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Abstract

Efficient learning requires strong generalization biases, which are often pro-
vided to learning agents through carefully designed input representations. Human
novices, however, are capable of using experience in a task to develop their own ex-
pert representations. This report is a dissertation proposal examining how agents
can acquire learning biases through the construction of abstract representations.
Efficient learning and planning call for representing specific experiences in terms
of abstract features and concepts that reflect the goals and dynamics of tasks.
Recent Al research has begun to incorporate established results from control the-
ory, which studies the interaction between agents and dynamical systems or envi-
ronments. Learning methods related to dynamic programming (DP) address the
problem of finding useful sequences of control actions, without detailed instruction
from a teacher. This report proposes guidelines for using function approzimation
to improve the scaling properties of DP-based learning, and it proposes two ap-
proaches for forming abstractions of tasks. The first approach uses abstract state
values to induce abstract classes of task states. The second approach seeks to
learn such state classes by constructing hierarchical connectionist networks whose
units act as abstract features or concepts. Both approaches are designed to facili-
tate control over memory resources, allowing learning to accelerate from early rote
memorization to more globally-scaled generalization.

This material is based upon work supported by the Air Force Office of Scientific
Research, Bolling AFB, under Grant AFOSR-89-0526 and by the National Science Foun-
dation under Grant ECS-8912623.
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1 Introduction

How does a novice become an expert in a task? How does one master what
was once difficult or impossible? And how does learning bootstrap new
knowledge and skills out of existing abilities? The research described in this
proposal explores such questions by focusing on the representations used by
agents in learning to perform tasks. In particular, I consider the problem
of enabling artificial agents to construct their own abstract representations
of tasks. Such representations simplify both learning and performance by
structuring information: crucial large-scale concepts and features of a task
become distinguishable from smaller-scale details.

Abstractions are necessary because time and memory are limited re-
sources. In performing a complex task, rarely can the full ramifications of
potential actions be apprehended before it becomes necessary to act. Deci-
sions must be made with respect to the most significant aspects of the overall
task. Consequently, an agent can benefit greatly from representations that
facilitate decision-making under time and memory constraints. Abstractions
support efficient performance by highlighting aspects of situations that are
of primary concern for achieving the agent’s goals.

Abstractions are also necessary for efficient learning. Normally, future
situations will never perfectly match ones faced in the past. A learner must
be able to extract essential qualities from specific experiences, thereby gen-
eralizing to other situations that are in some sense “similar.” Even when
identical experiences are repeated, it is usually infeasible to represent each
one as an isolated event. In most cases, therefore, a failure to generalize
adequately implies a failure to learn.

It is typically possible to generalize in diverse ways from any finite amount
of experience, even if extensive. A learning agent thus requires constraining
biases to ensure that its generalizations accord with the goals and dynamics
of its task. Learned abstractions should help provide such constraints because
they will have been tailored by experience to fit the given task. Abstractions
provide a vocabulary of features and concepts that should accelerate the
process of translating specific experiences, episodes, into a body of semantic
knowledge covering a broad range of task situations, including ones never
previously encountered.



Suitably designed abstractions can greatly improve the efficiency of both
learning and performance in a task. Unfortunately, creating such represen-
tations by hand remains, in most cases, a black art. The approaches in
this proposal seek to automatically construct abstract representations that
provide useful simplifications of tasks. The abstractions consists of Boolean
features and concepts formed through the experiences of a learning agent en-
gaged in a task. A principal consequence of the learned abstractions should
be the acquisition of high levels of performance at accelerated rates, beyond
what would be expected from agents relying solely on the representations
typically provided by human designers.

1.1 Learning and optimal control

The proposed research will be conducted within the context of learning to
perform optimal control tasks. Studying learning within an established frame-
work for control is a departure from the paradigm of learning from ezamples
which has dominated research in artificial intelligence (AI) in the areas of
both machine learning and connectionism (artificial neural networks). Barto
(1991; 1990) discusses the integration of learning and control, pointing out
issues that, until recently, have received relatively little attention. Learning
in optimal control directly addresses the problem of designing agents that can
learn to interact with dynamic systems and environments. Such an approach
also provides new perspectives on the research areas of both supervised and
unsupervised learning from examples.

Supervised tasks, where training examples are input-output pairs, view
learning as function approzimation, patiern recognition, or concept acquist-
tion. Unsupervised tasks, where training examples are inputs alone, view
learning as data clustering, data analysis, or feature/concept formation. Al-
though recent research has made significant contributions in these areas, a
concentrated focus on classifying bodies of data might cause one to lose sight
of important practical considerations. In classification, one necessarily makes
many implicit and explicit assumptions about the quality and presentation of
data and about the goals and strategies of learners. If research becomes re-
moved from real contexts in which learning must operate, then concern arises
that unrealistic assumptions could limit the usefulness any results achieved.
There is a risk of searching only “under lampposts.”
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Figure 1: The basic feedback control architecture. The agent seeks to
guide the system’s behavior along desirable state trajectories by executing
sequences of actions.

