Reinforcement Learning and
Its Application to Control

Vijaykumar Gullapalli

COINS Technical Report 92-10

January 1992

i —= 3 ~a 3 3 3 -3 3 —3 ~3 ~3a —31 —3 —3 —31 —3 3 3

REINFORCEMENT LEARNING
AND ITS APPLICATION TO CONTROL

A Dissertation Presented

by

VIJAYKUMAR GULLAPALLI

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment

of the requirements for the degree of

DoCTOR OF PHILOSOPHY

February 1992

Department of Computer and Information Sciences

© Copyright by Vijaykumar Gullapalli 1992

All Rights Reserved

|

.4

B

-3 —3% —4 —3 —3¥ —3 —3 —31 —3 —31 1

REINFORCEMENT LEARNING
AND ITS APPLICATION TO CONTROL

A Dissertation Presented

by
VIJAYKUMAR GULLAPALLI

Approved as to style and content by:

ol T A, 2

Andrew G. Barto, Chair

odenc A. Grupef} Mémber

65?14

B. Enik Ydstle J\ Enber

Michael I. Jordan, Mem%ﬁl(Alk

M@chﬂ&&%

W. Richards Adrion, Department Chair

Computer and Information Sciences

To

my parents,

Mani Devi and Subrahmanyam Venkata,

my sisters,

Sharada and Lata,

and my brother,

Ravi Kumar.

N R N

—3a "3 ~— 3 "3 i "3

—s —31 —3 3 —3 ~3 —3 —3 3

ACKNOWLEDGEMENTS

Andrew Barto has been a constant source of inspiration to me throughout my
tenure as a graduate student. His excellent technical expertise in an incredible range
of disciplines makes him unique among researchers and unique as an advisor. I have
benefited tremendously from Andy’s guidance, enthusiasm, constructive criticism,
and support—technical as well as financial. With great patience, Andy also taught
me to communicate my ideas concisely and coherently in writing. His influence on
both my thinking and my writing is evidenced throughout this dissertation. Michael
Jordan hired me as a research assistant several years ago when I was a naive beginning
graduate student. Since then, I have gained much from Mike’s academic virtuosity and
his ability to define important research issues in a clear fashion. Mike taught me the
importance of maintaining a broad range of research interests and showed me how to
precisely formulate research questions. Mike has also constantly challenged my ideas
and my thinking and has forced me to back my intuition with sound arguments and
hard evidence. I am also grateful to Mike for making available his network simulation
software, which I used for several of the simulations reported in this dissertation.

I am also grateful for the help I received from Roderic Grupen and Erik Ydstie. I
thank Rod Grupen for his help and support in my forays into robotics. His encourage-
ment and guidance were mainly responsible for my daring to move beyond simulations
and address “real-world” control problems. Rod also provided the IATEX macros
used to format this thesis, thereby saving me countless hours of painful formatting.
Erik taught a very useful course in adaptive control and provided useful information
about Recursive Least Squares. Erik also clarified some of the relationships between

connectionist learning control and traditional control.

I am also grateful for many useful interactions, academic and otherwise, that I
have had with my colleagues at UMass. In particular, I would like to thank Jonathan
Bachrach, Neil Berthier, Steve Bradtke, Robbie Jacobs, Steven Judd, Brian Pinette,
Sharad Saxena, Rahul Simha, Satinder Singh, and Richard Yee. My research has also
benefited from interactions with Chuck Anderson, Judy Franklin, Rich Sutton, and
others at GTE Labs. Kamal Souccar’s considerable expertise in the nuts and bolts
of robotics stood me in good stead when I was experimenting with the Zebra Zero.

My parents, brother, and sisters somehow endured my seemingly endless tenure
as a graduate student and, what’s more, provided me encouragement and support
every step of the way. Thanks guys!

This research was supported by funding provided to Andrew G. Barto by the Air
Force Office of Scientific Research, Bolling AFB, under Grant AFOSR-89-0526, and
by the National Science Foundation under Grant ECS-8912623.

vi

1 3 1 __3

~3a T 3 3 E| E

3

~—3 —3 —3 ~3 —3 ~3 ~3 —3 "3

ABSTRACT

REINFORCEMENT LEARNING
AND ITS APPLICATION TO CONTROL

FEBRUARY 1992
VIJAYKUMAR GULLAPALLI,
B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, INDIA
M.S., UNIVERSITY OF MASSACHUSETTS
PH.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Andrew G. Barto

Learning control involves modifying a controller’s behavior to improve its per-
formance as measured by some predefined indez of performance (IP). If control
actions that improve performance as measured by the IP are known, supervised
learning methods, or methods for learning from examples, can be used to train
the controller. But when such control actions are not known a priori, appropriate
control behavior has to be inferred from observations of the IP. One can distinguish
between two classes of methods for training controllers under such circumstances.
Indirect methods involve constructing a model of the problem’s IP and using the
model to obtain training information for the controller. On the other hand, direct,
or model-free, methods obtain the requisite training information by observing the
effects of perturbing the controlled process on the IP. Despite its reputation for
inefficiency, we argue that for certain types of problems the latter approach, of which

reinforcement learning is an example, can yield faster, more reliable learning. Using

vii

several control problems as examples, we illustrate how the complexity of model
construction can often exceed that of solving the original control problem using direct
reinforcement learning methods, making indirect methods relatively inefficient. These
results indicate the importance of considering direct reinforcement learning methods
as tools for learning to solve control problems. We also present several techxﬁques
for augmenting the power of reinforcement learning methods. These include (1) the
use of local models to guide assigning credit to the components of a reinforcement
learning system, (2) implementing a procedure from experimental psychology called
“shaping” to improve the efficiency of learning, thereby making more complex prob-
lems amenable to solution, and (3) implementing a multi-level learning architecture
designed for exploiting task decomposability by using previously-learned behaviors as

primitives for learning more complex tasks.

viii

_ 1

3 % _3

-~

4 T3 T3 T3 El

TABLE OF CONTENTS

CHAPTER
1. INTRODUCTIONt tttttit it i i
1.1 Learningcomtrol
1.2 Reinforcement learning and control
1.3 Connectionist learning systems
1.4 Organization of the dissertation
2. IssUES IN LEARNING TO SOLVE CONTROL PROBLEMS
2.1 Learning to solve control problems
2.2 Training information
23 Learningmethods
23.1 Indirect methods.
23.2 Direct methods
2.3.3 Comparing direct and indirect methods
2.4 Problems specific to reinforcement learning

3. REINFORCEMENT LEARNING OF REAL-VALUED FUNCTIONS

3.1 Learning automata and pattern classification
3.2 Associative reinforcement learning
3.3 The stochastic real-valued (SRV)unit
3.4 Convergence properties of SRV units
3.4.1 Simplifications
342 Assumptions
343 Discussion
3.5 Some learning experiments using SRV units
36 Summary
ix

..............................

..........

.......................................

..................................

..................................

....... 22

4. LEARNING CONTROL USING DIRECT REINFORCEMENT LEARNING 57
4.1 Learning fine-motion control: A peg-in-hole insertion task 57
4.2 Learning inverse kinematics of an under-constrained manipulator . . 69
4.3 Learning to control an unstable dynamic system 74
5. STRUCTURAL CREDIT ASSIGNMENT0ciiuuinnenmnnneunnnnn.. 84
5.1 Credit assignment in reinforcement learning systems 84
5.2 Some methods of structural credit assignment 87
5.2.1 Gradient methods, exact and approximate 87
5.2.2 Methods based on a minimum-change principle 88
5.2.3 Methods based on a measure of worth of a network component 89
5.3 A specific gradient method: Differentiating a forward model 90
5.4 Using consequent process output for credit assignment among multi-
ple action elements e e 91
54.1 Theheuristic. 94
5.4.2 Implementation of the heuristic 96
5.4.3 Relationship to “differentiating a model” 98
5.5 Efficacy of the multiple action element credit assignment method: An

illustrativeexample 101

6. SHAPING AS A METHOD FOR ACCELERATING REINFORCEMENT LEARNING 108

6.1 Shaping. e 108

6.2 Shaping through differential reinforcement of behavior over time . . 111

6.2.1 A Test Task: Key-pressing using a robot hand 112

6.2.2 Training methodology 115

6.23 Results 117

6.3 Shaping through incremental development of the learning system . . 121

6.3.1 A Test Task: Learningtocount 126

6.3.2 Training Methodology 130

633 Results 131

6.4 Summary 137

7. CONCLUSIONS . ..ttt ettt ettt e e e e et e e 139
APPENDICES

A. CONVERGENCE PROOF FOR THEOREM 1

_

_—

.y 3 3 3

-3 3 13

2

3

B. SIMULATION DETAILS FOR CHAPTERS 4, 5, AND 6 151

B.1 Types of units used in controller networks 151

B.2 Simulationsin Chapter4 152

B.3 Simulationsin Chapter § 155

F B.4 Simulationsin Chapter 6 155
[

REFERENCES . oottt ittt e e e e e e e e e e e e e e e 161

Table

LisT oF TABLES

4.1 Test cases for the peg-in-hole insertion task

5.1 The interference task

...........................

—3

—J -3 A2

r—*g ,'j r E

—3

—3 ©~— 3 ~—43 ~—3 —3 ~—3 ~—3 ~— 3 —4

) b " a

Figure
1.1

2.1

2.3

2.4

2.5

3.1

4.1
4.2
4.3

4.4

4.6

LisT oF FIGURES

Page
The basic problem setup for learning control. 6
The basic problem setup for learning control. 13
A schematic of the three classes of learning tasks described in the text. 15
A block diagram of the gradient-based indirect method for learning
control. 21
Control acquisition through direct inverse modeling. 24
A block diagram of the direct, or model-free, learning control method
based on gradient estimation through perturbation. 25
Block diagram of an SRV unit showing the various computations per-
formed. 38
Simulations results for the modified SRV algorithm in Task 1. 51
Simulations results for the SRV algorithm in Task 1. 52
Simulations results for the modified SRV algorithm in Task 2. 54
Simulations results for the SRV algorithm in Task 2. 35
The Zebra Zero robot used for the peg-in-hole insertion task. 39
The peg-in-hole task. 60
The network used for the peg-in-hole task. 61
Peg-in-hole task: Final evaluation received over 500 consecutive train-
IMETUNS. o v i it e e 62
Peg-in-hole task: Insertion time (in simulation time steps) taken on
each of 500 consecutive training runs. 63
Peg-in-hole task: Performance on test case 6 after various intervals of
tralning. L 64

xin

4.7 Peg-in-hole task: Sensory feedback during the course of insertion for
test case 6in Table4.1..

4.8 Theinverse kinematicstask.
4.9 The network architecture used for the inverse kinematics task.
4.10 The cart-polesystem.
4.11 The network architecture for the cart-pole task.

4.12 Performance on the cart-poletask.

5.1 Training a controller using indirect methods is like training a hidden
unitinanetwork. L.

5.2 An architecture for implementing the multiple action element credit
assignment heuristic.o L

5.3 Block diagram of the setup for the interference task.
5.4 Performance on the interference taskforn=2.
5.5 Performance on the interference task forn=3.
5.6 Performance on the interference task forn=4.
6.1 The task setup for the key-pressingtask.

6.2 The set of target keys used in the key-pressing task, shown encircled
by boldcircles.

6.3 Pressing the key marked “#” on the calculator keypad.
6.4 Pressing the key marked “8” on the calculator keypad.
6.5 Pressing the key marked “A” on the calculator keypad.
6.6 The setup for the bead counting task.
6.7 Performance of the level 1 controller on the LE (Left End) task. . . .
6.8 Performance of the level 1 controller on the RE (Right End) task. . .
6.9 Performance of the level 1 controller on the ZERO task..
6.10 Performance of the level 1 controller on the LD (Left Decrement) task.

6.11 Performance of the level 1 controller on the LI (Left Increment) task.

68

112

132
133
133
134

134

1 3 _. 7

_.1

1

~ —3 —31 —3 —31 —3 —a —%

3

3 1

6.12 Performance of the level 1 controller on the RD (Right Decrement) task.135
6.13 Performance of the level 1 controller on the RI (Right Increment) task. 135
6.14 Performance of the level 1 controller on the NOOP task. 136

6.15 Performance of the level 2 controller on the COUNT task for different
initial abacus configurations. 138

B.1 The output of the simulated fingertip force sensor as a function of the

height of the fingertip above the keypad. 156

B.2 The architecture of the controller used in the key-pressing task. . . . 157

B.3 The controller network used for the bead counting task. 159
xv

CHAPTER 1

INTRODUCTION

Although problems in controlling complex processes are usually considered the
exclusive purview of control theory, many control problems of current importance
suggest methods combining control theory and artificial intelligence (AI). The in-
creasing complexity of these control problems, arising from nonlinear, stochastic, or
non-stationary process behavior, makes them less amenable to the rigorous analysis
customary in traditional approaches to control systems design. Under such circum-
stances, heuristic approaches to solving these control problems are finding greater
currency. At the same time, many heuristic problem-solving techniques are being
developed in Al for “situated” intelligent systems, i.e., systems that operate in a
tightly coupled fashion with their environments. Game-playing systems are perhaps
the most well-studied examples of such systems. Because situated systems must
meet performance objectives similar to those specified for controllers, problem-solving
techniques developed for situated systems can also be useful for solving control
problems. In addition, applying techniques from Al to control problems can illuminate
the strengths and weaknesses of these techniques and suggest ways of improving them.

In this dissertation, we address some of the issues that arise in learning to control
complex processes. Learning control involves modifying the controller’s behavior
to improve its performance as measured by some predefined inder of performance
(IP). If control actions that improve performance as measured by the IP are known,

supervised learning methods, or methods for learning from examples, can be used to

train the controller. But when such control actions are not known a priori, appropriate
control behavior has to be inferred from observations of the IP. Two different classes of
methods can be used for deciding how to modify a controller’s behavior based on the
IP. Indirect! methods involve constructing a model of the IP in a form that can be used
to supply training information to the controller. The application of indirect methods
to learning control problems therefore involves two distinct operations: construction
of an adequate model, which can itself be regarded as a learning problem, and using
the model to train the controller. As alternatives to this, direct, or model-free,
methods rely on perturbing the process and observing the consequences on the IP
to obtain the required training information. Process perturbations can be caused by
active perturbation of the control actions or by disturbances (of possibly unknown
characteristics) from a source external to the controller.

Indirect methods are widely used in AI, often with hand-crafted “knowledge
bases” being used instead of learned models. The only prominent examples of direct
learning methods, however, are those developed for learning tasks in which the
learning system has to infer appropriate actions based solely on evaluative feedback.
Because of the similarity of such learning tasks to trial-and-error learning studied
by psychologists, in which the behavior of an animal undergoes modification based
on the ensuing reinforcement, Mendel and McLaren [90] labeled them reinforcement
learning tasks. Reinforcement learning has been studied extensively by Barto and

his co-workers [24, 21, 23, 136, 18, 15, 19, 7] and others [43, 153, 154], and they have

!The terms “indirect” and “direct” are used differently in the adaptive control literature (e.g.,
Goodwin and Sin [45], Narendra [102]) to differentiate between control design methodologies:
Indirect methods obtain controller parameters through appropriate analysis of a model of the
controlled process that is constructed on-line via explicit system identification; direct methods, on
the other hand, estimate the controller parameters without constructing an explicit process model.
As we discuss in Chapter 2, our usage of the terms direct and indirect is also somewhat different
from that of other researchers in Al and connectionist learning. Barto and Singh (20}, for example,
define indirect methods as those involving explicit modeling of the process and not of the IP. Instead
of restricting ourselves to either definition, we shall use these terms in the fairly broad sense defined
above, which, in our opinion, encompasses various usages, all of which are closely related.

3 3 3 __A

3

—3 —3 3 3

r'-—‘% r“?

~—3 ™3 3

—4 —3 —13 —3 ~— 3

3

developed several direct reinforcement learning methods. A common characteristic
of these methods is that they obtain training information by actively perturbing the

learning system’s outputs.

Building on this previous work, our own research is directed towards increasing
the applicability and efficiency of direct reinforcement learning methods. Of the
several questions that arise from research in applying learning methods to control
problems, we are primarily concerned in this dissertation with the following: How
useful are direct reinforcement learning methods for training controllers? Although
direct methods are often perceived as being weaker, or more primitive, than indirect
methods, a major point made in this dissertation is that they can yield faster and
more reliable learning in certain types of control problems. We also present several
algorithms, architectures, and training methods designed to increase the power of
direct methods for learning control. Although these techniques are described in this
dissertation using the framework of control problems, they are generally applicable
to other kinds of learning problems as well.

As indicated by the above discussion, our research addresses issues in applying
direct reinforcement learning methods to control problems. Therefore, we now present
a brief account of learning control followed by a discussion of some of the central issues

relevant to reinforcement learning control.

1.1 Learning control

To control a process, the controller has to manipulate process inputs to achieve
some predefined objective. Historically, controllers have been designed by trial and
error: the controller is modified iteratively until the performance specifications are
met to satisfaction. Starting in the early nineteenth century, control theorists have
been developing mathematically sophisticated methodologies for designing controllers
for certain well-defined classes of control problems. For example, proven design

techniques exist for control problems involving linear processes and certain types

4

of objective functions, such as quadratic cost functions [86]. Using these techniques,
controllers can be designed that are provably stable, have desired response characteris-
tics, or perform optimally. However, despite substantial efforts, similar techniques are
not yet available for more general classes of control problems involving processes that
are nonlinear and stochastic. Uncertainty and noise further complicate the problem
of controller design. Faced with the formidable conceptual and analytical difficulties
in solving such control problems, one alternative has been to incorporate adaptive

and learning methods into the controller [45].

If a controller designed using conventional techniques performs poorly, it is usually
due to uncertainty about the controlled process. Conventional control design tech-
niques produce controllers based on mathematical models of the processes to be con-
trolled. This approach is based on the assumption that the process model accurately
replicates all relevant aspects the behavior of the process, and hence a controller that
can achieve the control objectives with the process model should be able to perform
well with the real process. The performance of a conventional controller therefore
depends critically on the accuracy of the process model. Unfortunately, for many
real-world systems, models are based on heuristics and the designer’s experience.
Sometimes the controller is directly implemented without reference to an explicit
process model. Again, the designer relies on heuristics to determine the controller’s

behavior.

Although with conservative control objectives, conventional design techniques
can yield controllers that perform satisfactorily in practice, researchers have also
developed various methods for overcoming the drawbacks of these techniques. The
goal of adaptive control [45] is to improve control performance by reliably estimating
unknown parameter values of a partially specified process model or controller. This
estimation is often performed on-line, i.e., as the process evolves under the influence
of the controller. Hence, an adaptive controller extracts relevant information from its

interactions with the process and uses this information to improve control performance

13

3

3 _13

3

-3 -3 3 __3 _1]

—3

T3

3

~—3 —3 —31 —3 3

(+1}

over time. Moreover, adaptive controllers can track changing process charactenstics
by retuning the parameters. Clearly, as the complexity of the controlled process
increases, it becomes more difficult for the designer to determine the process model

or controller parameters, making adaptive methods more useful.

These same advantages are also exhibited by methods for learning control. The
distinction commonly made in the literature between adaptive and learning control
is that in addition to parameter estimation, learning controllers perform advanced
decision making, pattern recognition, and other functions resembling human behavior
[42]. Learning controllers can automatically select appropriate control behavior for
different modes of operation of the process without re-adaptation—provided they have
had earlier exposure to these modes of operation—while adaptive controllers must
re-adapt. In other words, controllers can learn to recognize previously-experienced
situations and select the appropriate control behavior they had stored in a “long-term”
memory. This implies that in addition to learning on-line like adaptive controllers,
learning controllers can also be trained off-line over a wide range of operating condi-

tions, leading to good overall performance when they are brought on-line.

Another motivation for using learning control methods is the potential they
offer for coping with disturbances such as friction and gear back-lash that are not
easily represented by process models. By compensating for these unmodeled factors
when generating control actions, learning control methods can improve performance
substantially. Finally, investigating how control can be learned using artificial learning
systems can shed light on how humans and animals learn motor skills. Conversely,
detailed studies of the acquisition of motor skills by animals can yield useful insight
and guidance for the design of artificial systems for learning control. With the advent
of several novel learning methods, the distinction between adaptive and learning
control has blurred substantially, and many today regard the distinction between the
two as insignificant. We therefore use only the more comprehensive term “learning

control” in the sequel.

Training information

/

Learning ;
Input system Action . Output _
(Controller)

Figure 1.1. The basic problem setup for learning control. The controller is to learn to
control the process through the generation of appropriate control actions. It has to do
this using the information supplied to it in the task specification, possible feedback of
current and past process outputs and past control actions, and training information.

Let us now consider learning control tasks in greater detail. In our rather general
definition of a learning control task,? the learning system plays the role of a controller
whose actions serve as control inputs to a process as shown in Figure 1.1.> The
controller generates control actions based on its inputs, which include the task spec-
ification and possible feedback of current and past process outputs and past control
actions. The output of the process is an observation of the process state obtained
using a set of sensors. Guided by some form of training information, the controller
has to learn to generate appropriate control actions for performing the specified task.
In general, the training information pertains to the performance of the controller as
measured by some predefined indez of performance (IP).

The learning process involves repeated invocation of three consecutive functions:
measurement, decision, and modification. Measurement is used to obtain information
about the value of the IP and, more generally, about the control task. This informa-
tion is used in the decision process to decide what, if any, adjustments are necessary
to the controller in order to improve control performance. Finally, appropriate
modification of the controller’s behavior is effected based on the measurement and

decision processes.

2 Arimoto et al. (8], for example, give a more restrictive definition used mainly by control theorists.

3In all the block diagrams in this dissertation, the learning system modules are drawn using white
boxes and modules external to the learning system are drawn using shaded boxes.

—

—3

3 3

3

1

3

T3 ~—3 3% T3 T3 —73 T3

3 T3

3

3

7

As discussed by Barto (17} and others, the degree to which the available training
information is informative about the IP critically influences the controller’s training.
If the training information specifies the control actions that would result in optimizing
the IP, as is the case in supervised learning tasks, or tasks involving learning from
ezamples, the learning problem is relatively straightforward. The decision function
becomes superfluous in such learning tasks, and the emphasis is on modifying the
controller’s behavior based on the desired control actions obtained through “mea-
surement.” If, however, the available training information does not directly specify
the desired control actions—as is usually the case in most control problems—learning
control becomes more complicated: a decision process for inferring control actions
that improve performance as measured by the IP becomes necessary. Both direct and
indirect learning methods described above are applicable in such circumstances. Qur
focus in this dissertation is on assessing the utility of direct reinforcement learning
methods in such control tasks. In the next section, we outline several issues relevant

to reinforcement learning control that are addressed in this dissertation.

1.2 Reinforcement learning and control

In the foregoing discussion, we distinguished between direct and indirect methods
for learning control. A major contribution of this dissertation is an examination of
the relative merits of these two classes of learning control methods. Empirical results
of training controllers on various control problems are presented that enable one to
compare and contrast the performance of direct learning methods with that of indirect
learning methods applied to the same control problem. These results illustrate
the power and utility of direct reinforcement learning methods for learning control.
Furthermore, the comparisons provide insight into the underlying characteristics of
control problems that make application of one type or the other of these learning

methods more effective. Related issues are discussed by Barto and Singh [20].

8

An important issue in reinforcement learning control is the difficulty in scaling
direct methods to more complex reinforcement learning problems. The first problem,
called the structural credit assignment problem, arises when the learning system'’s
actions are the result of the actions of multiple components. In such cases, the
contributing components must be assigned appropriate credit or blame for the ob-
served value of the IP. We present a novel modular architecture that can be used
for structural credit assignment in a reinforcement learning system. Related to the
indirect methods described above, this architecture represents a compromise between
modeling of the IP as required by indirect methods and the complete absence of
models in direct methods.

The problem of using reinforcement learning to train controllers to perform more
complex control tasks is also addressed in this dissertation. We have already remarked
on the resemblance between reinforcement learning and the learning behavior exhib-
ited by animals. By implementing “shaping,” a technique used in experimental psy-
chology for training animals, we demonstrate how learning to solve simpler problems
can facilitate learning to solve more complex problems. Related work along these

lines has been presented by several researchers (e.g., [125, 48, 151]).

Shaping can been implemented in two ways. First, the behavior of a controller can
be shaped over time by gradually increasing the complexity of the control task as the
controller learns. Second, shaping can be implemented structurally by using a multi-
level architecture trained bottom-up so that previously learned control behaviors are
used as primitives for learning more complex behavior. Both of these shaping methods
are illustrated by concrete examples in this dissertation. We also present a multi-level
controller design incorporating several novel ideas that considerably improve learning
efficiency.

An important caveat must be mentioned here. Our approach to learning control
has been almost entirely experimental in nature, and we have not attempted to subject

any controller presented in this dissertation to the rigorous analysis customary in

3

3

_ 3

3 —3 —3 ~—3a T3 T3 —3 T3 —3 T3 T3 /3

~—3 —3 —3 —31 —3 3 3

traditional control theory. Furthermore, by resorting to heuristics, we have been
forced to abandon orthodox control design practices such as ensuring stability of
the controlled process and convergence of the design method. Thus, we are only
dealing with some of the complexity of control as developed by control theorists. As
a result of relaxing these constraints, however, we are able to address more complex
control problems (e.g., problems involving nonlinear processes) for which no orthodox
solutions exist.

Also note that the issues in learning control described above are important in-
dependently of the learning paradigm used to implement the controller. However,
because we have used connectionist learning methods to implement all the controllers

in this dissertation, we provide a brief overview of connectionist learning systems.

1.3 Connectionist learning systems

Connectionist networks, also known as artificial neural networks, have generated
great interest because of their computational properties. Several different types of
connectionist networks can serve as mechanisms useful for approximating various
functions that are relevant to learning control. Research on connectionist learning
methods is growing rapidly and rather than attempt a complete review here, we
restrict ourselves to providing some references. An extensive overview of connectionist
learning is provided by the three volumes edited by Rumelhart and McClelland {117,
89] or the volume by Hecht-Nielsen {57]. A good elementary introduction is provided
by Lippmann [83]. Hinton [58] reviews a wide range of connectionist learning methods.
Connectionist approaches to learning control have received significant attention in
recent years. Barto [16] provides an overview of various approaches to learning control
using connectionist networks. His emphasis is on the relationship between the research
in connectionist learning methods and more traditional research in control and signal

processing. Additional reviews are provided by Mars [87] and Werbos [144].

10

The basic components of a connectionist learning system are simple, neuron-like
processing elements called units. Units receive inputs through links connecting them
to other units or to the environment. Each input link to a unit has a weight associated
with it, and the activation level of the unit, which determines its output, is often
computed as the weighted sum of the inputs. The entire system of interconnected
units is called a network and is presumed to be operating in an environment. Specific
units in a network are designated as either input units or output units; these serve

as sites of interaction between the network and its environment. All other units are

called hidden units.

A network is often classified by the connectivity pattern between its units, which
can be represented as a directed graph with nodes corresponding to the units and links
corresponding to connections from one unit to another. For example, the directed
graph associated with a feed-forward network is acyclic, whereas that associated with
a recurrent network has cycles. Computation of a network’s output for a given input
1s governed by a propagation rule that depends on the structure of the network. For
example, in feed-forward networks, the activations or the input units are set by the
environment, and successive layers of units then compute their outputs. The exact
process by which the units determine their activations and outputs varies according
to the type of unit.

Learning is achieved in a connectionist network by adjusting the weights of
units in the network so as to compute a desired function from inputs to outputs.
Several learning algorithms have been developed for training various types of con-
nectionist units on different kinds of learning tasks. For example, many of the
controllers for the various examples in this dissertation were trained using a direct
reinforcement learning algorithm we devised called the stochastic real-valued unit
(SRV) algorithm (Chapter 3 and [48]). The utility of SRV units is manifest when
training connectionist networks to become controllers because most control tasks

require the use of real-valued control signals rather than binary signals. We also

.3

.3 3 3 -3 23 __3 _3 __3

3

—3 3 __32

1

3

.3

-3

—3 ~— 3 ~— 3 "3 E a T3 3 3 a 3 a "3 3 3 ~ 3 3 3 3

11

present some new theoretical results obtained for the SRV algorithm. These include
a convergence theorem that applies to a simplified version of the SRV algorithm.
Detailed descriptions of other learning algorithms used in this dissertation can be

found in the references cited above and in Appendix B.

1.4 Organization of the dissertation

The relative merits of direct and indirect methods for learning control are dis-
cussed in Chapter 2, where we elaborate the computational tradeoffs between the
acquisition of knowledge and its use for control implicit in each method. Some of
the main issues in learning control are also discussed in that chapter. A detailed
description of the SRV algorithm, which is an example of a direct reinforcement
learning algorithm, is presented in Chapter 3, followed by some associated theoretical
results. Next, in Chapter 4, several examples are presented to illustrate the power
and utility of direct reinforcement learning techniques for learning control, and the
performance of the direct learning methods is compared with that of indirect learning
methods applied to the same control problems. Chapters 5 and 6 present architectures
and training procedures that enable scaling reinforcement learning to more complex
problems. In Chapter 5, a novel modular architecture is presented that can be used for
structural credit assignment in a reinforcement learning system. Methods of imple-
menting shaping are described and illustrated using examples in Chapter 6. Finally,
some conclusions based on the results presented in the dissertation are discussed in

Chapter 7, where we also suggest directions for future work.

CHAPTER 2

ISSUES IN LEARNING TO SOLVE CONTROL
PROBLEMS

This chapter begins with a review of some of the salient issues pertaining to
learning control. In this review, particular emphasis is placed on the bases for choosing
between direct and indirect learning control methods. Problems specifically associated

with direct reinforcement learning methods are discussed in some detail.

2.1 Learning to solve control problems

In the general problem of learning control, the learning system plays the roie of
a controller that selects actions, y, from a some set of possible actions, ¥, to serve as
control inputs to a process, as depicted in Figure 2.1. The output of the process, z, is
the process state, or, more realistically, an observation of the process state obtained
using a set of sensors. Guided by the training information supplied to it, the controller
has to learn to generate appropriate control actions for performing the task specified
by its input, . We emphasize the following important observa.tibn with regard to
the depiction of controllers in this dissertation. Due to the ;absence of any feedback
paths in Figure 2.1 and other figures in this dissertation, the controllers might appear
to be restricted to what control theorists call open-loop or feed-forward controllers.
We stress that this is by no means the case. In addition to the task specification, the
input, z, to the controller can also include feedback of current and previous process

outputs as well as previous control actions, thereby permitting closed-loop control.

-3 3 __3

3 3 _3

]

U I |

.3

3

13

/ Training information

Learning : ,

Input x system | Action y z
(Controller) Control
signals

Figure 2.1. The basic problem setup for learning control. The controller is to learn
to control the process through the generation of appropriate control signals. It has to
do this using the information supplied to it through the task specification, possible
feedback of current and past process outputs and past control actions, and training
information.

Whether the controller is open-loop or closed-loop depends on the definition of the
set X of controller inputs. Feedback paths have been omitted in the figures to include
the possibility of open-loop control.

As described in the previous chapter, learning control involves modifying the
controller’s behavior to improve control performance as measured by some predefined
index of performance (IP). The controller implements a control function Fir : X' — Y,
with the subscript W denoting the parameters of the controller that determine what
function is computed. The term “parameters” 1s being used loosely here; W denotes
the memory buffer used in rote learning, the rules in a rule-based learning system, the
decision tree of a controller using decision tree methods such as ID3 [112], the weights
in a connectionist network, or the parameters in a more conventional adaptive control
scheme. Learning appropriate control behavior involves determining W so that the
resulting control function, Fw, has the desired performance as measured by the IP.

Three main questions must be answered when designing a learning controller:
(1) What kind of training information will-be available to the controller?

