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1 Introduction

A distributed computer system (DCS) is a collection of computers connected by a com-
munications subnet and logically integrated in varying degrees by a distributed operating
system and/or distributed database system. Each computer node may be a uniprocessor, or
multiprocessor, or multicomputer. The communications subnet may be a widely geograph-
ically dispersed collection of communication processors or a local area network. Typical
applications that use distributed computing include e-mail, teleconferencing, electronic funds
transfers, multi-media telecommunications, command and control systems, and support for
general purpose computing in industrial and academic settings. The widespread use of dis-
tributed computer systems is due to the price-performance revolution in microelectronics,
the development of cost effective and efficient communication subnets (4] (which is itself due
to the merging of data communications and computer communications), the development of
resource sharing software, and the increased user demands for communication, economical
sharing of resources, and productivity.

A DCS potentially provides significant advantages, including good performance, good reli-
ability, good resource sharing, and extensibility [35, 41]. Potential performance enhancement
is due to multiple processors and an efficient subnet, as well as avoiding contention and bot-
tlenecks that exist in uniprocessors and multiprocessors. Potential reliability improvements
are due to the data and control redundancy possible, the geographical distribution of the sys-
tem, and the ability for hosts and communication processors to perform mutual inspection.
With the proper subnet, distributed operating system [46], and distributed database [85],
it is possible to share hardware and software resources in a cost effective manner, increas-
ing productivity and lowering costs. Possibly the most important potential advantage of a
DCS is extensibility. Extensibility is the ability to easily adapt to both short and long term
changes without sigrificant disruption of the system. Short term changes include varying
workloads and host cr subnet failures or additions. Long term changes are associated with
major modifications to the requirements or content of the system.
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DCS research encompasses many areas, including: local and wide area networks, dis-
tributed operating systems, distributed databases, distributed file servers, concurrent and
distributed programming languages, specification languages for concurrent system, theory
of parallel algorithms, theory of distributed computing, parallel architectures and intercon-
nection structures, fault tolerant and ultrareliable systems, distributed real-time systems,
cooperative problem solving techniques of artificial intelligence, distributed debugging, dis-
tributed simulation, distributed applications, and a methodology for the design, construction
and maintenance of large, complex distributed systems. Many prototype distributed com-
puter systems have been built at university, industrial, commercial, and government research
laboratories, and production systems of all sizes and types have proliferated. It is impossible
to survey all distributed computing system research. An extensive survey and bibliogra-
phy would require hundreds of pages. Instead, this chapter focuses on two important areas:
distributed operating systems and distributed databases.

2 Distributed Operating Systems

Operating systems for distributed computing systems can be categorized into two broad
categories: network operating systems and distributed operating systems [113].

Network Operating Systems: Consider the situation where each of the hosts of a computer
network has a local operating system that is independent of the network. The sum total of
all the operating system software added to each host in order to communicate and share
resources is called a network operating system (NOS). The added software often includes
modifications to the local operating system. NOS’s are characterized by being built on top of
existing operating systems, and they attempt to hide the differences between the underlying
systems. See Figure 1.

Distributed Operating Systems: Consider an integrated computer network where there
is one native operating system for all the distributed hosts. This is called a distributed
operating system (DOS). See Figure 2. Examples of DOSs include the V system (28], Eden
[66], Amoeba 78], the Cambridge distributed computing system (79], Medusa [83], Locus (87,
and Mach [93]. Examples of real-time distributed operating systems include MARS [59] and
Spring [116]. A DOS is designed with the network requirements in mind from its inception
and it tries to manage the resources of the network in a global fashion. Therefore, retrofitting
a DOS to existing operating systems and other software is not a problem for DOSs. Since
DOSs are used to satisfy a wide variety of requirements, their various implementations are
quite different. Note that the boundary between NOS’s and DOSs is not always clearly
distinguishable. In this chapter we primarily consider distributed operating systems issues
divided into six categories: process structures, access control and communication, reliability,
heteroge.neity, efficiency, and real-time. In section 3 we present a similar breakdown applied
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to distributed databases.

2.1 Process Structures

The conventional notion of a process is an address space with a single execution trace through
it. Because of the parallelism inherent in multiprocessing and distributed computing, we have
seen that recent operating systems are supporting the separation of address space (sometimes
called a task) and execution traces (called threads or lightweight processes) (93, 94]. In most
systems the address space and threads are restricted to reside on a single node (a uni- or
multi-processor). However, some systems such as Ivy, the Apollo domain, and Clouds [33]
support a distributed address space (sometimes called a distributed shared memory ~ see
(82] for a summary of issues involved with distributed shared memory), and distributed
threads executing on that address space. Regardlesss of whether the address space is local
or distributed [42], there has been significant work done the following topics. They are:
supporting very large, but sparse address spaces, efficiently copying information between
address spaces using a technique called copy on write where only the data actually used gets
copied [43], and supporting efficient file management by mapping files into the address space
and then using virtual memory techniques to access the file.

At a higher level distributed operating systems use tasks and threads to support either a
procedure or an object based paradigm [29]. If objects are used, there are two variations: the
passive and active object models. Because the object based paradigm is so important and
well suited to distributed computing, we will present some basic information about objects
and then discuss the active and passive object paradigms.

A data abstraction is a collection of information and a set of operations defined on that
information. An object is an instantiation of a data abstraction. The concept of an object
is usually supported by a kernel which may also define a primitive set of objects. Higher
level objects are then constructed from more primitive objects in some structured fashion.
All hardware and software resources of a DCS can be regarded as objects. The concept of an
object and its implications form an elegant basis for a DCS [83, 113]. For example, distributed
systems functions such as allocation of objects to a host, moving objects, remote access
to objects, sharing objects across the network, and providing interfaces between disparate
objects are all “conceptually” simple, because they are all handled by yet other objects.
The object concept is powerful and can easily support the popular client-server model of
distributed computing,. :

Ob jects also serve as the primitive entity supporting more complicated distributed compu-
tational structures. One type of distributed computation is a process (thread) which executes
as a sequential trace through passive objects, but does so across multiple hosts. See Figure 3.
The objects are permanent but the execution properties are supplied by an external process
(thread) executing in the address space of the object. Another form of a distributed compu-
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tation is to have clusters of objects, each with internal, active threads, running in parallel and
communicating with each other based on the various types of interprocess communication
(IPC) used. This is known as the active object model. See Figure 4. The cluster of processes
may be co-located or distributed in some fashion. Other notions of what constitutes a dis-
tributed program are possible, e.g., object invocations can support additional semantics such
as found in database transactions.

