work in artificial intelligence, Arthur Samuel (1959) de-
veloped a program that was able to play the board game checkers. Samuel’s
program used a set of features to characterize board positions, and by adjust-
ing the coefficients of these features it was able to achieve a modest level of
proficiency at the game. However, much of the program’s power came from
Samuel’s careful design of the features. Although later work [Samuel, 1963] im-
proved on the method for combining features, they still had to be designed and
hand-coded by a human expert. Samuel identified the automatic construction
of such features as a major open problem of great importance.

The problem has remained open for over 30 years. In that time, many
game-playing programs have been written that achieve expert levels of perfor-
mance, matching and sometimes exceeding the abilities of humans [Berliner,
1980; Rosenbloom, 1982; Lee & Mahajan, 1988]. Like Samuel’s checker playing
program, some of these systems are able to tune their evaluation functions au-
tomatically; however, all of them depend upon hand-coded features to describe
problem states. Until now, no research has addressed the automatic genera-
tion of such features, and no theory yet exists of how handcoded features are
discovered.

Some methods have been developed that are able to generate new features
for inductive concept learning [Schlimmer & Granger, 1986; Matheus & Ren-
dell, 1989; Pagallo & Haussler, 1990]. However, these methods are generally
not applicable to problem solving systems because they isolate concept learn-
ing from problem solving. They do not exploit information about the goals,
constraints and operators of the domain, nor do they use feedback from a
problem solver to guide feature generation. If the purpose of learning is to
improve problem solving performance, such sources of information should not
be ignored.

Existing methods of constructive induction attempt to create useful fea-
tures by combining the primitive features in various ways. However, inspection
of features designed by humans [Rosenbloom, 1982; Mitchell, 1984] reveals
that most are not combinations of the primitive features of the domain, but
rather they reflect the goals and operators of the domain for which they were
designed. They measure the degree of achievement of important goals and
subgoals, both strategic and tactical, known to be significant. In the termi-
nology of Flann and Dietterich (1986), the features are functional rather than
structural in nature.

STABB [Utgoff, 1986] uses problem solving knowledge for the generation of
new features. However, it is limited to so-called tractable domains [Mitchell,
Keller & Kedar-Cabelli, 1986], in which complete explanations of solution
paths can be generated, because it is from these explanations that the features
are created. Features for intractable domains must be heuristic rather than
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logically sufficient.

This paper presents a theory of feature generation for concept learning in
problem solving systems. Section 2 describes our theory in general terms. The
theory has been implemented in a system called Zenith, described in Section 3.
Zenith has been applied to two domains: the board game OTHELLO, and the
domain of telecommunications network management. Section 4 describes these
domains and Zenith’s feature derivations for them, demonstrating that Zenith
is able to create useful features and to improve performance in both domains.
Section 5 discusses the results and concludes.

2 Components of a Theory of Feature Generation

Zenith is based on a transformational theory of feature generation [Fawcett
& Utgoff, 1991], in which features are generated by the controlled application
of transformations to other features. We have identified four classes of trans-
formations: decomposition, abstraction, regression and specialization. Each
class comprises one or more specific transformations in Zenith. Section 3 de-
scribes both these specific transformations and a strategy for controlling their
application.

A feature is represented as a conjunction or disjunction of first-order terms.
These terms are called the conditions of the feature. A feature is evaluated
with respect to a problem solving state by determining whether the conditions
are satisfiable in the state.

The system starts with a single feature created automatically from the
performance goal of the system, and then progressively develops a set of fea-
tures by successively refining the existing features through application of the
transformations. Each of the four transformation classes performs a different
function and interacts with the others.

2.1 Decomposition

Decomposition transformations are syntactic methods for splitting apart
features. Each decomposition transformation recognizes a specific form, such
as an arithmetic inequality, that can be split apart and made into new features.
Callan and Utgoff (1991) show how decomposition results in features that may
produce a more useful gradient than would the original feature, and thus may
be more effective at guiding the problem solver.