(2) How should the learned control rules be represented?
(3) How should the inputs to the controller and its actions (the control signals) be
represented?

Answering all of these questions is essential in designing a learning controller. How-

14

ever, this chapter focuses on how the form and content of the training information
available in various kinds of control problems affects controller design and perfor-
mance. We do not address questions about the controller’s input and output repre-
sentation and about the details of the learning algorithms; readers interested in these

questions are referred to Barto [16, 17].

2.2 Training information

The measurement step of the measurement-decision-modification learning cycle
described in the previous chapter is used to obtain information about the controller’s
performance and about the control problem in general. It is usually assumed that
there is some kind of a “teacher” in the environment that supplies performance
information to the controller.! Several researchers have suggested that learning tasks
can be classified based on the quality of the training information provided by the
teacher (e.g., [17, 68]). One can distinguish two major classes of tasks based on this
criterion: supervised learning tasks and reinforcement learning tasks. In supervised
learning tasks, the teacher provides target actions or error gradient vectors that
specify how the controller should modify its actions so as to improve performance
(Figure 2.2a). Thus the teacher can be seen as instructing the controller about the
actions to execute in order to improve performance.

In contrast, the role of the teacher in reinforcement learning tasks is more evalu-
ative than instructional, and the teacher is sometimes called a critic because of this
role. As depicted in Figure 2.2c, the critic provides evaluations of consequences of
the controller’s actions, leaving it to the controller to determine how to modify its
actions so as to obtain better evaluations in the future. Often, the critic’s evaluation
is the value of the IP that has to be optimized, although it is possible that the

critic’s evaluation function differs from the actual IP value in some kinds of learning

lExcept in the case of unsupervised learning tasks, in which the necessary information can be
considered to be built into the learning system (see (13, 17)).

3

13

i __1

3

-3 3

32 T3 /3

Target actions,
action errors, or

/ action error gradients

Output

Input
p—— Controller

(a) Supervised learning tasks

Target outputs,
output errors, or
output error gradients

Input

Action
—-| Controller -

(b) Learning with a distal teacher

Input

Output
—| Controller P

Actiorl

| Evaluation

(c) Reinforcement learning tasks

Figure 2.2. A schematic of the three classes of learning tasks described in the text.
These are (a) Supervised learning tasks, (b) Tasks involving learning with a distal

teacher, and (c) Reinforcement learning tasks.

16

tasks. The critic therefore provides the controller with information regarding the
appropriateness of the control behavior of the current control function, Fy. To
provide this information, the critic has to know the characteristics of the desired
control behavior, but it need not explicitly know a control function that has the
desired behavior. From the above description, the main difference between the two
classes of learning tasks is that the critic in reinforcement learning does not explicitly
tell the controller what to do to improve performance (as measured by the IP), whereas

the teacher in supervised learning does.

An intermediate class of tasks that shares aspects of both supervised and rein-
forcement learning tasks involves what Jordan and Rumelhart [68] call learning with
a distal teacher. The teacher in these learning tasks is termed “distal,” meaning “far
from the point of origin,” because the training information it provides pertains to the
outputs of the unknown controlled process instead of to the actions of the controller
(Figure 2.2b). As indicated in the figure, the teacher might provide distal targets,
distal output errors, or distal error gradients. Distal training information is very
comm.on in control because many control problems are formulated either as regulation
problems, in which the process output has to be maintained at a specified set-point, or
as tracking problems, in which the process output has to follow a reference trajectory.
Consequently, control theorists, including adaptive control theorists, have devoted

considerable attention to control problems involving distal teachers.

Inasmuch as the teacher provides targets, errors, or error gradients, albeit in distal
coordinates, tasks involving learning with a distal teacher are similar to supervised
learning tasks. At the same time, as in reinforcement learning tasks, the controller has
to discover the right control actions, i.e., the control actions that drive the process
outputs to the target outputs. Note that alternatively one can view the process
and the critic together as a composite “process” whose “output” is the evaluation.
Thus regarded, reinforcement learning tasks are special cases of learning with a distal

teacher with the objective of extremizing the distal output. In taking this perspective,

3

3

-3 3 3 3 __

-3

17

the distal “error” or the distal “error gradient” in reinforcement learning tasks can
be assumed to be any positive value if the evaluation is to be maximized and any

negative value if the evaluation is to be minimized.
2.3 Learning methods

Learning methods used for the three classes of learning control tasks delineated
above reflect differences in the content of the training information. Let us first
consider control problems defined as supervised learning tasks. Because desired
actions or action error gradients are available in supervised learning tasks, adjusting
the controller parameters, W, to reduce action errors is relatively straightforward.
Considerably sophisticated supervised learning methods are required, however, to en-
sure that the control function, Fiy, exhibits interpolation and extrapolation properties
that imply good generalization of control. Several researchers have used supervised
learning methods to train controllers in supervised learning tasks (see, for example,
[150, 53]). These researchers have used a preexisting expert as a source for the training
data. The (usually human) expert supplies a sufficiently large set of training pairs
specifying the desired actions for various controller inputs, and the controller is trained
to produce the corresponding action for each input. One of the earliest examples of the
use of this method is the training of industrial robots to perform repetitive operations
in an assembly line. For example, controllers are “taught” to paint car body parts
by a human who moves the paint sprayer through a specific trajectory. Points from
the trajectory are sampled and stored for later use in trajectory generation. This
technique is very easy to implement and is widely used in industrial robotics today.

Widrow and Smith [150] used data provided by a human expert to train a
controller to solve a pole-balancing problem. Widrow draws the parallel between
this approach and knowledge acquisition from an expert when building an expert
system. Once trained, the controller can match the expert’s performance or even

improve upon it. Handelman et al. [53], for example, show how a connectionist

18

controller can use crude training information from a hand-crafted rule-based controller
to learn a generalized control function that has improved performance. However, such
generalized control functions may not always lead to improved performance, especially
when the teacher provides unreliable training data. Moreover, most complex tasks
cannot be performed satisfactorily by any existing controller, and hence reliable
training data is difficult to obtain. Most learning control problems therefore involve
either reinforcement learning or learning with a distal teacher.

Methods for solving learning control problems involving reinforcement learning
and learning with a distal teacher are more complex than methods applicable to
supervised learning tasks. As mentioned in Chapter 1, the decision-making part of
the measurement—decision-modification learning cycle becomes crucial in problems
involving reinforcement learning or learning with a distal teacher because appropriate
control actions must be inferred from evaluations or distal training information. In
other words, a method for bridging the gap between the form in which training
information is available to the controller (evaluations, distal targets, etc.) and the
form of information required for successful control (appropriate control actions) is
necessary. Methods devised by researchers for bridging this gap fall into two major
categories. Indirect? methods involve constructing a model of the transformation from
the controller’s actions to evaluations or distal targets and using the model to obtain
training information for the controller. On the other hand, direct, or model-free,
methods obtain the requisite training information by perturbing the process and
observing the effect on the evaluations or the distal process outputs. A more detailed

description of these methods follows.

2As mentioned in Chapter 1 (see footnote on page 2), our usage of the terms direct and indirect
differs somewhat from other usages of these terms.

3

—3 3 3 -3 3 __13

3 |

19

2.3.1 Indirect methods

Indirect methods can use models in at least three different ways. In conventional
indirect adaptive control, a parametrized process model is used as a mathematical
representation of the process from which an appropriate control law can be obtained
analytically. The process model’s parameters are adapted on-line through an opera-
tion commonly known as system identification in the control literature. Because the
control law is derived analytically using the current model, indirect adaptive control
methods differ significantly from learning control methods, which use the model to
obtain information for fraining the controller.

An indirect method can also use a model of the process in the “forward” direction
to simulate the process behavior over time. This is the approach used most often in
Al game-playing programs (e.g., (120, 14]) in which a model of the game is used to
generate search trees. Many heuristic search algorithms have been developed in AI
(14] for this kind of search. Clearly, these heuristic search algorithms can also be
applied to control problems other than game-playing and in situations in which the
model has to be constructed on-line. The main drawback of this approach is that the
forward search process is, in general, underconstrained and hence computationally
expensive.

In contrast, a more constrained indirect method is to use the model in an “expla-
nation” mode to infer appropriate control actions from the control objectives. The
basic idea underlying this method is the following. To determine the appropriate
control actions, it is necessary to determine how to change the control actions so as
to effect the desired changes in the distal process output or the evaluation. One way to
do this is to use information regarding the gradient of the distal output or evaluation
with respect to the controller’s current action. This gradient can be obtained if one

has a model of the process (or of the process and the critic) in a form that can be

20

differentiated. The model’s Jacobian®, evaluated at the model’s current input, can
then be used to transform desired changes in the outputs of the model into changes
in the inputs to the model. This is illustrated in Figure 2.3.

An indirect method for obtaining gradient information was described in a connec-
tionist setting by Jordan [64] (see also Jordan and Rumelhart [68]). Barto [16] calls
this method “Differentiating a Model.” Similar techniques described in the adaptive
control literature are classified as sensitivity modeling techniques [103]. Note that
although gradient computation is meaningful only for models that can be expressed
as differentiable functions, it is easy to visualize an analogous operation when other
kinds of models are used. For example, backward-chaining techniques [14] used in Al
perform an analogous operation in rule-based systems. Nevertheless, we use the term
“gradient computation” to refer to the operation performed by all techniques that use
models in an “explanation” mode. In this dissertation, we are primarily concerned
with gradient-based indirect methods, and hence we do not discuss other indirect
methods any further. Hereafter, by an indirect method we mean a gradient-based
indirect method unless we state otherwise.

Using a task involving leax:ning with a distal teacher, Jordan and Rumelhart [68]
show how a connectionist network can implement this technique in an elegant manner
using back-propagation [80, 111, 116, 143] . Specifically, the network is trained to be
what they call a “forward model” of the process via system identification. Training
the network is a supervised learning task with the training data obtained from the
process being modeled. Once the forward model has been trained to a sufficient
degree of accuracy, it is held fixed and the controller’s training is begun. In this
stage, the forward model is used to predict the process output for each control action

generated by the controller, and the difference between the desired process output

3The Jacobian of an input-output transformation is a local linear approximation to the trans-
formation that relates small changes about a nominal input value to corresponding changes in the
nominal output value.

-3

-3 -3 _3 __3 _1

-1

-3

3 1 _3

3 3 T3 T3 T3 —T3a /3 T3

—s —3 —3 —3 —3 —3 T3 —3 —3 3 3

21
Predicted output
- Model -
- \
: Target outputs,
1 Indirect training output errors, or
1 information output error gradients
!
i
Y
Input
——| Controller -
Action

(a) Learning with a distal teacher

Predicted eyaluation

I

1 Indirect training
i information

1

Input

| Evaluation
—| Controller

(b) Reinforcement learning

Figure 2.3. A block diagram of the gradient-based indirect method for learning
control. This method can be applied to control problems involving learning with

a distal teacher or reinforcement learning. After Jordan and Rumelhart [68] and
Barto [17].

22

and the predicted output is back-propagated through the forward model, yielding the
error gradient with respect to that control action.

Jordan [64] shows that the back-propagation process computes a factorization of
the transpose of the network Jacobian. Jordan also demonstrates the utility of this
technique in a variety of control problems [65, 64, 68]. Variants of this technique have
been applied to control problems by Kawato [70], Miyata {97], Nguyen and Widrow
(107], and others. However, as noted by Barto [16], as well as Jordan and Rumelhart
[68], the model need not be a back-propagation network for this technique to apply.
Any forward model of the process that can be differentiated can be used. In their
study of reaching behavior in monkeys, for example, Massone and Bizzi [88] use a
Kinematic Network [101] model of a limb in place of a back-propagation network
model.

A similar approach has been proposed for solving reinforcement learning tasks by
Jordan and Jacobs [66), Munro [100], Werbos [145], and Williams [154]. As illustrated
in Figure 2.3b, the idea here is to train a connectionist network to model the process
together with the critic, instead of the process alone. Training inputs to the network
are obtained by generating random control signals and observing the corresponding
evaluations returned by the critic. Once the model network has been trained using an
appropriate supervised learning method, it can provide the gradient of the evaluation
with respect to the controller’s actions by, for example, back-propagating through
the model. Werbos [144] also suggests how this approach can be used with explicit

models for both the process and the critic.

2.3.2 Direct methods

Instead of resorting to model construction, direct methods use the process itself
as a source of training data for training the controller. For learning tasks with distal
targets, if the command input to the controller is the desired output of the process,

direct identification of an inverse model of the process has been proposed as the

3 3 3 3 __3 __3 _13

_3

13

—~3 3 _3 3 .3 3 3 3 __3

3 T3 T3 /3

T3 3 — 3 T3

23

solution [149]. Such a method has been called “direct inverse modeling” [67] in
connectionist learning literature and “input matching” in adaptive control literature
[45]. Training data for the controller are obtained by feeding a variety of control
signals to the process and observing the resultant process output. A supervised
learning method is used to train the inverse model with the observed process output
as input and the control signals as the desired actions, as shown in Figure 2.4. Once
trained, the inverse model can be used as a controller that produces an appropriate
control action for any desired process output. Widrow et al. [149] used this method
to control linear systems. Other researchers have applied this method to the control
of nonlinear thermodynamic systems [131] and for learning the inverse kinematics

(10, 78] and inverse dynamics 71, 93] of robots.

Direct inverse modeling appears to be an attractive method for learning control
because it is easily implemented. However, its applicability and usefulness depend on
the characteristics of the controlled process. With dynamic processes, for example,
the data obtained for training the inverse model depend on the initial state of the
process, and hence the process state must be used as context for the inverse model in
order to ensure effective control. Furthermore, as emphasized by Jordan [64], inverse
identification may not yield good results when the process inverse is not unique, i.e.,
when many different control actions result in the same process output, and hence the
training data can include different target actions for the same process output. In such
cases, controllers trained using most supervised learning techniques tend to produce
for each process output a control action that is in the convex closure of all the target
actions used in training. Therefore, unless the inverse image of a desired process
output i1s a convex set, the control action computed by the controller might not lie in
the inverse image. Finally, Ydstie [156] discusses the advantages and disadvantages
of using direct inverse modeling from a control systems perspective and considers

stability issues that arise when attempting to obtain an inverse model for a process

with unstable zeros.

24
- Action Inverse , |
model

Target action

Random

action Output

-
(a) Training the inverse model
Desired
output :
p— Controller/ Actlon Output

Inverse model

(b) Using the inverse model as a controller

Figure 2.4. Control acquisition through direct inverse modeling. Part (a) shows the
configuration used for training the inverse model, while part (b) shows how the inverse
model is used to control the process. See also Barto [16].

We do not discuss direct inverse modeling further in this dissertation. Instead,
we focus on another subclass of direct methods that can be considered as the di-
rect analogues of gradient-based indirect methods. These are direct methods for
determining the gradient of the evaluation or the distal output with respect to the
controller’s actions without resorting to model construction. These methods estimate
gradients by actively perturbing the controller’s actions and observing the consequent
changes in the evaluation or the distal output, as depicted in Figure 2.5. Perturbation
is usually accomplished by adding either sinusoids of known frequencies or random

noise with known characteristics to the actions of the learning controller.

.y 3 3 __3

3

3

3

3 __13

—3a 4 T3

—3a "~ 4 "3

/3 T

—3 —3

25

Target outputs,
output errors, or
output error gradients

/

Input Output
—| Controller >
Perturbation _ -~ Change
in action in output

(a) Learning with a distal teacher

Input Action

Evaluation
—| Controller -

Output ‘

Perturbation _, ». Change in
in action evaluation

(b) Reinforcement learning

Figure 2.5. A block diagram of the direct, or model-free, learning control method
based on gradient estimation through perturbation. This method can be applied to
control problems involving learning with a distal teacher or reinforcement learning.

Gradient estimation through active perturbation is a very old idea and has seen
implementation in the parameter perturbation approach [32] studied by adaptive
control theorists, the Kiefer-Wolfowitz process [72] and other related stochastic ap-
proximation processes, and various learning algorithms studied by learning automata
theorists {104] and psychologists [90]. As mentioned in Chapter 1, most direct
reinforcement learning algorithms (e.g., [43, 24, 23, 136, 18, 154, 48]) are also based on
this idea. We discuss direct reinforcement learning methods in detail in Chapter 3,
where we also discuss how associative reinforcement learning methods, introduced

by Barto, Sutton, and Brouwer [24], can be used to perform contezt-dependent ac-

26

tion improvement via direct gradient estimation, thereby enabling the controller to
associate different optimal actions with different inputs. The utility of associative
reinforcement learning in control has been discussed by Barto, Sutton, and Anderson
[23], who used it to control a pole-balancing system. Other examples of the use of
this approach are seen in Barto, Sutton, and Brouwer [24], Franklin [40, 41], and
Gullapalli [48, 49].

2.3.3 Comparing direct and indirect methods

Indirect methods for learning control are often perceived as having advantages
over direct methods when a model of the process, or of the process and the critic,
is available a priori. An accurate model provides the controller with substantial
information regarding the process to be controlled. Moreover, a model provides means
for incorporating domain knowledge useful to the controller. If an adequate model is
not available, it can be constructed in various ways; in particular, it can be learned
through interactions with the environment. Investment of computational resources in
model construction is justified if using the model to obtain training information for
the controller results in a net reduction in computational costs when compared with
direct methods. The issue of local versus global models is of importance in this regard.
Often, a local model, i.e., a model valid only in restricted regions of the process state
and input spaces, is adequate for solving a given control problem. Construction of a
local model is not only more practical than construction of a global model but also
entails lower computational costs. On the other hand, a global process model can be
useful for solving multiple control problems involving the same process, and therefore
the cost of model construction can be amortized over a range of control problems.
It must be noted, however, that uncertainty and noise can make constructing an
adequate model, local or global, impractical in many real-world situations, and even
if model construction were practical, possession of a model does not necessarily

guarantee a solution to the control problem.

—3 __3

_ 1

13

—a

Y/ A |

-3

v‘w r‘——g r—"_g § '_‘—g r“‘g r—g r-*—g

T3

27

When an adequate model can be constructed, one still needs to decide if the
model is to be constructed on-line during control, or off-line while control is not
attempted. In the latter case, one has to take into consideration the relationship
between the accuracy of the model and its utility for control. Two factors govern this
relationship. First, the computational costs of constructing an accurate model can
increase dramatically with the complexity of the process. Second, different control
problems require varying degrees of model accuracy. For some problems, a fairly
inaccurate model suffices, whereas for others a very accurate model is necessary.
Unfortunately, one cannot usually tell beforehand how accurate a model is required
to quickly acquire good control. Also because the range of control signals that will
be used (or even required) for the control problem are not known a priori, a model
constructed off-line must be more global than it would need to be if constructed
on-line. Off-line model construction therefore suffers from the drawbacks of global
modeling mentioned above. Moreover, one cannot always wait until an accurate model
is constructed before control begins. Some form of control is usually desired while
the model is being constructed. Finally, it is possible that the process being modeled

is nonstationary, in which case the model has to be updated over time.

A potential solution to these problems is to construct the model on-line during
control. This approach is often used in adaptive control (see Goodwin and Sin [45]).
Because modeling and control are interleaved, the model is localized to the region
of state space in which the controller maintains the process. However, with on-line
modeling, control accuracy can suffer because the controller is initially trained using
an inaccurate model. Therefore, it is usually more expedient to start on-line modeling
with a model that has already been partially formed, especially in situations involving

non-linear processes with complex parametrized models.

A second solution to the above problems with model construction is to avoid
using a model if possible. Because they do not entail the costs of model construction,

direct methods have the advantages of computational simplicity and no delay in

28

training the controller. Moreover, because they use the process itself to obtain
training information, direct methods might be able to perform well even when the
process is nonstationary. Furthermore, not having to model the complexity of the
process/process+critic might be a significant advantage for direct methods in some
situations. A potential disadvantage of direct methods, however, is that the estimates
of process behavior obtained through active perturbation can be less reliable than
those obtained from an accurate process model. In such situations, learning control
using direct methods might be slower than using indirect methods. Moreover, with
direct methods there is no model available for reuse in other control problems.

From the above discussion, it is clear that both direct and indirect methods
have advantages and disadvantages and that neither method is universally applica-
ble. In particular, for some control problems, it is possible that the complexity of
constructing a model exceeds that of solving the original control problem via direct
methods, making direct methods preferable. Examples of such problems are provided
in Chapter 4, along with experimental results that support using direct reinforcement
learning methods. Barto and Singh [20] report related experiments in which they
compare the “computational economics” of using a direct and an indirect learning

method for Markovian decision problems.

2.4 Problems specific to reinforcement learning

Two requirements must be met if direct reinforcement learning methods are to
be used for learning control. The first requirement is a critic that can evaluate
performance in a manner that is sufficiently informative about the actual IP to
permit effective learning. While reinforcement learning tasks, by definition, assume
the availability of a critic providing some kind of evaluative performance feedback,
it is not necessarily the case that each output of the critic is sufficiently informative
about the problem’s IP. Evaluations may occur sparsely over time, they may be

corrupted by noise, and the evaluation criteria used might be non-stationary. Under

_ 3

] 1

.3

3

1 .3

1

13

4

™3 1

29

these conditions, one approach is to have the controller construct a more useful
internal critic that can facilitate learning. An example of a control task in which an
internal critic is constructed through learning is presented in Section 4.3. Although
the construction of more informative critics is a major area of current research
[137, 25, 145], we do not discuss it in any detail in this dissertation. Instead, we
note that this research is completely compatible with our own work, which is directed

towards using such critics in learning systems.

Assuming that an appropriate critic is available, or that an adequate internal critic
can be constructed, the second requirement for implementing direct reinforcement
learning controllers is to find a reinforcement learning method that is compatible
with the control problem at hand. In doing so, one must consider issues pertaining to
the selection of representations for the controller’s inputs and actions, the manner in
which the search for better actions is conducted, and the decision process determining
which actions are better than others. Chapter 3 presents an overview of approaches
taken to meet these requirements. In that chapter, we also present a novel reinforce-
ment learning algorithm called the SRV algorithm, which is an example of a method

for learning via evaluative feedback from a critic.

Another issue that needs to be addressed is the issue of scaling. Scaling direct
reinforcement learning methods to more complex tasks is hampered by the paucity
of information in the evaluation signal used in reinforcement learning tasks compared
with the training information available in supervised learning tasks. A second problem
affecting scaling is the structural credit assignment problem of ascribing credit or
blame to various components of the learning system. This problem becomes increas-
ingly significant as the dimensionality of the control action vector increases. Both
of these problems limit the complexity of the control tasks that can be solved using
direct reinforcement learning methods. Qur approaches to these problems are part of
the contributions of this dissertation. The issue of maintaining learning performance

while increasing the number of control variables is addressed in Chapter 5, and as we

30

shall see in Chapter 6, having only evaluations available as training information is
not necessarily a serious drawback, provided that the critic selects evaluation criteria
judiciously based on the performance of the controller and that the learning system

is designed to take advantage of task decomposition where possible.

.3

3

1

3

.3

—3 1

.3

]

3

3 3

T3 3

—3 T3

3

3

4

CHAPTER 3

REINFORCEMENT LEARNING OF
REAL-VALUED FUNCTIONS

This chapter presents an algorithm, called the stochastic real-valued (SRV) unit
algorithm, for learning real-valued fun.ctions via reinforcement feedback. The chapter
begins with a brief description of the relevant aspects of the theories of stochastic
learning automata, pattern classification, and stochastic approximation that form the
background for the approach taken in designing the SRV algorithm. Next, the SRV
algorithm is described, followed by presentation of some associated theoretical results,
including a convergence theorem that applies to a simplified version of the algorithm.
Finally, some simulation results are presented that illustrate the performance of both

the original as well as the simplified algorithms.

3.1 Learning automata and pattern classification

The discussion of stochastic learning automata tasks and supervised learning
pattern classification tasks in this section parallels that of Barto and Anandan in
[18]. Simple learning automata operating in stochastic environments have gained
attention as models of learning since the work of Tsetlin [140] and of psychologists
studying mathematical learning theory (e.g., [26] and [11]). A good review of the
theory of stochastic learning automata is provided by Narendra and Thathachar [104].
A stochastic learning automaton interacts with its environment by randomly selecting

an action as output to the environment, which, in turn, produces a random evaluation

32

of the action. This evaluation (also known as a “success signal”, “payoff”, “reward”,
or “reinforcement”) is used by the automaton to update its action probabilities.
Learning involves adjusting the action probabilities so as to increase the expectation of
favorable evaluations for future actions. Learning automata can be further classified
according to the kind of evaluation they receive from the environment. If the set of
possible evaluations is binary (denoting success/failure), the automaton is called a
P-model automaton. If the evaluation is drawn from a finite set of more than two
values, the automaton is a Q-model automaton, and if the evaluation is drawn from
an interval of the real line (usually [0,1]), the automaton is an S-model automaton.
The environment is stationary if the probability distribution used to produce the

evaluation is constant over time. Otherwise, it is nonstationary.

It is important to note that in the above description of a stochastic learning
automaton, the only input to the automaton is the evaluation signal. If the en-
vironment is stationary, such an automaton can learn to select the optimal action
given the distribution of the evaluation. If the environment is non-stationary, the
automaton can continuously track the optimal action for the time-varying distribution
of the evaluation. But if we consider the task of learning optimal actions in different
situations using such an automaton, it is clear that the automaton needs to consider
input other than the evaluation signal. Such contezt input [24] serves to indicate the
current state of the automaton’s environment. Because the probability distribution
governing the evaluations may depend on the state of the environment, the automaton
has to use the context input to select the preferred action appropriate for that context.
In other words, the automaton has to learn an associative mapping from the context

input to the preferred action for that context.

One class of tasks involving learning associative maps consists of supervised learn-
ing pattern classification tasks. Pattern classification systems have been the subject
of intense study since the 1950s. A comprehensive overview of pattern classification

techniques is provided by Duda and Hart [33]. Learning in a pattern classification

__3

3 3

3 3

31 3

.3

—4a 3 — 1 "~ 13

™3 3 T3 13

/3 T3

3 T a "3 T3

— —31 3 T3 3

33

system involves using pairs of patterns and their class-labels, provided as training
input to the system, to develop a classification rule that assigns the correct class label
for each pattern or, in general, minimizes the probability of misclassification. It is
usually assumed that the training pairs are produced randomly by the environment
in which the classification system operates. Formally, for an m-class problem, the
class w; is assumed to occur with probability P(w;), 1 < 2 < m, and a particular
pattern vector x from the i** class is assumed to occur with probability p(x | w;).
Therefore the pattern classification problem is reduced to computing the a posteriori

probability
p(x | wi)P(w:)
P w; |x = om
(wi =) 7e1 P(x | wj)P(w;)

for every ¢ and selecting as the class label that w; for which P(w; | x) is maximum.

(3.1)

Equivalently, one can compute the discriminant funciions
di(x) = p(x | w;)P(w;) (3.2)

and select the label of the class with the largest discriminant function value.
In one set of techniques for pattern classification, called knear discriminant func-
tion techniques [33], the discriminant functions are linear functions of the input

pattern of the form

d;(X) = 0:rx + ¢;, (33)

where 6;, 1 < i < m, are weight vectors. For the two class case, this is equivalent to

forming a single discriminant function
AT
d(x) =0"x+c, (3.4)

so that x is assigned to w, if d(x) is > 0 and to w, otherwise. Solving the classification
problem now involves using the training data to find weights that minimize the

probability of misclassification.

34

Given randomly generated training pairs, if we can define a suitable error func-
tional that quantifies the classification error, we can apply known stochastic ap-
proximation methods [69] to this problem. These methods have been developed
for finding a set of parameters that minimize (or maximize) a criterion function
J(0) in situations where observations of the function values for any given setting of
parameters are corrupted with noise. It is assumed that we can observe either the
random variable (@) that satisfies E[g(8) | 8] = J(0) or the random variable g(8)
that satisfies the relation E[g(8) | 8] = VgJ(0) (i.e., g(@) is a noisy measurement
of the gradient of the criterion function with respect to the parameters). When
the gradient information g(@) is available, the Robbins-Monro algorithm [113] or
its generalizations can be applied to update the parameters @ so that the criterion
function is optimized. Otherwise, the Kiefer-Wolfowitz [72] algorithm, or other similar
algorithms based on obtaining estimates of the gradient from the noisy observations

of the function values, g(8), can be applied.

3.2 Associative reinforcement learning

Associative reinforcement learning tasks defined by Barto and Anandan [18]
combine aspects of stochastic learning automata tasks and supervised learning pattern
classification tasks. In associative reinforcement learning tasks, the learning system
interacts in a closed loop with its environment. At each time step, the environment
provides the learning system with input x chosen from a set of input vectors, X. Using
this input, the learning system selects a scalar output y from a set of permissible
outputs, Y. Based on both x and y, the environment computes and returns an
evaluation or “reinforcement”, » € R. Ideally, we would like the system to learn
to respond to each input with the output that has the highest expected evaluation.
In keeping with the earlier work on learning automata, Barto and Anandan defined
assoclative reinforcement learning tasks as involving selection of one of a finite set of

outputs (Y is a finite), and for which the evaluation is a binary-valued success/failure

-1

—3 —3 —3 T3 T3 —3 T3 —31 —3 —1

3

~—3 ~— a4 T3 T3

35

signal (i.e. R = {0,1}). Their interest in such tasks led to the development of the
Ap_p (associative reward-penalty) algorithm, which they prove has a form of optimal

performance for associative reinforcement learning tasks satisfying certain conditions.

The above conditions on the output and the evaluation, however, are rather re-
strictive for most applications and one would like to extend the definition of associative
reinforcement learning tasks to permit continuous-valued outputs and evaluations.
Barto and Jordan [19] present a version of the Ag_p algorithm that can handle the
latter case, where the evaluation returned by the environment can take on bounded
continuous values (the so-called S-model case [28]). But learning continuous outputs
is more difficult, and existing algorithms cannot be easily extended to do so. For
example, Ap_p units (as defined in [18]) compute their binary-valued outputs by
adding noise to their activations and thresholding the sum. Such units could be easily
modified to produce continuous outputs by omitting the thresholding. Unfortunately,
in such units there would be no control over the amount of noise that is added to
the activation, and hence they would continue to produce random output values
regardless of the duration of training. We now present our own efforts towards the
development of a suitable algorithm for associative reinforcement learning tasks with

continuous outputs and evaluations.

We begin by extending Barto and Anandan’s definition of associative reinforce-
ment learning tasks to cases in which the output y can take on continuous values
and the environmental evaluation lies in the interval [0,1]. Stated formally, as-
sociative reinforcement learning tasks involve the following interaction between the
environment and the learning system. At time step ¢ the environment provides
the learning system with some context vector x(t) selected from a set of vectors
X C R*, where R is the set of real numbers. The learning system then produces
a random output y(t) selected according to some internal conditional probability
distribution over some interval ¥ C R. This distribution is conditioned on the

input x(¢). The environment evaluates the output y(¢) in the context of the input

36

x(t) and sends to the learning system an evaluation signal r(¢) € R = [0,1], with
7(t) = 1 denoting the most desirable evaluation. This evaluation is determined
according to some conditional probability distribution H : R x X x Y — [0, 1],
where H(r | x,y) = Pr{r(t) < r | x(t) = x,y(t) = y}. The objective of the learning
system is to learn to respond to each input pattern x € X with the action y* € Y
with probability 1, where y* is such that E(r | x,¥*) = max,ey {E(r | x,9)}.

It 1s clearly possible to reduce associative reinforcement learning tasks to other
kinds of tasks by placing restrictions on various aspects of the task definition. For
example, in the case of a single context vector (| X' |= 1) and when Y is a finite set,
these tasks become examples of stochastic learning automata tasks discussed above.
Alternatively, associative reinforcement learning tasks can be reduced to supervised
learning pattern classification tasks by restricting both the output and the evaluation
to discrete values and defining the evaluation to be a deterministic function of the
input alone. Specifically, the “evaluation” has to be the label of the class of vectors
or patterns in the input space to which the input belongs.