Control may be a case in point. Control tasks present both complexities
and opportunities for learning that have not been commonly addressed. In
particular, this proposal examines function approximation with an emphasis
on issues faced in an optimal control framework adopted for the research. Al-
though forming abstractions is consistent with a common theme in learning,
namely, transforming data representations to improve subsequent process-
ing (Dietterich, 1982; Hinton, 1989), it appears that most learning research
on function approximation methods fails to address the full range of issues
present in optimal control. Learning from examples is undeniably important,
but if agents are to learn autonomously to act in dynamic environments, then
optimal control issues need to be faced directly.

Optimal control Control tasks are characterized by the interaction be-
tween an agent (the controller) and a dynamic system or environment (the
plant). Figure 1 is a block diagram of the basic feedback control architecture.
The agent receives information about the state of the system and produces
control actions that influence the state transitions of the system. The agent’s
control objective is to produce action sequences that will guide the system’s
behavior along desired state trajectories. In optimal control, desired trajec-
tories extremize some performance measure relative to all other trajectories.
Optimal trajectories are typically unknown in advance of actually controlling
the system. Hence, not only must the agent learn how to employ actions to
direct the system, in optimal control it must also discover the best trajecto-
ries for the system to follow.



Although learning in this context can be very demanding, the problem is
ubiquitous. Agents should be able to learn autonomously, i.e., when there
is no teacher to provide feedback that is both timely and comprehensible
to the learner. For example, the game of chess is easily defined and has
specific goals. However, no oracle exists to point out the proper lines of play
in every situation. In a non-optimizing framework, a learner might try to
reproduce the demonstrated abilities of an expert. In general, however, one
does not wish to restrict learning only to cases in which an external entity
can, not only solve the task, but also provide the right level of instruction
(cf. Jordan & Rumelhart, 1990). It is often difficult to obtain good sources of
guidance for solving tasks which are nonetheless easy to formulate. A variety
of problems in areas ranging from motor control, robot navigation, and speech
production to game-playing, planning, and heuristic search appear to be
natural candidates for modeling as optimal control tasks.

Exploiting prior knowledge Unlike unsupervised tasks, learning in op-
timal control requires agents to find good solutions to specific problems, and,
unlike supervised tasks, agents must learn even if persistent, high-quality
feedback is unavailable. Given such stringent conditions, one may expect
learning in optimal control to be slow in general. Hence, straightforward
weak or tabula rasa approaches are unlikely to be practical for many tasks
of realistic complexity. Several lines of research, including the one in this
proposal, are directed toward dealing with such scaling issues.

One important approach is to use strong methods that enable agents to
efficiently acquire and exploit available expertise regarding a particular task.
Such methods can provide a foundation that greatly improves the efficiency of
learning in optimal control. For example, a learner might be given a model
or domain theory describing the controlled system. Models for simulating
systems enable look-ahead search or planning, processes that can be faster,
more comprehensive, and less risky than analogous exploration using real
systems. Perhaps more significantly, models and domain theories provide
knowledge about the structure and function of a system that can sometimes
be used in a reverse or retrospective manner to analyze or explain events
through techniques such as ezplenation-based learning (EBL) (Mitchell et al.,
1986; DeJong & Mooney, 1986; Laird et al., 1986; Minton et al., 1989), goal
regression (Waldinger, 1976), or gradient-estimation (Werbos, 1990; Jordan



& Jacobs, 1990; Jordan & Rumelhart, 1990; Bachrach, 1991; Gullapalli,
1991). Such analytical techniques can be efficient, resulting in high levels of
performance on the basis of relatively little training information.

In addition to knowledge about the system, another type of potentially
useful information consists of control or evaluatfon heuristics or other subop-
timal control or evaluation abilities, e.g., nominal controllers or value func-
tions that put the learner “in the right ballpark” for finding optimal strate-
gies. Finally, a learner might be efficiently led to discover complex control
strategies by solving sequences of progressively more difficult tasks in a man-
ner akin to the technique of shaping, which is used in animal learning. In
general, the use of task-specific information can be expected to greatly ac-
celerate learning processes, although a heavy dependence on such methods
might preclude the achievement of truly optimal performance. In many cases,
such a tradeoff would be more than acceptable as learning might be otherwise
impractical.

Nevertheless, explicitly providing agents with extensive knowledge of their
tasks will not be a major focus of the current research. Earlier work along
these lines, on a learning system called T2 (Yee et al., 1990), has led to the
approaches in this proposal which both generalize some of T2’s techniques
and address some of its anticipated scaling problems. The weak learning
approaches currently proposed should remain compatible with, and comple-
ment, knowledge-based approaches such as those used in T2. I hope that
eventually the two lines of research can be merged into a single approach en-
abling an agent facing a specific task to bootstrap itself from weak beginnings
to the use of strong learning techniques.

1.2 Evaluation and abstraction

The proposed research on forming abstractions is grounded in a mathemat-
ical theory for optimal control that is well-established in engineering fields
such as control theory and operations research. Tasks are posed as Markov
decision processes which can be optimized, in principle, via the technique
of dynamic programming (DP). This theory along with recently developed
learning methods based on DP are presented in Section 2. This framework
for learning and control encompasses many Al issues that have traditionally
been studied in relatively isolated areas, foremost among which are robotics,
planning, and learning.