The major problem with object based systems has been poor execution time performance.
However, this is not really a problem with the object abstraction itself, but is a problem with
inefficient implementation of access to objects. The most common reason given for poor
execution time is that current architectures are ill suited for object based systems. Another
problem is choosing the right granularity for an object. If every integer or character and their
associated operations are treated as objects, then the overhead is too high. If the granularity
of an object is too large, then the benefits of the object based system are lost.

2.2 Access Control and Communications

A distributed system consists of a collection of resources managed by the distributed operating
system. Accessing the resources must be controlled in two ways. First, the manner used to
access the resource must be suitable to the resource and requirements under consideration.
For example, a printer must be shared serially, local data of an ob ject should not bz shareable,
and a read only file can be accessed simultaneously by any number of users. In an object
based system access can be controlled on an operation by operation basis. For example, a
given user may be restricted to only using the insert operation on a queue object while another
user may be able to access the queue using both insert and remove operations. Second, access
to a resource must be restricted to a set of allowable users. In many systems this is done
by an access control list, an access control matrix, or capabilities. The MIT Athena project
developed an authentication server called Kerberos based on a third party authentication
model {80] that uses private key encryption.

Communication has been the focus of much of the work in distributed operating systems
providing the glue that binds logically and physically separated processes [54, 92]. Remote
procedure calls (RPC) extend the semantics of programming language’s procedure calls to
communication across nodes of a DCS. Lightweight RPCs [18] have been developed to make
such calls as efficient as possible. Many systems also support general synchronous and asyn-
chronous send and receive primitives whose semantics are different and more general than
RPC semantics. Broadcasting and multicasting are also common primitives found in DOSs
and they provide usefu’ services in achieving consensus and other forms of global coordina-
tion. For systems with high reliability requirements, reliable broadcast facilities might be
provided [55].

Implementing ccmmunication facilities is done either directly in the kernels of the oper-



ating systems (as in the V system [28]) or as user level services (as in MACH (93]). This
is a classical tradeoff between performance and flexibility. Intermediate between these ap-
proaches lies the x-kernel [54] where basic primitives required for all communication primitives
are provided at the kernel level and protocol specific logic is programmable at a higher level.

2.3 Reliability

While reliability is a fundamental issue for any system, the redundancy found in DCSs make
them particularly well suited for the implementation of reliability techniques. We begin the
discussion on reliability with a few definitions.

A fault is a mechanical or algorithmic defect which may generate an error. A fault may
be permanent, transient, or intermittent. An error is an item of information which when
processed by the normal algorithms of the system will produce a failure. A failure is an event
at which a system violates its specifications. Reliability can then be defined as the degree
of tolerance against errors and faults. Increased reliability comes from fault avoidance and
fault tolerance. Fault avoidance results from conservative design practices such as using high
reliability components and non-ambitious design. Fault tolerance employs error detection and
redundancy to deal with faults and errors. Most of what we discuss in this section relates to
the fault tolerance aspect of reliability.

Reliability is a complex, multidimensional activity that must simultaneously address some
or all of the following: fault confinement, fault detection, fault masking, retries, fault diagno-
sis, reconfiguration, recovery, restart, repair, and reintegration. Further, distributed systems
require more than reliability, i.e., they need to be dependable. Dependability is the trust-
worthiness of a computer system and it subsumes reliability, availability, safety, and security.
System architectures such as Delta-4 [88] strive for dependability. We cannot do justice to
all these issues in this short article. Instead we will discuss several of the more important
issues related to reliability in DOSs.

Reliable DOSs should support replicated files, exception handlers, testing procedures
executed from remote hosts, and avoid single points of failure by a combination of replication,
backup facilities, and distributed control. Distributed control could be used for file servers,
name servers, scheduling algorithms, and other executive control functions. Process structure,
how environment information is kept, the homogeneity of various hosts, and the scheduling
algorithm may allow for relocatability of processes. Interprocess communication (IPC) might
be supported as a reliable remote procedure call (81, 109] and also provide reliable atomic
broadcasts as is done in ISIS [19]. Reliable IPC would enforce “at least once” or “exactly once”
semantics depending on the type of IPC being invoked, and atomic broadcasts guarantees
that either all processes that are to receive the message will indeed receive it, or none will.
Other DOS reliability solutions are required to avoid invoking processes that are not active,
to avoid the situation where a process remains active, but is not used, and to avoid attempts



to communicate to terminated processes.

ARGUS [70], a distributed programming language, has explicitly incorporated reliability
concerns into the programming language. It does this by supporting the idea of an atomic ob-
ject, transactions, nested actions, reliable remote procedure calls, stable variables, guardians
(which are modules that service node failures and synchronize concurrent access to data),
exception handlers, periodic and background testing procedures, and recovery of a commit-
ted update given the present update does not complete. A distributed program written in
ARGUS may potentially experience deadlock. Currently, deadlocks are broken by timing out
and aborting actions.

Distributed databases make use of many reliability features such as stable storage, trans-
actions, nested transactions [76], commit and recovery protocols [103], nonblocking commit
protocols [102], termination protocols [104], checkpointing, replication, primary/backups,
logs/audit trails, differential files [99], and timeouts to detect failures. Operating system
support is required to make these mechanisms more efficient (47, 87, 119, 131].

One aspect of reliability not stressed enough in DCS research is the need for robust solu-
tions, i.e., the solutions must explicitly assume an unreliable network, tolerate host failures,
network partitionings, and lost, duplicate, out of order, or noisy data. Robust algorithms
must sometimes make decisions after reaching only approximate agreement or by using statis-
tical properties of the system (assumed known or dynamically calculated). A related question
is at what level should the robust algorithms, and reliability in general, be supported? Most
systems attempt to have the subnet ensure reliable, error free data transmission between
processes. However, according to the end-to-end argument [97], such functions placed at the
lower levels of the system are often redundant and unnecessary. The rationale for this argu-
ment is that since the application has to take into account errors introduced not only by the
subnet, many of the error detection and recovery functions can be correctly and completely
provided only at the application level.