The Stochastic Real-Valued (SRV) unit algorithm [47, 48] incorporates the rele-
vant techniques from the areas described above in a learning algorithm that (1) under
certain conditions, learns the real-valued action that yields the highest evaluation in
a given context (as a stochastic automaton does), (2) learns to associate different
optimal actions with different contexts (as a pattern classifier associates different
class labels with different input patterns), and (3) updates a vector of parameters,
0, specifying the optimal actions (as a stochastic approximation procedure does).
The SRV algorithm is closely related to stochastic approximation procedures such
as the Robbins-Monro [113] and the Kiefer-Wolfowitz [155] procedures and their
generalizations [34]. An important feature of the SRV algorithm is that it can be

implemented as a connectionist unit that can be incorporated into a network.
In this algorithm, the learning system computes its real-valued output as some

function of a random activation generated using a Gaussian distribution. The ac-

—_—

3 3 13 2 3 3 E| i T3

—3 —3 —3 3

37

tivation at any time depends on the two parameters, the mean and the standard
deviation, of the Gaussian distribution, which, in turn, depend on the current inputs
to the unit. The SRV algorithm adjusts these two parameters so as to increase
the probability that the algorithm produces the optimal real-valued output for each
input pattern. The algorithm does this by maintaining the mean of its activation as
an estimate of the optimal activation and by using the standard deviation to control
the amount of search around the current mean value of the activation. A more formal

description of the SRV algorithm is presented in the next section.

3.3 The stochastic real-valued (SRV) unit

Designed for associative reinforcement learning tasks defined in Section 3.2, the
SRV unit has the structure shown in Figure 1. The interaction between the unit and
the stochastic environment takes place as iterations of the following operations. (In
the sequel, variables are subscripted by the iteration number at which their value is
considered.) Iteration n begins with the unit receiving an input x, € X. The unit uses
X, and two internal parameter vectors, 8, and ¢,, to compute the two parameters
Kn and o, of the Gaussian distribution used to generate the unit’s output. The
mean, [, is the inner product OIX,,, and the standard deviation, o,, is computed
in two stages by first computing an expected evaluation 7, as the inner product
<;z‘)Ixﬂ and then computing o, as a function s of #,. The function s is a monotonically
decreasing, nonnegative function. Moreover, s(1.0) = 0.0, so that when the maximum
reinforcement is expected, the standard deviation is zero. The output of the unit,
Yn, 1s generated as a random variable depending on the Gaussian distribution with
parameters p,, and o,. After the action is emitted, the unit receives evaluative
feedback, 7(y¥n,X,), from the environment, which it uses to adjust the parameter
vectors 8, and ¢,,.

Recall that the evaluative signal »(y,x) is a random variable whose distribution

coincides almost everywhere with the distribution H(r | y,x). This distribution

38

Yn
Tn
o ~ Nt)
Tny Hn, H
: OnyYn §
' E : i Tn
vy NS
0 ()
Update| |[Update R
A, A, on = 5(7n)
| : i
;
Hn = E?:l On;Tn; Tn = ?:1 P T,
| eﬂl 0712 cc Oﬂ-k ¢ﬂ| ¢n2 tr ¢nk

Figure 3.1. Block diagram of an SRV unit showing the various computations
performed. The flow of signals used to compute the output of the unit is shown
with solid lines; the signals used for learning are shown with dashed lines.

—3 _ 3

_§l

3

3

3

3

3 3 __ 3

3

3

3

.3

—3 T3 —3 T3 T3

39

belongs to a family of parametrized distributions, with parameters y and x. Let
M(y,x)= [rdH(r|y,%) (3.5)

be the regression function corresponding to this family of distributions (i.e., M(y,x) =
E{r | y,x}). We assume that M(.) is measurable and continuously differentiable
almost everywhere.

The SRV unit uses the following algorithm to update the parameter vector 8,

thus generating a sequence of random vectors 6,,:

Ontr = On+ 00 (M(Yn; Xn) = #n) (Yn — Hn)Xn, (3.6)
where ftn = 8, X, (3.7)

On = 5(%n), (3.8)

P = ¢Ixn, and (3.9)

Yn ~ N(pn, 0n). (3.10)

The symbol ~ is used to indicate that the quantity on the left hand side is a random
variable with the distribution shown on the right hand side. Equation (3.6) can be

rewrnitten as

) 0n+ 02 gn(0n, P, %)% if oy >0,
Onsr = { 0, if o, =0, (3.11)
where
= Yn — Un
9n(0n, Dny Xa) = (7(Yn, Xn) — 7n) (=) : (3.12)

and py,On, 7y, and y, are as defined in (3.7), (3.8), (3.9), and (3.10) respectively.!
An intuitive explanation for these update equations is the following. We can

view the fraction in (3.12) as the normalized perturbation that has been added to the

mean output of the unit for the given input. If this perturbation has caused the unit

to receive an evaluation signal that is more than the expected evaluation, then it is

1We should note here that faster learning might be achieved in practice if the term o2 in (3.11)
is replaced by a constant learning rate parameter « > 0.

40

desirable for the unit to produce an output closer to the current output y,. The mean
output value should therefore move in the direction of the perturbation. That is, if
the perturbation is positive, the unit should update its parameters so that the mean
value increases. Conversely, if the perturbation is negative, the parameters should
be updated so that the mean value decreases. On the other hand, if the evaluation
received is less than the expected evaluation, then the unit should adjust its mean in
the direction opposite to that of the perturbation. Equations (3.11) and (3.12) have
this effect on the mean output.

Updating of the parameter vector ¢ used for computing the expected evaluation
is relatively straightforward. For this, we want to associate with each input vector
a corresponding reinforcement value, and because both the input vector and the
reinforcement value are supplied to the unit, we can use the LMS rule of Widrow &

Hoff (1960) to learn this association:

¢n+1 = ¢n + P ('r'(y,._, x‘n) - f'ﬂ) Xn; (3]‘3)

where p > 0 1s a learning rate parameter. This completes the description of the SRV
algorithm in its original form.

Several algorithms related to the SRV algorithm have been described in the
literature. Williams [152, 153] describes a very similar algorithm involving the use of
the Gaussian distribution to generate real-valued outputs. His approach, unlike ours,
is based on using the derivatives of the logarithm of the Gaussian distribution function
to update the mean and standard deviation. Williams shows that, on average, using
these derivatives to update the parameters results in an increase in the expected
evaluation from the environment. Our algorithm also has components analogous to
an earlier algorithm of Sutton [135], which also uses the Gaussian distribution to
generate real-valued outputs. However, in his algorithm, the output is controlled
by varying the mean alone; the standard deviation is held constant. Harth and

Tzanakou [56], in a somewhat similar approach, designed an algorithm, called Alopex,

.1

2 3 1

3

3

-3 13

—3

41

to produce real values that are proportional to a bias with random noise added to it.
In the original algorithm, the noise had a fixed distribution, although in more recent
versions feedback is used to adjust the noise distribution. Farley and Clark [38] also
described a scheme in which the noise level is varied based on changes in performance
over previous time steps. More recently, Alspector, Allen, Hu, and Satyanarayana
[5] described a reinforcement learning algorithm based on the Boltzmann machine

learning algorithm [1], in which the noise in the activation of their stochastic units

“is controlled so as to keep the units active for a reasonable fraction of the time. In

addition to the frequency of activation of the units, they also used measures such as
the sum of the magnitudes of a unit’s weights and the past history of reinforcement
to determine the noise amplitude. Techniques involving perturbation of the weights
of a unit rather than its output have also appeared recently in the literature |54, 62].
Although the net effect of perturbing the weights is to perturb the output of the unit,

the former is considered easier to implement in hardware realizations of units.

3.4 Convergence properties of SRV units

In this section, we state and prove a convergence theorem that implies a form
of optimal performance for a modified version of the SRV algorithm on associative
reinforcement learning tasks. The proof of the theorem is based on Martingale theory
and is modeled after Gladyshev’s [44] proof of convergence of the Robbins-Monro
process [113]. Modifications to the original SRV algorithm (Equations (3.6)-(3.13))
were necessary to make rigorous analysis possible. Nevertheless, we informally argue
that the original algorithm has convergence properties similar to those of the modified
algorithm, and present simulation results that support this claim.

It can be seen from the description of the SRV algorithm in Section 3.3 that it
involves a complex interaction between the two concurrent learning processes, namely,
the process for learning the expected evaluation for a given input and the process for

learning the optimal output for that input. This interaction makes rigorous analysis

42

of the learning system as a whole difficult. Because our primary interest here is in

learning optimal outputs for given inputs, we make the following simplifications and

assumptions to make the analysis tractable.

3.4.1 Simplifications

Si:

S2:

In the SRV algorithm, the parameter vector ¢, defines the estimate, 7,, of the
expected evaluation given the mean output, g,, for an input, 2,. As discussed
above, this estimation process interacts in a complex fashion with the process of
estimating the optimal output, making analysis difficult. We therefore decided
to simplify the algorithm by eliminating the internal estimation of the expected
evaluation. Instead, at each iteration, the simplified SRV algorithm obtains this
estimate directly from the environment. It does so by emitting another output,
which is the mean pgn, and receiving an evaluation (g, %,) ~ H(r | pn,Xn),
which it uses instead of 7, in (3.6). The usual output y, is also output to the
environment, and the resulting evaluation 7(y,,%,) ~ H(r | ¥n,X,) is used as
before in the update equation. Because it is no longer required for computing

Tn, We discarded the parameter vector ¢.

Because the simplified SRV unit no longer computes #, internally, it does not
compute the standard deviation o, as a function of 7,. Instead, it uses a fixed

sequence of real numbers {o,}, with the properties stated below.

Given these simplifications, the equations describing the generation of the random

vector sequence {0,,} are

Ont1 = On+o0, (r(ymxn) = 7(fn,Xn)) (Yn — /-‘n)x'n) (3'14)

where p, = GIx,., and (3.15)

3

3

_3

3

3

3

4

43
Yn ~ N(F’m O'n). (3.16)
As before, we can define a function g,() so that (3.14) can be written as
_ 0, + a'ign(am ¢m xﬂ)xn if op > 0,
Onsr = { 0., if o, = 0, (3.17)
where
Yn — En
gn(orn xn) = (r(yn)x'n) - r(y‘n)xﬂ)) (T_)) (318)

and g, and y, are as defined in equations (3.15) and (3.16) respectively.
3.4.2 Assumptions

The following assumptions are necessary to define the optimal output for each
input in X, and to ensure that the random vector sequence 8, converges to the

corresponding optimal parameter values:

Al: The sequence of real numbers {7,} is such that

o0 [<]
3 _ 4
on >0, E o, = 0, E o, < 00o.
n=1 n=1

An example of such a sequence is {1 / n1/3}. Note that these three conditions
imply that 02 — 0. In the limit, therefore, the standard deviation of the output
of the SRV unit goes to zero (see S2 above), and the output of the unit equals

the mean g, used to generate it.

A2: 1. The input vectors X, are drawn randomly from a finite set of k linearly
independent vectors, X = {x(!),x(®, .. x*)} and

2. Pr{x, =x} =¢0) >0, 1<i<k.

Thus each vector in X has a non-zero probability of being chosen at any time.

44

A3: For each x{), 1< i< k, there is a unique real number B4 € ¥ such that

M(EO,x9) = max M(y, x?).

This assumption implies that the regression function of the environmental eval-
uation M(.) has a unique maximum for each given input x(*). It is also assumed

that M(y,x) has bounded first and second order derivatives with respect to y.
Let

OM(y,x)
R(y,x) = ———. 3.19
(3.x) = 2 (3.19)
A4: Foreach x), 1<i < k,
sup (¥ —BY) R(y,x¥) < 0, (3.20)

e<ly-B) <L
for all € > 0. This assumption says that for each 7, R(y,x{")) behaves linearly as

a function of y for values of y near 8.

A5: Finally, we assume that
o . . 2 R R
/ (e x) - My, x) dH(r |, x9) S A1+ (v - A9P) (3.21)

for some real number A > 0. This assumption assures that the noise in the
evaluative input 7(.) has a bounded variance and that ||7(y,x®)||? is bounded

by a quadratic function for all y and 1 <i < k.

Assumptions Al, A3, A4, and A5 are fairly standard in stochastic approximation
literature [122, 34]). Of these, A3 and A5 can be easily met by most evaluation
functions, while assumption A4 is more restrictive because it requires R(.) to be linear
in the neighborhood of the maximum for each input. It may be possible, however, to
weaken this assumption as has been done in stochastic approximation literature, but
only at the cost of complicating the analysis. For the sake of simplicity, we chose not

to attempt to do so here.

-1 3 3 3 3 __3

3

3

3

3

~~3 —3 3 3

—3 —3 ~—3 T3 ~—3% 31 T3 —T3 3§ —a T3 T3 T3

45

Having delineated the above simplifications and assumptions, we are now ready
to state the convergence theorem for the random process defined by (3.14).
Theorem 1 Given assumptions Al ~ A5 and a finite random initial vector 8,, the
sequence of random vectors {60,} generated by (3.14) converges with probability 1 to

the unique vector 8~ € Ra(A) + 6, which satisfies the equations
pi=0"TxW =9 1<i<k. (3.22)

This theorem says that the mean output p; of the algorithm for any given input
x() converges to the optimal output A%) with probability one. But since the standard
deviation used for computing the output of the algorithm tends to zero, the output
converges in probability to the mean output. Hence the above theorem implies that
the output of the algorithm for any given input x*) converges in probability to the

optimal output value B¢). The proof of the theorem is given in Appendix A.
3.4.3 Discussion

A few observations of general interest can be made regarding the above conver-
gence theorem and the associated assumptions and simplifications. Most of these
pertain to the relationship between the original SRV algorithm and the modified

version to which the convergence result applies.

1. To make rigorous analysis possible, we made simplifications S1 and S2 to the
original SRV algorithm. In doing so, we eliminated the need for estimating the
expected evaluations 7 using the parameter vector ¢. In the original algorithm,
however, the two interacting processes—one for estimating the expected evalua-
tion, and the other for estimating the optimal output—run simultaneously. Be-
cause the estimate of the expected evaluation has a critical role in the estimation
of the optimal output, it is necessary to ensure the correctness of this estimate.

Therefore one can expect stable convergence of the original SRV algorithm only

46

if the output estimation process is slower than the process for estimating the

expected evaluation.

. Assumption Al places restrictions on the choice of the sequence {o,} that are
critical for the proof. Therefore this assumption cannot be discarded. But if we
try to obtain an intuitive understanding of the role played by these restrictions in
the convergence process, we can see that a similar effect is achieved by the method
used to generate the o, sequence in the original SRV algorithm. The condition
that 152, 02 = co ensures that the sum of increments to the initial parameter
vector 8, can be arbitrarily large, so that any finite 8, can be transformed into
the optimal vector 8. At the same time, the condition that Y32, 0% < oo
ensures that the variance in 8, is finite and hence the vector cannot diverge
to infinity. The o, sequence used in the original SRV algorithm also ensures
the former consequence because o, does not become zero unless the optimal
outputs are being produced for all inputs. Conditions on the computation of o,
(Equations (3.8) and (3.9)) which will ensure boundedness of 8,, when using the

original SRV algorithm are currently unclear.

. It is likely that linear independence of the input vectors, as required by A2, is not
an essential condition for convergence. This is suggested by simulations of these
algorithms in various tasks. We present some of these simulations in the next
section. By defining an additional evaluation criterion for the parameter vector
(for example, the least-squares criterion), it may be possible to show convergence

to the best approximation of optimal performance relative to this criterion.

3.5 Some learning experiments using SRV units

In this section, we present simulations of the original SRV algorithm and the mod-

ified version for which the convergence result above applies in two simple associative

reinforcement learning tasks. The purpose of these simulations is twofold: first, to

D T R S D

3

‘, 3

3

3

3

3

3 3

%

—3 3

47

illustrate the convergence properties of the algorithms, and second, to examine the
practical significance of the simplifications and assumptions made in Section 3.4.1. To
do this, we have designed the tasks so that all the conditions of the theorem are met in
the first task, while some of these are violated in the second task. Clearly, associative
reinforcement learning tasks can be made very difficult to solve, for example, by
increasing the number of input vectors or their dimensionality. We have deliberately
chosen rather simple tasks here so that the important aspects of the algorithm’s
performance are readily discernible. However, several examples of networks with SRV

units that can solve fairly complex tasks are presented in the succeeding chapters.

Each task is defined by a finite set of input vectors, X, and their corresponding 3
values (see assumption A3). For Task 1, X contains three vectors, x(1), x(?), and x{3,
which are linearly independent but not orthogonal. The set of input vectors defining
Task 2 has the same three vectors as Task 1 plus two more. These five vectors together
constitute a linearly dependent set (specifically, x(® = 0.5(x(*) + x(®)).) The vectors
in the input set for a task are all equally likely to occur at each time step. Thus
¢0) =1/3, i =1,2,3 for Task 1, and €®) = 1/5, 7 =1,---,5 for Task 2. These
conditions ensure that A2 is satisfied by the set of vectors for Task 1. For each run
of the simulation, we picked the initial parameter vector 6, (and ¢, for the SRV

algorithm) randomly from a uniform distribution over [—0.5,0.5]%.

The sequence {7, }32, used by the modified SRV algorithm was defined in our

simulations as
1

(n/20])1/%°

where | | denotes the floor function. This sequence satisfies the conditions of Al, as

(3.23)

On =

the reader can easily verify. In the case of the SRV algorithm, we first computed + as

Fn = f(¢h Xa), (3.24)
where
fla) = 1 +le_a (3.25)

48

is the logistic function that maps the real line onto the interval (0, 1). Using this, we

computed o, for the SRV algorithm simply as
On = 8(fn) =1 — Fp. (3.26)

In these simulations, we also set the learning rate, p,, for the parameter vector ¢ (see
(3.13)) to be constant and equal to 0.5.
Two different evaluation functions, r; and r,, were used for the simulations. These

are defined as follows:

1y, x¥) = 1.0- | F(BD) - F(¥) |, (3.27)

and

Tz(y, x(i)) ~ N(Tl(y:x(i))’ 01)) (328)

where f(.) is the logistic function defined above, and N(u, o) is the Gaussian distri-
bution function. Note that »; is a deterministic evaluation function, while 7, returns
a random evaluation whose mean is the evaluation returned by r;. The standard
deviation used in computing 7, is 10% of the range of 7,, which is a number between
0 and 1. Therefore r; is a very noisy version of r;. From these definitions, it is
clear that the highest ezpected reinforcement, given an input vector, is 1.0 for either
evaluation function. It is also easy to verify that both these evaluation functions
satisfy assumptions A3, A4, and A5.

Performance of the two algérithms was measured by recording a smoothed rein-
forcement value at each time step over the course of a training run. The smoothed
reinforcement at any time step was computed as the average of the reinforcement
received over the last 100 consecutive time steps. This measure co;weys more in-
formation about the change in performance of the algorithms over time than the
actual reinforcement received at a time step. Perhaps a more accurate performance
measure would be the expected value of the reinforcement at each time step, given

the parameters and the input vector at that time step. However, because both the

3

13

3

-1

_ 3

— 3

T3 3 7 13 E| i "3

E|

3

—3 —3 "~ 3 3 ~ 2 T3

~—3

49

output and the reinforcement are continuous-valued random numbers with their own
distributions, obtaining a closed form expression for this expected value is not easy.
The moving average of past reinforcements is a good approximation of this expected
value, and one that is easily computable. A single simulation run lasted for 4500
time steps for Task 1 and 7500 time steps for Task 2. If each input vector in X were
presented sequentially to the learning algorithm, these simulation durations would
correspond to 1500 presentations of the entire input set for either task. For the
purposes of collecting statistics, we conducted 25 runs of each algorithm in each task

with each evaluation function.

A. Task 1

For Task 1, the input vectors are x!) = (1,1,1,0)T, x® = (1,1,1,1)7, and
x®) = (1,0, l,l)T, and the corresponding vector of optimal output values is 8 =
(—1.3862,1.3862,0.0)T. The learning system receives the maximum reinforcement
when it responds to an input vector with the corresponding optimal output. Note
that because these input vectors are linearly independent and the initial parameter
vector 0, is finite, it follows from Lemma 1 that there exists an optimal parameter

vector 6 that is unique for that initial parameter vector.

The results of simulating the modified SRV algorithm in Task 1 with both eval-
uation functions are shown in Figure 3.2. Graphs in the figure are plots of the
smoothed reinforcement at each time step n, 1 < n < 4500. Figure 3.2a shows
results of 10 individual runs with each type of reinforcement. The average smoothed
reinforcement over 25 runs for each type of reinforcement is plotted in Figure 3.2b.
Comparing these plots, it is clear that the algorithm performs almost as well with
random reinforcement as with deterministic reinforcement. Further, the individual
runs all show identical convergence behavior. Since all the assumptions Al-AS
made for the theorem are satisfied by the definition of Task 1, these plots serve

to illustrate the convergence behavior assured by the theorem. For example, in

50

one of the simulation runs with random reinforcement, the randomly chosen value
for 6, was (0.3163,0.0153, —0.3275, —0.3472)T. After 4500 time steps, 04500 €qualed
(—1.0263,1.3097, —1.6702, 2.6557)1; which is close to the theoretical asymptotic value?
0~ = (—1.0644,1.3863, ~1.7082,2.7726) T for the above value of @,. The smoothed re-
inforcement at this time step was 0.9697, which is also close to the optimal value of 1.0.
Obviously, more training steps would be required for closer convergence. Moreover,
because o, tends to zero very rapidly, longer and longer training sequences become
necessary for comparable reductions in the deviation from the optimal parameters.
An identical set of plots of simulations of the original SRV algorithm in Task 1
are presented in Figure 3.3. Recall that in this version of the algorithm, an additional
set of parameters is used to learn the expected reinforcement, which is then used
to compute the standard deviation o, of the output. Because of the uncertainty
involved in this process, the SRV algorithm is slower than the modified SRV algorithm.
Nevertheless, it exhibits similar convergence of the parameters to their optimal values.
Further, Figure 3.3b shows that the SRV algorithm also performs equally well with
both deterministic and noisy reinforcements. Thus, the simplifications S1 and S2
introduced to facilitate theoretical analysis do not appear essential for convergence
in practice, at least in the simple tasks presented here. Moreover, the simplifications

do not seem to significantly improve the algorithm’s performance in these tasks.

B. Task 2

For Task 2, the input set for Task 1 was augmented with two additional vec-
tors. These are x = (1,2,1,1)T and x® = (1,0.5,1,0.5)T. The corresponding
vector of optimal output values is § = (2.7726,—0.6931)7T. As noted above, with
the additional input vectors, X is no longer a linearly independent set and hence

assumption A2 is violated. Therefore it is no longer possible to use the procedure

2The proof of Lemma 1 shows how this theoretical asymptotic value can be computed.

3

3 __13

13

13

13

3

10 Runs of the Modified SRV Algorithm in Task 1

1.04
0.9+
0.8
0.7
0.6
0.54
0.4
0.3
0.2
0.1

Smoothed Reinforcement

0.04 -

1.04
0.9-
0.8
074 |
0.6-
0.5
0.4-
0.3-
0.2-
01

Smoothed Reinforcement

Detarministic reinforcoment Randoin reinforcement

Smoothed Relnforcement

0.04 '

0.9+

0.7

0.64

0.5+

0.4

0.14

0.0

= Deterministic reinforcoment
== Random reinforcement
i I I I 1 1
[900 1800 2700 3600 4500

(b)

Figure 3.2. Simulations results for the modified SRV algorithm in Task 1. (a) Graphs
of the smoothed reinforcement for ten runs with each type of reinforcement. (b)
Curves showing the smoothed reinforcement averaged over 25 runs with each type of
reinforcement.

52

10 Runs of the SRV Algorithm In Task 1

1.04 1.0 _
0.9- v 081 W"
§ 084 ¥ E 0.8 ;\,‘
E 0.7+ E 074
8 ooel i g
& 06 8 06
[~ [=4
g 05 l s 05
.4+ 0.4
3 o 3
,85 0.3 : 2 03
@ 024 Deterministic reinforcement 5 02 Random reinforcement
01! o
004" 004 -
0 1500 3000 4500 1500 3000 4500
Time Steps Time Steps
(a)
Average over 25 Runs of the SRV Algorithm In Task 1
1.0+
0.9
0.8
]
0.7-
g
£ o
S
&
g 0%
3
3 o4
g
(2]
0.3
021 = Deterministic reinforcoment
=== Random reinforcement
0.1
0.0-
T T T T T T
0 900 1800 2700 3600 4500

(b)

Figure 3.3. Simulations results for the SRV algorithm in Task 1. (a) Graphs
of the smoothed reinforcement for ten runs with each type of reinforcement. (b)
Curves showing the smoothed reinforcement averaged over 25 runs with each type of

reinforcement.

3

3y 1 3 3

3

3

3

_-3

3

3 —3 3 3

—3 —3 —3 —3

~3

~— —3 —3 3 T3 31 T3

53

in Lemma 1 to determine the optimal parameter vector. To ensure that there
1s at least one set of parameters which maximizes the expected reinforcement, we
chose the optimal output values for the new vectors in the following manner. Using
the original three input vectors and their corresponding optimal output values, we
computed the optimal parameter vector @~ assuming that 8, = 0. This yields
6~ = (—1.3863,1.3863, —1.3863,2.7726)7. We then set &) = 8~ Tx() for i = 4,5.
Clearly, 0~ is the only parameter vector that can yield optimal outputs for all five
inputs, and hence it is the optimal value for the parameters regardless of the starting
value 6,.

Figures 3.4 and 3.5 show the results of simulating the modified SRV algorithm and
SRV algorithm respectively in Task 2. As before, part (a) of each figure depicts the
performance over 10 runs with each type of reinforcement, while part (b) depicts
the performance averaged over 25 runs. Comparing these figures with those for
Task 1, we can see that the individual runs are more jittery, especially in the case of
random reinforcement. However, all runs of the simulation converged in the case of
both algorithms, as is illustrated by the plots of performance averaged over 25 runs.
One run using the SRV algorithm did not start to converge until after the 2500t
time step. The apparent reason for this was an unfortunate choice of the random
initial parameters for ¢ that led the algorithm to predict higher reinforcement values
than were being actually obtained. Until the reinforcement predictor became more
accurate, the algorithm could not learn the right outputs and converge. Observation
of individual runs leads us to believe that the non-uniform convergence behavior is
probably due to the random initial parameters, since, for this task, there is a single
set of optimal parameters independent of the initial values. This also accounts for

the slower overall convergence rate for Task 2 as compared with Task 1.

Figure 3.4 shows that the condition that the input vectors are linearly independent
(assumption A2) is not critical for convergence of the modified SRV algorithm, as long

as the task itself is linear. Using random reinforcement also appears to affect the rate

10 Runs of the Modified SRV Algorithm in Task 2

1.04 1.0 e IR e gt TP Ay
0. ﬁ"fwﬂw ‘ 09 JRFT D LONOR KA
= 034 = 084
o [!
E 0.7 5 0.74
8
& 06 3 osd
$ 5
] 0.5+ e 0.5
E 0.4 § 0.4
8 031 g 0.3
E H
@ 021 Detarministic reinforcement @ 024 Random reinforcement
014! 014 ¢
00 0.0-
0 2500 5000 7500 0 2500 5000 7500
Time Steps Time Steps
(a)
Average over 25 Runs of the Modified SRV Algorithm in Task 2
1.04
0.9- (’
0.8+
0,74
e
E
¢ 0.6
g
(-]
£
é 0.5
3
L
'g 0.44
3
0.3
0.2-
——— Detoerministic reinforcemeont
=« Random reinforcement
0.1+
0.0
I I 1) 1 I
1] 1500 3000 4500 6000 7500
Time Steps

(b)

54

Figure 3.4. Simulations results for the modified SRV algorithm in Task 2. (a) Graphs
of the smoothed reinforcement for ten runs with each type of reinforcement. (b) The

smoothed reinforcement averaged over 25 runs with each type of reinforcement.

31 3

1

1

13

o
O

10 Runs of the SRV Algorithm in Task 2

; 1.0
-
E 0.87 ’ - :
§ o] § !
S 08 8 :
F : | £ ;
& o5 [g '
E 0.4 E 04 | 717 Y
4 3
F‘ é 034 ! E 03 -
® 02{! Deterministic reinforcement % 024 Random reinforcement
014! 0.14
[m 0.04 - 0.04 -
L) L L3 L LS L] L4 T
0 2500 5000 7500 0 2500 5000 7500
F Time Steps Time Steps

(a)

Average over 25 Runs of the SRV Algorithm in Task 2

1.0+

0.9

0.9+

0.74

—3 ~—3&a 3

0.4

0.3

Smooth

e Deterministic reinforcemont
~+ Random reinforcoment

0.14

0.0+

Time Stops

(b)

Figure 3.5. Simulations results for the SRV algorithm in Task 2. (a) Graphs of
the smoothed reinforcement for ten runs with each type of reinforcement. (b) The
smoothed reinforcement averaged over 25 runs with each type of reinforcement.

56
of convergence only marginally. The same is also true for the SRV algorithm. Al-
though these results only cover the case of a finite number of input vectors, elsewhere
(48, 50] we have presented simulations in which the SRV algorithm performs well even
when the input vectors were drawn from an infinite set. These simulations show that

the SRV algorithm appears to have all the desirable convergence properties proved
for the modified SRV algorithm.

3.6 Summary

In this chapter, we have presented an algorithm that can learn associative maps
from input vectors to real-valued actions without the necessity of having the desired
responses available to the algorithm. This work extends the work of Barto and
Anandan [18] in synthesizing associative reinforcement learning algorithms using
techniques from pattern classification and automata theory. We have also presented
a theorem implying convergence with probability one for a simplified version of the
algorithm operating under certain conditions. Simulation results suggest that neither
the simplifications nor some of the conditions of the theorem are essential for good
convergence in practice. We feel that the central idea of the SRV algorithm, namely,
using predictions of the outcomes of actions to incrementally optimize the actions, is
an important one that merits further study. This idea was suggested before by Barto,
Sutton, and Brower (24] and studied by Sutton [136]. Finally, the ability to learn
real-valued functions using less informative training signals than conventional learning
algorithms can to be a useful tool in several applications, as we shall demonstrate in

the succeeding chapters.

3 3 3

o .1 1 3

.1

3

13

R

T3

—3 73

—3 ~—3 — 31 "3

CHAPTER 4

LEARNING CONTROL USING DIRECT
REINFORCEMENT LEARNING

In this chapter, three control tasks are used as examples to illustrate the utility
of direct associative reinforcement learning methods for learning control. The first
of these, a peg-in-hole insertion task, is an example of learning fine-motion control
under real-world conditions of uncertainty and noise. The second task is one of
learning the inverse kinematics of a simulated under-constrained robot arm. The
last task involves learning to control an unstable dynamic system, namely a cart-
pole system. For all three tasks, the associative reinforcement learning method used
was a connectionist network that produced control actions using an output layer
of SRV units. In presenting the results of training the controllers on these tasks,
an attempt has been made to compare and contrast the performance of the direct
learning methods with that of indirect learning methods applied to the same task.

Appendix B contains the implementational details of the controlled processes and the

controllers for these three tasks.

4.1 Learning fine-motion control: A peg-in-hole insertion
task

As a prototypical example of a task involving interaction between a robot and its
environment, the peg-in-hole insertion task has been used by roboticists for testing

various approaches to robot control. As a canonical robot assembly operation, the

58
peg-in-hole insertion task is also very important in industrial robotics. Compris-
ing about 33% of all automated assembly operations, peg-in-hole insertions are the
most frequent assembly operations [105]. Both two-dimensional [146] and three-
dimensional [51] peg-in-hole tasks have been studied in detail, and a number of
approaches to the general problem have been proposed (see [46] for an overview).
While the abstract peg-in-hole task can be solved quite easily, real-world conditions
of uncertainty and noise can substantially degrade the performance of traditional

control methods.