Central in this framework is the problem of learning to predict the long-
term effects of control actions executed from various system states—without
entailing the costs of look-ahead search. DP-based methods can learn predic-
tions in the form of a value function which assigns to states, numeric values
reflecting the achievability of both immediaterand long-term performance
goals following from the states. Although in many circumstances DP-based
methods provably converge to state values reflecting optimal performance in
a task, the methods generally have poor scaling properties. Learning the
optimal values of states remains unacceptably slow for tasks with numer-
ous states and actions or with long delays between actions and their most
significant outcomes.

The proposed research seeks to enhance the scaling properties of DP-
based learning methods by focusing on the representations used to implement
and learn value functions. I present two approaches to forming abstract repre-
sentations of the states of a dynamical system, given goals for controlling the
system. The first approach uses abstract classes of values to induce abstract
classes of states. The second approach constructs hierarchical connectionist
networks composed of Boolean units. The aim is to develop units acting as
abstract features or concepts that represent states at multiple levels of ab-
straction. Learning based on abstract classes of values and states is expected
to improve the efficiency of generalization as well as the determination of
actions for performance.

Some assumptions about tasks are made to support the research on form-
ing abstractions. First, tasks are not “all or nothing,” i.e., they are simplifi-
able in useful ways, leading to a range of possible performance levels. Note
that even win-lose tasks such as chess recognize multiple levels of skill. Sec-
ond, abstractions for achieving the various performance levels are definable
directly from the given task representations. Although not strictly neces-
sary, this allows one to avoid the significant problem of uncovering hidden
state information. Finally, task experiences are sufficiently redundant that
abstractions can be built up in a statistical fashion (at least initially). This
provides weak learning methods with sufficient information about the specific
task being performed.

The proposed research is consistent with the view that a significant dif-
ference between novices and experts lies in their representations of tasks.
Novices tend to employ structural descriptions of tasks whereas experts em-



ploy functional ones composed of features and concepts that explicitly relate
structure to function in a task. This difference stems from basic computa-
tional economics. Computations employing meaningful features and concepts
should lead to important inferences much more efficiently than computations
based on unanalyzed structural representations, which often entail combina-
torial complexity. The costs of forming, storing, and accessing functional
representations are thus justified by the increased effectiveness of learning
and performance in a given task.

Without special constraints, it is impossible to determine a priori what
information about a task’s structure constitutes key functional features and
concepts and what constitutes minor detail. Such distinctions depend both
on the task goals and on the dynamics of the controlled system. Signifi-
cant features and concepts can thus only be determined by regressing goals
through system dynamics. Intelligent agents must be capable of learning
meaningful and effective task representations for themselves, and they must
be able to put such knowledge to practical use both in directly improving
performance and in improving their ability to do further learning.

Overview This proposal has two main parts. The first part, comprising
sections 2, 3, and 4, presents the context, issues, and guidelines for the re-
search. Section 2 describes the control and learning framework of Markov
decision processes and dynamic programming. The poor scaling properties
of DP-based learning methods will be addressed by using function approz-
imation to implement evaluation functions. Section 3 focuses on function
approximation and the special concerns of the control framework. Section 4
discusses the issue of ezploration in DP-based learning.

The second part of the proposal, comprising sections 5, 6, and 7, presents
two approaches for the efficient use of memory resources in DP-based learn-
ing. Section 5 first briefly describes the T2 system which is a partial basis for
the two approaches. Section 6 proposes using a hierarchy of abstract classes
of values to induce abstract classes of states for a task. Section 7 proposes
learning the abstract state classes by constructing hierarchical connection-
ist networks. This approach is based on an algorithm, called the address
algorithm, for training linear threshold units having variable-sized receptive
fields.



2 A Framework for Control and Learning

This section describes the theory of Markov decision processes and learn-
ing methods based on dynamic programming (DP). It primarily follows the
treatments in (Barto et al., 1990; Watkins, 1989; Dean & Wellman, 1991;
Ross, 1983). For presentations of Markov decision processes (henceforth
tasks) and DP from the mathematics and engineering literatures see (Bell-
man, 1957; Howard, 1960; Bellman & Dreyfus, 1962; Bellman, 1971; Ross,
1983; Bertsekas, 1987). Recent Al research has begun to bridge the gap be-
tween analytic theories of control and the forms of intelligent behavior and
computational approaches studied in Al and other cognitive sciences. The
machine learning and reinforcement learning methods presented in (Samuel,
1959; Samuel, 1967; Barto et al., 1983; Sutton, 1984; Sutton, 1988; Watkins,
1989; Kaelbling, 1990; Sutton, 1990) are related to Markov decision tasks and
the technique of DP. Integration of control theory and Al research in learning,
planning, and heuristic search is discussed in (Dean & Wellman, 1991; Miller
et al., 1990; Barto et al., 1991; Barto, 1990; Barto, 1991; Sutton, 1991).

2.1 Markov decision tasks

Markov decision tasks are formalized dynamical systems and performance
measures. Performance measures are procedures for evaluating the outputs
of a system over time. System outputs can be influenced through inputs
called control actions, and any method for selecting actions is called a control
policy®. The goal of a task is to acquire an executable policy that is optimal
with respect to a given performance measure. Before considering how optimal
policies are obtained, we define systems and performance measures.