The relationship of reliability to the other issues discussed in this paper is very strong.
For example, object based systems confine errors to a large degree, define a consistent system
state to support rollback and restart, and limit propagation of rollback activities. However,
if objects are supported on a distributed shared memory special problems arise [134]. Since
objects can represent unreliable resources (such as processors and disks), and since higher level
objects can be built using lower level objects, the goal of reliable system design is to create
“reliable” objects out of unreliable objects. For example, a stable storage can be created
out of several disk objects and the proper logic. Then a physical processor, a checkpointing
capability, a stable storage, and logic can be used to create a stable processor. One can
proceed in this fashion to create a very reliable system. The main drawback is potential
loss of execution time efficiency. For many systems, it is just too costly to incorporate an
extensive number of reliability mechanisms. Reliability is also enhanced by proper access
control and judicial use of distributed control. The major challenge is to integrate solutions
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to all these issues in a cost effective manner and produce an extremely reliable system.

2.4 Heterogeneity

Incompatibility problems arise in heterogeneous DCS’s in a number of ways [10] and at all
levels. First, incompatibility is due to the different internal formatting schemes that exist in a
collection of different communication and host processors. Second, incompatibility also arises
from the differences in communication protocols and topology when networks are connected to
other networks via gateways. Third, ma jor incompatibilities arise due to different operating
systems, file servers, and database systems that might exist on a (set of) network(s).

The easiest solution to this general problem for a single DCS is to avoid the issue by using
a homogeneous collection of machines and software. If this is not practical, then some form
of translation is necessary. Some earlier systems left this translation to the user. This is no
longer acceptable.

Translation done by the DCS system can be done at the receiver host or at the source
host. If it is done at the receiver host, then the data traverse the network in their original
form. The data usually are supplemented with extra information to guide the translation.
The problem with this approach is that at every host there must be a translator to convert
each format in the system to the format used on the receiving host. When there exist “n”
different formats, this requires the support of (n - 1) translators at each host. Performing
the translation at the source host before transmitting the data is subject to all the same
problems.

There are two better solutions, each applicable under different situations: an intermediate
translator, or an intermediate standard data format.

An intermediate translator accepts data from the source and produces the acceptable
format for the destination. This is usually used when the number of different types of neces-
sary conversions is small. For example, a gateway linking two different networks acts as an
intermediate translator.

For a given conversion problem, if the number of different types to be dealt with grows
large, then a single intermediate translator becomes unmanageable. In this case, an interme-
diate standard data format (interface) is declared, hosts convert to the standard, data are
moved in the format of the standard, and another conversion is performed at the destina-
tion. By choosing the standard to be the most common format in the system, the number of
conversions can be reduced.

At a high level of abstraction the heterogeneity problem and the necessary translations
are well understood. At the implementation level a number of complications exist. The
issues are precision loss, format incompatibilities (e.g., minus zero value in sign magnitude
and 1's complement cannot be represented in 2’s complement), data type incompatibilities
(e.g., mapping of an upper/lower case terminal to an upper case only terminal is a loss
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of information), efficiency concerns, the number of locations of the translators, and what
constitutes a good intermediate data format for a given incompatibility problem.

As DCS’s become more integrated, one can expect that both programs and complicated
forms of data might be moved to heterogeneous hosts. How will a program run on this host,
given that the host has different word lengths, different machine code, and different operating
system primitives? How will database relations stored as part of a CODASYL database be
converted to a relational model and its associated storage scheme? Moving a data structure
object requires knowledge about the semantics of the structure (e.g., that some of the fields
are pointers and these have to be updated upon a move). How should this information be
imparted to the translators, what are the limitations, if any, and what are the benefits and
costs of having this kind of flexibility? In general, the problem of providing translation for
movement of data and programs between heterogeneous hosts and networks has not been
solved. The main problem is ensuring that such programs and data are interpreted correctly
at the destination host. In fact, the more difficult problems in this area have been largely
ignored.

The Open Systems Foundation (OSF) distributed computing environment (DCE) is at-
tempting to address the problem of programming and managing heterogeneous distributed
computer systems by establishing a set of standards for the major components of such sys-
tems. This includes standards for RPCs, distributed file servers, and distributed management.

2.5 Efficiency

Distributed computer systems are meant to be efficient in a multitude of ways. Resources
(files, compilers, debuggers, and other software products) developed at one host can be shared
by users on other hosts limiting duplicate efforts. Expensive hardware resources can also
be shared minimizing costs. Communication facilities, such as the remote procedure call,
electronic mail, and file transfer protocols, also improve efficiency by enabling better and
faster transfer of information. The multiplicity of processing elements might also be exploited
to improve response time and throughput of user processes. While efficiency concerns exist
at every level in the system, they must also be treated as an integrated “system” level issue.
For example, a good design, the proper tradeoffs between levels, and the pairing down of
over-ambitious features usually improves efficiency. In this section, however, we concentrate
on discussing efficiency as it relates to the execution time of processes (threads).

Once the system is operational, improving response time and throughput of user processes
(threads) is largely the responsibility of scheduling and resource management algorithms
(6, 30, 32, 39, 75, 111, 112, 126], and the mechanisms used to move processes and data
[28, 33, 42, 127). The scheduling algorithm is intimately related to the resource allocator
because a process will not be scheduled for the CPU if it is waiting for a resource. If a DCS
is to exploit the multiplicity of processors and resources in the network, it must contain more
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than simply “n” independent schedulers. The local schedulers must interact and cooperate,
and the degree to which this occurs can vary widely. We suggest that a good scheduling
algorithm for a DCS will be a heuristic that acts like an “expert system.” This expert
system’s task is to effectively utilize the resources of the entire distributed system given a
complex and dynamically changing environment. We hope to illustrate this in the following
discussion.

In the remainder of this section when we refer to the scheduling algorithm, we are referring
to the part of the scheduler (possibly an expert system) that is responsible for choosing the
host of execution for a process. We assume that there is another part of the scheduler which
assigns the local CPU to the highest priority ready process.