For example, one decomposition transformation looks for arithmetic in-
equalities like f(X) > g(Y) and produces two new features that calculate
f(X) and g(Y’) separately. Being able to measure these values separately may
give the system information about how close the problem solver is to satisfy-
ing the original inequality. As an example, the rules of OTHELLO state that
a player has won when no moves can be made, and the player has more discs
than the opponent. Decomposing the latter condition yields two features: one
measuring the number of discs of the player, and the other measuring the
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number of discs of the opponent. Measuring these two values independently is
more useful to the concept learner, and thus to the performance system, than
1s the original inequality.

2.2 Goal regression

Goal regression creates the pre-image of a condition with respect to an
operator. If a feature is useful for the concept learner, then it may be beneficial
to create other features that measure how the original feature is affected by
the domain operators. For example, if it is useful to measure the number of
pieces owned by a player, it is probably also useful to measure the number of
pieces that could be acquired (or lost) by a move. The latter feature is created
by regressing the piece ownership condition through the move operator.

Goal regression has been used in many other machine learning systems [Sil-
ver, 1986; Utgoff, 1986; Minton, 1988], but there are two significant difference
to the goal regression in this theory. First, whereas goal regression is usually
performed along an entire operator path, in this theory it is only applied over a
single operator step at a time. This allows it to be used in intractable domains.
Second, whereas goal regression is usually applied to the goal conditions, in
this theory it can be applied to the conditions of any feature.

2.3 Abstraction

Features are often created (for example, by goal regression) that could
contribute much to the learned concept but are not worth their computational
cost. Abstraction removes details from a feature, which has two benefits. It
may make a feature less expensive, and it may also enable further simplification
and specialization.

The abstraction component must determine which expressions in a feature
are details that can be removed without sacrificing too much accuracy. To
do this, it must have a policy for determining how critical each expression
1s. Zenith uses a half-order theory of criticality, adopted from ABSTRIPS
[Sacerdoti, 1974]. This theory is domain independent and comprises a small
set of rules that assigns criticality to each condition of a feature. These rules
are based on based on ABSTRIPS’s principles of how easily the problem solver
can achieve the condition.

As an example from OTHELLO, the definition of a move for the white player
is a line of squares consisting of a white piece adjacent to one or more black
pieces, terminated by a blank square. Of these three conditions, the easiest
for the white player to influence is the existence of a white piece, because
the white player can directly place white pieces on the board, but can neither
place black pieces nor create blank squares. Therefore, a more abstract feature
could be produced by removing the first condition of the OTHELLO move. The
resulting expression matches a pattern consisting of one or more black pieces
terminated by a blank square, and is the basis for several mobility features
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used by Rosenbloom (1982). Empirically, these features are cheaper to evaluate
than the original conditions of the OTHELLO move and preserve most of their
accuracy.

2.4 Specialization

The fourth class of transformations creates specializations of existing fea-
tures. A specialized feature can often be much less expensive than the original
feature.

One way of specializing a feature is to search for invariants of the feature;
that is, individual domain elements or configurations of domain elements that
always satisfy the conditions of the feature. For example, a feature may be
expensive because it tests a large set of domain elements to determine which of
them satisfy an expensive condition. If special cases can be found that always
satisfy the condition, a feature can be created to recognize just these special
cases. The resulting feature will usually be much cheaper and will maintain
most of the accuracy of the original.

A second specialization technique is that of extracting a specific explana-
tion used by a feature. Because features may use non-operational terms that
are defined by rules in the domain theory, this type of specialization involves
extracting a specific highly-used rule path and creating a new feature that
uses only that path. By checking only this one path, the feature may be sub-
stantially less expensive than the original feature. This technique is similar to
explanation-based learning [Mitchell, Keller & Kedar-Cabelli, 1986].

2.5 Summary

The decomposition and goal regression components can create new “sub-
goal” features. Decomposition transformations may be seen as a syntactic
subgoal creation method, and goal regression as a semantic subgoal creation
method. The abstraction and specialization components refine features by
removing details and finding special cases, both of which can reduce cost.

3 The Zenith System

The Zenith system is based on the theory in the previous section. Zenith’s
architecture is similar to that of Samuel’s (1963) first checkers player, with
the addition of a feature construction module. Note that the system is pro-
vided only with the initial problem specification, after which the system learns
autonomously.