Sources of uncertainty and noise include (1) errors and noise in sensations, (2)
errors in execution of motion commands, and (3) uncertainty due to movement of the
part grasped by the robot. The first of these is the most common source of uncertainty.
Position sensors can be especially unreliable when the robot is interacting with
external objects, resulting, for example, in inaccurate knowledge of relative locations
of parts of the robot with respect to the external objects. Noisy force sensations
further compound the problem of control when the robot is interacting with external
objects. Moreover, hybrid position/force controllers often exhibit instabilities near
the boundary between contact and non-contact. The second source of uncertainty is
due to the dynamics of the robot itself. Because of friction, gear Ba.ckla.sh, etc., giving
the same command in the same starting configuration can result in different motions
of the robot. The third source of uncertainty stems from the possibility of parts
moving within the grasp of the gripper. Most grippers have no means of detecting

such motion.

Under such conditions, traditional methods do not perform very well, and the
peg-in-hole problem becomes a good candidate for adaptive approaches [126]. Both
direct and indirect learning methods are applicable. But given these conditions,
hand-crafting or learning an adequate robot model—imperative if oneis to use indirect
methods for training the controller—can be very difficult. We argue that it is easier to

use direct methods to learn a reactive control strategy that enables good performance

3

3

1

R |

|

1

59

under uncertainty and noise. This is demonstrated here by using a Zebra Zero robot
shown in Figure 4.1 to perform peg-in-hole insertions. This robot is equipped with

a wrist force sensor, and can also sense positions of the joints of the arm through

position encoders.

Figure 4.1. The Zebra Zero robot used for the peg-in-hole insertion task.

As an initial implementation, a two-dimensional version of the peg-in-hole task,
depicted in Figure 4.2, was attempted. In this version of the task, six inputs are pro-
vided to the controller at each time step. These are the position of the peg (X, Y, ©),
computed from the sensed joint positions of the robot arm, and the force and moment
sensations (Fy, Fy, M.). Using these inputs, the controller has to compute a velocity
command for that time step. Because it is acting in a closed loop with the robot, it
1s possible for the controller to learn a reactive, or closed-loop, control strategy for
performing the insertion task. Figure 4.3 shows the network that was trained using
direct reinforcement learning to perform peg insertions. In the experiments reported

here, the peg used was 50mm long and 22.225mm (7/8in) wide, while the hole was

60

Sensations are:
Positions (X, Y,®) and
Forces (Fx, Fy, Mz).

(X, Y)

Controls are:

Velocities (v ,v y @)

z
I
X

Figure 4.2. The peg-in-hole task.

23.8125mm (15/16in) wide. Thus the clearance between the peg and the hole was
0.79375mm (1/32in).

The controller was trained in a sequence of training runs. Each training run
started with the peg at a random position and orientation with respect to the hole
and ended either when the peg was successfully inserted to a depth of 35mm into
the hole, or when 100 time steps had elapsed. The following interaction took place
between the controller and the robot at each time step during training. To begin, the
sensed peg position and forces were input to the controller network, which used them
to compute a control action. This action was executed by the robot, resulting in some
motion of the peg. The network’s output was then evaluated based on the new peg
position and the forces acting on the peg. Two criteria were used in computing this
evaluation, which ranged from 0 to 1, with 1 denoting the best evaluation. A base
evaluation was computed first, using the discrepancy between the current sensed
position of the peg and the desired position with the peg inserted in the hole. A

penalty term was then subtracted from this evaluation when any of the sensed forces

3 31 _3

]

3

1

~4 3 3 31 _31 __ 3

31 31 _3

~3 ~—3 —31 31 ~—31 3

~—3 T3 3 ~ 3 T3

61
X —=
Y —
O — V.
A\ X
s
< Vy
F — @
X
F — Il
y X SRV
M, — units

Back-propagation units

Figure 4.3. The network used for the peg-in-hole task. The network has an input
layer of 6 units, two hidden layers of back-propagation units and an output layer of
3 SRV units. All the units in a layer are connected to all the units in the succeeding
layer.

Final evaluation

62

on the peg exceeded a preset maximum of 0.5 Newtons, thus lowering the evaluation.
Using this evaluation, the controller network updated its weights and the cycle was

repeated.

Results

A learning curve showing the final evaluation over 500 consecutive training runs

is shown in Figure 4.4. The final evaluation levels off after about 150 training runs

1.00 = 1.007=
2
=
o
3
w
>
g 0.801—
0.80 a0
=
°
(]
=
0.60 | 8 0.60
E
(7]
0.40 0.404—
o201 0201=
ool ! ! ! ! ! ! ! !] | e] ! ! ! ! ! ! 1 !
o 50 100 150 200 250 300 350 400 450 500 -3 75 125 175 225 275 325 375 425 475
Training runs Training runs

Raw and smoothed final evaluation over 500 training runs

Figure 4.4. Peg-in-hole task: Final evaluation received over 500 consecutive training
runs. The smoothed curve was obtained by filtering the raw data using a mov-
ing-average window of 25 consecutive values.

because after that amount of training, the controller is consistently able to perform
successful insertions within 100 time steps. However, performance as measured by
insertion time continues to improve, as is indicated by the learning curve in Figure 4.5,
which shows the time to insertion decreasing continuously over the 500 training runs.
These curves indicate that the controller becomes progressively more skillful at peg
insertion with training. The performance of the controller was tested on 9 test cases

after 100, 200, 300, 400, and 500 training runs. In the 9 test cases, insertion was

)

Insertion lime

100,007 o 100.00
E
£
2
=
£80.00 2 80004~
£
o
-]
=
8
80.00 T £ 80001
w
40,00+~ wA 40.004=
- M»d“* | \’\
0.00 | ! ! ! | 1 ! ! | | 0.00 | | 1 | l ! 1 1 |
0 50 100 150 200 250 300 350 400 450 500 25 75 125 175 225 275 325 375 425 478
Training runs Training runs

Raw and smoothed insertion time over 500 training runs

Figure 4.5. Peg-in-hole task: Insertion time (in simulation time steps) taken on each
of 500 consecutive training runs. The smoothed curve was obtained by filtering the
raw data using a moving-average window of 25 consecutive values.

attempted with the peg at one of 9 fixed initial locations and orientations, as listed

in Table 4.1. An example of the performance (test case 6) is shown in Figure 4.6.

Discussion

The two-dimensional peg-in-hole task is one of the most widely studied robotics
tasks. Consequently, the literature on the subject is vast and we cannot hope to do
full justice to it in this discussion. Instead, we direct the interested reader to the
references cited here and at the beginning of Section 4.1. Attention is restricted in
this discussion to the proposed approaches to peg-in-hole insertion under conditions
of uncertainty and noise. These approaches can be grouped into two major classes:

methods based on off-line planning, and methods based on reactive control.!

L Although these methods have been developed for general robotic tasks involving physical
interactions between the robot and its environment, for convenience, we discuss them from the
point of view of peg-in-hole insertion.

Evaluation

Table 4.1. Test cases for the peg-in-hole insertion task.

Test case | Initial peg position
(X mm, Y mm, © rad)

(-20.0, 0.0, 0.0)

(-20.0, 25.0, 0.0)

(-20.0, -25.0, 0.0)

(-20.0, -25.0, 0.15)

(-20.0, 25.0, -0.15)

(-20.0, -25.0, -0.15)

(-20.0, 25.0, 0.15)

(-20.0, 0.0, 0.13)

Ol oo ~I| | Ut =] W DO+

(-20.0, 0.0, -0.15)

=

o

o
|

0.801 i Ty
AT

....
-

0.60

oot it

(-20.0, -25.0, -0.15)

=== 100 runs

-~=~ 300 runs
--= 200 runs
|

50 100

| |
150 200 250
Time

Performance on the peg insertion task

64

Figure 4.6. Peg-in-hole task: Performance on test case 6 after various intervals of
training. The inset shows the initial position and orientation of the peg for this test

case.

3

3

3

13

3

-3

3

65

Off-line planning methods combine geometric analysis of the peg-hole configura-
tion with analysis of the task statics to determine motion strategies that will result
in successful insertion [146, 51, 46]. In the presence of uncertainty in sensing and
control, researchers have suggested incorporating the uncertainty into the geometric
model of the task in configuration space. Pre-images [85] or backprojections [35] of
the goal, i.e., sets of peg positions and commanded motions that would result in
successful insertion, are then computed using the geometric model. If the peg is
located within a pre-image, a motion command exists which will result in successful
insertion. Frequently, however, the peg does not lie in any pre-image of the hole. In
such an event, a recursive procedure can be used [85], wherein pre-images, starting
with that of the task goal (i.e., the hole), are successively treated as goals for which
new pre-images are computed. Ifa pre—irﬁage containing the peg is found at any stage
in the recursion, then a trajectory can be planned through the successive pre-images
that will result in successful insertion. Other strategies for off-line planning have also
been proposed (e.g., [27, 30]).

Off-line planning is based on the assumption that a realistic characterization of the
margins of uncertainty is available. While planning, only plans that assure successful
insertion even at the limits of the margins of uncertainty are considered. Although it
is possible to inflate the margins of uncertainty, thereby ensuring successful physical
execution of the generated plan, allowing excessive margins can actually hamper
planning by eliminating physically realizable solutions. Therefore the success of off-
line planning seems to depend on accurate knowledge of the uncertainty, which is
something of an oxymoron.

Methods based on reactive control, on the other hand, try to counter the effects of
uncertainty with on-line modification of the motion control based on sensory feedback.
Compliant motion control, in which the motion trajectory is modified by contact
forces or tactile stimuli occurring during the motion, is often used, with the compliant

behavior either being actively generated or occurring passively due to the physical

66

characteristics of the robot. For the peg-in-hole task, compliance-based strategies are
usually keyed on the forces due to interactions between the peg and the hole. The
remote center compliance (RCC) device [146], for example, is a passive mechanical
device that embodies a reactive control strategy wherein compliant motion due to
forces on the peg 1s used to correct small initial positioning errors. However, humans
find it quite difficult to specify compliant motions for a given task [85], and hence

techniques for learning compliant behavior are very useful.

In an early attempt to learn a compliant control strategy, Simons et al. [126]
used stochastic automata to learn corrections to the motion of the peg in a plane
perpendicular to the direction of insertion, based on the forces sensed in that plane.
The space of forces was divided up into a grid and, in each grid cell, one of four possible
directions of corrective motion was learned using a stochastic automaton. In their
experiments, Simons et al. used a specially designed wrist that sensed forces and had
a programmable compliance. Although their approach was tested using an actual
robot, Simons et al. [126] did not provide performance results or implementation
details necessary for comparing their approach with the one presented in Section 4.1.
More recently, Asada [9] used a multi-layer backpropagation network to learn a non-
linear compliance mapping from forces to motion corrections. Asada trained the
network in a supervised fashion using ten training pairs of force signatures and the
associated corrective motions. However, no performance results were given, and it is
not clear how well the learned compliance behavior improves peg-in-hole insertion in
the presence of uncertainty.

In another recent study, Lee and Kim [82] used an expert system based on a
paradigm called EARSA (Expert Assisted Robot Skill Acquisition) to learn skilled
peg-in-hole insertions starting with an initial expert-specified rule base. As in our
approach to the peg-in-hole task, uncertainty and noise were handled by learning a
compliant control behavior based on position and force feedback. Although imple-

mented in a symbolic system, their approach—in which random search among the

|

B | A_A

3

3

.3

3

67

expert’s rules is used to discover the best control action in the face of uncertainty
and noise—can be considered a direct method similar to ours. We compare these two
approaches in some detail below.

Lee and Kim [82] reported experiments using a simulated two-dimensional peg
and hole that demonstrated how their system could learn new rules that improved
insertion speed and avoided jamming. Only three different initial peg locations were
used. In their experiments, the peg used was 30.48mm long and 12.7mm (0.3in) wide,
while the hole was 12.954 (0.51in) wide. Thus the clearance between the peg and the
hole was 0.127mm (.005in). They also corrupted the simulated sensory feedback of
positions and forces with mean-zero gaussian noise which had a standard deviation of
0.00127mm and was bounded to be less than 0.0127mm in magnitude. Note that the
maximum position error is therefore an order of magnitude smaller than the clearance
between the peg and the hole.

While the performance results reported by Lee and Kim [82] are comparable to
those obtained using our approach, several factors suggest that our approach might
have greater advantages. To begin with, Lee and Kim had to use discretized repre-
sentations of the positions, forces, and velocities in their symbolic system, whereas
we could use continuous-valued variables to represent these quantities in our learning
system. This is a major advantage because one does not have to deal with the problem
of selecting appropriate discrete representations for quantities that are naturally
continuous. Second, Lee and Kim’s controller started with an initial expert rule
base that enabled it to perform insertions even before any learning took place. It
is not clear how good this initial knowledge has to be for their approach to work in
general. In contrast, our controller could learn skilled peg insertion starting with no
initial control knowledge.

Our results also indicate that our approach works well with a physical system,
despite the much higher magnitudes of noise and consequently greater degree of un-

certainty inherent in dealing with physical systems. For example, while the maximum

68

error in the sensed position of the peg was a degree of magnitude smaller than the
clearance between the peg and the hole in Lee and Kim’s simulated system, for the
Zebra Zero, the position error was frequently more than three times the clearance.
The noise in the force sensations returned by the Zebra Zero was also very high.
Figure 4.7 shows graphs of the various sensations returned by the Zebra Zero during

an insertion starting with the configuration shown in Figure 4.6.

[0}

§

8
8

X coordinate (mm)

50 100 150 200 250
— 000y Time step
E, 5,09 It
2
% -10.001
g -15.00
> 20.00
25.00
30.001
L 1]
Rt 150 200 20
P Time step
[-)
g Fomml
_§ £ oo00f-
3 % oo
N 500 'E-o.wo =
&
£ s00 Rl o
§ 21004
= 18091 oant-
2800 o8 L l L 1]
80 100 150 200 250
Time step

Figure 4.7. Peg-in-hole task: Sensory feedback during the course of insertion for test
case 6 in Table 4.1. These data were obtained after the controller had completed 100
training runs.

Our results, as well as those of Lee and Kim, indicate that direct reinforcement
learning can be used to learn a reactive control strategy that works well even in
the presence of a high degree of noise and uncertainty. In contrast, the degree of

uncertainty inherent in physical systems raises doubts about the practicality of a

_3

1

—4 — 3 T3 T3 —T3 —T3 T3 T3 T3

3

69

supervised learning approach such as that of Asada [9] described above. A complete
case-by-case analysis of the statics of the peg-in-hole task can be used to derive
situation-action rules that specify the corrective motion for a given force signature
in a given position, which can then be used as training information for a supervised
learning system. However, due to sensing noise, the position and force sensations in
a given situation differ vastly in practice from those predicted by analysis. Moreover,
in practice, the sensations are further corrupted by factors such as sampling rates and
sampling times that come into play when interfacing the controller to a real system.
Thus, for example, the force signature obtained from the physical system could differ
substantially from that predicted by a static analysis simply because the system was
not at a static equilibrium at the time the sensor values were sampled. Other factors
used in the analysis, such as the coefficient of friction between the peg and the hole,
could also differ from the true values for a particular physical realization of the task.

Unless the analysis used to obtain the situation-action rules takes these factors
into account—which is easier said than done—a controller trained using these rules
cannot be expected to perform well in practice. These same problems of noise
and uncertainty also make modeling the physical system difficult, hindering the
application of indirect methods. We therefore believe that in these situations it is
easier to use direct reinforcement learning methods to learn a reactive control strategy

that enables good performance despite the presence of uncertainty and noise.

4.2 Learning inverse kinematics of an under-constrained
manipulator

The second task we present involves learning inverse kinematics in the presence
of excess degrees of freedom. The task is a robot arm positioning task in which the
controller has to move the end-effector of a 3-joint planar arm to one of three target
locations. To do this, the controller has to solve an inverse kinematics problem, which

is to determine appropriate joint angle commands that result in positioning the arm’s

70

end-effector at a desired location. The particular version of this task used is shown
in Figure 4.8. The input to the controller is a command specifying which of the three
square buttons to position the end-effector over. The actions of the controller are
joint angle settings® that alter the arm configuration and hence the location of the
arm’s end-effector. Clearly, this task is an example of learning with distal targets
because the targets are desired values of the Cartesian location of the end-effector
and the latter is the output of a process (the robot arm) driven by the controller’s

actions.

Figure 4.8. The inverse kinematics task. Based on a command input that specifies

which button, the network is to position the end-effector of the robot arm on one of
the three buttons.

A further complication exists here. Due to the presence of excess degrees of
freedom in the arm for this task, there are no unique solutions: many different
actions of the controller can result in the same end-effector location. This makes it
difficult to specify desired actions a priori, and hence training information required for

supervised learning cannot be easily obtained. Moreover, as discussed in Section 2.3,

2All the joints of the arm are revolute.

1 _3

3

3

I

3

3

71

direct inverse modeling methods are also ineffective under such circumstances. The
inverse kinematics problem for under-constrained manipulators is the subject of much
robotics research even today.

The above version of the inverse kinematics problem was studied previously by
Jordan and Rumelhart [68), who used an indirect method for solving it. Their
approach involved constructing a differentiable forward model of the robot arm and
using the forward model to obtain the gradient of an error function in Cartesian space
with respect to the control actions. Jordan and Rumelhart also used knowledge of the
kinematic equations of the robot arm to select the representation for the controller’s
actions. Because the joint angles of the arm appear only as sines and cosines in the
forward kinematics equations, they used the cosines of the joint angles as the control
actions, although the actual control variables are the joint angles themselves. This
representation considerably eased the construction of a forward model of the robot
arm.

Jordan and Rumelhart [68] used back-propagation networks to implement both
the controller and the forward model. Their controller had 2 input, 50 hidden, and
3 output units and their forward model had 3 input, 50 hidden, and 2 output units.
Figure 4.9a shows a block diagram of their architecture.

A fairly elaborate study of this problem was conducted by Jordan and Rumelhart
[68], and one of points they make is that there is a trade-off between the amount of
time spent in training the model network and the amount of time required to train
the controller using the resulting model (see Figure 16 on page 27 in ref. [68]). They
note that in applying indirect methods, often a very crude forward model suffices for
solving the control problem. However, as illustrated by their results, using a crude
model can also slow down control acquisition. Based on their simulations of the

indirect method on this task, two points are worth noting here.
1) Although training the forward model for more than about 500 time steps, or

trials, does not result in any significant savings in the amount of training required for

72

| Forward Predicted IcI:ation
_ .| . model | _ \
|
! Target
'Indirect training endpoint
| information location
|
Y Endpoint
Input location
—| Controller -

Action

(a) Indirect method

Target
endpoint
location

Endpoint
Input location

—=| Contréller
4

/

K

(b) Direct reinforcement learning method

Figure 4.9. The network architecture used for the inverse kinematics task. Part
(a) shows the architecture used by Jordan and Rumelhart [68]; part (b) shows the
architecture used with the direct learning method

3

3 13

3

-3 S

3

_ 3

3 3

73

the controller on this task, such a limit on the accuracy of the model is usually not
known a priori. This is in fact a significant limitation of indirect methods. Because
the model accuracy needed for any particular task is not known in advance, one
cannot minimize the time spent on training the model without actually using it to
train the controller.

2) It is usually the case that training the controller and the model simultaneously
leads to poorer learning performance than training the model is first and then training
the controller. This is because with simultaneous training the controller starts off by
learning incorrect actions based on training information obtained from the initially
inaccurate model. This “bad” initial control knowledge interferes with subsequent
acquisition of good control by the controller. Indeed, in most tasks, it is prudent
to construct at least an approximate forward model before commencing training the
controller. For the task under consideration, for example, Jordan and Rumelhart [68]
find that prior training of the forward model for about 50 trials is essential to ensure
that the training information derived from the model is useful for learning control.

Although in principle, one can interleave modeling and training the controller,
the observations above indicate the difficulty of determining when such interleaving

is advantageous.

Results and Discussion

Simulation results reported by Jordan and Rumelhart [68] indicate that the lowest
total number of training trials for both the model and the controller is around 1250
trials.®> We conducted some simulations using a direct learning method on this same

task. The architecture used in these simulations is shown in Figure 4.9b. The

3None of the numbers quoted in this section should be taken as definitive because neither Jordan
and Rumelhart nor we have attempted to optimize learning speeds through tuning parameters
and network structures. The descriptions and results presented here are intended to highlight the
qualitative aspects of using direct and indirect methods. We hope that this will motivate rigorous
quantitative comparisons of the two methods.

74

controller network used is identical to the one used by Jordan and Rumelhart but with
SRV units substituted for back-propagation units in the output layer. The evaluation
function used by the critic was based directly on the error function used in the indirect
method. In our simulations, the direct method learned to solve the task in 1269 trials
on the average (over 20 runs). This performance is comparable to that of the indirect
method and is obtained without the computational overhead of training and using a
model.

Also recall that the task of learning a forward model was considerably simplified
by the representation chosen for the control actions: Cosines of the joint angles were
used as the control actions, although the actual control variables are the joint angles
themselves. Because the mapping from cosines of joint angles to Cartesian locations of
the end-effector is more nearly linear than the mapping from joint angles to Cartesian
locations, learning a forward model becomes simpler. Obviously, such simplifying
choices of representations are possible only if there is prior knowledge of the mapping
to be learned. In the absence of such prior knowledge, the performance of the indirect
method would have suffered because of the increased complexity of forward modeling.

The direct method, however, does not have this drawback.

4.3 Learning to control an unstable dynamic system

The third and final set of experiments presented in this chapter involves learning
to control an unstable non-minimum phase dynamic system, namely the much-studied
two-dimensional cart-pole system [150, 92, 23, 125, 29, 7, 66, 151]. The cart-pole
learning control task, also known as the pole-balancing or inverted pendulum problem,
involves learning to balance a rigid pole mounted on a mobile cart by applying
appropriate forces to the cart. As depicted in Figure 4.10, the cart is restricted
to move along a one dimensional track of bounded length. The position and velocity

of the cart (z,) and the pole (4, 0) represent the state of the cart-pole system.

3

3

3 31 3 3

3

75
0
F
1 I e n

Figure 4.10. The cart-pole system. z denotes the position of the cart on the track, 8

denotes the angle the pole makes to the vertical, and F dentes the force applied to
the cart.

For this task, training information supplied to the controller is in the form of
a failure signal, f.,;, that occurs when the pole falls beyond a critical angle or the
cart hits either end of the track. Clearly, this training signal occurs infrequently,
creating a difficult temporal credit assignment problem [136]. Approaches to this
credit assignment problem usually involve training an internal critic network to gen-
erate predictions of future evaluations. In the absence of external evaluations, these
predictions are used by the learning system as if they were actual evaluations received
from the environment. Examples of algorithms used for learning to predict future
evaluations include the TD()) (Temporal Difference) family of algorithms developed
by Sutton [137] and the related Q-learning algorithm developed by Watkins {141].

As in the previous section, the performance of direct and indirect learning meth-
ods are compared on this task. The indirect approach, presented by Jordan and
Jacobs [66], involves treating the internal critic as a “forward model” and using its
structure to obtain training information for the controller. The direct method is based
on reinforcement learning using the evaluations produced by the internal critic and has
been implemented using the Jordan-Jacobs work as a reference, thereby facilitating

a direct comparnson.

76

For the cart-pole task, Jordan and Jacobs used the temporal difference algorithm
outlined below to train the internal critic. The same algorithm has been used in the
simulations reported here. The algorithm was designed to predict z;, the reciprocal
of the time until failure, given the current time step t. Hence z, should equal 1 on

the time step immediately preceding failure, and should also satisfy the relationship

2¢ Zt+1
Therefore the error function used to train the internal critic network to estimate
the reciprocal of time until failure is:

0.5(1 = £,)? if there is a failure at time ¢,

~ 2 .
0.5 (sz; - zt_l) otherwise,

Eredictim(ét—l) = { (41)

where %, is the estimate produced by the internal critic. Moreover, the evaluation
(failure signal) seen by the controller at each time step becomes

f= { fezt 1if there is a failure at time t, (4.2)

Z; otherwise.

The network architecture used by Jordan and Jacobs is shown in Figure 4.11
(compare with the indirect control architecture shown in Figure 2.3b). Although
it is very similar to some previously used architectures (e.g., [23, 7]), it includes
connections (shown as bold arrows in Figure 4.11) through which the output of the
controller is fed as input to the internal critic.? It is through these connections that
error gradients are propagated back to serve as training signals for the controller.
The error gradient was computed as follows. Because the goal of the controller is to
avoid failure, an appropriate desired failure signal is zero (signifying no failure), and

an appropriate distal error function for the controller is

econt'rol(ft) = 0-5(0 - ft)z’

The corresponding distal error gradient for the controller, f;, is back-propagated

through the internal critic network and through the connections to the controller to

*In keeping with the terminology used in [68], Jordan and Jacobs [66] refer to the internal critic
as the forward model.

3 31 __3

3 3 __3

3

3

13

1 3 3

3

—3 1

I

77
Input units Back-prop units
X O
sgn(x)O

Xl O

sgn(x)O A
Bl O

o0 et
® O time to failure

sgn(e) O \

Internal critic

x Controller
x O
8 O Force output
(-] Action unit

Figure 4.11. The network architecture used for the cart-pole task. The internal critic
network has 8 input units, a hidden layer of 10 back-propagation units, and a single
temporal difference (TD) output unit. The controller has 4 input units and a single
action unit. In simulations of the indirect method, a “noisy” linear unit was used as
the action unit, while in simulations of the direct reinforcement learning method, an
SRV unit [48] was used.
provide a proximal error gradient for the controller. The weights of the controller
are then adjusted to descend the proximal error gradient, which in turn results in
minimizing the distal error and hence driving the failure signal to the desired value
of zero. The internal critic network is also trained simultaneously with the controller.
In its case, however, back-propagation is used to adjust the weights so as to minimize
the prediction error defined in Equation (4.1).

The architecture of the network used with the direct method was identical to the
one used with the indirect method except for the following difference (see Figure 4.11).
The controller’s noisy linear action unit was replaced by an SRV unit. For the direct

method, training information for the controller is a reinforcement signal, r;, that is

computed directly from the internal evaluation signal f, as
Ty = 1.0 - ft'

Maximizing the expected reinforcement therefore results in the desired effect of min-

imizing the internal evaluation. The internal critic network is also trained simultane-

78

ously, using back-propagation to adjust the weights so as to minimize the prediction

error (Equation 4.1), as with the indirect method.

Results

Our simulations of the indirect method are replications of those in Jordan and
Jacobs [66], and we have tried to keep the differences between simulations of the
indirect and direct methods to a minimum. One hundred training runs were per-
formed using both the indirect and direct methods. Each training run represents an
attempt to train the network, starting with small random initial weights, to balance
the pole. As in ref. [66], a training run lasted until either the pole was balanced for
1000 consecutive.time steps or 30,000 failures occurred during the course of the run.
Following ref. [66], in all the simulations the controller produced real-valued forces,
and we restarted the cart-pole system in a random state after each failure. We also
used the input representations in ref. [66] (see Figure 4.11), which take advantage

-of the symmetries in the cart-pole system dynamics. Furthermore, the learning rate
parameters used for the network using the indirect method were also identical to those
used in ref. [66].° Instead of optimizing these parameter values for the network using
the direct method, the values used with the indirect method were retained.

Additionally, in the simulations using the indirect method, we incorporated Jor-
dan and Jacobs’ assumption that disturbances in the form of additive noise having a
uniform distribution on [—0.001,0.001] act on the actions of the controller. The role
of these disturbances will be discussed later. In order to evaluate the effect of such
disturbances on the direct method, we also ran 100 runs of the direct method with
identical noise added to the actions of the controller.

When the indirect method was used, 72 out of 100 training runs resulted in

success, with the remaining 28 failing to balance the pole on any of 30000 attempts.

SThese learning rate parameters were 0.05 for the controller and 0.3 for the internal critic network
except on the connections from the controller, where the learning rate was 0.9.

1 3 _3 _3 _3

3

a3 3

—3 —3 T3

3

3

79

The average number of failures before success over all the successful training runs was
11164.5 failures, and the median was 9244 failures. In the case of the direct method,
93 training runs were successful, with an average number of failures before success of
2385.89 failures, and a median of 1148 failures. When disturbances were added to the
output of the reinforcement learning controller, the number of successful runs dropped
to 88. The average number of failures before success over all the successful runs was
2689.3 failures and the median was 1383.5 failures. Histograms of the distribution of
the successful training runs in terms of the number of failures before success for each

learning method are shown in Figure 4.12.

Direct method Direct method Indirect method
with external noise

o 60 @ 60 @ 60—
[[~ [

2 ol 3 &l 2 &l
> > =]
E £ g

3 % 5 g st

= 454 = 45 . a1

401 40 40 4=

354 35 - o

301 30 301

251 25 -

201 20 201~

151 15 154=

10+ 10 104

5 5 s{-

° 0 0
¢ 60 120 180 240 300 0 60 120 180 240 300 o 60 120 180 240 300
(x 100) Failures before success {x 100) Failures before success (x 100) Failures before success

Figure 4.12. Performance on the cart-pole task. The bar graphs show the distributions
of the successful training runs in terms of the number of failures before success using
each learning method.

These results indicate a substantial difference between the two learning methods
in terms of learning speed and overall learning behavior. Some reasons for these

differences are discussed in the next section.

80

Discussion

One of the reasons that comparison of direct and indirect learning methods on
the cart-pole task is particularly meaningful is the necessity of an internal critic
for generating evaluations at each time step in order to solve the temporal credit
assignment problem. The internal critic is necessary regardless of which of the two
learning methods is employed and has to be constructed through training experience.
Whereas both the direct and indirect methods need the internal critic to obtain
evaluations in the absence of the environmental failure signal, the indirect method also
uses the structure of the internal critic network to translate (via back-propagation)
distal errors in evaluations into proximal errors in actions of the controller. Therefore
the difference in performance of the two methods essentially arises from differences
in the accuracies of the internal critics constructed during training and the manner
in which they are used, and not from any bias in the task setup or the training
information received.®

Let us first consider the problem of constructing an adequate internal critic. If the
internal critic is to produce accurate evaluations over all of its input space, it is vital
that it “sees” inputs that are distributed over its entire input space. In other words,
exploration of the (state, action) input space is imperative. The two methods under
consideration rely on different mechanisms to effect this exploration. In the indirect
method, external disturbances in the form of additive white noise are assumed to affect
the control output at all times, perturbing the actions of the controller and hence
introducing variations in the inputs to the internal critic. A potential problem with
this approach is the lack of direct control over the noise and hence over the exploration.
While higher magnitudes of noise will enable better exploration—leading to a more

accurate internal critic and thus to faster control acquisition—large-magnitude noise

S1f, for example, the environment provided appropriate evaluations at all times, then the direct
method would not be required to construct an internal critic, while the indirect method would still
have to do so. Such a situation would therefore be biased in favor of the direct method.

3 13

3 -3 _13

—

T3 T3

13

— 13

81

is detrimental to the long-term performance of the controller. Conversely, lower noise
levels will facilitate good control after learning but will slow the learning of a useful
internal critic and hence slow the acquisition of control. Unfortunately, because the
source of the noise is external to the learning system, its amplitude is clearly beyond

the control of the learning system.

In contrast, active exploration of the action space is an integral feature of direct
methods. In order to discover the best output to produce, direct methods generate
actions stochastically and use the resultant evaluations to guide the search for the best
output. On the cart-pole task, using reinforcement learning therefore facilitates the
desired exploration of the input space of the internal critic. Moreover, direct methods
must directly control the randomness in the output in order to exhibit convergent
learning behavior. This means that as learning proceeds and performance on the

task improves, the exploratory variations in the controller’s output decrease to zero.