We divide the characteristics of a DCS which influence response time and throughput
into system characteristics, and scheduling algorithm characteristics. System characteristics
include: the number, type, and speed of processors, caches, and memories, the allocation of
data and programs, whether data and programs can be moved, the amount and location of
replicated data and programs, how data are partitioned, partitioned functionality in the form
of dedicated processors, any special purpose hardware, characteristics of the communication
subnet, and special problems of distribution such as no central clock and the inherent delays in
the system. A good scheduling algorithm would take the system characteristics into account.
Scheduling algorithm characteristics include: the type and amount of state information used,
how and when that information is transmitted, how the information is used (degree and
type of cooperation between distributed scheduling entities), when the algorithm is invoked,
adaptability of the algorithm, and the stability of the algorithm (24, 110].

The type of state information used by scheduling algorithms includes queue lengths, CPU
utilization, amount of free memory, estimated average response time, or combinations of var-
jous information, in making its scheduling decision. The type of information also refers to
whether the information is local or networkwide information. For example, a scheduling algo-
rithm on host 1 could use queue lengths of all the hosts in the network in making its decision.
The amount of state information refers to the number of different types of information used
by the scheduler.

Information used by a scheduler can be transmitted periodically or asynchronously. If
asynchronously, it may be sent only when requested (as in bidding), it may be piggybacked
on other messages between hosts, or it may be sent only when conditions change by some
amount. The information may be broadcast to all hosts, sent to neighbors only, or to some
specific set of hosts.

The information is used to estimate the loads on other hosts of the network in order to
make an informed global scheduling decision. However, the data received are out of date and
even the ordering of events might not be known [63]. It is necessary to manipulate the data in
some way to obtain better estimates. Several examples are: very old data can be discarded:
given that state information is timestamped, a linear estimation of the state extrapolated
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to the current time might be feasible; conditional probabilities on the accuracy of the state
information might be calculated in parallel with the scheduler by some monitor nodes and
applied to the received state information; the estimates can be some function of the age of
the state information; or some form of (iterative) message interchange might be feasible.

Before a process is actually moved, the cost of moving it must be accounted for in de-
termining the estimated benefit of the move. This cost is different if the process has not
yet begun execution than if it is already in progress. In both cases, the resources required
must also be considered. If a process is in execution, then environment information (e.g.,
the process control block) probably should be moved with the process. It is expected that in
many cases the decision will be not to move the process.

Schedulers invoked too often will produce excessive overhead. If they are not invoked
often enough, they will not be able to react fast enough to changing conditions. There will
be undue startup delay for processes. There must be some ideal invocation schedule which
is a function of the load.

In a complicated DCS environment, it can be expected that the scheduler will have to
be quite adaptive [74, 110]. A scheduler might make minor adjustments in weighing the
importance of various factors as the network state changes in an attempt to track a slowly
changing environment. Major changes in the network state might require major adjustments
in the scheduling algorithms. For example, under very light loads there does not seem to be
much justification for networkwide scheduling, so the algorithm might be turned off—except
the part that can recognize a change in the load. At moderate loads, the full blown scheduling
algorithm might be employed. This might include individual hosts refusing all requests for
information and refusing to accept any process because it is too busy. Under heavy loads
on all hosts it again seems unnecessary to use networkwide scheduling. A bidding scheme
might use both source and server directed bidding [112]. An overloaded hosts asks for bids
and is the source of work for some other hosts in the network. Similarly, a lightly loaded
host may make a reverse bid, i.e., it asks the rest of the network for some work. The two
types of bidding might coexist. Schedulers could be designed in a multilevel fashion with
decisions being made at different rates, e.g., local decisions and state information updates
occur frequently, but more global exchange of decisions and state information might proceed
at a slower rate because of the inherent cost of these global actions.

A classic efficiency question in any system is: what should be supported by the kernel, or
more generally by the operating system, and what should be left to the user? The trend in
DCS is to provide minimal support at the kernel level, e.g., supporting objects, primitive IPC
mechanisms, and processes (threads). Then other operating system functions are supported
as higher level processes. On the other hand, because of efficiency concerns some researchers
advocate putting more in the kernel including communication protocols, real-time systems
support, or even supporting the concept of a transaction in the kernel. This argument will
never be settled conclusively since it is a function of the requirements, type of processes
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running, etc.

Of course, many other efficiency questions remain. These include: the efficiency of the
object model, the end-to-end argument, locking granularity, performance of remote opera-
tions, improvements due to distributed control, the cost effectiveness of various reliability
mechanisms, efficiently dealing with heterogeneity, hardware support for operating system
functions (7], and handling the I/O bottleneck via disk arrays of various types called RAID
1 through 6 [56, 86] (redundant arrays of inexpensive disks). Efficiency is, therefore, not a
separate issue but must be addressed for each issue in order to result in an efficient, reliable,
and extensible DCS. A difficult question to answer is exactly what is acceptable performance
given that multiple decisions are being made at all levels and that these decisions are being
made in the presence of missing and inaccurate information.

2.6 Real-Time

Real-time applications such as nuclear power plants and process control are inherently dis-
tributed and have severe real-time and reliability requirements. These requirements add
considerable complication to a DCS. Examples of demanding real-time systems include ESS
(13], REBUS [9], and SIFT [132]. ESS is a software controlled electronic switching system
developed by the Bell System for placing telephone calls. The system meets severe real-time
and reliability requirements. REBUS is a fault tolerant distributed system for industrial
real-time control, and SIFT is a fault tolerant flight control system. Generally, these systems
are built with technology that is tailored to these applications because many of the concepts
and ideas used in general purpose distributed computing are not applicable when deadlines
must be guaranteed. For example, remote procedure calls, creating tasks and threads, and
requesting operating system services are all done in a manner that ignores deadlines, causes
processes to block at any time, and only provides reasonable average case performance. None
of these things are reasonable when it is critical that deadlines be met. In fact, many miscon-
ceptions [115] exist when dealing with distributed, real-time systems. However, significant
new research efforts are now being conducted to combat these misconceptions and to provide
a science of real-time computing in the areas of formal verification, scheduling theory and
algorithms [72, 91], communications protocols (8, 135], and operating systems (98, 116, 125].
The goal of this new research in real-time systems is to develop predictable systems even when
the systems are highly complex, distributed, and operate in non-deterministic environments
(117).