Zenith is cyclic: it solves a problem using its current evaluation function,
extracts instances from the problem solving episode, creates new features, then
learns a new evaluation function to be used in the next cycle.

The problem solver pursues a goal by performing a state-space search; it
generates a set of successor states and uses the learned concept to determine
the best next state. The purpose of feature generation is to aid the concept
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learner in distinguishing states that lead to a more desirable goal state.

3.1 The Concept Learner

When the performance component completes a problem-solving episode,
the solution path is passed to a critic, which creates training instances from
it. These instances are then used by the concept learner to induce a general
concept that can be used as an evaluation function to direct search. The
concept takes the form of a preference predicate [Utgoff & Clouse, 1991] that
determines when one state is preferred to another.

In the implementation, a linear threshold unit (LTU) is used as a concept
learner, because it provides a fast, simple method for combining the influences
of the features. It is possible that a nonlinear combination of features would
produce in some cases a more accurate evaluation function. Further research
will include experiments to determine the sensitivity of system performance
to the concept form.

Given the set of all features constructed so far, the system must decide
which should be included in the evaluation function, and which should not.
A time limit on the evaluation function is provided externally as part of the
problem specification. The system must create an evaluation function that is
as accurate as possible but that does not exceed the time limit in evaluating
a state.

Determining the optimal subset of features via exhaustive search is pro-
hibitively expensive, so Zenith uses a sequeniial backward selection method
[Kittler, 1986). The method begins by creating a feature set consisting of all
features that have been generated so far. It then removes any feature whose
cost exceeds the time limit. The remaining set is used to train an evaluation
function. Individual features are then cast out repeatedly until the total cost
of the evaluation function falls below the imposed limit. The feature to be cast
out is the one that contributes least to concept accuracy, that is, the feature
that produces the smallest decrease in concept accuracy when removed from
the set. Ties are broken by selecting the feature with greater cost. The process
halts when the total cost of the set of features is below the imposed time limit.
The remaining features are used in the evaluation function, and are termed
active. The features that have been cast out are termed inactive.

Note that every time new features are generated the concept learner re-
evaluates the entire set to determine which should be included. Thus, due to
changes in the feature set, a feature that is inactive may become active at a
later time.

3.2 Features and Transformations

Features are expressed in a form similar to that used by Michalski’s (1983)
counting arguments rules. A feature comprises a set of conditions (a conjunc-
tion or disjunction) and a set of variables. The feature computes the number
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| Class | Name | English description
Decomposition split conjunction Split conjunction into independent parts
remove negation Replace not(X) with X
split arith comp Split arithmetic comparison into constituents
split arith calc Split arithmetic calculation
Abstraction remove LC condition | Remove least constraining condition of conjunction
Goal Regression | regress condition Regress condition of a feature through a domain operator.
Specialization variable specialize Find invariant variable values that satisfy a feature’s conditions
remove disjunct Remove a feature’s disjunct
expand base case Replace call to recursive predicate with base case.

Table 1. Implemented transformations in Zenith

of distinct values of the set of variables that can satisfy the conditions. A
feature may be seen as a generalized form of a boolean expression, in that it
calculates not just whether the conditions are satisfiable but the number of
ways in which the conditions can be satisfied. This representation is more ex-
pressive than a set of conditions alone because it allows a feature to calculate
not just whether the conditions are satisfied, but the number of ways in which
the conditions can be satisfied.

The catalog of transformations currently used in Zenith is shown in Table 1.
A transformation applies to a feature and creates one or more new features
from it, without losing the original feature.

A single goal regression transformation is used that produces new features
by regressing the conditions of an existing feature through a domain opera-
tor. A separate feature is created for every resulting pre-image. A general
abstraction transformation is used, which removes the least critical condition
of a feature using the theory of criticality mentioned in Section 2. In addition
to the specialization transformations discussed in Section 2, there is a third,
expand base case, which replaces a call to a recursive predicate with its base
case.

The system must determine how and when to apply the transformations.
Features are selected one at a time, and transformations are chosen according
to the following policy:

1. If the feature can be decomposed, it is, and no other transformations
are allowed to apply to the feature. Because they generate features
that usually produce a more refined gradient than the original feature,
any subsequent transformations should be done to the resulting features
rather than to the original.