The manner in which the internal critic is used to train the controller also has
a critical impact on the learning behavior. As discussed above, the indirect method
is based on the idea of using the structure of the internal critic to obtain gradient
information for training the controller. Jordan and Rumelhart [68] show how the
back-propagation process computes the gradient of the output of the internal critic
with respect to the controller’s output. If the controller’s training information is to be
meaningful, the internal critic has to be reasonably accurate at the current point in
(state, action) space, and the gradient computed using the internal critic has to have
a positive inner product with the true gradient of the output of the internal critic with
respect to the controller’s actions (see ref. [68], pp. 11-13). We have already discussed
the factors governing the first condition. The gradient, however, is defined mainly by
the weights on the connections from the controller to the internal critic. Therefore
the indirect method is critically dependent on the weights on these connections. In
other words, the structure of the model becomes critical when indirect methods are

used.

82

But because of the redundancy of the information provided to the internal critic
via these connections,” the internal critic can make accurate predictions even with
arbitrary weights on these connections. Therefore, in practice, there is reason to
believe that the predictions of the internal critic become accurate long before these
weights take on meaningful values. This is because accurate predictions are possible
independently of these weight values, and once the predictions are accurate, there is
no output error to drive the adaptation of these weights. Fully aware of this problem,
Jordan and Jacobs [66] sought to mitigate its effect by increasing the learning rate
on the connections from the controller to the internal critic. Nonetheless, due to this
problem, the provision of meaningful gradient information to the controller is delayed,
thereby slowing learning.

In comparison, the direct method relies only on the output of the internal critic
for its training information. Because the reliability of the predictions of the internal
critic is probably higher than that of the gradient estimates obtained using the
internal critic’s weights, the direct method gets meaningful training information
more frequently than the supervised learning method. The drawback of using direct
reinforcement learning, however, is that the gradient of the output of the internal
critic with respect to the controller’s output has to be estimated stochastically.
Nevertheless, the results presented above indicate that estimation of the gradient
by the direct method can be more accurate than estimation of the gradient through
the weights of the internal critic.

The empirical results reported in this chapter illustrate the power and utility of
direct reinforcement learning methods for learning control. We have also compared
the effectiveness of direct methods to that of indirect and other methods when applied

to different kinds of control problems. In the next two chapters, we address the

Providing the controller’s output to the internal critic is redundant because the controller’s

output is a function of the state of the cart-pole system, which is already provided as input to the
internal critic. :

34 3

-1 3 3 _3

3

3

3

-3

) 3

i

T3

83

difficulties in scaling direct reinforcement learning methods to more complex control

problems.

CHAPTER 5

STRUCTURAL CREDIT ASSIGNMENT

This chapter begins with a description of the problem of credit assignment as
it appears in reinforcement learning systems. Both temporal and structural credit
assignment problems are described, although our foc;us in this dissertation is on the
latter. The structural credit assignment problem is defined in detail, and previous
approaches to solving the problem in connectionist learning systems are discussed.
Following this, we describe a novel modular connectionist architecture that can be
used for structural credit assignment in a reinforcement learning system. Finally, we

present empirical results demonstrating the utility of this architecture.

5.1 Credit assignment in reinforcement learning systems

The basic credit assignment problem for reinforcement learning systems was dis-
cussed by Minsky [96]. When sequences of decisions are made by various components
of a reinforcement learning system before the system receives any evaluation from
the critic, it is faced with the problem of assigning appropriate credit or blame to
the various decisions. For example, a system learning to play checkers has to make a
number of moves before the ultimate outcome (win, lose, or draw) becomes apparent.
The system then has to decide which of the moves it made were really responsible for
the outcome and which of its components were involved in generating those moves.
There are two distinct aspects of the credit assignment problem called the temporal

and structural credit assignment problems [136].

-3 _13

3

85

Temporal credit assignment—The temporal credit assignment problem arises
because evaluations of the learning system’s decisions may be delayed in time as in
the checkers example given above or in the cart-pole task of Section 4.3. In the
checkers example, a move or sequence of moves early in the game might have set up
the board for the ultimate win, but it is difficult for the learning system to identify
such moves. A commonly used approach to solving the temporal credit assignment
problem is to develop a means of reliably predicting the future worth of a decision
and to use the predicted worth to guide the learning process. This is the approach
taken, for example, in Section 4.3 in training the controller in the cart-pole task.

The checkers-playing program written by Samuel [119, 120] also used a method
for adjusting the coeflicients of the terms in an evaluation function so that the value
assigned to a board position incorporated the worth of board positions reachable in
several moves. More favorable evaluations were thus assigned to board positions that
led to good positions later in the game, enabling reliable selection of good moves early
in the game.

The Adaptive Critic Element (ACE) algorithm developed by Sutton [136] is a
method for learning to predict future evaluations that is related to Samuel’s method.
This algorithm was incorporated into a connectionist architectm.'e called the Adaptive
Heuristic Critic (AHC) [23]. Sutton [137] extended the ACE algorithm into a family
of algorithms called the Temporal Difference (TD) algorithms, which have been shown
to be related to dynamic programming by Barto, Sutton, and Watkins [25]. Several
other temporal credit assignment methods have been studied by researchers (see,
for example, Holland [59], Werbos [144], and Watkins [141]). Although we consider
the temporal credit assignment problem to be important, our study focuses on the
structural credit assignment problem.

Structural credit assignment—The problem of structural credit assignment
arises when the learning system’s actions are based on the actions of more than

one constituent component of the learning system. In such cases, the evaluation

86

received by the system for an action has to be correctly apportioned between the
contributing components. The structural credit assignment problem has two aspects.
The “hidden component” credit assignment problem involves assigning credit to those
components of the learning system that do not directly interact with the environment.
The “multiple action element” credit assignment problem, on the other hand, arises
when the learning system’s actions are multi-dimensional. Here, the learning system
has to determine the relative impact of each action element in various situations to

apportion credit among the action elements for the ensuing evaluation.

The significance of both aspects of the structural credit assignment problem is
readily apparent in reinforcement learning systems. Because usually only a scalar
evaluation is returned by the critic, credit has to be properly apportioned between all
the action elements and all the hidden components of the learning system based on
Just this scalar value. However, even supervised learning systems must deal with one
aspect of structural credit assignment. Although the teacher assigns credit among
multiple action elements in supervised learning systems (by providing an individual
target value for each action element), the problem remains of assigning credit to the
hidden learning components (e.g., the hidden units in a connectionist network). This
problem has received considerable attention from connectionist researchers because
of its centrality to training multilayer networks. Indeed, much of the interest in
connectionist learning can be attributed to the development of techniques for solving

the hidden component credit assignment problem in multilayer networks.

Techniques for hidden component credit assignment in supervised learning sys-
tems can also be used in reinforcement learning systems. However, additional tech-
niques are needed for credit assignment among multiple action elements of a reinforce-
ment learning system. In the sequel, we present a novel connectionist architecture that
can be used to assign credit to individual action elements of a reinforcement learning
controller. Before doing so, however, we review existing approaches to structural

credit assignment in connectionist systems.

1

3 1 3 __3 _3 __3

.34 __3 __1

.3

.1

4 31 _ 3

L1

—3 T3 T3 "~ 3

—3

87

5.2 Some methods of structural credit assignment

In his PhD thesis, Anderson [6] presents an extensive review of various approaches
proposed for structural credit assignment in connectionist networks. He classifies
the approaches into three main groups based on the general approach taken: (1)
gradient methods, exact and approximate; (2) methods based on a minimal-change
principle; and (3) methods based on a measure of worth of a network component. We
briefly discuss the prominent methods from each group here and refer the reader to

Anderson’s thesis for further details.

5.2.1 Gradient methods, exact and approximate

Gradient methods are the most popular means of solving the structural credit
assignment problem. They involve computing the exact or approximate gradient of
a criterion function with respect to the outputs of each of the units in the network.
The gradients indicate the degree of influence of each unit on the criterion function,
and hence each unit is assigned credit proportional to the magnitude of the gradient.
Backpropagation (e.g., [117]) is an example of a supervised learning algorithm that
computes the exact gradient of a per-sample error function (defined over the network’s
outputs) with respect to each hidden unit’s output. It is therefore a method for
structural credit assignment among the hidden units in a multilayer network. Indeed,
the error gradient propagated back to each hidden unit in the backward pass of the
algorithm represents the fraction of the per-sample error ascribed to that unit.

Other supervised learning algorithms use estimates of gradients to assign struc-
tural credit to the hidden components. Examples include the Boltzmann machine
algorithm [1], and the backpropagating error correction procedure of Rosenblatt [114],
which is similar to backpropagation but relies on a probabilistic estimation of the

error gradients instead of computing the exact gradient.

88

Several reinforcement learning systems also rely on estimates of gradients as a
means of credit assignment.! An early example is the SNARC (Stochastic Neural-
Analog Reinforcement Calculator) system described by Minsky [95] in his PhD thesis.
Farley and Clark [38] developed a method for modifying the weights of randomly
connected stochastic units based on correlations between the outputs of the units
and the evaluation. As discussed in Chapter 3, many other similar algorithms have
been studied by learning automata theorists [104] and animal learning theorists [73,
74, 138]. Much of the work along these lines has been done by Barto and his colleagues
124, 22, 23, 136, 18, 15, 19, 7], who have developed and studied several algorithms
based on these ideas. Prominent among these is the Ap_p algorithm of Barto and
Anandan [18]. In our own work, we have shown that under certain conditions, the
SRV unit algorithm uses unbiased estimates of the gradient of the expected evaluation

to update the unit’s weights (see Chapter 3 and Lemma 2 in Appendix A).

5.2.2 Methods based on a minimum-change principle

Minimal-change methods use various heuristics to determine how any particular
unit in the network affects the overall error or the overall evaluation. The heuris-
tics are designed to detect a minimal set of units such that altering their weights
eliminates the error in the network output. Some of these methods rely on direct
observations of changes in the error with changes in a unit’s weights. Examples of
such methods include the procedure developed by Widrow [147] for adjusting the
weights of networks of Adalines (Adaptive linear elements), and Stafford’s methods
(133, 134] for adapting the weights of hidden units in networks with a single output

unit. Other minimal-change methods are based on the notion of a prototype unit.

1t is perhaps more accurate to say that in reinforcement learning, correlations between the
outputs of units and the reinforcement, or evaluation, are used to assign credit to the units.
However, it can be shown that for most reinforcement learning algorithms, the correlations formed

are estimates of the gradient of the expected evaluation with respect to the outputs of the units (see
(104, 18, 152, 48] and Appendix A).

3 " 3

E

— — 3 3 T3 3

89

Here, units are assigned credit based on the degree of match between their weights
and the input vector. Typically, the weights are regarded as defining the center of a
hypercube or hypersphere, and the distance between the center and the input vector
becomes a measure of the match. Only the weights of the units with the highest
degree of match are adjusted by the learning algorithm. Several such methods have
been described (see, for example, Skolic? [130], Hampson [52], Rumelhart and Zipser
(118], Moody and Darken [98], and Niranjan and Fallside [108]).

5.2.3 Methods based on a measure of worth of a network
component

In these methods, various measures of worth are used to determine how to
streamline the structure of the learning system by discarding useless components
and by adding useful new components. The worth of a component is estimated
by evaluating the contribution it makes to the output of the learning system. A
commonly used measure is the overall output weight of a unit. (The overall output
weight of a unit is the sum of the magnitudes of the weights on the connections
between the output of the unit and other units.) This measure was used, for example,
by Samuel [119] in his checkers-playing program, by Selfridge [123] in Pandemonium,
and by Holland [59] in his bucket-brigade algorithm. Other measures of worth include
the product of the unit’s output and its overall output weight and the cross correlation
between the unit’s output and the desired output. On comparing these three measures
of worth in a two-layer connectionist network with a single output unit, Klopf and
Gose [75] found the best among them to be the product of a unit’s output with the
overall output weight of the unit.

The cascade-correlation technique of Fahlman and Lebiere [37] uses a novel mea-

sure of worth to add new hidden units to a network so as to improve performance.

2Skolic actually presents his method as a decision making procedure in a production system, but
his methods can be recast into the connectionist framework.

90

Each unit in a pool of candidate units is trained to maximize the correlation between
its output and the errors produced by the existing network. The candidate units
receive inputs from all input and hidden units in the existing network. The best
candidate unit, i.e., the unit with the maximum correlation, is then added as a hidden
unit in the network, and the network is retrained. Adding the new unit is beneficial
because it essentially acts as a detector for error-causing inputs, and hence the unit’s
output can be used to cancel out the errors.

Several other researchers have developed methods to prune networks based on
various measures of worth. Examples include Rumelhart’s method of adding extra
cost terms to the error function minimized by backpropagation [115], used by Hanson
and Pratt [55], the “optimal brain damage” technique of le Cun et al. [81], and the

skeletonization technique described by Mozer and Smolensky [99].

5.3 A specific gradient method: Differentiating a forward
model

In the previous section, we described the utility of gradient based techniques, such
as backpropagation, for hidden component credit assignment in supervised learning
systems. In this séction, we shall describe how these techniques can be used for credit
assignment among multiple action elements of a controller as well. The discussion
in this section will serve as a background for presenting our architecture for multiple
action element credit assignment in a controller trained using reinforcement feedback.

In Section 2.3.1, we presented Jordan and Rumelhart’s [64, 68] approach to
learning with a distal teacher as an example of the indirect approach to learning
control. The description presented in that section was from the point of view of
translating distal training information into a proximal form useful for training the
controller. Recall that the method involves constructing a forward model of the
process and training the controller by using the forward model to translate error

gradients in the output space of the process into error gradients in the action space

=

1

91

of the controller. An alternative point of view of this method is presented by Barto
[16], who points out that generating error gradients for the controller’s actions given
distal training information is essentially the same problem as obtaining error gradients
for hidden units in a network given the desired network outputs. In both cases,
the gradients are not directly available and must be computed in some fashion.
Jordan and Rumelhart’s [64, 68] approach is an elegant method for computing these
gradients. By appending to the controller network another network that is a model
of the controlled process as shown in Figure 5.1, the output layer of the controller is
transformed into a hidden layer in the overall network. Thus, the problem of credit
assignment among multiple action elements is transformed into a hidden component
credit assignment problem, which can be solved using available techniques from
supervised learning such as backpropagation.

A similar indirect method proposed for training controllers in reinforcement learn-
ing tasks [100, 66, 145) was also described in Section 2.3.1. An implementation of
this approach by Jordan and Jacobs [66] was described in detail in Section 4.3. Other
implementations of this approach include those of Munro {100] and Bachrach {12].

From the above it is clear that one of the advantages of using an indirect method
for training the controller is that it can solve the multiple action element credit
assignment problem. In the next section, we elaborate this approach and present a

variation of this idea that might be more practical for reinforcement learning tasks.

5.4 Using consequent process output for credit assignment
among multiple action elements '

The focus in this section is on the multiple action element credit assignment
problem in a reinforcement learning system. When a multi-element control action
is performed, the controller has to determine which action elements were, or were
not, responsible for the ensuing evaluation. While the standard reinforcement learn-

ing approach relies on correlations between perturbations of action elements and

92

Model

! Indirect training
; information

Y
Input Controller
network Action

pres——-

(a) Training a controller

Input to
hidden Network
unit Output | guter haif of | ©utput
- - | thenetwork |
Training
information

(b) Training a hidden unit

Figure 5.1. Training a controller using indirect methods is like training a hidden unit
in a network. After Figure 4 in Barto [16].

1

B

-3 __3

—3 —3a —3 —1 —3 —3 1

E |

93

consequent changes in the evaluation (as described in Chapter 3), it is clear that
such an approach is prone to error. Even though perturbing some action elements
might not have affected the ensuing evaluation, a reinforcement learning method may
detect spurious correlations between these perturbations and the observed changes
in the evaluation.? In other words, standard reinforcement learning methods cannot
distinguish between correlations arising from contingency of the evaluation on the
action elements and those due to accidental contiguity between perturbations in action
elements and changes in the evaluation.

Modification of control behavior based on spurious correlations leads to what
experimental psychologists studying reinforcement learning in animals call supersti-
tious or adventitious learning [128, 132]. Superstitious learning can be detrimental to
learning control because adjustments to an action element based on spurious correla-
tions can disrupt adjustments made using correlations observed when the evaluation
is really contingent on that action element. As the number of elements constituting a
control action increases, the likelihood of spurious correlations between action element
perturbations and changes in evaluation also increases, making superstitious learning
more likely. It is therefore necessary to devise a means of overcoming superstitious
learning in a reinforcement learning system.

One approach to mitigating the deleterious effects of superstitious learning is
suggested by the following observations. The state of the process, specified by the
input to the controller, defines the contezt in which actions are generated by the
controller and evaluated by the critic. Depending on the context, only a subset of
the action elements might actually influence the evaluation, either because the rest of
the action elements do not have a significant impact on the process or because their

effect on the process is irrelevant for the task at hand. By identifying this subset of

3Mainly because most reinforcement learning methods use only a small number of observations
to form correlations.

94

active action elements and assigning credit to only these elements, we can prevent
superstitious learning by the inactive action elements.

We have already seen how the indirect method of constructing a global model
of the evaluation function addresses this problem. But as argued below, this is not
the only alternative, nor is it the best approach in all circumstances. For example,
when some form of information about the relative influence of action elements is
available, using it to directly assign credit among the action elements might be more
expedient. One such source of information available in control tasks is the output of

the controlled process, which reflects the effect of a control action on the process.

5.4.1 The heuristic

The idea underlying the credit assignment scheme presented here is to use in-
formation about the consequences of control actions on the controlled process to

obtain a senmsitivity measure for each action element. On considering the usual

input-action—output—evaluation sequence in reinforcement learning control tasks (see -

Figure 2.2¢), we see that the effect of the control actions on the evaluation returned by
the critic can be regarded as a two-stage operation. First, the control actions operate
on the process, causing changes in the process output. The critic then evaluates the
changes in the process output within the current context (specified by the controller’s
input). Therefore, a tenable heuristic is that actions that have a small influence on
process output in a given context also probably have a small influence on the ensuing
evaluation. Based on this heuristic, we can assign a higher sensitivity rating to those
actions that have a significant impact on the process output in a given context and a
lower one to those that have very little impact.

Mathematically, we want to estimate the magnitude of the gradient of the evalu-

Or

ation function with respect to each action element, i.e., o

, where 7 is the reinforce-

-

3

3

13

31 3

3

E|

95

ment, or evaluation, and y;, 1 < i < 7, are the n action elements. The discussion in

the last paragraph is based on the observation that

}1" _ | {(or 62,-)
Oyi| ,;(521') (3yi
= [Or 0z;
< —_— '}
- Jz=:1 (321') '(5.%') ’

where z;, 1 < j < m, are elements of the process output vector. The credit assignment
heuristic can therefore be restated as follows: If the second term, ‘Z—Z}I, in each product
on the right hand side of the above inequality is very small, the magnitude of the
overall derivative, (‘_%), 1s also very small. Therefore, in a given context, little credit
should be assigned to action elements y; for which lg—:-,f issmall forall z;, 1 < j < m.

Rather than performing accurate credit assignment among the action elements,
this heuristic is mainly useful for detecting action elements that have little or no
impact on the process in a given context and can hence be considered inactive in
that context. Isolating these action elements by assigning them low sensitivities in
situations where they are inactive attenuates superstitious learning, thereby minimiz-
ing interference with learning when these elements are active. A limitation of this
heuristic, however, is that it does not prevent superstitious learning in action elements
that have a significant impact on the process but should nevertheless be considered

inactive because their effect on the process is not relevant for the evaluation.

or

Also note that when |g—:’-| is large but 5z;

is small for all z;,1 < j < m, credit is
wrongly assigned to the action element y; because the heuristic considers the former

term alone in assigning credit. But is small for all z;,1 < j < m, only when all the

or
3z;
process output variables, z;, are irrelevant for computing the evaluation. Therefore
this heuristic might perform poorly if only process output variables that are irrelevant
for computing the evaluation are used for credit assignment.

Summarizing, the idea is to use information in the process output to assign

sensitivity values to individual action elements in each context. These sensitivity

96

values are used to scale the learning rates when adjusting the action elements. Action
elements with low sensitivity values undergo relatively smaller adjustment than action
elements with high sensitivity, thereby reducing superstitious learning in the elements

that are inactive in a given context.

5.4.2 Implementation of the heuristic

As indicated in the previous section, the quantities that need to be estimated
for computing the sensitivities of the action elements are the partial derivatives
g—:"}. These derivatives can be estimated in two ways. The first is to construct a
global differentiable model of the process and evaluate the Jacobian of the model
at the current output of the controller. This is very similar to the indirect method
of using a process model to train a controller using distal training information as
described in Section 2.3.1. An alternative approach that is more in the spirit of direct
reinforcement learning methods is to construct a local linear model (LLM) of the
process on-line and use it to estimate the required derivatives. Such models are easy
to obtain and directly yield the desired Jacobian. Moreover, whereas global models
can be characterized as being approximately correct everywhere, local models can be
much more accurate, albeit only locally. Furthermore, stochastic direct reinforcement
learning methods only require a local model that is valid within the “locality of search”
defined by the range of action perturbations. The use of LLMs therefore fits neatly
with the use of direct methods for training the controller.

The proposed architecture for implementing the credit assignment heuristic de-
scribed above is shown in Figure 5.2. Although similarities to the architectures for
implementing indirect methods (Figure 2.3) are obvious, there are several significant
differences. First, the process model has only a single layer of linear units. Therefore,

the output of the model, namely the predicted process output 2, is computed as

2 =W, v, (5.1)

A

]

1

3

3

3 T3 T3

—3 ~—3 31 73 73 T3 T3 T3 T3

~— —3 —3 3 T3 —31 13

97
.| Memory Model network weights
module
_| Locallinear |Predicted output
_ |process model |
|
: Sensitivities
1
Input Evaluation
——| Controller

Figure 5.2. An architecture for implementing the multiple action element credit
assignment heuristic.

where Wy, denotes the matrix of weights of the LLM and ¥ is the action of the
controller. As noted above, one advantage of using a LLM is that the weights, Wy .,
can be used directly as estimates of the gradients Z_Z' needed for computing the
sensitivities. On differentiating equation (5.1), we see that the weight matrix is an
estimate of the Jacobian of the process at the current operating point. That is, the
element w;j of Wiy 1s an estimate of %3-.

Let

m
=) |lwyl, 1<i<n
i=1

¢; is a measure of the net influence of action element ¢ on the process output. The

sensitivity, s;, of the it action element is computed by normalizing ¢; as follows:

TH1<i<a (5.2)

§; =

k=1 Ck ,

Normalization is used to determine the relative sensitivities of the action elements.
Clearly, the effectiveness of scaling the learning rate associated with each ac-

tion element by the corresponding sensitivity value depends on the accuracy of the

gradient estimates (i.e., the weights of the LLM) used to determine the sensitivity

98

values. Inaccurate gradient estimates can cause credit assignment to the wrong action
elements, which might actually increase superstitious learning. It is therefore safer in
practice to assign equal credit to all the action elements while the weights are being
estimated. The prediction error of the LLM provides a convenient measure of the
accuracy of the model and can be used to determine when the information from the
LLM is useful for credit assignment. Specifically, the sensitivities can be computed

as

ne; . — & <,
8 = { i ck if ”Z Z“ =1 (5.3)

1 otherwise,

where 7 is a pre-specified limit on the prediction error.

From an implementational point of view, we note that although the weights, Wy,
representing the process Jacobian in a given context can be learned incrementally
through interactions with the process, it is possible to accelerate learning by using
a memory module to associatively store the process Jacobian for each context. As
depicted in Figure 5.2, the weights recalled by the memory module'for any given
context input can be loaded into the LLM. Although the memory module and the
LLM together constitute a global model of the process, structuring the global model
in this fashion enables fast computation of an estimate of the process Jacobian as the

controller’s context input changes, while at the same time preserving the advantages

of using LLMs.

5.4.3 Relationship to “differentiating a model”

The LLM approach to multiple action element credit assignment in a reinforce-
ment learning system is closely related to the approach described in Section 5.3
of differentiating a global model of the evaluation function. Both approaches are
based on constructing and using a differentiable model in the manner of indirect
methods, but they differ as to the kind of model constructed and the method used for

constructing it. These differences are important in determining the relative efficacies

of the approaches.

3 __1

-3

-3

3

3

1

—3a 3 __13

-3

—3 ~—3 —3 —3a —3 —3 —3

3

— — —31 —3 ~—3 ~T3 T3 T3 3

99

The first difference between the two approachs concerns what is modeled. The
LLM approach requires constructing a model of the process alone, whereas modeling
the evaluation function requires modeling both the process and the critic. Construct-
ing and using a model of the process alone can be more practical and efficient for
several reasons. Whereas a scalar evaluation combines the effects of all the action
elements, a vector-valued process output is available in most control tasks, and each
process output variable reflects the effect of a subset of the action elements. Therefore
the process output conveys information that is useful for credit assignment among
action elements, and the LLM approach makes full use of this information. Moreover,
while the process characteristics are usually stationary in most learning control tasks,
the evaluations depend on the performance of the controller, which is evolving over
time, and the evaluation process itself can be non-stationary (for example, when
shaping is used (see Chapter 6)). Modeling the process can therefore be easier than
modeling the evaluation function. Finally, the same process model can be used for
learning several different tasks involving different evaluation functions.

A second difference between the LLM approach and global modeling of the
evaluation function is that unlike the latter approach, the LLM approach requires
learning only a local model. We have already discussed the problems in constructing
global models in Section 2.3.3. Learning an accurate local model of the process,
however, can be done efficiently. For example, we can use proven techniques such as
Recursive Least Squares [84] to learn a local linear model very quickly. Moreover,
in our method, modeling effort is expended only in the region of action space where
the controller is searching for the best actions, making modeling more goal-directed.
As opposed to this, with global models, much effort may be expended in trying to
learn an accurate global model in regions of the action space that will never be visited
while learning the specified control task. The use of local process models also has the

implementational advantages discussed in Section 5.4.2.

100

Finally, we observe that there exists a continuum of methods between the LLM
approach and global modeling of the evaluation function. As we move along this con-
tinuum, the models become progressively more complex (linear to highly non-linear
models and local to gléba.l models) and complete (models of the action-evaluation
map instead of just the action-output map). Moreover, models could also have several

intermediate stages with information injected into the modeling process at each stage.

An example in which a model has intermediate stages is the three-net architecture
proposed by Werbos {145]. This architecture uses a two-stage model of the evaluation
function, where the first stage is a forward model of the process and the second stage
is a model of the critic. Werbos suggests that modeling the evaluation function in two
stages and learning each stage based on signals from the environment might be more
efficient and might lead to a more accurate model of the evaluation function. This is
because the additional information in the process output can constrain the modeling
process. Moreover, Bachrach [12] points out that the three-net architecture can be
advantageous when the forward model of the process is known a priori because then
only a model of the critic has to be learned.

In contrast, Jordan and Rumelhart [68] make the point that as far as training
the controller is concerned, it may not be necessary to represent the dynamics of the
process by a model. Instead, it may suffice to construct a simple global model from
actions to evaluations that can “generalize suitably” over the space of actions, and
then use this model to train the controller.

As can be seen from this discussion, there are many arguments to be made for
and against the various approaches developed for addressing the structural credit
assignment problem. The utility of any one approach clearly depends on the problem
at hand. However, researchers interested in applying learning methods to control
problems need to be aware of the wide range of methods that are available and the

relationships between these methods. We hope that the above discussion contributes

to this awareness.

1

~—~3 —3 —3

101

5.5 Efficacy of the multiple action element credit assign-
ment method: An illustrative example

In this section, we present simulation results that illustrate the utility of the
approach presented in Section 5.4 for multiple action element credit assignment in a
controller that uses direct reinforcement learning. The task used in these simulations
1s an abstract reinforcement learning task that has been selected specifically because
it captures essential aspects of the multiple action element credit assignment problem.
We describe the task first and then present the results of the simulations.

For reasons that will become clear shortly, the abstract reinforcement learning
task used in this section is called the “interference task”. This task can have an
arbitrary number of action elements. For the general case of n action elements, the
task is defined by a table of inputs and optimal actions, as shown in Table 5.1. A “+”
in place of an optimal action element in a row indicates that that action element is

irrelevant in the context of the input specified in that row.

Table 5.1. The interference task.

Inputs Optimal Actions | Process Output z Error e
Ty T2...2Tq Y1 Y2-.-.Yn __

100...0 0.9 %% ... % 1.0 -y 10.9 -y, |
010...0 * 0.9 % ... % 1.0 -y, 10.9 — v, |
00...01 * % ...%0.9 1.0 -y, 10.9 —y, |
111...1] 0101...01 [1.0-1/n¥} ¥, |1/nTF, 0.1 -y, |

The task can be summarized as follows. There are two classes of vectors from
which input to the controller is selected in this task. In one class there are n unit
vectors, each with a single input element set to 1 and the rest set to 0. In the other

class there is a single input vector with all the input elements set to 1. When a

102

unit vector is presented as input to the controller, an action element y; is active®
only if the corresponding input element z; is 1. In this case, the optimal value of
the active action element is 0.9, and we do not care about the values of the other
action elements. However, in the special case when all the input elements are 1, all
the action elements are active, and each one of them should equal 0.1. For each
input, an action error is computed using the corresponding optimal action values
and taking into account only the active elements. The evaluation is then computed
as a monotonically decreasing function of this error. In addition, for each input, a
“process output” that is a function of only the active action elements is provided to
the learning system (see Table 5.1). A typical arrangement of the controller and the

process+critic for this task is shown in Figure 5.3.

r

Evaluation
— 7

-

Process Output

Process + Critic

Controller network

Figure 5.3. Block diagram of the setup for the interference task. There are n input
and action elements.

Why is this task is called the “interference task?” Direct reinforcement learning
involves perturbing the action elements and adjusting them based on the consequent
changein the evaluation. When a unit vector input is presented to the controller in the

interference task, only one action element is active and should learn to correct its error.

4See Section 5.4 for the definition of an active action element.

3

-3 _ 3 3 _3

3 3 3 3 _1

.3

3

1

—3 T3 T3

103

But because the evaluation signal is provided to all the action elements, the inactive
action elements will also be adjusted based on the correlation between perturbations
in their values and the observed change in the evaluation. This superstitious learning
interferes with learning the optimal actions when the inactive action elements become
active. Requiring an active action element to produce different outputs depending
which input vector (a unit vector or a vector of all ones) is presented to the controller
exacerbates the effect of this interference. The goal, obviously, is to minimize such

interference effects through appropriate credit assignment.

The credit assignment scheme described in Section 5.4 accomplishes this by
turning down the sensitivity of the inactive action elements, thereby diminishing
superstitious adjustment of their values. Inactive action elements can be detected by
using a local linear model (LLM) of the transformation from actions to the process
output. The derivatives of the process output with respect to the control action
elements will have small magnitudes (ideally, zero magnitudes) for inactive action
elements and large magnitudes for the active elements. Using these derivatives to
assign sensitivities to the action elements will therefore result in low sensitivities for

the inactive action elements as desired.

Results

We ran simulations in which controllers with 2, 3, and 4 action elements were
trained in the interference task. The results of these simulations are shown in
Figures 5.4-5.6, which show the evaluation plotted as a function of time. As is
evident from these figures, in all cases the system learns to solve the interference
task when credit assignment among the action elements is performed but fails to
solve the task when no credit assignment is performed. This is indicated by the
uniformly high evaluation received in the former case. Moreover, we can observe
that without credit assignment the performance becomes progressively worse as the

number of action elements increases. These results suggest the utility of combining

°
8

Evaluation
=3
8

0.701

0.601

0.501

0.40

0.301

0.20

0.101

104

—— With structural credit assignment

Without structural credit assignment

.
B
R

.t
corsl, .,
.