System dynamics: states and actions A dynamical system is repre-
sented by a set of states X, a set of actions A, a set of state transitions,
i.e., ordered pairs of states, and for stochastic systems, a set of transition
probabilities. For simplicity, we consider only discrete-time formulations of
tasks comprising finite numbers of states and actions. Tasks commonly repre-
sented with continuous-valued variables can be formulated by using discrete,
finite approximations of the continuous values. The learning of abstractions

1Policies are also called control laws or sirategies.
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is expected to help compensate for the poor tradeoff between accuracy and
computational complexity which can afflict such discretization approaches.
Nevertheless, the representation of continuous values could arise as a sec-
ondary research issue.

Given finite states and actions, a system carf be represented as a stochas-
tic finite state automaton (FSA) whose states are the system states and
whose transition arcs are labeled by actions and transition probabilities. A
state might disallow particular actions, a condition represented by the lack
of transition arcs labeled with the disallowed actions. Let A(z) C A denote
the set of actions available in state z € X. When a system in state z receives
input action @ € A(z), an event denoted (z, a), the system transits to a new
state y € X via a process that may be stochastic. That is, (z,a) may gen-
erate y according to a fixed probability distribution associated with (z,a).
Let P,y(a) denote the probability that (z,a) yields state y in one time-step.
In the FSA representation of a deterministic system, each state-action (z, a)
corresponds to a single transition arc emanating from z. In a stochastic sys-
tem, (z,a) corresponds to a set of arcs from z to each state y € X, where
each arc is further associated with a transition probability P,,(a).

System dynamics constrain trajectories through the state space X. Usu-
ally, many trajectories are either impossible or have a very low probability of
occurrence. This is represented in an FSA by missing arcs or arcs associated
with low transition probabilities. System dynamics limit a controller’s ability
to navigate through the state space.

The preceding formulation implies that system dynamics satisfy the Markov
property which holds that state transition probabilities depend solely on a
single state-action pair (z,a). This means that at any given time, the future
behavior of a system depends only on the current state and the action taken.
All information about the system and its history that could affect future be-
havior is reflected in each state description, or, equivalently, any information
not represented by a state cannot affect behavior.

This strong condition on the formulation of systems significantly simpli-
fies the optimal control problem because in selecting an action, one need
only consider the current state, without regard to previously visited states.
Unfortunately, readily available information about a system, e.g., observable
structures, might not yield Markovian state descriptions. Such information,
sometimes called sensations, might fail to distinguish between two or more
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Figure 2: Learning control from payoffs. The agent receives numeric payoffs
as a function of its actions and the corresponding state transitions of the
system. The control objective is to maximize a function of all payoffs received
across a time horizon.

true system states, a condition which could lead to unaccountable system be-
havior. In FSA terms, sensations correspond to state labels, which need not
be unique. Common approaches for constructing Markovian state descrip-
tions from non-Markovian sensations include maintaining a history of past
sensations, e.g., using a tapped delay line, or using methods for uncovering
hidden state information (Rivest & Schapire, 1987; Schapire, 1988; Mozer &
Bachrach, 1991; Whitehead & Ballard, 1991). Although coping with hidden
state is an important and interesting issue, it is not a focus of the proposed
research; Markovian state descriptions are assumed.

Task performance: payoffs, horizons, and values A performance
measure for a task consists of numeric payoffs, associated with state transi-
tions, and a discount horizon, which specifies how payoffs are integrated over
time. Each time an agent executes an action it receives a payoff 2 which is

?Payoffs are also called rewards (possibly also with penaities), or costs, which are often
restricted to non-negative values but carry a negative connotation.
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a bounded, real-valued scalar. In general, a payoff depends upon the state,
the action, and the resulting state associated with a transition. Figure 2,
adapted from (Barto, 1991), shows a payoff component added to the basic
control architecture of Figure 1. We shall assume that payofls are stationary,
i.e., that they do not depend on time (unless states explicitly represent time).
Because payoffs may be generated stochastically from actions, one is usually
most concerned with the ezpected payoff of executing an action a in a state
z; this is denoted R(z,a).

Given feedback about the state of a system at each time step, policies
specify actions. The performance of a system controlled by policy 7 is mea-
sured by a value function V™ which maps states into real values, V™: X — R.
The value V™(z) of state z is computed from a discount horizon and the se-
quences of payoffs received by starting in z and executing 7.3 We consider
here only values determined from weighted sums of payoffs.

A common and simple type of discount horizon will be used in the current
research: a geometric sequence of the form

(1,7,72,...), 0<y<1l.

The value of any state z is then defined as

o0
V*(z) £ E, [E’Ytrt | 2o = 3’] ) (1)
=0

where z; and r, denote, respectively, the state and ensuing payoff at time ¢,
and E, is the expectation operator given that all actions are selected by =.
The value V™(z) is the infinite sum of discounted payoffs that can be expected
to accrue by starting in state = and following policy 7 forever. Although
geometric horizons are infinitely long, the effects of future payoffs diminish
exponentially in time due to the 4¢ discount factor. The time required for
‘future payoffs to become negligible depends upon the magnitude of 4 which
thus controls the effective “length” of a geometric horizon. :

Note that geometric discounting changes the scale of future payoffs but
not their relative magnitudes (Berry & Fristedt, 1985). This fact together

3By analogy with animal learning, payoffs can be viewed as primary reinforcements
and values as secondary ones. A state’s value is a prediction of achievable primary rein-
forcement.
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with stationary payoffs and the Markov property ensure the existence of a
stationary, deterministic policy that is optimal in a sense defined below (e.g.,
see Ross, 1983). Thus, one need only consider policies = that are functions
of states: 7 : X — A.