Other distributed real-time applications such as airline reservation and banking applica-
tions have less severe real-time constraints and are easier to build. These systems can utilize
most of the general purpose distributed computing technology described in this chapter, and
generally approach the problem as if real-time computing were equivalent to fast computing
which is false. While this seems to be common practice, some additions are required to deal
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with real-time constraints, e.g., scheduling algorithms may give preference to processes with
earlier deadlines, or processes holding a resource may be aborted if a process with a more
urgent deadline requires the resource. Results from the more demanding real-time systems
may also be applicable to these soft real-time systems.

3 Distributed Databases

Database systems have existed for many years providing significant benefits in high availabil-
ity and reliability, reduced costs, good performance, and ease of sharing information. Most
are built using what can be called a database architecture [34, 85]. See Figure 5. The ar-
chitecture includes a query language for users, a data model that describes the information
content of the database as seen by the users, a schema (the definition of the structure, se-
mantics and constraints on the use of the database), a mapping that describes the physical
storage structure used to implement the data model, a description of how the physical data
will be accessed, and, of course, the data (database) itself. All of these components are
then integrated into a collection of software which handles all accesses to the database. This
software is called the database management system (DBMS). The DBMS usually supports a
transaction model. In this section we discuss various transaction structures, access and con-
currency control, reliability, heterogeneity, efficiency techniques, and real-time distributed
databases.

3.1 Transaction Structures

A transaction is an abstraction that allows programmers to group a sequence of actions
on the database into a logical execution unit [17, 58, 65, 107]. Transactions either commit
or abort. If the transaction successfully completes all its work, the transaction commits.
A transaction which aborts does so without completing its operations and any effect of
executed actions must be undone. Transactions have four properties, known as the ACID
properties: atomicity, consistency, isolation and durability. Atomicity means that either the
entire transaction completes, or it is as if the transaction never executed. Consistency means
that the transaction maintains the integrity constraints of the database. Isolation means
that even if transactions execute concurrently, their results appear as if they were executed
in some serial order. Durability means that all changes made by a committed transaction are
permanent.

A distributed database is a single logical database, but it is physically distributed over
many sites (nodes). A distributed database management system (DDBMS) controls access
to the distributed data supporting the ACID properties but with the added complication
imposed by the physical distribution. For example, a user may issue a transaction which
updates various data that, transparent to the user, physically resides on many different
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nodes [118]. The software which supports the ACID properties of transactions must then
interact with all these nodes in a manner that is consistent with the ACID properties. This
usually requires supporting remote node slave transactions, distributed concurrency control,
recovery, and commit protocols, etc. There have been many papers and books written about
these basic aspects of distributed database management systems. See (15, 16, 17, 58, 85].
Rather than discussing these basic issues, we will discuss some of the extended transaction
models which have been recently developed. .

The traditional transaction model, while powerful because of its ability to mask the ef-
fects of failures and concurrency, has shortcomings when applied to complex applications
such as computer aided design, computer aided software engineering, distributed operating
systems, and multi-media databases. In these applications there is a need for greater func-
tionality and performance than can be achieved with traditional transactions. For example,
two programmers working on a joint programming project may wish for their transactions
to be cooperative and to see partial results of the other user, rather than being competitive
and isolated, properties exhibited by the traditional transaction model. Also, traditional
transactions only exploit very simple semantics such as read-only and write-only semantics
of the transactions in order to achieve greater concurrency and performance.

Many extended transaction models have been proposed to support the greater function-
ality and performance required by complex applications. These include nested transactions
[76,89], multi-level transactions [77, 11], cooperative transactions [60], compensating transac-
tions [61), recoverable communicating actions (128], split transactions [90], and sagas [44, 45].
Each of these transaction models has different semantics with respéct to visibility, consistency,
recovery and permanence in their attempt to be useful for various complex applications. As an
example, a nested transaction is composed of subtransactions that may execute concurrently.
Subtransactions are serializable with respect to siblings and other non-related transactions.
Subtransactions are failure atomic with respect to their parent transaction. A subtransaction
can abort without necessarily causing the parent to abort. The other extended models have
features such as relaxing serializability or failure atomicity, may have structures other than
hierarchical, and may exhibit different abort dependencies. The relationship and utility of
these models are currently being explored. In this regard, there has been the development of a
comprehensive and flexible framework, called ACTA [31], used to provide a formal description
and a reasoning procedure for the properties of all these extended transaction models.

There is another dimension along which traditional transactions have changed for complex
applications. Initially, traditional transactions were considered as performing simple read or
write operations on the database. However, there has been a merger of ideas from object based
programming and database systems, resulting in object based databases [14, 22, 73]. Here,
transactions and extended transactions perform higher level operations on objects which
reside in the database. Using object based databases provides more support for complex
applications than having to work with simple read and write operations.
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3.2 Access and Concurrency Control

Most access control in distributed databases is supported by the underlying operating system.
In particular, it is the operating system that verifies that a database user is who he claims to
be and that controls which user is allowed to read or write various data. Users are typically
grouped so that each group has the same rights. Maintaining and updating the various rights
assigned to each group is non-trivial, and is exacerbated when heterogeneous databases are
considered.

In a database system multiple transactions will be executing in parallel and may conflict
over the use of data. Protocols for resolving data access conflicts between transactions are
called concurrency control protocols [5, 15, 62, 67, 123]. The correctness of a concurrency
control protocol is usually based on the concept of serializability [16]. Serializability means
that the effect of a set of executed transactions (permitted to run in parallel) must be the
same as some serial execution of that set of transactions. In many cases and at all levels the
strict condition of serializability is not required. Relaxing this requirement can usually result
in access techniques that are more efficient in the sense of allowing more parallelism and
faster execution times. However, due to space limitations we will not discuss these extensions
here. See [129, 130].

Three major classes of concurrency control protocols are: locking, timestamp ordering
[95], and validation (also called the optimistic approach [62]). Locking is a well-known tech-
nique. In the database context the most common form of locking is called two-phase locking.
See [16] for a description of this protocol.