0.00

25

125 150 175 200
(x 1500) Time steps

Figure 5.4. Performance on the interference task for n = 2. The curves show the
evaluation received at each time step, averaged over 20 training runs of 300,000 time

steps.

—3 -3 3 __

13

3

-3

13

3

T3 4 T3 —T3a T3 T3 T3

105

0.90 T — With structural credit assignment
------ Without structural credit assignment

Evaluation

0.80—

0.701—

0.501+—

0.40 =~

0.304—

0.204+—

0.00 | | | | | ! ! |
0 25 50 75 100 125 150 175 200

(x 1500) Time steps

Figure 5.5. Performance on the interference task for n = 3. The curves show the
evaluation received at each time step, averaged over 20 training runs of 300,000 time
steps.

0.904

Evaluation

0.80+1

0.701

0.604

0.50+

0.40+

0.301

0.204

0.00

106

—— With structural credit assignment
------ Without structural credit assignment

| | | | |

100 125 150 175 200
(x 1500) Time steps

Figure 5.6. Performance on the interference task for n = 4. The curves show the
evaluation received at each time step, averaged over 20 training runs of 300,000 time

steps.

3

3

3

13

-3 _3 __3

3 3 3 E| 3 3 3 3 i "3

3

3 3 3 3 3

107

a multiple action element credit assignment mechanism with direct reinforcement
learning methods. Although it is possible to train a controller to solve the interference
task using unaugmented direct reinforcement learning methods, doing so might be
untenable in practice because the lea.rnin'g rate has to be kept very low to ensure that
the controller learns reliably despite the interference.

The results presented here also serve to illustrate how a reinforcement learning
system can take advantage of the information available in the process output to im-
proveits learning performance. Because such information is commonly available when
dealing with control problems, the technique presented in this chapter is especially

useful for multiple action element credit assignment in a learning controller.

CHAPTER 6

SHAPING AS A METHOD FOR ACCELERATING
REINFORCEMENT LEARNING

We begin this chapter by describing an animal training procedure used in ex-
perimental psychology called shaping. The principle underlying shaping is that
learning to solve complex problems can be facilitated by first learning to solve simpler
subproblems. Shaping can be implemented in two ways in a system for learning
control. First, the behavior of a controller can be shaped over time by gradually
increasing the complexity of the control task as the controller learns. Second, shaping
can be implemented structurally by using a multilevel architecture trained bottom-up
so that previously learned control behaviors are used as primitives for learning more

complex behavior. Both these methods of shaping are illustrated here using examples.

6.1 Shaping

Shaping has been used for hundreds of years to train animals and has been studied
by experimental psychologists [60] interested in animal learning. The term “shaping”
itself has been attributed to the psychologist Skinner [127], who used the technique to
train animals, such as rats and pigeons, to perform complicated sequences of actions

for rewards. Skinner describes how the technique is used to train pigeons to peck a

spot:

We first give the bird food when it turns slightly in the direction of

the spot from any part of the cage. This increases the frequency of such

3

_ 1

3

3 __3

1

3

3

3 3 T3 T3 T3

—3 3

—3 T 3

—— ‘g r g‘

R

109

behavior. We then withhold reinforcement until a slight movement is made
toward the spot. ...We continue by reinforcing positions successively closer
to the spot, then by reinforcing only when the head is moved slightly
forward, and finally only when the beak actually makes contact with the
spot...

The original probability of the response in its final form is very low;
in some cases it may even be zero. ...By reinforcing a series of successive
approximations, we bring a rare response to a very high probability in a
short time. ...The total act of turning toward the spot from any point in
the box, walking toward it, raising the head, and striking the spot may
seem to be a functionally coherent unit of behavior; but it is constructed
by a continual process of differential reinforcement from undifferentiated
behavior, just as the sculptor shapes his figure from a lump of clay. (Skinner
[129] pp. 92-93)

The phrase “...reinforcing a series of successive approximations...”

expresses the
essence of shaping. Given the task of training an animal to produce complex behavior,
the trainer has to be able to (1) judge what constitutes an approximation to, or a
component of, the target behavior, and (2) determine how to differentially reinforce
successive approximations so that the animal easily learns the target behavior. Unfor-
tunately, neither of these two components of shaping have been formalized rigorously
in the psychology literature, even though shaping is widely used both in psychological
studies and to train pets and circus animals. Staddon [132], for example, observes
that the trainer often has to rely on an intuitive understanding of the way the animal’s
behavior is generated when determining which behavioral variations are precursors to

the target behavior and how to reinforce these precursors. Variations in the behavior

of individual animals also must be accounted for when making these judgements.

110

The limitations of relying on intuition when judging behavioral distances are
especially obvious when the behavior under consideration is cognitive in nature (for
example, learning language or mathematics). However, when the physical behavior
of the animal is being shaped, behavioral distances become equivalent to physical
distances, and it is therefore easier to determine a sequence of behavioral approxima-
tions that will lead to mastery of the target behavior. It is therefore not surprising
that shaping has been used most often for teaching motor skills to animals. For the
same reason, shaping can also prove useful for training artificial learning systems to
perform as controllers.

Several connectionist researchers have noted that training a controller to perform
one task can facilitate its learning a related second task (e.g., [125, 48, 151]). Selfridge,
Sutton, and Barto [125] studied the effect of shaping over time when training a
controller to balance a pole mounted on a cart.! They observed that overall learning
times were typically shorter when an existing controller was retrained whenever
modifications were made to the cart-pole system than when a new controller was
trained from scratch. This was demonstrated for several types of modifications
including increasing the mass of the pole, shortening the pole, and shortening the
track.

Wieland [151] illustrated the utility of shaping using a different version of the cart-
pole task in which the controller had to simultaneously balance two poles mounted
on a cart. Because it is easier to solve the two-pole balancing problem when the
pole lengths are very different than when the pole lengths are almost equal, Wieland
trained a controller to balance poles of lengths 1.0m and 0.9m by starting with poles
of lengths 1.0m and 0.1m and gradually increasing the length of the shorter pole to
0.9m. Although it is very difficult to balance p.oles with lengths as close as 1.0m and

0.9m, the shaping process resulted in a controller that was able to do so. Wieland and

1For a description of the cart-pole task, see Section 4.3.

3

3

E

.3

~_3

3

3

3

[

-3

% ’ %

111

Leighton [142] also studied the utility of shaping schedules for accelerating learning
methods based on gradient descent.

Other applications of shaping in connectionist research have been in the area of
training recurrent nets. Allen (4] trained recurrent nets to generate long sequences of
outputs using a shaping procedure that involved initially training the nets with short
target sequences and introducing longer sequences gradually over training. Another
related form of shaping is described in Nowlan [109]. In this case, a robust attractor
state for a recurrent network is developed by first training from initial states near
the attractor, and then gradually increasing the distance of initial states from the
attractor.

In this chapter, we present experimental results illustrating the utility of shaping
in training controllers via direct reinforcement learning methods. There are two
different ways to implement shaping. First, the behavior of a controller can be shaped
over time by gradually increasing the complexity of the control task as the controller
learns. This is identical to the manner in which shaping is used to train animals
and to the manner in which shaping was used in the studies cited above. Second,
taking advantage of the ability to specify the structure of an artificial learning system,
one can implement shaping structurally by using a multilevel architecture for the
controller. The idea here is to train the multilevel controller bottom-up so that
previously learned control behaviors are used as primitives for learning more complex
behaviors. In the following sections, we examine both of these approaches to shaping

a controller’s behavior in greater detail .

6.2 Shaping through differential reinforcement of behavior
over time

In this section, we present an example illustrating how a reinforcement learning
controller’s behavior can be shaped over time to produce a complex behavior. As

described above, in order to shape the behavior of the controller, one has to determine

Figure 6.1. The task setup for the key-pressing task. The simulated Stanford/JPL
hand and the calculator are shown to scale. Only the index finger of the hand is
shown because only that finger is used in the task. The triangle represents the palm
of the hand; the large circle represents the fingertip. The small dark circle on the
calculator face is the “footprint” of the center of the fingertip.

(1) a series of approximations to the target behavior and (2) how to differentially

reinforce successive approximations to the target behavior.

6.2.1 A Test Task: Key-pressing using a robot hand

We demonstrate the utility of shaping over time using a control task that involves
pressing keys on a simulated calculator keypad using the index finger of a simulated
dynamic model of the Stanford/JPL hand. The finger has three degrees of freedom
and the motion of the hand is restricted to a plane parallel to the z-y plane in which
the calculator face lies. Thus there are five degrees of freedom in all to be controlled.
The task setup is depicted in Figure 6.1. The axes of rotation of the finger joints of
the Stanford/JPL hand are as follows: the first joint (linking the finger to the palm)
permits rotation about an axis parallel to the z-axis, the other two joints have axes
of rotation that are perpendicular to both the first link of the finger and the z-axis.

The control actions are positioning commands that locate the hand base in its

plane of motion and position the three joints of the index finger. The key to press

—3a T3 T3

E |

M | 3 3 ~

1

113

is specified by setting a single bit in a 24 bit command input vector supplied to the
controller. Additional inputs to the controller include proprioceptive feedback of the
positions and velocities of the finger joints and the hand, a fingertip force sensation,
and a binary “key-pressed” sensation that is set whenever a key is pressed and reset
whenever a new target key is specified. For successfully pressing a key, the fingertip
must depress the key to the level of the face of the calculator (z = 0). Provision of
the hand position and velocity feedback permits the controller to learn to press any

key starting from any initial hand configuration.

Because pressing a key involves positioning the fingertip over the key, pressing it,
and then releasing, the task is fairly complicated and the controller has to learn a se-
quence of actions for executing a single key-press operation. As one might imagine, the
probability of a reinforcement learning controller generating such a complex behavior
through stochastic search is infinitesimal. A simple evaluation criterion that only
signals successful key-presses is therefore not very useful for training the controller.
Fortunately, we can shape the control behavior by defining successive approximations
to the key pressing operation and providing more informative differential evaluations

that can facilitate learning.

The first problem in implementing shaping, which is to determine a series of
approximations to the target behavior, is not very difficult for the key-pressing task.
A fairly intuitive series of approximations to the key-press operation is the following:
(1) Raising the fingertip so that it is not in contact with the keypad surface (to
prevent accidental key strikes).

(2) Moving the fingertip towards the target key keeping the fingertip raised.

(3) Positioning the fingertip over the target key keeping the fingertip raised.

(4) Positioning the raised fingertip over the target key and then pressing down with
the fingertip.

(5) Positioning the raised fingertip over the target key and pressing down until the

key is fully depressed.

114

(6) Positioning the raised fingertip over the target key, pressing down until the key is

fully depressed, and then releasing the key by raising the fingertip.

The second problem in implementing shaping, i.e., deciding how to differentially
reinforce control behavior, is more complicated. In order to differentially reinforce the
controller as it learns a series of approximations, the critic has to maintain a behavioral
history of the controller and infer from the history how well the controller has learned
each approximation to the target behavior. Based on this inference, the critic has to
determine if the controller requires further training on a particular approximation or
if it is ready to be trained on the next, more sophisticated, approximation. While it
is wasteful to continue training the controller on an approximation that it has already
mastered, switching to a more sophisticated approximation too quickly can also be
detrimental to rapid learning of the target behavior. To best realize the benefits
of shaping, accurate judgement of the controller’s ability at every stage in training
1s therefore necessary. Clearly, the time frame over which the behavioral history is

maintained and evaluated is a factor in making these judgements.

Our approach to the problem of differentially reinforcing the controller’s behavior
is to (1) reduce the time frame over which the controller’s behavior is evaluated to
individual training rums, i.e., individual attempts at the target behavior, and (2)
require that the controller’s behavior progressively satisfies the criteria for all the
approximations to the target behavior, starting with the simplest, in each attempt at
the target behavior. This approach allows the controller’s goal to be switched to in-
creasingly sophisticated approximations quickly over training, while at the same time
ensuring that the controller is trained on an approximation only if it has successfully
met the criteria for all simpler approximations. Moreover, this approach sidesteps
the question of how to infer the controller’s ability at a stage in training from its
behavioral history over a longer time frame.

In the key-pressing task, for example, the critic maintains the behavioral history

of the controller only over individual training runs, which begin with a new target

i3 { 3

_ 1

3

.3

.2

.

A |

3 E] i 3 —3 — 3 —3a — 13

E| 3 F

3

—3 —3 T3 ~

—3 13

115

key being assigned and end after a fixed number of time steps have elapsed. During
the course of each training run, the performance of the controller is evaluated using
a series of criteria, each attuned to a corresponding approximation in the list above.
The criterion used to determine the evaluation is selected at each time step based on
the state of the hand and the portion of the above series of approximations that has
already been accomplished. For example, if the fingertip is raised but is not located
over the target key, an evaluation criterion that rewards motion towards the target
key keeping the fingertip raised is selected; if the fingertip has already been positioned
over the target key by the controller, the criterion selected rewards downward motion
of the fingertip while keeping it located over the target key; and so on.

Initially, the controller might spend the entire duration of a training run learning
to satisfy the criterion for the simplest approximation. With time, the controller
learns to consistently satisfy the criteria for the simpler approximations, and the
frontier of learning shifts to approximations closer to the target complex behavior.
Thus, most of a training run is spent in learning the approximation to the target

behavior at the current frontier of learning.

6.2.2 Training methodology

In order to keep computer simulation time reasonable while retaining all the
essential aspects of the key-pressing task, we restricted the choice of the target keys
to three keys, which are highlighted in Figure 6.2. These keys were chosen so as
to require a broad range of motion of the fingertip. The controller was trained in a
series of training runs, which began with a new target key being picked randomly. The
probability of picking the key used in the previous training run was 0.1, while that of
picking either of the other two keys was 0.45. The initial hand configuration used in a
training run was the configuration of the hand at the end of the previous training run.
However, if the previous training run left the fingertip touching the keypad, the last

two finger joints were repositioned so that the fingertip was no longer in contact with

116

& s E‘J) x ,n"..
%) |4 5 & || M
Nz T2 e [+ (=
3
LY. =y,
.,_"4_@’
(o & —1| = + A
i

Figure 6.2. The set of target keys used in the key-pressing task, shown encircled by
bold circles.

E

117

the keypad. In either case, the initial velocities were set to zero. Each training run
lasted 15 time steps, during which the controller was trained using the appropriate
evaluation criterion at each time step as described above. The sensory feedback to the
controller was also updated at each time step. Details of the implementation of the
controller and the simulation of the calculator/hand system are given in Appendix B.

For the purpose of comparison, we also attempted to train a controller on the
key-pressing task without resorting to shaping. An identical training procedure was
followed in this case, with the sole modification being the use of a single evaluation

criterion that only rewarded pressing of the target key.

6.2.3 Results

The performance of the controller on the key-press task after 25,000 training runs
is shown in Figures 6.3-6.5. Each figure contains four panels that show the motion of
the hand over twelve time-steps when pressing each of the three target keys. Panel (a)
contains three strip-charts that show the value of each of three quantities at each time
step over the course of a key-press operation. These are the distance of the fingertip
to the target key (marked D and ranging from 0 to 9 centimeters), the height of the
fingertip above the calculator face (marked Z and ranging from 0 to 1 centimeter), and
the payoff, or evaluation, (marked P and ranging from 0 to 1). Panels (b), (c), and
(d) show the motion of the hand during the key-press operation from three different
viewpoints.

The strip-charts show that the fingertip is lowered as it approaches the target
key until it makes contact with the key and begins to depress it, and, once the key
is fully depressed, the fingertip is raised to release the key. The sharp drop in the
evaluation on the time step when the key is fully depressed (i.e., to z = 0) is due to
the switching of the evaluation criteria from one that rewards downward movement

to one that rewards upward movement.

118

LI | LI A

-l

BlolnlE
&l [= [
<

i

ey
g, & Li*%

(c) (d)

Figure 6.3. Pressing the key marked “#” on the calculator keypad. The initial
position of the fingertip was the final position after pressing the key marked “A”.
The dark triangle denotes the initial location of the hand.

119

e LR

-l

(] [[[

(a) (b)

() (d)

Figure 6.4. Pressing the key marked “8” on the calculator keypad. The initial position
of the fingertip was the final position after pressing the key marked “#”. The dark
triangle denotes the initial location of the hand.

120

Ry SO

]

4 r,ﬁf’
Fl L I I O O

Figure 6.5. Pressing the key marked “A” on the calculator keypad. The initial
position of the fingertip was the final position after pressing the key marked “8”. The
dark triangle denotes the initial location of the hand.

121

As evidenced by these figures, the controller has learned to successfully execute
the key-press operation for all three keys. Note that due to the dynamic nature of
the hand model, the motion of the fingertip depends on the initial state of the hand.
So the figures presented here are merely representative samples. However, we tested
the controller’s performance with the hand starting in 10,000 random initial states,
and in all the test runs, the target key was pressed successfully.

In comparison, without shaping, the controller could not learn the key-press task
even after 500,000 training runs. Moreover, this was true even when the controller was
trained to press just a single target key (the key marked “8”). These results support
the observations in Section 6.2.1 regarding the difficulty of training a reinforcement
learning controller to generate complex behavior without the benefit of shaping due

to the improbability of occurrence of the target complex behavior.

6.3 Shaping through incremental development of the learn-
ing system

In this section, we explain, using an example, how a reinforcement learning
controller’s behavior can be shaped by incrementally augmenting the structure of
the controller and training it on increasingly complex tasks. As the key-pressing
task of the previous section illustrates, for most complex tasks, the controller has to
translate the specified task into a sequence of control actions. In such cases, it might
be advantageous to decompose a complex high-level task into a sequence of subtasks
of a lesser degree of difficulty [137, 25]. This process of decomposition can be repeated
for subtasks at each succeeding level until a subtask is decomposed into a sequence
of elemental control actions. Such a decomposition enables us to represent any task
as a trajectory of subtasks at each level of decomposition (see Albus [3]).

A set of tasks is defined to be decomposable if the set can be divided into at
least two disjoint subsets of tasks of different levels of difficulty, such that (1) any

task of a level of difficulty can be decomposed into a sequence of tasks of lower

122

levels of difficulty, and (2) the tasks at the lowest level of difficulty can be directly
decomposed into a sequence of control actions. The set of disjoint subsets is called
the decomposition set of the set of tasks. If a controller is to perform a decomposable
set of tasks, we can take advantage of the decomposability by designing a controller
that is split into several levels, with each level performing the decomposition of the
subtasks at that level.

Such a controller architecture has several advantages. First, the decomposition
of tasks into subtasks simplifies the control problem because the controller can try
to solve each subtask independently. Since the subtasks are simpler than the original
task, such a divide-and-conquer approach decreases the complexity of the learning
process. Moreover, the control techniques and procedures required for solving the
subtasks are less sophisticated than those required for solving the whole task, leading

to a much simpler overall design for the controller.

A third advantage of a multilevel architecture for the controller is the ability
to develop the controller in a modular fashion, one level at a time. We can start
with a single-level controller that can perform simple tasks and incrementally add
higher levels that enhance the power of the controller. In other words, we can shape
the controller’s behavior through incremental development of its structure. This
shaping procedure also permits us to ensure that the performance of the controller at
each stage meets prespecified standards. Another advantage of training a multilevel
architecture to perform task decomposition is that it permits sharing of control
knowledge between tasks when they share a common set of subtasks.

Finally, the decomposition of tasks and assignment of subtasks to each level offer
excellent opportunities for the incorporation of domain knowledge into the design
of the controller. The usefulness of domain knowledge in problem-solving has been
stressed by several Al researchers (for example, Minsky [96] and Newell and Simon
[106]). Because each control problem has its own requirements and characteristics

that may, or may not, be easily handled by general-purpose control methods, the

B

13

13

3 _3 _31 _131 __3

4 ~—3 T3 —4a —3 — 13 713

3

T3 T3 i " 3 i 73 "3 3 73

123

ability to incorporate domain knowledge into the design of the controller adds a
useful degree of flexibility.

Multilevel and hierarchical controllers have been proposed by Albus [2], Minsky
[94], Saridis [121], Meystel [91], and others, as effective mechanisms for tackling
difficult control problems. These researchers have been inspired by the ubiquity
of multilevel systems in the brain, and in ecological, social, and economic systems.
Although these researchers have described various multilevel and hierarchical archi-
tectures for control, very few have actually addressed the problems of learning in such
architectures. Examples of learning in a hierarchical organization of modules have
been presented by Ersii and Tolle [36], Miyata [97], Jacobs [63], and Nowlan and
Hinton [110].

Although the task decomposition perspective presented above is useful, the idea
of shaping through bottom-up development of the controller is perhaps more closely
related to the ideas of learning macro operators {77, 61] or chunking [79] from the
problem solving literature of Artificial Intelligence. Korf [77] proposed learning
macro operators, or fixed sequences of actions that accomplish various subtasks,
as a means of speeding up learning to perform a complex task. In a similar vein,
Laird, Newell, and Rosenbloom [79] proposed chunking as a mechanism (incorporated
into a planning and problem solving system called SOAR) for storing generalized
versions of previously generated plans. Learning macro operators or chunking can
lead to considerable speed-up when learning to perform a complex task by eliminating
repeated search for fixed action sequences that are used frequently.

Similar mechanisms for storing and using precompiled plans or precompiled se-
quences of actions have been suggested by several other Al researchers. The use of
MACROPs to save generalized versions of plans previously generated by the robot
planning system, STRIPS, has been examined by Fikes, Hart, and Nilsson [39)].
PULP-I, designed by Tangwongsan and Fu [139], is another example of a robot

planning system that uses stored skeletal plans to speed up the planning process.

124

The effective use of stored skeletal plans also helps PULP-I reduce the number of

operators used in a plan for a task, leading to more efficient plans.

Bottom-up development of a multilevel controller is analogous to learning and
using macro operators. To see this analogy, consider incrementally developing a
two-level controller by training the lower level first and then adding and training the
higher level. In the case when there are more than two levels, this analogy holds for
each pair of consecutive levels. Training the lower level of a two-level controller on a
subtask is similar to learning a macro and involves searching for the right sequence of
actions to accomplish the subtask. The “name” of the subtask, i.e., the corresponding
command input to the lower level, serves as the macro label. By associating the
appropriate sequence of actions with each macro label, the lower level essentially
functions as a macro interpreter. When the higher level is added to the control
architecture, it has to learn to generate an appropriate sequence of commands to the
lower level in order to perform the higher level task. Moreover, because the only valid
commands to the lower level are the macro labels that it can interpret, the command
sequence from the higher level should be composed of only these macro labels.

This last observation is of importance when implementing a two-level (or, in gen-
eral, multilevel) controller. Depending on the representation used for the command
input to the lower level in an implementation, the number of valid commands could
be far less than the number of possible inputs using that representation. For example,
if an n-bit binary vector is used to represent the commands to the lower level, and
the lower level has been trained on m different macros, the actual size of the search
space for the higher level’s actions is only m even though there are 2" n-bit binary
vectors. Often, m is considerably less than 2", and hence the learning problem for
the higher level can be reduced considerably by restricting its search for appropriate
action sequences to the set of m valid commands.

However, when using direct reinforcement learning methods, it becomes difficult

to restrict the search to only valid commands because randomly perturbing the

_ 3

—3 13 _3 __13

3 3 _.1

.3 31 __ 13

.3 -3 _3

-3 __3

—4a 13

125

command output generated by the higher level might not result in a valid command
to the lower level. An alternative approach, therefore, is to ensure that the lower level
gets only valid command inputs even though the higher level does not always generate
valid commands. One way of accomplishing this is to divide the space of all commands
representable using a given command representation into equivalence classes, one for
each valid command, and to learn a mapping from an arbitrary command to the
valid command associated with its equivalence class. Once such a mapping has been
learned, it can be used to transform any command from the higher level into a valid
command for the lower level.

In order to implement this idea, a special module, which we call the command
filter, can be trained to perform the mapping defined above in parallel with training
the lower level. By filtering all commands from the higher level—when one has been
added to the control architecture—through the command filter, we can ensure that the
lower level always has valid commands to execute. Autoassociative memory networks
(e.g., [76, 57]) are examples of connectionist networks that can learn to perform the
kind of mapping described above and hence can be used to implement the command
filter modules. In the next section, we present an example demonstrating the advan-
tage of employing a command filter module implemented using an autoassociative
connectionist network.

But before we do that, we briefly consider the issue of timing between two
consecutive levels in a multilevel controller. Because the lower level produces a
sequence of actions for each command it receives from the higher level, and the
higher level issues a sequence of commands to the lower level, there is a problem of
synchronization between the two levels. The operation of the two levels has to be
coordinated so that each command issued by the higher level is executed completely

by the lower level.

There are several approaches to enforcing proper coordination between the two

levels, although their practicality is still an open question. For example, if the

126

execution of any command always takes less than a fixed duration, the higher level
could wait for that duration before generating the next command. Or the lower level
could always execute each command completely before accepting the next command
from the higher level, ignoring any commands issued while it is busy. This begs the
question of how to ensure that all commands issued by the higher level are executed.
One approach is for the lower level to maintain a stack of commands received from the
higher level while it was busy rather than ignoring them. Alternatively, after it has
finished executing the current command, the lower level could send a special signal
triggering the higher level to generate the next command. In this case, the higher
level of the controller could hold a command fixed until the lower level has completed
executing it and then issue the next command. Finally, instead of relying on the
lower level to provide a trigger signal, the higher level can use sensory feedback from
the environment to detect when the lower level has finished executing the current
command.

With the help of an eia.mple, we now illustrate the utility of structural shaping

through bottom-up development of a multilevel control architecture.
6.3.1 A Test Task: Learning to count

The task selected to illustrate the utility of a multilevel control architecture is
a bead counting task adapted from Oliver Selfridge’s “Learning to count. How a
computer might do it” [124]. This task requires learning sequences of actions for
counting using an abacus. The task setup, shown in Figure 6.6, consists of a string
of beads, a pointer, and a counter. The pointer is used to separate the beads into
two groups, one on its either side. The counter can hold an integer between 0 and
99. The four primitive operations are: move the pointer Left (L) or Right (R) one
bead, and Increment (I) or Decrement (D) the counter by 1. Although more than
one operation can be attempted at the same time, contradictory combinations and

impossible operations have no effect. Thus, LR or ID together, D when the counter

31 -3 3 __13

3 -3 3 1]

3 __3

—Ta T3

127

06@{

Pointer Counter D

Figure 6.6. The setup for the bead counting task.

is 0 or I when it is 99, and L (R) when there are no beads to the left (right) of the
pointer, all have no effect on the state of the counter or the pointer.

In each instantiation of the abacus, it is initialized with some number of beads,
the pointer is placed at a random location along the string of beads, and the counter
is set to a number between 0 and 99. The task is to COUNT, i.e., to set the counter
to the number of beads on the abacus.

Learning to count the number of beads in a fixed instantiation of the abacus
1s straightforward, and a sequence of primitive operations that achieves this can be
learned fairly easily.? The more interesting problem is learning to count the number
of beads in any instantiation of the abacus. Two approaches to this problem are (1)
training a single-level controller to count by generating a sequence of primitive actions,
and (2) training a multilevel controller to count by first learning useful subtasks and
then learning to use these subtasks to count. Our attempts to implement both these
approaches are described below.

Implementation of the first approach above is fairly straightforward. However,
the second approach involves defining an appropriate decomposition set of tasks and
subtasks and training a multilevel controller on the tasks in this set. For the bead
counting tasks, we defined the task decomposition set to contain two levels of tasks.

The eight level 1 tasks are:

1. LE: Move the pointer to the left end of the bead string.

2 Any sequence of operations that increments or decrements the counter an appropriate number
of times based on the initial counter value and the number of beads is a solution.

128

2. RE: Move the pointer to the right end of the bead string.
3. ZERO: Decrement the counter to zero.

4. LD: Move the pointer to the left by one bead AND decrement the counter by 1.
If there are no more beads to the left of the pointer or the counter is zero, do

nothing.

5. LI: Move the pointer to the left by one bead AND increment the counter by 1.
If there are no more beads to the left of the pointer or the counter is 99, do

nothing.

6. RD: Move the pointer to the right by one bead AND decrement the counter by
1. If there are no more beads to the right of the pointer or the counter is zero,

do nothing.

7. RI: Move the pointer to the right by one bead AND increment the counter by
1. If there are no more beads to the right of the pointer or the counter is 99, do

nothing.
8. NOOP: Do nothing.

The single level 2 task is to COUNT.

The multilevel controller was shaped by first training a single level on all the
level 1 tasks. Once the first level of the controller could perform all its tasks well, a
second level was added to the controller architecture. The second level was trained to
COUNT by generating sequences of level 1 tasks, which were supplied as commands
to the first level. The first level of the controller, in turn, produced the appropriate
sequence of primitive actions for each level 1 task command it received.

In our implementation, the problem of timing between the two levels was resolved
by requiring that the second level hold a command fixed for the duration of its

execution by the first level. The second level had to determine when the first level

3

3

3 3 3 __3 3 _13

— 3 3

3

129

had completed execution of a command from the environmental sensory feedback
(described below).

The evaluations for all level 1 tasks were binary-valued, with the evaluation
becoming 1 only when the task was performed successfully. For example, if the
task was LE, the evaluation was 0 until the pointer was moved to the left end of the
bead string, upon which it became 1. Once the evaluation became 1, it remained 1
as long as the controller generated NOOPs.

For the COUNT task, two subtasks were defined for the purposes of computing
the evaluation: moving the pointer to either end of the bead string, and decrementing
the counter down to zero. These could be accomplished in any order as long as the
subgoal accomplished earlier was not undone while accomplishing the second subgoal.
The evaluation for the COUNT task was non-zero only when either subgoal was
accomplished: for the first time, at which time it was set to 0.9, and when the counter
was set to the number of beads after both subgoals have been accomplished, at which
time it was set to 1.0. This same evaluation was used for training the single-level
controller to count.

Eight binary valued sensations were used to provide information about the state

of the abacus to the level 1 controller. These are:
1. L-END = 1 if pointer is at the left end of the string.
2. R-END = 1 if pointer is at the right end of the string.
3. P-MID = 1 if neither L-END nor R-END is 1.
4. P-MOVED = 1 if the pointer changed in the last time step.
5. C-ZERO = 1 if the counter is zero.
6. C-MAX =1 if the counter is 99.

7. C-MID = 1 if neither C-ZERO nor C-MAX 1s 1.

130
8. C-MOVED = 1 if the counter changed in the last time step.

The default value for all these sensa.tiohs was 0. For the level 2 controller, three

additional binary sensations were used. These are:

1. Z-REACHED. Changes from 0 to 1 when the counter becomes 0 for the first

time in a training run.

2. L-REACHED/R-REACHED. Changes from 0 to 1 when the pointer is moved

to the left (right) end of the bead string for the first time in a training run.

All eleven sensations were also provided to the single-level controller.

6.3.2 Training Methodology

As mentioned above, the multilevel controller was trained in two stages. In the
first stage, a single level was trained on the level 1 tasks until it could perform all
the tasks well. Then, in the second stage, another level was added to the controller
architecture, and this second level was trained to COUNT by generating sequences
of level 1 tasks, which were supplied as commands to the first level. The first level
of the controller, in turn, produced the appropriate sequence of primitive actions for
each level 1 task command it received.