-

Q-values Instead of associating values with states, it sometimes proves
useful to associate them with state-actions (z,a) (Watkins, 1989). Because
the discount horizon is a geometric sequence, Equation (1) can be rewritten
in the recursive form

V™(z) = R(z,a)+7 Z;T Poy(a0) V™(y), ()

where a, is the action selected by * when 2z = 2. This equation shows that
the value of = is the sum of the expected immediate payoff of state-action
(®,a0) and the discounted value expected from succeeding states. Instead of
requiring the first action ao to be the one selected by =, following Watkins,
Equation (2) can be generalized by specifying the choice of action at time
t = 0 as a parameter a:

Q"(z,a) = R(z,a)+7 3 Poy(a) V*(y)

yeX

= R(:B,ao) + Y Z -Pwy(a) Q"(y,vr(y)) (3)

yeX

State-action values, called Q-values, provide for arbitrary initial actions, but
all subsequent actions are selected by =. This proposal discusses the problem
of learning state values with the understanding that, except as noted, the
generalization to learning Q-values is also intended.

Optimal policies Both state values and Q-values measure the perfor-
mance of policies over a given time horizon. An optimal policy 7 yields
values greater than or equal to those of any other policy. That is, 7™ is op-
timal if and only if for all policies = and all states ¢ € X, V™ (z) > V"(z).*
These maximal state values—the optimal values of states—are unique, but

*If payoffs are nonnegative costs, then optimal policies minimize values. The existence
of optimal policies requires a proof, which is not supplied here; see, e.g., (Ross, 1983) or
(Bertsekas, 1987).
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there may be different ways of attaining them, i.e., if policies 7, and r*, are
both optimal, then V™"t = V*"2 & V*. Thus for each Markov decision task,
there is a unique optimal value function V*.

Payoffs and discount horizons together implicitly define V* which, in turn,
defines the control objectives of a task. Such simple goal structures undoubt-
edly fail to encompass the complexity of biological agents’ representations of
goals which surely interact with other problem-solving representations. The
ramifications of current simplifications are difficult to anticipate, however,
because the theory of Markov decision tasks is so general. Many tasks with
complex goal structures (e.g., animal foraging) can nonetheless be formu-
lated. Further research within this framework should help clarify the inade-
quacies of current formulations of task goals (cf. Singh, 1991).

2.2  Learning optimal values via dynamic program-
ming

In general, long-term optimal control of dynamical systems requires an ex-
haustive search of the space of potential policies—a space which is expo-
nentially large in effective horizon length. In practice, one tries to exploit
structures in tasks to eliminate most suboptimal policies from consideration.
Unfortunately, many tasks lack sufficient structure for making a priori as-
sessments of the long-term performance of policies. One approach is to use
methods for discovering such structures on an individual-task basis. An-
other related approach is to use heuristics applicable to subclasses of tasks
although this usually entails giving up guarantees of optimality. Both of
these approaches are used in the proposed research.

The foundation for current proposals is the technique of dynamic pro-
gramming. DP exploits the Markov property of tasks to eliminate vast num-
bers of suboptimal policies from consideration by systematically organizing
the optimization process. DP is based on Bellman’s Principle of Optimal-
ity (Bellman, 1957, p. 83) which essentially holds that optimal policies can
be found by first optimizing single decisions and then working “backwards,”
optimizing successively earlier decisions in stages. DP is thus a recursive
process: each stage entails only a single-step optimization search, given the
results compiled from the previous stage. This procedure, which is orders
of magnitude more efficient that an unconstrained search, is based on the

13



Markov property of states: one can incrementally optimize in a backwards
fashion because preceding decisions can be safely ignored given the current
state. This is not true, of course, in the forward direction: current decisions
may surely depend upon future possibilities.

Whereas payoffs reflect only the immediatecosts and benefits of actions,
values accurately measure long-term performance. The intermediate results
of DP’s shallow optimization searches are compiled into value functions V;
which form a sequence leading ultimately to the optimal value function V*.
One version of this process, called value iteration (e.g., Howard, 1960), is
characterized by greedily backing up values:

Va(a) = mex th,a>+7§:P,y(a) Vi), (4)

where V; is the i** approximation of V*. This step estimates the value of a
state z by finding an action a that maximizes the expected immediate payoff
R(z,a) and the expected estimated value of subsequent states. The value
estimates of all states other than z are unchanged. This process is guaranteed
to converge, lim;_.o, V; = V*, provided the estimates of all states are backed
up sufficiently often (Bertsekas & Tsitsiklis, 1989; Barto et al., 1991).

V* leads to optimal policies in a straightforward manner. A policy 7~ is
optimal if and only if

e, (s) = ssgmax |R(z,0) + 75 Pole) V)|
a€A(z )

Any policy that selects actions greedily with respect to both immediate pay-
offs and V" is optimal.