2. Only if a feature is active will goal regression be applied to it. Goal
regression usually produces features that are expensive, so it is only
applied to features that have already proven their worth. If a feature
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is inactive, it is unlikely that a feature recognizing its pre-image would
have a greater contribution to concept accuracy.

3. If the feature is judged to be expensive, abstraction and specialization
transformations are applied to it. An expensive feature 1s defined em-
pirically as one whose cost exceeds 10% of the evaluation function limit.

4 Zenith’s Feature Derivations

Zenith has been applied to two domains: the board game of OTHELLO, and
telecommunications network management (TNM). This section focuses on the
process by which Zenith creates features in both of these domains. A previous
paper [Fawcett & Utgoff, 1991] discussed an earlier implementation of Zenith,
and showed that Zenith’s features were able to attain about 85% classification
accuracy on an independent test set of OTHELLO instances.

4.1 OTHELLO

OTHELLO is a two-player game played on an 8 x 8 board. Players alternate
moves, and there are usually 60 moves in a game. The search space contains
approximately 10°® nodes. OTHELLO was chosen as a domain rather than
checkers because many features are known for it [Mitchell, 1984]. OTHELLO is
also attractive because it has been studied previously by researchers in artificial
intelligence [Rosenbloom, 1982; Lee & Mahajan, 1988]. Zenith’s opponent is an
expert OTHELLO-playing program. The OTHELLO domain theory is available
from the UCI database.

Figure 1 illustrates the derivation of some of the OTHELLO features that
Zenith generated. Discussion of many of these features may be found in [Rosen-
bloom, 1982].

The domain theory for OTHELLO specifies the performance goal as
win(black). From this, an initial feature is created that measures whether
the black player has won in a state. This feature is useless for directing search,
but decomposing it yields features measuring the score for each player, and
the existence of a legal move.

By regressing the conditions of Score (on the left-hand side of Figure 1)
through the OTHELLO move operator, Zenith generated a feature that counts
the number of semi-stable squares. Semi-stable squares are those squares that
cannot be immediately acquired by the opponent. By removing a negation
in this feature, Zenith generated the Axes feature, which measures the total
potential for flipping opponent’s pieces on the board.

The number of semi-stable squares is a useful feature of a state to measure,
but it is expensive to test every square for semi-stability. Zenith specialized
this expensive feature by looking for squares that are semi-stable; that is, by
looking for squares that invariably satisfy the semi-stability property.! Because

1Proving invariance analytically is usually expensive and sometimes impossible. Instead,



8 Automatic Feature Generation for Problem Solving Systems

Definition of WIN

Decomposition

Score No moves

Semi-stability Moves
Abstraction
Number of flippable
Semi-stable square spans

.Rosenbloom

Lo Abstratiion Abshracti@rontior
Speciafization De osition
Stable squares Axes Rosenbloom Empty
(total potential for
Goal régression flipping on board) Abstkaction
Stable square Abstrackon
capturable by
opponent Rosenbloom
Semi-unstable square Sum Empty

Figure 1. The derivation of some OTHELLO features generated by Zenith.

of the geometry of the OTHELLO board, the four corner squares are invariantly
stable, but Zenith found about twenty squares to be frequently stable and
created a feature for this set (of which the corner squares were members). The
feature proved to be both useful and inexpensive. Goal regression was then
applied to it, yielding a feature that counted the number of pieces that could
be made stable on the next move. This feature is related to such commonly
known features as X Squares and C Squares.

Zenith also created a number of mobility features, shown on the right-
hand side of Figure 1. From the initial feature, Zenith created a feature that
measured the number of moves available. By expanding the definition of the
OTHELLO move, a new feature was created that counted the number of squares
involved in each move. By applying its abstraction transformation to this re-
peatedly, it created a number of simpler, less costly mobility features including
three used by Rosenbloom (1982).