Level 1 The level 1 tasks were specified by providing 8-bit long unit vectors
as command inputs to the level 1 controller. As in the Stanford/JPL hand control
example (Section 6.2.1), training runs of fixed duration (50 time steps) were used to
train the controller. At the start of each training run, one of the eight level 1 tasks
was selected at random, and a random instantiation of the abacus with 1 to 3 beads
and a number between 0 and 3 on the counter was created. The sensory inputs to the
controller were then set based on the initial coﬁﬁgura.tion of the abacus, and training
began. Each training run lasted for 50 time steps or until the controller received an
evaluation of 1 for four consecutive time steps. The sensory inputs were updated at

each time step.

i -3 -3 -3 _3 _.3

i 3 __ 13

3 3 3 3] 3

3

131

The level 1 controller’s actions were encoded as a 4-bit vector, with each bit
denoting one of the four primitive actions (L, R, I, and D). Setting any bit to 1
at a time step invoked the corresponding primitive action at that time step. This
action representation permitted the controller to manipulate both the pointer and the
counterin a single time step. However, as mentioned earlier, attempting contradictory
or impossible action combinations resulted in no change in the pointer and the
counter.

Level 2 The level 2 controller was always trained on the COUNT task. A
training run started with a random instantiation of the abacus with 2 to 4 beads and
a number between 0 and 5 on the counter and lasted for 30 time steps or until the
evaluation received was 1. The sensory feedback to both levels was updated at each
time step of the training run.

Note that in order to generate meaningful task commands for the first level, the
second level of the controller had to generate 8-bit unit vectors. Because the second
level was using the direct reinforcement learning approach of perturbing each of the
8 bits randomly in order to determine the best command to output to the first level,
it was performing a biased random search in a space of 22 = 256 elements, even
though only eight of those elements were valid task commands for the first level.
Therefore this was a good example to test the utility of the command filter module
in a multilevel control architecture. Simulation results from training the controller

with and without the command filter are reported in the next section.

6.3.3 Results

Level 1 The level 1 controller could learn all eight level 1 tasks in 5000 training
runs. Samples of the controller’s performance in these tasks are shown in Figures 6.7-
6.14. Instantiations of the abacus used in these tests were generated randomly by
picking 1 to 20 beads and by setting the counter to a random number between 0

and 10. For each task, the figures show the initial and final abacus configurations.

132

initial configuration

03

Fnal configuration
* 2EREHE288 03

P (R o s e o o]
L ‘___

1

Figure 6.7. Performance of the level 1 controller on the LE (Left End) task.

In addition, strip-charts showing the sequence of actions produced by the level 1
controller for executing the task are also presented. The first and second rows of these
strip-charts show how the pointer and the counter respectively were manipulated at
each time step during the execution of the task, and the bottom row shows the
evaluation received at each time step.

Note how in the case of the LI, LD, RI, and RD tasks, the controller has learned
to stop (i.e., output NOOPs) whenever a limit, such as the end of the bead string or
the minimum value of the counter, is reached. This is in keeping with the definitions
of these tasks.

Level 2 In our simulations, when a single-level controller was trained to generate
a sequence of primitive actions to perform the COUNT task, it failed to learn to count
even after 1,000,000 training runs. Moreover, the use of the command filter module

was also crucial in training the multilevel controller. Without the command filter,

3

13

-3

3 3 3 ___3 3 3 1 1 3 E| |

3 3 E

T3 3

3 T3

-4 ——3 —31 —3 ~—3 —3 —1 —T1 3

—00050000000C000— [0g
——0a00c0c00e0cor— [09

1
]

133

Initial configuration

Final configuration

Figure 6.8. Performance of the level 1 controller on the RE (Right End) task.

09
00

Initial configuration

Final configuration

Figure 6.9. Performance of the level 1 controller on the ZERO task.

08
00

-~ <%

1
0

134

Initial configuration

Final configuration

RN N N RN NN N A

Figure 6.10. Performance of the level 1 controller on the LD (Left Decrement) task.

06
13

R
p
L

1
0

initlal configuration

Final configuration

Figure 6.11. Performance of the level 1 controller on the LI (Left Increment) task.

3

3 _ 3

1

— 3

S

3] -3 __3 __1

3

r % vj P—?

v———g j V“—%

—3 T3

CXEEEOTEOEEEEEEEOEER 05
X XTI 00

©

1
0

135

Initial configuration

Final configuration

Figure 6.12. Performance of the level 1 controller on the RD (Right Decrement) task.

01
11

T N

+

Initial configuration

FAnal conflguration

Figure 6.13. Performance of the level 1 controller on the RI (Right Increment) task.

136

tnitial configuration

01

Final configuration
SORCDDBENECEED 01

R

P e ananas

L

+

G

1 '
0 NXERER RN

Figure 6.14. Performance of the level 1 controller on the NOOP task.

the multilevel controller was also unable to learn the count task even after 1,000,000
training runs. Compared to this, 5,000 training runs were sufficient to train each level
of the multilevel controller when the command filter network was used.

Samples of the level 2 controller’s performance in the COUNT task are shown
in Figure 6.15. Instantiations of the abacus used in these tests were also generated
randomly by picking 1 to 20 beads and by setting the counter to a random number
between 0 and 10. In addition to showing the initial and final abacus configurations,
the figure also shows the primitive actions output at each time step during the
execution of the counting task. As these figures indicate, the level 2 controller learned
to use one of many appropriate sequences of level 1 tasks to correctly perform the
COUNT task. The sequence learned was LE-ZERO-RI, i.e., move the pointer to
the left end, bring the counter down to zero, and then move one bead at a time to

the right, incrementing the counter once for every bead. Moreover, depending on the

3 3 . 3 3

3 3 .3 3 _ 3 .3 __13

3

g&

—3 —3 —3 3

137

initial configurations, the controller learned to execute only the necessary portions of

this sequence.

6.4 Summary

In this chapter, we used two control problems as examples to demonstrate how
learning to solve complex problems can be facilitated by the shaping process of first
learning to solve simpler subproblems. Two different ways of implementing shaping
were illustrated. In the first example, the behavior of a controller was shaped over
time, while in the second, shaping was implemented through incremental development
of the structure of the controller. In both examples, the shaping procedure proved
indispensable for training the controller on the specified task.

Moreover, in the bead counting task, the use of a command filter module was also
necessary for successfully training the controller. This provides experimental support
for the heuristic upon which the idea of the command filter module was based.

Shaping is also a natural way of introducing domain knowledge in reinforcement
learning systems. In the key pressing task, for example, domain knowledge helped de-
termine the series of approximations used in the shaping procedure and the sensations
to provide to the controller. Domain knowledge also helped determine what sensations
to provide to each level of the controller in the bead counting task. Perhaps more
tellingly, domain knowledge was used in the bead counting task to guide the crucial
process of determining the sets of subtasks in the decomposition set. This obviates
the difficulties involved in having the learning system determine the decomposition
set.

Both these examples also attest to the viability of reinforcement learning ap-
proaches to learning complex control tasks. It has been the complaint of several
researchers that direct reinforcement learning methods have been applied mostly to
simple problems. We hope that the results presented here and in the previous chapters

will serve as evidence of the broader applicability of these methods.

EOOO0

R
p
L

Initis) configuration

Final configuration

Initial corfiguration

00

06

1| 05

1102

———cocoopo———i [g0
————ccooco——— [06

R
P
L

+*

C

-4

+———00rc00—— [04

Finel configuration

138

Initial configuration

Finel configuration

EUUUUUL

11

(b)

Inttia] configuration

1105

...

(d)

Figure 6.15. Performance of the level 2 controller on the COUNT task for different
initial abacus configurations.

4 3 3 3

.]

13

.3

3 3

.3

3

1

3 3 3]

3 ~ 3 T3 T3

—3 —3 —3

~—3 " 3

3

CHAPTER 7

CONCLUSIONS

In the introduction to this dissertation we asked the question: “...how useful
are direct methods for training controllers...?” As a step toward answering this
question, we demonstrated through several experiments that direct reinforcement
learning methods can be used to train controllers to solve fairly difficult control
problems. Included in these examples was a peg-in-hole insertion problem, which
involved learning compliant control under real-world conditions of uncertainty and
noise. Our results for this task indicate that direct reinforcement learning can be
used to learn a reactive control strategy that works well even in the presence of a
high degree of noise and uncertainty. Other experiments illustrated the capabilities
of direct reinforcement learning methods in several different control problems.

Furthermore, by comparing the performance of the direct learning methods with
that of indirect learning methods applied to the same control problems, we have
argued in Chapter 4 that for some control problems, the requirement of modeling
the index of performance can make indirect methods relatively inefficient. However,
we have only scratched the surface in examining this issue. Much more Work, both
empirical and theoretical, is necessary to fully characterize the problems for which
one type or the other of these learning methods—direct or indirect—is more effective.

We next considered problems in scaling direct methods to more complex rein-
forcement learning tasks. The first problem considered was that of structural credit

assignment. As a solution to this problem, we presented a novel modular architecture

140

that can be used for structural credit assignment in a reinforcement learning system.
This architecture can be seen as a marriage of the best of direct and indirect methods
and represents a compromise between the full-fledged models required by indirect
methods and the complete absence of models in direct methods. Moreover, this
approach also takes full advantage of the additional information available in control

problems in the form of process output.

In Chapter 6, we addressed the question of whether having only evaluations avail-
able as training information—which is the case in reinforcement learning tasks—is
a serious impediment to learning control. We demonstrated that by shaping the
controller’s behavior, i.e., by having the critic selects evaluation criteria judiciously
based on the performance of the controller, and by designing the controller to take
advantage of task decomposition where possible, we can train reinforcement learning
controllers to perform fairly complex tasks. Shaping is a natural way to introduce
domain knowledge into the training of a reinforcement learning system. Shaping has
been used very effectively in training animals to perform complex tasks, and we feel

that it has tremendous potential for training artificial learning systems.

Finally, we make the following observation about the implementation of reinforce-
ment learning controllers. All the controllers in this dissertation were implemented
using connectionist networks. Doing so underscored the necessity of reinforcement
learning units that produce real-valued outputs because most of the control tasks
required the use of real-valued control signals rather than binary signals. Qur ex-
periments demonstrate the utility of stochastic real-valued (SRV) units described in
Chapter 3 and elsewhere [48] in such situations. We have also presented some new
theoretical results obtained for the SRV algorithm, including a convergence theorem
that applies to a simplified version of the SRV algorithm. Furthermore, the central
idea of the SRV algorithm, namely, using predictions of the outcomes of actions to

incrementally optimize the actions, is an important one that merits further study (see

also [24, 136]).

I

3

141

In summary, in this dissertation, we have attempted to demonstrate the viability
of direct reinforcement learning methods for learning control through several empirical
studies. We have also presented and tested several approaches to scaling reinforcement
learning to complex control problems. Our results indicate that contrary to popular
belief, direct reinforcement learning methods can be extremely useful and efficient

tools for learning control.

APPENDIX A

CONVERGENCE PROOF FOR THEOREM 1

Before proving Theorem 1 stated in Chapter 3, we make the following observation
about the algorithm and establish three supporting lemmas.!

Observation Let A denote the matrix whose columns are the input vectors
x®,1 < i < k, and let Ra(A) denote the range of A. Then 8, € Ra(A)+ 6., n2>1.
This is readily apparent if we write

n—1
8,=0,+) Af;, where A8; =0;., —0;,
j=1
and observe from (3.17) that each A@; is a scalar times x; € X.

Lemma 1 Given an arbitrary finite 8, and 8 = (81,8, ... B%)) as in A3,

there exists a unique 8~ € Ra(A4) + 6, such that

pi=0"Tx® =00 1<i<k (A.1)
Proof: Consider the equation
ATo =g, (A.2)

where A is the matrix whose columns are the input vectors (as in the observation
above). Since the rows of A are independent (from A2) there exists at least one 8~ that

satisfies (A.2). Also, since 8 € Ra(A)+8,, we can rewrite (A.2) as AT (Aw+6,) =3

1Supporting results similar to the above observation and Lemma 1 were used by Barto and
Anandan [18] in their proof of convergence of the Ap_p algorithm.

3

3 __ 3 13 |

. 3

3

1

—3 13

3

.4 3 _ 3

143

for some w € R*. Since the columns of A are independent, AT 4 is invertible, and w

is the unique vector

w=(ATA) (B - 4T9,). (A.3)

Thus 8" = Aw + 60,, with w defined by (A.3), is the unique vector in Ra(A) + 6, that
satisfies (A.1). 0

-

Lemma 2
E {gn(0n1%n) | Oy Xn} = 0 R(6] %0, x,). (A.4)

Proof: From (3.18),

9n(Bns %) = (U %) = (m, :2)) (L2,

On

where y, ~ N(gn,0,) is a Gaussian random variable and g, = OIxn. Taking

conditional expectations on both sides, we get

E {gn(0n,Xn) | On,x,}
=k {r(yn,xn) (yL;ﬁﬁ) | On,x,.} - E {r(#mxn) (y" — ”") I Gn,xn}

n n

B {r(gnr xa) (222 1 60, .} (43)

n

because 7(pn, X,) and (y"—“ ") are conditionally independent, given 8, and x,, and

On

E{(#a) | 0,,%,} = 0. But

E {r(ymxﬂ) (21;&) | 0n,xn}

n

= /;w E {r(yn, Xn) (yn; Fln) | 8, Xn, yn} dDn(Yn | Ons%a),

n

where D,(.) is the distribution function for y,,. Therefore

E {r(y,,,xn) (y"; “") | 6., xn} = /: M (Yn, %n) (y"; p") dDn(Yn | 6n,%n)

n - n

= E{M(y,._,x.,,) (y";"“) |on,x,,}. (A.6)

n

144

Substituting the result (A.6) in (A.5), we get

E {gn(0n;%n) | 0n,%a}
= E{M('yﬂ,xn) (y,,;— #") | On,x,,}

n

_ OM(pn Xa)
= E{[M(.umxa)+ 3y (yn' fn) +

(8= t) 0,3},
o'n

using a second order Taylor series expansion of M(y,,X,) about g, ((, lies between

B M(CnyXn) (Yn — tn)®
Oy? 2

Yn and g,). Therefore

E {gn(0n,%n) | On,xa}
= M(pn,%,)E { (y";—n”") I Gn,x,.} + R(ptn, %) E { (@1‘;—"")“:) | e,,,xﬂ}

1 azM(Cnpxn) (yn - p’n)s
+§E{ By (p) Ion:xn}-

The first term on the rhs above is zero because the odd moments of y,, a Gaussian
random variable, are zero. Since M(.) has bounded second order derivatives by
assumption A3, the last term on the rhs can also be seen to be zero. Hence we

get

E {9n(8n,%n) | 0, %Xn} = 0uR(tn, Xn) = 0 R(0,) %0, %)

Lemma 3

E {1192(8m %17 | 8%} < K (1 + |16 — 6712). (A.7)

Proof: From (3.18)

E {119n(0n, %)| | 8, x4}

= E {(r(yn,xn) — r(fin, %))’ (2'-';—”'")2 | 6., x.,.}

n

-3

1 3 1]

3

3

.3

1

3 _ 3

T3

3 T3

145

= /_:E {(r(¥ns%n) = (1 %)) | B2y X, U } (-y—"?_ﬁ) 2dD,,('yn | 0., %.). (A.8)

n

Now

E {(*(¥:%n) = ™(tins X0))? | 81, Xn, 4 }
= E{r’(ynx)] 6, Xn,¥nf + E {* (ks Xn) | 0%, 9 }
= 2E{r(Yn, Xn)r(Kn, Xn) | On,Xn, ¥n} -
Defining 8, = B if x, = x() € X (i.e., B = B“Txn), we can use assumption A5 and

the conditional independence a.e. of 7(y,,X,) and r(g,,X,), given 8, X,,, and vy, in

the above equation to obtain

E{("(¥n: %n) = ™(ttns Xn))? | O X, ¥}
< [h(l + (yn - ﬂn)2 +]Mz(yna x'n)] -+ [h(l + (p'ﬂ - ﬁn)z + Mz(ﬂ"nyxn)]
- 2M(y1n x‘n)M(,“na xn)

= h(2+(yn— ﬂn)z + (pn — ﬁn)z) + (M(ymxn) - Al(/-"mxn))z- (A.9)

Substituting (A.9) in (A.8), we get

E {llgn(0ns %n)II* | 8, %n }

< —_
< 2h /_w (=) dDp(yn | On,xn)

n

b [7 (= B+ (= B7) (B222) dDo (5 | 6,,%2)

n

+ /_:(M(ymxn) — M(ptn, Xn))* (y" — #")2 dDp(yn | O, %n).

On

Using the fact that y, ~ N(g,, 0,) and expanding M(y,,X,) in a second order Taylor

series about g, as before, we get

E {llgn(6s %)I1* | Oy xn}

S 2h + h f::[(yn - I”n)z + 2(yn - /"n)(l‘n - :Bn) + 2(#’11 - ﬂn)z] (yLo—T'p_n) zd-Dn(')

n

146
[[6M) aZMézc;,xn) (yn—2 nn)"]2 (yn an”nyw"(')
= 2h+h f —n'u")dD,.()+2h(—6,) /_: %-(:rf—"—)idD,,(.)
+ 2h(in — fa) / (¥ = "") WnEn) ipa()+R3(.) f —"")wn()

-

/“’ (02M(Cm xn)) (30 —

)dD()

o2
Since the second order derivatives of M(.) are bounded by assumption A3, these
derivatives can be replaced in the last two terms of the rhs above by an upper bound
S and factored out of the integrals without affecting the inequality. The integrals on
the rhs are then all moments of y,,, which can be easily evaluated because y, has a

Gaussian distribution. Therefore
E{119n(6n, Xa)|I? | 6, %}
< 2h+3hol + 2h(un — Bn)? + 3R?()0h + %5-520:
< H(1+ (pa—Ba))
for some H > 0, by the boundedness of o, R(n,%,), and azT“;,u. But
(kn = Ba)" = (02 %0 = 07")" = (B — 07) %) < 10 — 67| 1 0”

by Cauchy’s inequality. Substituting for (tn — B,)? in the above, we get (because
X, € X, a finite set), for some K > 0,

E {119a(6n, xa)II? | 8, %0} < K(1 + |0 — 07|]%).

3

-1 3

3

1 3

r*-—-g r—-‘—g

E|

13

147

We are now ready to prove Theorem 1 stated in Chapter 3. Our proof of this
theorem is based on Gladyshev’s proof of the convergence of the Robbins-Monro
process [44]. Unlike the Robbins-Monro process, wherein the stochasticity is confined
to the environment in which the learning system operates, (3.14) defines a stochastic
system operating in a stochastic environment. Confounding between these two sources
of randomness makes the analysis more complic;ted. Hence, although we employed
the same basic proof technique based on Martingale theory as Gladyshev, his proof
had to be extended in several non-trivial ways. Other alternative approaches could
have been taken to arrive at the same result but we felt that the approach presented
here is most easily comprehensible.

Proof of Theorem 1: Let

e, = (0, —67). (A.10)
Clearly, from (3.17),
€nt1 = €p + 0'72; gn(e‘m x‘n) Xn. (A]-]-)
Squaring and taking conditional expectations given 8,,...,8.,, we get

E{leat)l?181,...,6,} = E{llea)l?[61,...,6,}
+ G2 E {1|9n (8 Xa)%a||? | 61, .., 6,

+202E {e:fgﬂ(ﬁn,xﬂ)x,l 1 6,,.. .,Bn}. (A.12)
In this equation,

E {|lgn(8n, Xa)%all? | 61,0}

k
= S EE{|lga(6n, x)xD|2 | 8y, ..., 00, x}

=1

k
= Z f;E {”gn(e’” x(’-))“Z I 017 ey 011,: x(l)} ”x(z)”2

=1

k
ST K(1+ ||enl®)E|x?|? (using Lemma 3)

i=1

IN

< Ki(1+[leall®),
where K; = kK max; cicx £9x@||2. Also
E {eIgn(amx-n)x‘n I 01: crey an}
k

= Z E {eIgu(gn) x(i))x(i) | 0"” x(i)} 6(1)

i=1 .

k
e 5 B {00) 10,0} e

i=1

k
= 0, R(6]x%, x9)(8, —) TxDe)

i=1
k - .
= 0.) R(8T xt) x()(gTx() _ gli))e(i)
i=1
< 0 (by assumption A4).
Using (A.13) and (A.15) in (A.12), we get
E {“en+1)”2 | 013 .. -1011} S "en”2 + O':Kl(l + ”ennz)
= [leall’(1 + K103) + Kio.

Let us define

o0 o0 o0
an = |lea|? JI(1+ Kriod) + Y Kio? I (1 + Kiof).
j=n i=n i=j+1

Then it is easy to show using (A.16) that

E{a‘n+1 |91,---,9n}50&n-

148

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

Taking conditional expectations for given o,,...,a, on both sides of the inequality

(A.18), we find
E{an+1 I al;---aa'n} S Qn,

which shows that o, is a non-negative supermartingale where

E{oni} < B{on} <+ < E{ay} < o0,

(A.19)

Therefore, by the martingale convergence theorem [31], o, converges with probability

1. From this observation, the definition of &, (Equation (A.17)) and assumption Al,

3

B R

3

3

|

-3 _ 3 3

E |

—3 T3 — 3 T3 T3 T3 3 "3

149

we can conclude that |le,[|* =23 5, a random variable. Also, (A.19) and (A.17)

together with Al imply that
E{lea|l?} < oo. (A.20)

Let us now take expectations on both sides of (A.12) after making substitutions

using (A.13) and (A.14). We get

-

k
E{llens1|*}- E{llenl®} < onKr(1+ E{[leal|"})+207E {Z R(6, ", x‘“)elx“’c‘(*’} -
i=1
(A.21)
Adding the first n of these inequalities, we get
E{llens1l’} = E{lleali®} < D oiKui(1+ E{lle;lI*})
Jj=1

n k
+2) o3E {Z R(O}-x(i), x(i))e;-l-x(‘)f(‘)} .(A.22)

j=1 i=1

From inequality (A.22), using the boundedness of E{||e,||*} and assumption Al, it
follows that

fj oiE {zkj R(]x®, x(i))e}x“)s(*)} > —oo, (A.23)
i=1 i=1

which implies that J
) k
Z o E {Z —R(O;-rx("), x(‘))e}-x(i)ﬁ(‘)} < oo. (A.24)
=1 =1

Since Y52, o} diverges (A1) and, by A4 and A2, the quantity

k
3 - R(g;,rx(i)’ x(i))e;rx(i)g(i)

i=1

is non-negative, we can conclude that for some subsequence {n;},

k
> —R(OI,.X(‘),x("))e;l;.x(")f(‘) — 0 w.p.1.

i=1

Since each of the terms of the above sum is non-negative (A4), we have

R(6].x, x)el x 1 0 wp1V1<i<k. (A.25)

150
The fact that |le,||* — 7 w.p.1, together with assumptions A2, A3, and A4 and (A.25)

imply that 7 = 0 w.p.1. Hence, 8,, — 6 w.p.1. o

3 3 3

3

! 3 3

E

APPENDIX B

SIMULATION DETAILS FOR
CHAPTERS 4, 5, AND 6

This appendix provides additional details on the simulations reported in Chap-
ters 4 through 6. For each simulation, we describe the controlled process, the connec-
tionist network used to implement the learning controller, and the evaluation function
used. The networks used in these simulations were all standard fully-connected
feedforward connectionist networks (see [116, 58] or Section 1.3). Several different
types of units were used in these networks. These are described briefly in the next
section. The connectionist terminology used to describe these units and networks is

defined in Section 1.3.

B.1 Types of units used in controller networks

Agr_p units Associative reward-penalty units were developed by Barto and
Anandan [18]. These units are useful for learning binary-valued outputs via rein-
forcement feedback.

Backpropagation units These units use a differentiable nonlinear function
(for example, the logistic function in Equation (3.25)) to compute their outputs.
As a result, networks of these units can be used to learn nonlinear input—output
mappings. The backpropagation algorithm used to adapt their weights was developed
independently by several researchers [80, 111, 116, 143). The most popular description
of the backpropagation algorithm is that of Rumelhart, Hinton, and Williams {116].

152

Binary units Also called Perceptrons [114], or Threshold Logic Units (TLUs),
these units produce binary outputs by thresholding the weighted sum of inputs.
Various algorithms can be used to adapt their weights depending on the function
that is to be learned.

LMS units Least Mean Square (LMS) units are linear units trained using the

Widrow-Hoff rule [148].

=

RLS units Recursive Least Squares (RLS), units are also linear units but their
weights are adapted using a different algorithm called the Recursive Least Squares
algorithm (e.g., [84]). Although RLS units require more memory for implementation
when compared with LMS units, RLS units can exhibit faster learning than the LMS
units.

SRV units Stochastic real-valued units are described in detail in Chapter 3 and
in [48]. These units are designed to learn real-valued outputs through reinforcement
feedback.

The initial weights of all LMS and backpropagation units used in our networks
were set to random values selected from a uniform distribution over the interval
[—0.5,0.5]. The initial weights of the rest of the units were set to 0. All the units
except the RLS unit have a learning rate parameter, a. In addition, the Ag_p units
have a penalty discount factor, A, (see [18]), and the SRV units have a additional

learning rate parameter, p, for adapting the parameter vector ¢ (see Equation 3.13).

B.2 Simulations in Chapter 4

Peg-in-hole insertion

The process We used the Zebra Zero robot produced by Zebra Robotics Inc.,
Palo Alto, CA, to perform peg-in-hole insertions. The peg used for this task was a
wooden dowel, 22.225mm (7/8in) in diameter and 50mm long, affixed to the gripper

of the robot. Since we were addressing a two-dimensional version of the peg-in-hole

3

3

3

—3 3 _ 3

_3 i 3

3 3 T 13

~—3 ~— 34 ~— 3 T3 31 —3i 3 3 T3 —3 T3 3

153

insertion task, a 23.8125mm (15/16in) wide slot—obtained by fastening two “L”
shaped metal plates together with spacers in between—was used as the hole.

The controller The network used for the controller is described in Section 4.1.
a was set to 0.1 for the backpropagation units and 0.05 for the output (SRV) units.
In addition, p was also set to 0.05 for the SRV units.

The evaluation The position of the peg (X, Y, ®) and the force and moment

sensations (F;, Fy,, M,) were used to compute the evaluation, 7, as

_J 10-o0.01(JX] + |¥7) - |0 if all forces are < 0.5N,
| 1.0-0.01(JX] + |¥]) — |©] =0.1Fmax otherwise,

where Fmax denotes the largest magnitude force component. If the evaluation

computed above was less than zero, it was set to zero.
Inverse kinematics

The process The planar arm used in the inverse kinematics task had three
rotating links (see Figure 4.8). The equation governing the relationship between the

joint angles, (6;, 8,,63), and the position of the end-effector, (z,y), is the following:

T l]_ COS(G]) + lg COS(GI + 62) + l3 COS(61 + 92 + 63)
Yy - ll sin(91) + lg sin(01 + 62) + la sin(01 + 62 + 03) ’

where [}, l;, and I3 are the lengths of the links. In our simulations, all three link
lengths were set to 0.3333333 units. The first joint of the arm was located at (0, 0),
and the three target buttons were located at (—0.25, 0.25), (0.25, 0.25), and (0.0, 0.65).

The controller The controller network used for this task had 2 input, 50
hidden, and 3 output units. When the direct method was used, the hidden units
used were backpropagation units and the output units used were SRV units. a was
set to 0.95 for the output units and to 0.1 for the hidden units. In addition, p was
set to 0.76 for the output units.

With the indirect method, both the hidden and the output units of the controller

were backpropagation units, and in addition, a forward model consisting of 3 input,

154

50 hidden, and 2 output units—all backpropagation units—was used. In this case, a
was set to 0.1 for all the units.
The evaluation The evaluation, r, was computed using the error between the

cartesian position of the end-effector, (z,y), and the center of the target button,

(zt: yt) as

2
The cart-pole problem

The process The following non-linear differential equations were used to model

the cart-pole system depicted in Figure 4.10:

F+ml [92 sin § — § cos 9] — psgn(z)

M+m
i - gsind — zcosf — ‘—:ﬁ
- l [g _ mcosza] B

3 M+m

Here M = 1.0kg and m = 0.1kg are the masses of the cart and the pole respectively,
[= 0.5m is half the length of the pole, z, = 0.000002 is the coefficient of friction of
pole on cart, g, = 0.0005 is the coefficient of friction of cart on track, g = —9.8m/s? is
the acceleration due to gravity, and F' is the force applied to the cart. A fourth order
Runge-Kutta method with a time step of 0.01s was used to approximate numerically
the solution of these equations. Moreover, in these simulations, the track length was
4.8m.

The controller The network used for the controller is described in detail in
Section 4.3. The learning rate a was set to 0.05 for the controller and 0.3 for the
internal critic network except on the connections from the controller, where it was
0.9. For the SRV unit used in the direct method, p was set to 0.3.

The evaluation The critic signaled failure whenever the cart hit the end of the
track (| |> 2.4m) or whenever the pole fell (| 8 |> 12°).

~ 3 -3

.3

-3 3 _3

3

S | .3

3 3 3

3 3 3 "3

4

155

- B.3 Simulations in Chapter 5

The interference task

The process The abstract “process” used for the interference task is defined
by the entries in the third column of Table 5.1.

The controller The controller for this task was implemented as a single layer
of n SRV units (n = 2,3,0r 4). Both a and p were set to 0.1 when n equaled 2 and
0.08 when n equaled 3 or 4.

In addition, when the LLM method was used for structural credit assignment, a
single RLS unit was used to implement the LLM, and n + 1 linear units were used to
implement the memory module. For a given input, the outputs of n of these linear
units were used as the weights between the n SRV units and the RLS unit and the
output of the one extra linear unit was used as the bias weight of the RLS unit.
The weight updates for the RLS unit determined by the RLS algorithm were used
as output errors for training the linear units of the memory module, for which the
learning rate, a, was set to 1.0.

The evaluation The evaluation, r, returned by the critic in the interference

task depended on the error, e, defined in the fourth column of Table 5.1. Specifically,

_) 1.0-30e if e<0.03,
"= 0.1-01e otherwise,

B.4 Simulations in Chapter 6
The key-pressing task

The process As described in Section 6.2.1, the controlled process in the key-
pressing task was a dynamically simulated Stanford/JPL hand (see Figure 6.1). Only
the index finger of the hand was used. Furthermore, the motion of the hand base was
restricted to a plane parallel to the z-y plane. The control actions were positioning
commands that moved the hand base in its plane and positioned the 3 joints of the

index finger.

156

Finger-tip force

1.0

o
o
T T T T T |

o

T | i] i
01 o2 03 04 05
z Distance (cm)

i

Figure B.1. The output of the simulated fingertip force sensor as a function of the
height of the fingertip above the keypad.

Proprioceptive feedback of the position and velocity of each joint was provided to
the controller. Additionally, a simulated fingertip force sensation was used to provide
feedback during key presses. This force was a function of the height of the fingertip
above the keypad, as shown in Figure B.1.

The controller The architecture of the controller is shown in Figure B.2. The
inputs to the network included a 24-bit command input specifying the target key,
feedback of the position and velocity of the hand and the force on the fingertip,
and also an efference copy of the network’s output at the previous time step. The
network had 30 backpropagation units in the hidden layer and 5 SRV units in the
output layer. As shown in the figure, the output units are connected to both the
input and the hidden units. a was set to 0.01 for the hidden units and 0.001 for the
SRV units. p was also set to 0.001 for the SRV units.

The evaluation In each training run, the evaluation was computed using a
sequence of criteria based on the portion of the key-press operation already accom-
plished (see Section 6.2.1). For the purposes of computing the evaluation, the fingertip

was considered to be positioned over the target key when the z-y distance to the key

-

157

Position/velocity/
Target key Force feedbai:x Efference copy

f ¥ {

Input units

Backpropagation units

SRV units

l Control actions
Figure B.2. The architecture of the controller used in the key-pressing task.

(denoted d) became zero and the hand velocities became very small. The key was
considered to be pressed when the fingertip height (denoted z) became 0. In the
following, the height of the fingertip at the previous time step is denoted z,_;. Also
note that each key on the keypad is 0.3cm high (see Figure B.1).