Value iteration methods are the basic learning approaches employed in the
proposed research. Another DP approach, policy iteration (Howard, 1960),
involves the storage of intermediate policies 7; in addition to the value func-
tions V;. This raises issues regarding the interactions between value functions
and policies which, again, are important but are not the focus of current re-
search. Despite the advantages of value iteration over unconstrained searches
for optimal policies, the propagation of values occurs only on a state-by-state
basis, making this basic form of the approach impractical in many cases. One
therefore considers combining DP-based learning methods with methods for

14



efficiently propagating value information throughout the state space of a task.
Forming a basis for the efficient generalization of values is the central issue
addressed by the formation of abstract representations for tasks.

3 Function Approximatiorf in Control

An important motivation for the proposed research is the view that DP-
based methods can be scaled up by incorporating function approximation
techniques into the learning of the optimal value function V* (or @~). Func-
tion approximation is a ubiquitous problem that has been extensively studied
in numerous forms. The formulations most relevant to the current research
come from the areas of machine learning and connectionism in AI, which,
in turn, draw upon areas of mathematics and engineering such as statistical
pattern recognition, regularization theory, and digital signal processing.

In function approximation, information about a target function f* is usu-
ally supplied as a set or sequence of supervised training examples of the
form: (z, f*(z)), where z is an element of the function domain and f*(z) is
the target value of z. Training examples are combined with prior knowledge
or biases regarding f* to produce an approximating function f, which should
be close to f* according to some distance measure for functions such as the
L, norm. The approximation f is a member of a class of functions which
is determined by the approximation method; the class might or might not
contain f*.

Incorporating function approximation into the DP-learning framework is
not as straightforward as might first appear. For example, if V* is not within
an approximator’s function class, then what would constitute a desirable
approximation? Common answers come to mind, e.g., an approximation
that minimizes a standard error measure such as the sum of squared errors
over the training set or the difference between the approximation and V=
according to the L, norm. Although such criteria seem natural in function
approximation, they are not necessarily the best ones for the control objective
of finding an optimal policy with least effort. Indeed, it is seems that any
criteria regarding the appropriate approximation of V'~ should depend upon
its role in the derivation of the control policy: different derivation procedures
might place different demands on the approximation. An obvious goal is that
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an optimal policy should be derivable from an approximation of V* even if
V* itself is not implementable. However, it is not obvious how to translate
this goal into criteria governing the approximation of V*.

In the proposed research, I will avoid the problem of defining such ap-
proximation criteria by assuming that the class of approximating functions
contains V*. This could be achieved either through knowledge that V* lies
within a specific function class or through the use of a universal approzi-
mator. I will follow the latter approach: the approximators used will, for
practical purposes, be capable of implementing any possible optimal value
function.

3.1 Generalization, bias, and representation

One key to the efficient learning of V' is the generalization of value estimates.
Instead of learning values on state-by-state basis, generalizations amplify the
information provided by a single backup by automatically propagating re-
lated value information to sets of states. The accuracy and efficiency of
generalizations depend heavily on inductive biases (Mitchell, 1980)—cf. reg-
ularizers (Poggio & Girosi, 1990)—which are constraints determining which
states are affected and how their value estimates are modified. Strong biases
are precise, task-specific constraints from which one can obtain very broad,
highly accurate generalizations of single training examples. Weak biases are
general functional constraints, such as smoothness, which are applicable to
many otherwise diverse functions. Weak biases do not reliably lead to efficient
learning: only a large amount of training data can guarantee the accuracy
of an approximation to a specific target function. The ability to generalize
reliably, and hence learn efficiently, requires strong biases appropriate to the
specific task being addressed.

Unfortunately, as noted, the class of Markov decision tasks lacks suffi-
cient structure for deriving strong @ priori constraints on value functions.
In specific cases, one can supply prior knowledge by hand, e.g., using tech-
niques such as modeling, explanation-based generalization, gradient-estima-
tion, nominal functions, or shaping. But such solutions can be costly, re-
quiring substantial engineering effort whose results are often narrow in ap-
plication, and there is often little guarantee of success. Alternatively, one
can use weak methods or rely on heuristics that may fail drastically in some
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cases, either of which has obvious drawbacks. Finally, one can use methods
that start out weak and become strong during learning. That is, one can use
methods that acquire strong inductive biases (cf. Sutton, 1992).

Change of representation and inductive bias The learning of ab-
stractions yields generalization biases through change of representation. The
modification of inductive bias through change of representation or construc-
tive induction has been studied in many forms in machine learning (e.g.,
Rendell, 1985; Utgoff, 1986; Schlimmer & Granger, 1986; Benjamin et al.,
1988; Matheus, 1991). Direct comparisons between such approaches and
the approaches proposed below are somewhat difficult to make. Most pre-
vious approaches assume a supervised learning paradigm rather than the
reinforcement /optimization paradigm currently assumed. Also, much of the
work is formulated in terms of symbolic representations and logical opera-
tions, whereas I propose using function approximators that are closely related
to connectionist approaches to constructing distributed, subsymbolic repre-
sentations (Rumelhart et al., 1986; Smolensky, 1988; Hinton, 1989; Hinton,
1990).