Zenith also generated features not shown in Figure 1. For example, by
applying the regress-condition transformation to the Moves feature shown on
the right-hand side of the figure, Zenith created a future mobility feature that
detected moves that could become available in the next state. This feature was
valuable to the performance element and was assigned a substantial weight by
the LTU. To our knowledge, this is an original discovery; no such feature has

Zenith finds invariants of features empirically by sampling its database of training instances.
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been published in any of the OTHELLO literature with which we are familiar.

4.2 Telecommunications Network Management

Zenith’s second domain is that of telecommunications network manage-
ment. A telecommunications network is a circuit-switched network in which
calls are placed from one switch to another. Calls are routed in a distributed
manner by the switches. Due to problems such as traffic congestion and equip-
ment failure, calls may fail to complete causing network performance to de-
grade. A set of controls can be imposed on each switch to modify its routing
behavior. The task of telecommunications network management (TNM) is to
impose these controls so as to maximize the performance of the network ac-
cording to some metric. Viewed as a state-space search, a state transition is
the application of a control to a switch in the network. Zenith’s task is to gen-
erate features to direct the problem solver in placing controls on the network,
in order ultimately to improve network performance.

Several learning systems exist for TNM (Silver, et al. 1990), one of which
creates decision trees from instances using the primitive (observable) features,
but feature generation for this domain has not yet been explored. In contrast
to OTHELLO, there is no body of features, either human or machine generated,
against which Zenith’s features can be compared.

Zenith does not perform a problem-solving episode in every cycle, but in-
stead solves a set of four problems initially, from which it extracts 663 training
instances. Each of the four represents a different network problem. Two con-
trols were used: one that could reroute calls to a particular destination, and
one that could block calls. A control can be applied to any switch in the net-
work, and only alters the routing behavior of the switch to which it is applied.
Combinations of these controls can effect large changes in routing behavior.

The performance goal of Zenith for TNM is to maximize the throughput of
the network, defined as the number of calls completed divided by the number
of calls placed. Zenith’s initial feature was based on this goal, and was suffi-
cient to classify the training instances with 80% accuracy. Zenith decomposed
the feature into two features measuring the number of calls completed and the
number of calls placed. Zenith regressed the conditions of a completed call
through the reroute operator to yield a feature that measured a state’s rerout-
ing potential: the amount of traffic that could be successfully rerouted. This
was a valuable but expensive feature, so it was transformed using specializa-
tion and abstraction into several other features, most of which were cheaper.
Applications of expand base case yielded a feature that measured traffic that
could be rerouted from one switch away. A number of useless features were
also generated, such as one that measured the amount of traffic that would
travel through a path if there was no traffic to use that path. However, most
of the features were useful for discriminating the instances, and Zenith was
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able to classify accurately 91% of an independent test set of instances.

5 Discussion and Conclusion

This paper presents a theory of feature generation for inductive concept
learning. The theory comprises four general kinds of actions — decomposition,
goal regression, abstraction and specialization — useful for generating features
for a problem-solver. The Zenith system, an implementation of this theory,
is based on a transformational model in which new features are created by
transforming existing ones. Section 4 showed that Zenith is able to generate
useful features in two very different problem-solving domains.

Because many features are known for OTHELLO, we have concentrated
on that domain in evaluating our implementation. It is important to note
that Zenith currently cannot generate some of the known OTHELLO features.
For example, some features (Kierulf Weights, Corner Points) calculate the
weighted sum of combinations of particular occupied squares. Zenith cannot
create features that incorporate weights, although its LTU does assign weights
to each feature. Other features (Exhaustive Moves, Move Levers) are based on
variable-length sequences of problem-solving steps, rather than independent
moves from a single state. By repeatedly regressing conditions Zenith can
generate the preconditions of an operator sequence. However, Zenith does not
reason about variable-length sequences of states, and so cannot produce such
features. Future work should make clearer such limitations.

Zenith is an attempt to answer the question raised by Arthur Samuel over
30 years ago, how can a system generate useful features automatically? Specif-
ically, it addresses the problem of feature generation for problem-solving sys-
tems, an area that has received little attention in constructive induction. The
ultimate goal of this work is to generate, for any domain, features that are as
good as those created by humans. By automating this process, we will increase
the autonomy of learning systems and thereby make it less costly to build and
maintain problem-solving systems.
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