Timestamp ordering is an approach where all accesses to data are timestamped and then
some common rule is followed by all transactions in such a way as to ensure serializability
[123]). This technique can be useful at all levels of a system, especially if timestamps are
already being generated for other reasons such as to detect lost messages or failed hosts. A
variation of the timestamp ordering approach is the multiversion approach. This approach
is interesting because it integrates concurrency control with recovery. In this scheme, each
change to the database results in a new version. Concurrency control is enforced on a ver-
sion basis and old versions serve as checkpoints. Handling multiple versions efficiently is
accomplished by differential files [99].

Validation is a technique which permits unrestricted access to data items (resulting in no
blocking and hence fast access to data), but then checks for potential conflicts at the commit
point. The commit point is the time at which a transaction is sure that it will complete. This
approach is useful when few conflicts are expected because access is very fast and if most
transactions are validated (due to the few conflicts), then there is also little overhead due
to aborting any non-validated transactions. Most validation protocols assume a particular
recovery scheme and can also be considered to integrate concurrency control and recovery.
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3.3 Reliability

Recovery management in distributed databases is a complex process [58, 102, 103]. Recovery
is initiated due to problems such as invalid inputs, integrity violations, deadlocks, and node
and media failures. All of these faults, except node failures, are addressed by simple trans-
action rollback. Node failures require much more complicated solutions. All solutions are
based on data redundancy and make use of stable storage where past information concerning
the database has been saved and can survive failures.

It is the recovery manager component of database systems that is responsible for recovery.
Generally, the recovery manager must operate under six scenarios.

1. Under normal operation the recovery manager logs each transaction and its work, and at
transaction commit time checks transaction consistency, records the commit operation
on the log, and forces the log to stable storage.

2. If a transaction must be rolled back, the recovery manager performs the rollback to a
specific checkpoint, or completely aborts the transaction (essentially a rollback to the
beginning of the transaction).

3. If any database resource manager crashes, the recovery manager must obtain the proper
log records and restore the resource manager to the most recent committed state.

4. After a node crash, the recovery manager must restore the state of all the resource
managers at that node and resolve any outstanding distributed transactions that were
using that node at the time of the crash and were not able to be resolved due to the
crash.

5. The recovery manager is responsible for handling media recovery (such as a disk crash)
by using an update log and archive copies or copies from other nodes if replicated data
is supported by the system.

6. It is typical that distributed databases have recovery managers at each node which
cooperate to handle many of the previous scenarios. These recovery managers them-
selves may fail. Restart requires reintegrating a recovery manager into the set of active
recovery managers in the distributed system.

Actually supporting all of the above scenarios is difficult and requires sophisticated strate-
gies for what information is contained in a log, how and when to write the log, how to maintain
the log over a long time period, how to undo transaction operations, how to redo transaction
operations, how to utilize the archives, how and when to checkpoint, and how to interact
with concurrency control and commit processing.
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Many performance tradeoffs arise when implementing recovery management, e.g., how
often and how to take checkpoints. If frequent checkpoints are taken, then recovery is faster
and less work is lost. However, taking checkpoints too often significantly slows the “normal”
operation of the system. Another question arises in how to efficiently log the information
needed for recovery. For example, many systems perform a lazy commit where at commit
time all the log records are created but only pushed to disk at a later time. This reduces the
guarantees that the system can provide about the updates, but it improves performance.

3.4 Heterogeneity

As defined above, a distributed database is a single logical database, physically residing on
multiple nodes. For a distributed database system there is a single query language, data
model, schema and transaction management strategy. This is in contrast to a federated
database system which is a collection of autonomous database systems integrated for cooper-
ation. The autonomous systems may have identical query languages, data models, schemas
and transaction management strategies, or they may be heterogeneous along any or all of
these dimensions. The degree of integration varies from a single unified system constructed
with new models for query languages, data models, etc., built on top of the autonomous com-
ponents, to those systems with minimal interaction and without any unified models. These
latter systems are called multidatabase systems. Federated systems arise when databases
are developed independently, then need to be highly integrated. Multidatabase systems arise
when individual database management systems wish to retain a great degree of autonomy
and only provide minimal interaction.

Heterogeneity in database systems also arises from differences in underlying operating
systems or hardware, from differences in DBMSs, and from semantics of the data itself.
Several examples of these forms of heterogeneity follow.

Operating systems on different machines may support different file systems, naming con-
ventions and IPC. Hardware instruction sets, data formats, and processing components may
also be different at various nodes. Each of these may give rise to differences that must be
resolved for proper integration of the databases.

If DBMSs have different query languages, data models, or transaction strategies, then
problems arise. For example, differences in query languages may mean that some requests
become illegal when issued on data in the “other” database. Differences in data models arise
from many sources, including what structures each supports, e.g., relations versus record
types, and from how constraints are specified. One transaction strategy might employ two-
phase locking with after image logging, while another uses some form of optimistic concur-
rency control. .

Other problems arise from semantics of the data. Semantic heterogeneity is not well
understood and arises from differences in the meaning, definition, or interpretation of the
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related data in the various databases. For example, course grades may be defined on an
[A,B,C,D,F] scale in one database and on a numerical scale in another database. How do we
resolve the differences when a query fetches grades from both databases?

Solutions to the heterogeneity problem are usually difficult and costly both in development
costs in dollars and in run-time execution costs. Differences in query languages are usually
solved by mapping commands in one language to an equivalent set of commands in the other,
and vice versa. If more than two query languages are involved, then an intermediate language
is defined and mappings occur to and from this intermediate language. Mappings must be
defined for the data model and schema integration. For example, an integrated schema would
contain the description of the data described by all component schemas and the mappings
between them. It is also possible to restrict what data in a given database can be seen by
the federation of databases. This is sometimes called an export schema.

Solutions must also be developed for query decomposition and optimization, and global
transaction management in federated database systems. The complexities found here are
beyond this article. Interested readers should see [71, 101, 124].