The proposed research shares with Al projects such as SOAR (Laird et al.,
1986) and PRODIGY (Minton et al., 1989) an emphasis on learning within a
general problem-solving framework, however, the current framework is based
on a theory of optimal control developed by branches of mathematics and
engineering independent of Al. The theory gives a formal characterization of
dynamical systems and control processes, which although it was not specif-
ically designed for them, appears to encompass many cognitive tasks. Pre- -
vious work has investigated the integration of reinforcement learning with
this control framework (Watkins, 1989; Barto et al., 1990; Barto et al., 1991;
Sutton, 1991). The approaches in this proposal aim to bolster weak reinforce-
ment learning methods used in this control context by forming abstractions
that provide task-specific inductive biases.

Representational bias The representation of inputs is a crucial form
of bias. Countless learning approaches rely on representational similarity
as the basis of generalization. Inputs are assumed to have similar function
values if and only if they look similar. Inputs dissimilar in appearance are
often treated as functionally unrelated. Similarity means prozimity in the
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representation space of the function domain, as measured by a metric defined
on the space. Typically, a standard metric is chosen such as the Hamming
metric or Euclidean distance. The name similarity-based learning (SBL) is
applied to this class of approaches.

Standard similarity metrics are weak, i.e., they are not specialized for
a particular domain or task. For a specific application to have a hope of
success, the designer of representations for a domain must at least ensure
that inputs having similar representations also have similar values. That is,
form should not conceal function. This is a merely a necessary condition
without which SBL generalizations have no basis.

Practical success usually requires an additional, stronger condition: form
should reveal function. That is, one should strive to design input repre-
sentations that reflect, as explicitly as possible, all and only the features
of inputs that determine their functional behavior. Such “functional rep-
resentations” encode task-specific biases, and they enable simple syntactic
similarity metrics to produce accurate generalizations for a task. Such rep-
resentations can thus lead to efficient learning, but, far from being weak,
significant task-specific knowledge, and often ingenuity, is required to craft
functional representations appropriate for weak metrics.

For many tasks, the costs of designing representations are hidden because
traditional representations are compatible with standard generalization met-
rics. For example, in areas such as robotics where interactions with physical
systems are a primary concern, research relies on extensive knowledge of
physics, mechanics, and continuous mathematics. Thus, highly engineered
- representations already exist or are easy to derive for some tasks. It is note-
worthy that such “natural” representations may have taken centuries to de-
velop.

Research into the computational aspects of phenomena such as percep-
tion, language, and problem-solving, generally lacks the advantage of such
highly engineered representations. How, for example, should one gauge sim-
ilarity among items such as samples of speech, journal articles, or chess
boards—objects whose traditional structural representations are seldom com-
patible standard generalization metrics? Even in domains such as robotics,
standard metrics might only be partially effective: due to a lack of appropri-
ate structure, there often remains substantial room for improving traditional
representations in specific cases.
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Common input representations are often an inadequate basis for learning,
especially if the representations reflect only the structure of inputs (Saxena,
1991a; Saxena, 1991b). Good representations for a task must explicitly reflect
functional differences between inputs, differences which depend on system dy-
namics (e.g., Dayan, 1991). Good abstractions further reflect the importance
of such differences relative to task goals. Abstract representations are not
easily formed in general, but they are necessary for efficient learning and
performance.

3.2 Constraints on control learning

There are numerous possible methods for approximating a value function.
The choices can be narrowed somewhat by considering the constraints on
learning imposed by the control setting and the use of DP-based methods.
This section examines some special concerns which, taken together, have
received relatively little attention in learning research on function approxi-
mation.

For the following discussion, it will be useful to characterize approxima-
tion methods according to a spectrum whose extremes I call local and global,
as an indication of generalization behavior. Roughly speaking, in response to
an individual training example, a local method radically changes its approx-
imation f in a small neighborhood of the input, as defined by a similarity
metric. A global method produces an incremental change in f across a broad
region of the input domain. The prototypical local method is a lookup table;
for global methods, a prototype is the estimation of a constant value over a
domain, e.g., an average; another common global method is estimation of a
linear surface.

Table 1 lists a number of properties that are often, but not always, dis-
played by methods of each type. Local methods store and recall specific
training data quickly and accurately but tend to produce poor generaliza-
tions for novel regions of the input space. They can implement complex func-
tions but are correspondingly sensitive to noise in the data. Global methods
have complementary strengths and weaknesses. They can generalize well
but can be slow in memorizing specific data. They tend to be noise-resistant
but may only be able to implement simple functions. Finally, unlike most
global methods, local methods can sometimes distinguish between “recall”
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Generalization type: Local  Global

Prior knowledge weak strong
Fn. complexity high low
Noise handling overfits resists
Memory:
size large small
storage fast slow
recall fast (7) fast (7)

Table 1: Stereotypic properities of approximation methods: local vs. global.

and “prediction,” i.e., between output estimates supported by much training
data and estimates for which the training data is sparse (Moore, 1991; cf.
Kanerva, 1988).