The procedure used for computing the evaluation is the following. If the fingertip

is not yet positioned over the target key,

05(1-4) ifz<o03

0.5 (e'd/s - '—1—;—"-) otherwise.
Once the fingertip is positioned over the target key,

{ 0.7rpress + 0.3d if key has NOT been pressed,
r=

TRELEASE otherwise,

where

{ o.5g1-§;+0.5 if 2 < 24, } 503

05(1-2% otherwise
TprESs —

(- lg_l) otherwise,

158

and
+0.5 if z> 24,

otherwise

51—t
- 0.5(1-5=
TRELEASE =

1- I—l—;—’-l otherwise.

If the evaluation computed under any of the above conditions is less than zero, it is

set equal to 0.

The bead-counting task

The process The process to be controlled is the abacus described in Sec-
tion 6.3.1.

The controller The network used to implement the controller is shown in
Figure B.3. There are three main modules in this network: the level 1 and level 2
controllers and the command filter module.

In it’s input layer, the level 1 controller has 8 binary units specifying the command
input, 8 binary units providing sensory feedback, and 4 binary units providing feed-
back of the level’s actions at the previous time step. There are 20 backpropagation
units in the hidden layer and 4 binary Ap_p units are used to generate the control
actions. As shown in Figure B.3, the hidden units in this level are connected to the
command and sensory input units, while the Ap_p units in the output layer of this
level are connected to all the input and hidden units. The level 1 task commands
are encoded using unit vectors. The encoding of the sensations and the actions are
described in Section 6.3.1. The learning rate o was set to 0.01 for all the units in this
level. For the Ag_p units, A was set to 0.004.

The level 2 controller has a single binary command input, 11 binary units pro-
viding sensory feedback, and 8 more binary units that provide feedback of the level’s
actions in the previous time step. There are 30 backpropagation units in the hidden
layer and the actions of the second level are generated by 8 Ar_p units. Again, the

hidden units are connected to only the command and semnsory input units in this

3

13

.1

3

R

i 13

3

E|

X=COUNT 8§, S, Previous Y,
L]] L] L}
¥ Y ¥
3 units 8 units 8 units
30 Back-prop units
8 Ar-p units Level 2
B Y.
Z-REACHED # 2
S,=| L-REACHED
R-REACHED -
- 8 binary units L-END
B Command)
LE S.=| P-MOVED
ZERO gm%x
=| LD
X, u 8 binary units | c-MOVED
EP X S, Previous Y,
| NOOP y i i
8 units 8 units 4 units
20 Back-prop units
4 Ar-p Level 1
Yo

Figure B.3. The controller network used for the bead counting task.

159

160

level, while the Agp_p units in the output layer of this level are connected to both the
input and the hidden units of this level (see Figure B.3). Refer to Section 6.3.1 for a
description of the sensory inputs to this level. The learning rate o was set to 0.1 for
all the units in this level, while A was set to 0.004 for the Ap_p units.

The command filter module was implemented using 8 binary input units which
were fully connected to 8 binary output units. This module was trained to function as
an autoassociative network using the “Learnmatrix” algorithm described by Hecht-
Nielsen [57].

The evaluation The evaluation was compﬁted for each of the level 1 tasks as

follows:

1 if pointer at the left end and counter unchanged.
0 otherwise.

LE:

if pointer at the right end and counter unchanged.
otherwise.

RE:

1

0

1 if counter is zero and pointer has not been moved.
0 otherwise.
1

0

if task accomplished on the current time step OR
task accomplished on last time step and NOOP on

this time step.
otherwise.

LD/LI/RD/RI:

-
-
ZERO: r={
|

NOOP: = 1 if pomt.er and counter remain the same.
0 otherwise.

For the level 2 COUNT task, the evaluation was computed as follows:

0.9 when either subgoal is accomplished the FIRST time

1 if counter is set to number of beads AFTER both subgoals have

been accomplished.
0 otherwise.

The two subgoals for the COUNT task are described in Section 6.3.1.

3

3 13

_ 1

3

S

—3 3 T3 773

3

—3 ~— 3 ~—3 — 3 "~ 13

3 T 13

REFERENCES

(1] Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. A learning algorithm for
Boltzmann machines. Cognitive Science, 9:147-169, 1985.

[2] Albus, J. S. Mechanisms of planning and problem solving in the brain.
Mathematical Biosciences, 45:247-293, 1979.

(3] Albus, J. S. Brains, behavior, and Robotics. BYTE Books, Peterborough, NH,
1981.

(4] Allen, R. B. Adaptive training of connectionist state machines. In ACM
Computer Science Conference, Louisville, February 1989.

[5) Alspector, J., Allen, R. B., Hu, V., and Satyanarayana, S. Stochastic learn-
ing networks and their electronic implementation. In Proceedings of IEEE

Conference on Neural Information Processing Systems— Natural and Synthetic,
Denver, CO, November 1987.

[6] Anderson, C. W. Learning and Problem Solving with Multilayer Connectionist
Systems. PhD thesis, University of Massachusetts, Amherst, MA, 1986.

(7] Anderson, C. W. Learning to control an inverted pendulum using neural
networks. IEEE Control Systems Magazine, 9(3):31-37, 1989.

[8] Arimoto, S., Kawamura, S., and Miyazaki, F. Bettering operation of robots by
learning. Journal of Robotic Systems, 1(2):123-140, 1984.

(9] Asada, H. Teaching and learning of compliance using neural nets: Representa-
tion and generation of nonlinear compliance. In Proceedings of the 1990 IEEE
International Conference on Robotics and Automation, pages 1237-1244, 1990.

[10] Atkeson, C. G., and Reinkensmeyer, D. J. Using associative content-addressable
memories to control robots. In IJEEE Conference on Decision and Control, 1988.

[11] Atkinson, R. C., Bower, G. H., and Crothers, E. J. An Introduction to
Mathematical Learning Theory. Wiley, New York, 1965.

[12] Bachraéh, J. R. Connectionist modeling and control. PhD thesis, University of
Massachusetts, Amherst, MA 01003, May 1991.

[13] Barlow, H. B. Unsupervised learning. Neural Computation, 1:295-311, 1989.

(14] Barr, E., and Feigenbaum, E. A., editors. The Handbook of Artificial Intelli-
gence, volume 1. William Kaufmann, Inc., Los Altos, CA, 1981.

162

[15] Barto, A. G. Learning by statistical cooperation of self-interested neuron-like
computing elements. Human Neurobiology, 4:229-256, 1985.

[16] Barto, A. G. Connectionist learning for control: An overview. Technical Report
89-89, University of Massachusetts, Amherst, MA, 1989.

[17] Barto, A. G. Some learning tasks from a control perspective. COINS Technical
Report 91-122, University of Massachusetts, Amherst, MA, 1991.

(18] Barto, A. G., and Anandan, P. Pattern Tecognizing stochastic learning au-
tomata. [EEE Transactions on Systems, Man, and Cybernetics, 15:360-375,
1985.

[19] Barto, A. G., and Jordan, M. I. Gradient following without back-propagation
in layered networks. In Proceedings of the IEEE First Annual Conference on
Neural Networks, pages 11629-11636, San Diego, CA, 1987.

[20] Barto, A. G., and Singh, S. P. On the computational economics of reinforcement
learning. In D. S. Touretsky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton,
editors, Connectionist Models: Proceedings of the 1990 Summer School. Morgan
Kaufmann Publishers, 2929 Campus Drive, Suite 260, San Mateo, CA 94403,
1991.

[21] Barto, A. G., and Sutton, R. S. Simulation of anticipatory responses in classical
conditioning by a neuron-like adaptive element. Behavioural Brain Research,
4:221-235, 1982.

[22] Barto, A. G., and Sutton, R. S. Neural problem solving. Technical Report
83-03, Department of Computer and Information Science, University of Mas-
sachusetts, Amherst, MA, 1983.

[23] Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13:835-846, 1983.

[24] Barto, A. G., Sutton, R. S., and Brouwer, P. S. Associative search network:
A reinforcement learning associative memory. I[EEE Transactions on Systems,
Man, and Cybernetics, 40:201-211, 1981.

[25] Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. Learning and sequential
decision making. COINS Technical Report 89-95, University of Massachusetts,
Ambherst, MA, 1989.

[26] Bush, R. R., and Estes, W. K., editors. Studies in Mathematical Learning
Theory. Stanford University Press, Stanford, CA, 1959.

[27] Caine, M. E., Lozano-Pérez, T., and Seering, W. P. Assembly strategies for
chamferless parts. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 472-477, May 1989.

—3 —3

E

7 ~ 3 3 3 3

— —1 13

3

163

[28] Chandrasekharan, B., and Shen, D. W. C. On expediency and convergence
in variable structure automata. IEEE Transactions on Systems, Man, and
Cybernetics, SSC-4(2):52-60, 1968.

[29] Connell, M. E., and Utgoff, P. E. Learning to control a dynamic physical system.
Comput. Intell., 3:330-337, 1987.

[30] Donald, B. R. Robot motion planning with uncertainty in the geometric models
of the robot and environment: A formal framework for error detection and
recovery. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1588-1593, 1986.

[31] Doob, J. L. Stochastic Processes. John Wiley and Sons, New York, 1953.

[32] Draper, C. S., and Li, Y. J. Principles of optimalizing control systems and an
application to an internal combustion engine. ASME Publications, September
1951.

[33] Duda, R. O., and Hart, P. E. Pattern Classification and Scene Analysis. Wiley,
New York, 1973.

[34] Dvoretzky, A. On stochastic approximation. In Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 39-55, Berkeley and Los Angeles, 1956. University of California Press.

[35] Erdmann, M. Using backprojections for fine motion planning with uncertainty.
International Journal of Robotics Research, 5(1):19-45, 1986.

[36] Ersu, E., and Tolle, H. Learning control structures with neuron-like associative

memories. In W. von Seelen, G. Shaw, and U. M. Leinhos, editors, Organization
of Neural Networks. VCH Verlagsgesellschaft mbH, FRG, 1988.

[37] Fahlman, S. E., and Lebiere, C. The cascade-correlation learning architecture.
In D. S. Touretzky, editor, Advances in neural information processing systems

II. Morgan Kaufman, San Mateo, CA, 1990.

[38] Farley, B. G., and Clark, W. A. Simulation of self-organizing systems by digital
computer. I.R.E Transactions on Information Theory, 4:76-84, 1954.

[39] Fikes, R. E., Hart, P. E., and Nilsson, N. J. Learning and executing generalized
robot plans. Artificial Intelligence, 3:251-288, 1972.

[40] Franklin, J. Learning control of a one link robot arm. ECE Technical Report
CCS-87-101, Elecreical and Computer Engineering Department, University of
Massachusetts, Amherst, Massachusetts, February 1987.

[41] Franklin, J. Compliance and learning: Control skills for a robot operating in
an uncertain world. PhD thesis, University of Massachusetts, Amherst, MA,
February 1988.

164

[42] Fu, K. S. Learning control systems—Review and outlook. IEEE Transactions
on Automatic Control, pages 210-221, 1970.

[43] Fu, K. S., and Waltz, M. D. A heuristic approach to reinforcement-learning
control systems. IEEE Transactions on Information Theory, 9:390-398, 1965.

[44] Gladyshev, E. A. On stochastic approximation. Theory of Probability and
Applications, 10(2):275-278, 1965.

[45] Goodwin, G. C., and Sin, K. S. Adaptive Filtering, Prediction, and Control.
Prentice-Hall, Englewood Cliffs, NJ, 1984.

[46] Gordon, S. J. Automated assembly using feature localization. PhD thesis,
Massachusetts Institute of Technology, MIT AI Laboratory, Cambridge, MA,
1986. Technical Report 932.

(47) Gullapalli, V. A stochastic algorithm for learning real-valued functions via
reinforcement feedback. Technical Report 88-91, University of Massachusetts,
Ambherst, MA, 1988.

(48] Gullapalli, V. A stochastic reinforcement learning algorithm for learning real-
valued functions. Neural Networks, 3:671-692, 1990.

[49] Gullapalli, V. A comparison of supervised and reinforcement learning methods
on a reinforcement learning task. In Proceedings of the 1991 IEEE International
Symposium on Intelligent Control, pages 394-399, Arlington, Virginia, USA,
13-15 August 1991.

[50] Gullapalli, V. Modeling cortical area 7a using stochastic real-valued (SRV)
units. In D. S. Touretsky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton,
editors, Connectionist Models: Proceedings of the 1990 Summer School. Morgan

Kaufmann Publishers, 2929 Campus Drive, Suite 260, San Mateo, CA 94403,
1991.

[51] Gustavson, R. E. A theory for the three-dimensional mating of chamfered

cylindrical parts. Journal of Mechanisms, Transmissions, and Automated
Design, December 1984.

[52] Hampson, S. E. A Neural Model of Adaptive Behavior. PhD thesis, University
of California, Irvine, CA, 1983.

(53] Handelman, D. A., Lane, S. H., and Gelfand, J. J. Goal-directed encoding of
task knowledge for robotic skill acquisition. In Proceedings of the 1991 IEEE
International Symposium on Intelligent Conirol, pages 388-393, Arlington,
Virginia, USA, 13-15 August 1991.

[54] Hanson, S. J. A stochastic version of the delta rule. Physica D, 1989. To
appear.

3

-3

_. 1

4

3 3

—3 3

a 73 T3 T3 —3 "3

3

3

165

[55] Hanson, S. J., and Pratt, L. Y. Comparing biases for minimal network
construction with back-propagation. In D. S. Touretzky, editor, Advances in
neural information processing systems I. Morgan Kaufman, 1989.

[56] Harth, E., and Tzanakou, E. Alopex: A stochastic method for determining
visual receptive fields. Vision Research, 14:1475-1482, 1974.

[57] Hecht-Nielsen, R. Neurocomputing. Addison-Wesley Publishing Company,
1989.

-

[58] Hinton, G. E. Connectionist learning procedures. Technical Report CMU-CS-
87-115, Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, Pa., 1987.

[59] Holland, J. H. Escaping brittleness: The possibility of general-purpose learning
algorithms applied to rule-based systems. In R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, Volume II. Morgan Kaufmann, Los Altos, CA, 1986.

[60] Honig, W. K., and Staddon, J. E. R. Handbook of operant behavior. Prentice
Hall, Englewood Cliffs, NJ, 1977.

[61] Iba, G. A. A heuristic approach to the discovery of macro-operators. Machine
Learning, 3:285-317, 1989.

[62] Jabri, M., and Flower, B. Weight perturbation: An optimal architecture and
learning technique for analog VLSI feedforward and recurrent multi-layer net-

works. Technical report, University of Sydney, School of Electrical Engineering,
1991.

[63] Jacobs, R. A. Task decomposition through competition in a modular connec-
tionist architecture. PhD thesis, University of Massachusetts, Amherst, COINS
Department, September 1990.

[64] Jordan, M. I. Supervised learning and systems with excess degrees of freedom.
Technical Report 88-27, University of Massachusetts, Amherst, MA, 1988.

[65] Jordan, M. I. Indeterminate motor skill learning problems. In M. Jeannerod,
editor, Attention and Performance, XIII. The MIT Press, Cambridge, MA,
1990.

(66] Jordan, M. L, and Jacobs, R. A. Learning to control an unstable system with
forward modeling. In D. S. Touretzky, editor, Advances in neural information
processing systems II. Morgan Kaufman, San Mateo, CA, 1990.

[67) Jordan, M. L, and Rosenbaum, D. A. Action. In M. I. Posner, editor,
Foundations of Cognitive Science. The MIT Press, Cambridge, MA, 1989.

166

[68] Jordan, M. I., and Rumelhart, D. E. Forward models: Supervised learning
with a distal teacher. Center for Cognitive Science Occasional Paper #40,
Massachusetts Institute of Technology, Cambridge, MA, 1990.

[69] Kashyap, R. L., Blaydon, C. C., and Fu, K. S. Stochastic approximation. In
J. M. Mendel and K. S. Fu, editors, Adaptive, Learning and Pattern Recognition
Systems: Theory and Applications. Academic Press, New York, 1970.

[70] Kawato, M. Computational schemes and neural network models for formation
and control of multijoint arm trajectory. In T. Miller, R. S. Sutton, and P. J.
Werbos, editors, Neural Networks for Control. The MIT Press, Cambridge, MA,
1990. '

[71] Kawato, M., Uno, Y., Isobe, M., and Suzuki, R. Hierarchical neural-network
model for voluntary movement with application to robotics. IEEE Control
Systems Magazine, 8:8-16, 1988.

[72] Kiefer, J., and Wolfowitz, J. Stochastic estimation of the maximum of a
regression function. Ann. Math. Stat., 23(3), 1952.

[73] Klopf, A. H. Brain functions and adaptive systems — A heterostatic theory.
Technical Report AFCRL-72-0164, Air Force Cambridge Research Laboratories,
Bedford, MA, 1972. A summary appears in Proceedings of the International
Conference on Systems, Man, and Cybernetics, IEEE Systems, Man, and
Cybernetics Society, Dallas, TX.

[74] Klopf, A. H. The Hedonistic Neuron: A Theory of Memory, Learning, and
Intelligence. Hemisphere, Washington, D.C., 1982.

(75] Klopf, A. H., and Gose, E. An evolutionary pattern recognition network. IEEE
Transactions on Systems, Man, and Cybernetics, 15:247-250, 1969.

[76] Kohonen, T. Associative Memory: A System Theoretic Approach. Springer,
Berlin, 1977.

[77] Korf, R. E. Macro operators: A weak method for learning. Artificial Intelli-
gence, 26:35-77, 1985.

[78] Kuperstein, M. Adaptive visual-motor coordination in multijoint robots us-
ing parallel architecture. In IEEE International Conference on Robotics and
Automation, pages 1595-1602, 1987.

[79] Laird, J. E., Newell, A., and Rosenbloom, P. S. SOAR: An architecture for
general intelligence. Artificial Intelligence, 33:1-64, 1987.

[80] le Cun, Y. Une procedure d’apprentissage pour reseau a sequil assymetrique [A
learning procedure for asymmetric threshold network]. Proceedings of Cognitiva,
85:599-604, 1985.

2

1

3 -3 _3 __3

.3

-2 3

3 | 3 3

—3 T3 —3 3 T3 3

E|

3 3 T3 "3

— —3 —3 ~—3 3 ~ 3

167

[81] le Cun, Y., Denker, J., Solla, S., Howard, R. E., and Jackel, L. D. Optimal brain
damage. In D. S. Touretzky, editor, Advances in neural information processing
systems II. Morgan Kaufman, San Mateo, CA, 1990.

[82] Lee, S., and Kim, M. H. Learning expert systems for robot fine motion control.
In H. E. Stephanou, A. Meystal, and J. Y. S. Luh, editors, Proceedings of
the 1988 IEEE International Symposium on Intelligent Control, pages 534-544,
Arlington, Virginia, USA, 1989. IEEE Computer Society Press: Washington.

[83] Lippmann, R. P. An introduction to computing with neural nets. JEEE ASSP
Magazine, pages 4-22, April 1987.

[84] Ljung, L., and Soderstrom, T. Theory and Practice of Recursive Identification.

The MIT Press, Cambridge, MA, 1983.

[85] Lozano-Pérez, T., Mason, M. T., and Taylor, R. H. Automatic synthesis of fine-
motion strategies for robots. The International Journal of Robotics Research,
3(1):3-24, Spring 1984.

[86] Maciejowski, J. M. Multivariable Feedback Design. Addison Wesley, 1989.

[87] Mars, P. Neural nets and robotic control. Technical Report
RIPRREP/1000/33/88, School of Engineering and Applied Science, University
of Durham, Durham, DH1 3LE, UK, 1988.

[88] Massone, L., and Bizzi, E. A neural network model for limb trajectory
formation. Technical report, Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139, 1988.

[89] McClelland, J. L., and Rumelhart, D. E., editors. Ezplorations in Parallel Dis-
tributed Processing: A handbook of models, programs, and ezercises. Bradford
Books/MIT Press, Cambridge, MA, 1988.

[90] Mendel, J. M., and McLaren, R. W. Reinforcement learning control and pattern
recognition systems. In J. M. Mendel and K. S. Fu, editors, Adaptive, Learning
and Pattern Recognition Systems: Theory and Applications, pages 287-318.
Academic Press, New York, 1970.

[91] Meystel, A. Intelligent control in robotics. Journal of Robotic Systems,
5(4):269-308, 1988.

[92] Michie, D., and Chambers, R. A. BOXES: An experiment in adaptive control.
In E. Dale and D. Michie, editors, Machine Intelligence 2, pages 137-152. Oliver
and Boyd, 1968.

[93) Miller, W. T. Sensor based control of robotic manipulators using a general
learning algorithm. IEEE Journal of Robotics and Automation, 3:157-165, 1987.

[94] Minsky, M. L. The Society of Mind. Simon and Schuster, New York, NY, 1986.

168

[95] Minsky, M. L. Theory of neural-analog reinforcement systems and its application
to the brain model problem. PhD thesis, Princeton University, Princeton, NJ,
1954.

[96] Minsky, M. L. Steps toward artificial intelligence. Proceedings of the Institute
of Radio Engineers, 49:8-30, 1961. Reprinted in E. A. Feigenbaum and J.
Feldman, editors, Computers and Thought. McGraw-Hill, New York, 406-450,
1963.

[97] Miyata, Y. The learning and planning of actions. ICS Report 8802, Institute
for cognitive scence, University of California, San Diego, La Jolla, CA 92093,
1988.

(98] Moody, J., and Darken, C. Learning with localized receptive fields. In D. S.
Touretsky, G. E. Hinton, and T. J. Sejnowski, editors, Proceedings of the
1988 Connectionist Models Summer School Morgan Kaufmann Publishers, 2929
Campus Drive, Suite 260, San Mateo, CA 94403, 1988.

[99] Mozer, M. C., and Smolensky, P. Skeletonization: A technique for trimming
the fat from a network via relevance assessment. In D. S. Touretzky, editor,
Advances in neural information processing systems I. Morgan Kaufman, 1989.

[100] Munro, P. A dual back-propagation scheme for scalar reward learning. In
Proceedings of the Ninth Annual Conference of the Cognitive Science Society,
pages 165-176, Seattle, WA, 1987.

(101} Mussa Ivaldi, F. A., McIntyre, J., and Bizzi, E. Kinematic networks — A dis-
tributed model for representing and regularizing motor redundancy. Biological
Cybernetics, 60:1-16, 1988.

[102] Narendra, K. S. Adaptive control using neural networks. In T. Miller, R. S.
Sutton, and P. J. Werbos, editors, Neural Networks for Control, chapter 5. The
MIT Press, Cambridge, MA, 1990.

(103] Narendra, K. S., and Annaswamy, A. Stable adaptive systems. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[104] Narendra, K. S., and Thathachar, M. A. L. Learning Automata: An Introduc-
tion. Prentice Hall, Englewood Cliffs, New Jersey 07632, 1989.

(105] Nevins, J. L., and Whitney, D. E. Computer controlled assembly. Science,
238(2), February 1978.

[106] Newell, A., and Simon, H. Human Problem Solving. Prentice-Hall, Englewood
Cliffs, NJ, 1972.

[107] Nguyen, D., and Widrow, B. The truck backer-upper: An example of self-
learning in neural networks. In T. Miller, R. S. Sutton, and P. J. Werbos,
editors, Neural Networks for Control. The MIT Press, Cambridge, MA, 1990.

3 3 3 3 _ 3 __2

3 3

3 3

—3 3 3 _3 __3 -3 __1

3

— T3 " 3

169

[108] Niranjan, M., and Fallside, F. Neural networks and radial basis functions in
classifying static speech patterns. Technical Report CUED /F-INFENG/TR 22,
University Engineering Department, Cambridge, CB2 1PZ, England, 1988.

[109] Nowlan, S. J. Gain variation in recurrent error propagation networks. Complez
Systems, 2:305-320, 1988.

(110] Nowlan, S. J., and Hinton, G. E. Evaluation of adaptive mixtures of competing
experts. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors,
Advances in neural information processing systems 3. Morgan Kaufman, San

Mateo, CA, 1991.

[111) Parker, D. B. Learning logic. Technical Report TR-47, Massachusetts Institute
of Technology, 1985.

(112} Quinlan, J. R. Induction of decision trees. Machine Learning, 1(1):81-106,
1986.

[113] Robbins, H., and Monro, S. A stochastic approximation method. Ann. Math.
Stat., 22(1):400-407, 1951.

[114] Rosenblatt, F. Principles of Neurodynamics: Percepirons and the Theory of
Brain Mechanisms. Spartan Books, 6411 Chillum Place N.W., Washington,
D.C, 1961.

[115] Rumelhart, D. E. Lecture at the 1988 connectionist models summer school,
1989.

{116] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. McClelland,
editors, Parallel Distributed Processing: Ezplorations in the Microstructure of
Cognition, vol.1: Foundations. Bradford Books/MIT Press, Cambridge, MA,
1986.

(117} Rumelhart, D. E., and McClelland, J. L., editors. Parallel Distributed Process-
ing: Ezplorations in the Microstructure of Cognition, Vol.1: Foundations, Vol.
2: Psychological and Biological models. Bradford Books/MIT Press, Cambridge,
MA, 1986.

(118] Rumelhart, D. E., and Zipser, D. Feature discovery by competitive learning.
Cognitive Science, 9:75-112, 1985.

[119] Samuel, A. L. Some studies in machine learning using the game of checkers.
IBM Journal on Research and Development, pages 210-229, 1959. Reprinted in
E. A. Feigenbaum and J. Feldman, editors, Computers and Thought, McGraw-
Hill, New York, 1963.

[120] Samuel, A. L. Some studies in machine learning using the game of checkers. [I—
Recent progress. IBM Journal on Research and Development, pages 601-617,
November 1967.

170

[121] Saridis, G. N. Self-organizing Control of Stochastic Systems. Marcel Dekker,
Inc., New York, 1977.

[122] Schmetterer, L. Stochastic approximation. In Proceedings of the Fourth Berke-
ley Symposium on Mathematical Statistics and Probability, volume 1, pages
587-609, Berkeley and Los Angeles, 1961. University of California Press.

[123] Selfridge, O. Pandemonium: A paradigm for learning. In Proceedings of the
Symposium on the Mechanisation of Thought Processes, Teddington, England:
National Physical Laboratory, H.M. Stationary Office, London, 2 vols, 1959.

[124] Selfridge, O. Learning to count. How a computer might do it. In preparation,
1979.

[125] Selfridge, O., Sutton, R. S., and Barto, A. G. Training and tracking in
robotics. In Proceedings of the Ninth International Joint Conference of Artificial
Intelligence, Los Angeles, CA, Aug. 1985.

[126] Simons, J., Brussel, H. V., Schutter, J. D., and Verhaert, J. A self-learning
automaton with variable resolution for high precision assembly by industrial
robots. IEEE Transactions on Automatic Control, 27(5):1109-1113, October
1982.

[127] Skinner, B. F. The Behavior of Organisms: An ezperimental analysis. D.
Appleton Century, New York, 1938.

[128] Skinner, B. F. “Superstition” in the pigeon. Journal of Ezperimental Psychol-
ogy, 38:168-172, 1948.

[129] Skinner, B. F. Science and Human Behavior. Macmillan, New York, 1953.

[130] Skolic, M. E. Adaptive model for decision making. Pattern Recognition, 15:485-
493, 1982.

[131] Srinivasan, V., Barto, A. G., and Ydstie, B. E. Pattern recognition and
feedback via parallel distributed processing. In Annual Meeting of the AIChE,
Washington D. C., November 1988.

(132] Staddon, J. E. R. Adaptive behavior and learning. Cambridge University Press,
1983.

[133] Stafford, R. A. Multi-layer learning networks. In J. E. Garvey, editor, Sympo-
sium on self-organizing systems. Office of Naval Research, 1963.

[134] Stafford, R. A. A learning network model. In M. Maxfield, A. Callahan,
and L. Fogel, editors, Biophysics and cybernetic systems. Spartan Books Inc.,
Washington, DC, 1965.

[135] Sutton, R. S. Ballistic bug, June 1982. Unpublished working paper.

3

.3

.3

3 e

3

S

3

ﬂ__-j 3 %

a4 T3 73 T3 T3 "3

Ei

3 —3 3 73

3

171

[136] Sutton, R. S. Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, University of Massachusetts, Amherst, MA, 1984.

[137] Sutton, R. S. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9-44, 1988.

[138] Sutton, R. S., and Barto, A. G. An adaptive network that constructs and uses
an internal model of its world. Cognition and Brain Theory, 3:217-246, 1981.

[139] Tangwongsan, S., and Fu, K. S. An application of learning to robot planning.
International Journal of Computer and Information Sciences, 8(4), 1979.

[140] Tsetlin, M. L. Automaton Theory and Modeling of Biological Systems. Aca-
demic Press, New York, 1973.

[141] Watkins, C. J. C. H. Learning from delayed rewards. PhD thesis, Cambridge
University, Cambridge, England, 1989.

[142] Weiland, A. P., and Leighton, R. R. Shaping schedules as a method for
accelerating learning. In International Neural Network Society Meeting, 1988.

[143] Werbos, P. J. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, 1974.

[144] Werbos, P. J. Backpropagation and neurocontrol: A review and prospectus.
In Proceedings of the 1989 International Joint Conference on Neural Networks,
Washington, D.C., June 1989.

[145] Werbos, P. J. A menu of designs for reinforcement learning over time. In
T. Miller, R. S. Sutton, and P. J. Werbos, editors, Neural Networks for Control,
chapter 3. The MIT Press, Cambridge, MA, 1990.

[146] Whitney, D. E. Quasi-static assembly of compliantly supported rigid parts.
Journal of Dynamic Systems, Measurement, and Control, 104, March 1982.
Also in Robot Motion: Planning and Control, (Brady, M., et al. eds.), MIT
Press, Cambridge, MA, 1982.

[147) Widrow, B. Generalization and information storage in networks of adaline
“neurons”. In M. Yovits, G. Jacobi, and G. Goldstein, editors, Self-organizing
systems. Spartan Books, 1962.

[148] Widrow, B., and Hoff, M. E. Adaptive switching circuits. In 1960 WESCON
Convention Record Part IV, pages 96-104, 1960.

(149] Widrow, B., McCool, J., and Medoff, B. Adaptive control by inverse modeling.
In Twelfth Asilomar Conference on Circuits, Systems, and Computers, 1978.

(150] Widrow, B., and Smith, F. W. Pattern-recognizing control systems. In
Computer and Information Sciences (COINS) Proceedings, Washington, D.C.,
1964. Spartan.

172

[151] Wieland, A. P. Evolving controls for unstable systems. In D. S. Touretsky,
J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Connectionist Models:
Proceedings of the 1990 Summer School. Morgan Kaufmann Publishers, 2929
Campus Drive, Suite 260, San Mateo, CA 94403, 1991.

[152] Williams, R. J. Reinforcement learning in connectionist networks: A mathe-
matical analysis. Technical Report ICS 8605, Institute for Cognitive Science,
University of California at San Diego, La Jolla, CA, 1986.

[153] Williams, R. J. Reinforcement-learning connectionist systems. Technical Re-
port NU-CCS-87-3, College of Computer Science, Northeastern University, 360
Huntington Avenue, Boston, MA, 1987.

[154) Williams, R. J. On the use of backpropagation in associative reinforcement
learning. In Proceedings of the IEEE International Conference on Neural
Networks, San Diego, 1988.

[155] Wolfowitz, J. On the stochastic approximation method of Robbins and Monro.
Ann. Math. Stat., 25:457-461, 1952.

[156] Ydstie, B. E. Forecasting and control using adaptive connectionist networks.
Computers Chem. Enging., 14(4/5):583-599, 1990.

-3 3 _3 __3

3 _3 -3 _3 __3 _3

-3 __3

§'

| 3 3 __1 _3 __3

	1.pdf
	2