3.5 Efficiency

Distributed database systems make use of many techniques for improving efficiency including:
distributed and local query optimization, various forms of buffering, lazy evaluation, disk
space allocation tailored to access requirements, the use of mapping caches, parallelism in
subtransactions, and non-serializability. Parallelism in subtransactions and non-serializability
have been mentioned before so these issues will not be discussed in this subsection. It is often
necessary for operating systems that support databases to be specifically tailored for database
functions, and if not, then the support provided by the operating system is usually inefficient.
See [119] for a discussion on this issue.

To obtain good performance in distributed databases, query optimization is critical.
Query optimization can be categorized as either heuristic where ad hoc rules transform the
original query into an equivalent query that can be processed more quickly, or systematic
where the estimated cost of various alternatives are computed using analytical cost models
that reflect the details of the physical distributed database. In relational databases, JOIN,
SELECTION, and PROJECTION are the most time consuming and frequent operations in
queries and hence most query optimizers deal with these operations. For example, a JOIN
is one of the most time consuming relational operators because the resultant size can be
equal to the product of the sizes of the original relations. The most common optimization
is to first perform PROJECTIONS and SELECTIONS to minimize intermediate relations
to be JOINED. In a distributed setting, minimizing the intermediate relations can also have
the effect of minimizing the amount of data that needs to be transferred across the network.
Specialized query optimization techniques also exist for statistical databases [84] and memory
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resident databases [133].

Supporting a database buffer (sometimes called a database cache) is one of the most
important efficiency techniques required [40, 96]. The database buffer manager acts to make
pages accessible in main memory (reading from the disk) and to coordinate writes to the disk.
In doing the reading and writing, it attempts to minimize I/O and to do as much I/O in a
lazy fashion as possible. One example of the lazy I/O would be that at transaction commit
time only the log records are forced to the disk, the commit completes and the actual data
records are written at a later time when the disk is idle or if forced for other reasons such as
a need for more buffer space. Part of the buffer managers’s task is to interact with one log
manager by writing to the log and to cooperate with the recovery manager. If done poorly,
disk I/O’s for logging can become a bottleneck.

Disk space allocation is another important consideration in attaining good database per-
formance. In general, the space allocation strategy should be such that fast address transla-
tion from logical block numbers to physical disk addresses can occur without any I/0, and
the space allocation should be done to support both direct and sequential access.

The full mapping of relations through multiple intermediate levels of abstractions (e.g.,
from relations, to segments, to OS files, to logical disks, to extents, to disk blocks) down to
the physical layer must be done efficiently. In fact, one should try to eliminate unnecessary
intermediate layers (still retaining data independence), and use various forms of mapping
caches to speed up the translations.

3.6 Real-Time

Real-time transaction systems are becoming increasingly important in a wide range of applica-
tions. One example of a real-time transaction system is a computer integrated manufacturing
system where the system keeps track of the state of physical machines, manages various pro-
cesses in the production line, and collects statistical data from manufacturing operations.
Transactions executing on the database may have deadlines in order to reflect, in a timely
manner, the state of manufacturing operations or to respond to the control messages from
operators. For instance, the information describing the current state of an object may need
to be updated before a team of robots can work on the object. The update transaction is
considered successful only if the data (the information) is changed consistently (in the view
of all the robots) and the update operation is done within the specified time period so that
all the robots can begin working with a consistent view of the situation. Other applications
of real-time database systems can be found in program trading in the stock market, radar
tracking systems, command and control systems, and air traffic control systems.

Real-time transaction processing is complex because it requires an integrated set of pro-
tocols that must not only satisfy database consistency requirements but also operate under
timing constraints [36, 37, 50, 69]. The algorithms and protocols that must be integrated
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include: cpu scheduling, concurrency control, conflict resolution, transaction restart, transac-
tion wakeup, deadlock, buffer management, and disk I/O scheduling [21, 23, 25, 26, 50, 100].
Each of these algorithms or protocols should directly-address the real-time constraints.

To date, work on real-time databases has investigated a centralized, secondary storage
real-time database [1, 2, 3]. As is usually required in traditional database systems, work so
far has required that all the real-time transaction operations maintain data consistency as
defined by serializability. Serializability may be relaxed in some real-time database systems,
depending on the application environment and data properties (105, 114, 69], but little actual
work has been done in this area. Serializability is enforced by using a real-time version of
either the two-phase locking protocol or optimistic concurrency control. Optimistic concur-
rency control has been shown to perform better than two-phase locking when integrated with
priority-driven CPU scheduling in real-time database systems [48, 49, 53].

In addition to timing constraints, in many real-time database applications, each transac-
tion imparts a value to the system, which is related to its criticalness and to when it completes
execution (relative to its deadline). In general, the selection of a value function depends on
the application [72]. To date, the value of a transaction has been modeled as a function of its
criticalness, start time, deadline, and the current system time. Here criticalness represents
the importance of transactions, while deadlines constitute the time constraints of real-time
transactions. Criticalness and deadline are two characteristics of real-time transactions and
they are not necessarily related. A transaction which has a short deadline does not imply that
it has high criticalness. Transactions with the same criticalness may have different deadlines
and transactions with the same deadline may have different criticalness values. Basically, the
higher the criticalness of a transaction, the larger its value to the system. It is imporatnt
to note that the value of a transaction is time-variant. A transaction which has missed its
deadline will not be as valuable to the system as it would be if it had completed before its
deadline.

Other important issues and results for real-time distributed databases include:

¢ In a real-time system, I/O scheduling is an important issue with respect to the system
performance. In order to minimize transaction loss probability, a good disk scheduling
algorithm should take into account not only the time constraint of a transaction, but
also the disk service time [25].

e Used for I/O, the earliest deadline discipline ignores the characteristics of disk service
time, and, therefore, does not perform well except when the I/0 load is low.

o Various conflict resolution protocols which directly address deadlines and criticalness

can have a important impact on performance over protocols that ignore such informa-
tion.
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* How can priority inversion (this refers to the situation where a high priority transaction
is blocked due to a low priority transaction holding a lock on a data item) be solved
(52, 106]?

o How can soft real-time transaction systems be interfaced to hard real-time components?
e How can real-time transactions themselves be guaranteed to meet hard deadlines?

¢ How will real-time buffering algorithms impact real-time optimistic concurrency control
[51]?

¢ How will semantics-based concurrency control techniques impact real-time performance?

o How will the algorithms and performance results be impacted when extended to a
distributed real-time system?

e How can correctness criteria other than serializability be exploited in real-time trans-
action systems?

4 Summary

Distributed computer systems began in the early 1970s with a few experimental systems.
Since that time tremendous progress has been made in many disciplines that support dis-
tributed computing. The progress has been so remarkable that DCSs are commonplace and
quite large. For example, the Internet has over 500,000 nodes on it. This chapter has dis-
cussed two of the areas that played a major role in this achievement: distributed operating
systems and distributed databases. For more information on distributed computing see the
following good books and surveys (4, 35, 41, 46, 58, 85, 113, 115, 121]. As mentioned in
the Introduction many areas of distributed computing could not be covered in this chapter.
One important area omitted is distributed file servers such as NFS and Andrew. For more
information on these and other distributed file servers see the survey article [68].
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6 Glossary

Access Control List. A model of protection where rights are maintained as a list associated
with each object.. See Capability List and Access Control Matrix.

Access Control Matrix. A model of protection where rows of the matrix represent domains
of execution and columns represent the objects in the system. The entries in the matrix
indicate the allowable operations each domain of execution can perform on each object.

Active Object Model. An object which has one or more execution activities (e.g., threads)
associated with it at all times. Operation invocations on the object use these resident threads
for execution.

Asynchronous Send. An interprocess communication primitive where the sending process
does not wait for a reply before continuing to execute. See Synchronous Send.

Atomic Broadcast. A communication primitive that supports the result that either all
hosts (or processes) receive the message, or none of them see the message. See Broadcasting.

Atomicity. A property of a transaction where either the entire transaction completes, or it
is as if the transaction never executed. See Transaction. '

Bidding. A distributed scheduling scheme that requests hosts to provide information in the
form of a bid as to how well that host can accept new work.

Broadcasting. Sending a message to all hosts or processes in the system. See Multicasting.

Capability List. A model of protection where rights are maintained as a list associated
with each execution domain. See Access Control List and Access Control Matrix.

Client-Server Model. A software architecture that includes server processes that provide
services and client processes that request services via well-defined interfaces. A particular
process can be both a server and a client process.

Consistency. A property of a transaction which means that the transaction maintains the
integrity of the database. See Transaction.

Copy-on-write. Data is delayed from being copied between address spaces until the desti-
nation actually requires it.
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Data Abstraction. A collection of information (data) and a set of operations on that
information.

Differential Files. A representation of a collection of data as the difference from some point
of reference. Used as a technique for storing large and volatile files.

Distributed Computing Environment (DCE). A computing environment that exploits
the potential of computer networks without the need to understand the underlying com-
plexity. This environment is to meet the needs of end users, system administrators, and
application developers.

Distributed Operating System. A native operating system that runs on and controls a
network of computers.

Distributed Shared Memory. The abstraction of shared memory in a physically non-
shared distributed system.

Durability. A property of a transaction which means that all changes made by a committed
transaction are permanent. See Transaction.

Federated Database System. A collection of autonomous database systems integrated
for purposes of cooperation.

Hard Real-Time. Tasks have deadlines or other timing constraints and serious conse-
quences could occur if a task misses a deadline. See Soft Real-Time.

Isolation. A property of a transactions which means that even if transactions execute con-

currently, their results appear as if they were executed. in some serial order. See Transaction
and Serializability.

Lazy Evaluation. A performance improvement technique which postpones taking an action
or even a part of an action until the results of that action (subaction) are actually required.

Lightweight Process. An efficiency technique that separates the address space and rights
from the execution activity. Most useful for parallel programs and multiprocessors.

Lightweight Remote Procedure Call. An efficiency technique to reduce the execution
time cost of Remote Procedure Calls when the processes happen to reside on the same host.

Multicasting. Sending a message to all members of a defined group. See Broadcasting.
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Nested Transaction. A transaction model that permits a transaction to be composed of
subtransactions which can fail without necessarily aborting the parent transaction.

Network Operating System. A layer of software added to local operating systems to
enable a distributed collection of computers to cooperate.

Network Partitioning. A failure situation where the communication network(s) connecting
the hosts of a distributed system have failed in such a manner that two or more independent
subnets are executing without being able to communicate with each other.

Object. An instantiation of a data abstraction. See Data Abstraction.

Passive Object. An object which has no execution activity assigned to it. The execution
activity gets mapped into the object upon invocation of operations of the object.

Process. A program in execution including the address space, the current state of the
computation, and various rights to which this program is entitled.

RAID. Redundant arrays of inexpensive disks to enhance I/O throughput and fault toler-
ance.

Real-Time Applications. Applications where tasks have specific deadlines or other timing
constraints such as periodic requirements.

Recoverable Communicating Actions. A complex transaction model to support long
and cooperative non-hierarchical computations involving communicating processes.

Remote Procedure Call. A synchronous communication method which provides the same
semantics as a procedure call, but it occurs across hosts in a distributed system.

Sagas. A complex transaction model for long lived activities consisting of a set of component
transactions which can commit as soon as they complete. If the saga aborts, committed

components are compensated.

Serializability. A correctness criterion which states that the effect of a set of executed
transactions must be the same as some serial execution of that set of transactions.

Soft Real-Time. In a soft real-time system tasks have deadlines or other timing constraints,
but no serious complications occur if a deadline is missed. See Hard Real-Time.
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Split Transactions. A complex transaction model where the splitting transaction delegates
the responsibility for aborting or committing changes made to a subset of objects it has
accessed to the split transaction.

Synchronous Send. An interprocess communication primitive where the sending process
waits for a reply before proceeding. See Asynchronous Send.

Timestamp Ordering. A concurrency control technique where all accesses to data are
timestamped and then some common rule is followed to ensure serializability. See Serializ-
ability.

Thread. Represents the execution activity of a process. Multiple threads can exist in one
process.

Transaction. An abstraction that groups a sequence of actions on a database into a logical
execution unit. Traditional transactions have four properties. See Atomicity, Consistency,
Isolation and Durability.

Validation. A concurrency control technique which permits unrestricted access to data
items, but then checks for potential conflicts at the transaction commit point.
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