Bounded generalization errors An important constraint on function
approximation in DP-based learning derives from the iterative process of
backing up values. Proofs that DP methods converge to V* assume that in
backing up the estimated value of a state, all other estimates remain un-
changed. On the contrary, approximation seeks learning efficiency through
generalization: the value estimates derived from specific experiences should
be generalized to a wide range of similar states (or state-actions). General-
ization errors, however, could thwart the convergence of the iterative backing
up process, making V* unachievable even if it is within an approximator’s
function class (Barto et al., 1991). If generalizations are sufficiently accurate,
of course, then there is no problem. Specifically, because convergence to V'~
depends only on the mazimum error in the value estimate of any state, if
generalization errors never exceed this maximum, then the guarantee of con-
vergence to V* is maintained.

Unfortunately, ensuring bounds on the magnitudes of generalization er-
rors would seem to require considerable knowledge of V*, knowledge which
would be unavailable in general. Constraining generalization so as to guar-
antee convergence to an appropriate approximation of V'~ might be the most
formidable approximation problem in DP-based learning. Approaches for
addressing this problem are outlined later in this section, but they are not
definitive solutions.
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Non-stationary training targets Learning a value function through
DP iterations is not a supervised task because there is no teacher to provide
the true target values of V*. Training examples consist of an input state
z and its value estimate which is recursively based, in part, on the current
approximation of V*, denoted V; (see Equatiofi 4). Because the value esti-
mates V; are continually changing, the “target values” of training backups
are non-stationary. Presumably, value estimates eventually converge to the
true optimal values, but before they do, they may be subject to a great deal
of noise from inaccurate estimates in the V; functions. An approximation
method must therefore track the moving target values while simultaneously
trying to filter out the noise—not a simple feat. Local methods can track
changing values but can just as easily track noise. Global methods can filter
out noise but can also be slow to adapt to moving targets, thereby negating
the benefits of generalization.

Dependent training inputs Another difficulty for learning in a control
framework is the fact that the training inputs, states x,, are not generated as
uniform samples from a fixed distribution, an assumption of many learning
methods (e.g., Valiant, 1984). On the contrary, due to system dynamics, new
input states are highly dependent on recently visited ones. Global methods
that “forget” data can have problems with dependent inputs if the sampling
rate from various regions of the input space is too low. Such methods will
tend to track recent inputs with all of their resources, replacing information
previously learned in one region with information from the current region.
This can be a problem, for example, in connectionist networks (Sutton, 1986)
where the phenomenon is called temporal crosstalk (Jacobs, 1990).

If an adequate system model is available, then a possible way to alleviate
input dependence is to generate independent training data off-line from the
model (cf. Sutton, 1990). Otherwise, one requires a learning method that
can concentrate on circumscribed regions of the state space without unduly
disrupting the learning conducted in other regions at other times. Local
methods offer this property at the price of poor generalization across regions
of the state space. A more desirable solution would efficiently bias gener-
alizations of new data without sacrificing what has been learned in regions
removed from the current context.
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3.3 Approach: memorize and consolidate

Control and DP constraints on learning suggest that approaches combining
aspects of both local and global approximation are required. The ultimate
goal of any method should be to form the mast parsimonious possible de-
scription of a task’s optimal value function because such a description is the
most likely to produce correct value estimates for future inputs. Formal jus-
tifications for this principle of Occam’s razor are derived from algorithmic
information theory, computational learning theory (Blumer et al., 1987), and
statistical estimation. See (Saxena, 1991b; Saxena, 1991a) for explication
and references. '

Concise approximations are often achieved through the imposition of
strong constraints, but such approaches are problematic for DP-based learn-
ing, particularly with regard to bounding generalization errors. The DP
framework calls for weak approaches that have local generalization behav-
ior, but such approaches usually do not lead to concise function descriptions
and do not scale well to large tasks. The goals and constraints presented
here thus argue for learning methods that accelerate. Learning should begin
weakly with very local generalization behavior, but biases should strengthen
through experience, leading eventually to large-scale generalization and con-
cise function descriptions.

This behavior can be attained through the management of approzimation
resources, which are structures such as terms in Boolean formulae, terms and
coefficients in polynomials, nodes in decision trees, memory locations in hash
tables, or units and weights in connectionist networks. Such structures are
essentially memory resources used for storing and propagating information.
Methods for DP-learning should begin with abundant, weakly-constrained
memory resources that are initially allocated liberally as training data is re-
ceived. Such an approach is essentially open hashing, i.e., the implementation
of a virtual lookup table covering the space of inputs.

Such memory-intensive approximation methods have been used in robotics
control tasks (Moore, 1990; Atkeson & Reinkensmeyer, 1990). One popular
type of approach, which is particularly close to lookup table implementa-
tions, is based on the CM AC approximator (Albus, 1975b; Albus, 1975a)
and its variations (Moody, 1989; Lane et al., 1991; see Dean & Wellman,
1991, secs. 9.4 & 9.7, for discussion and further references). Another popular
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type is based on k-d trees (Bentley, 1975; Omohundro, 1987). Memory-based
approaches usually use standard similarity metrics to produce local gener-
alizations, the effectiveness of which relies on the appropriateness of input
representations for their tasks. Such approaches also tend to rely on large
amounts of training data. If generalization biases are adapted at all, it is
usually through the adjustment of the similarity metric rather than the in-
put representations (e.g., Stanfill & Waltz, 1986). Current proposals do not
require that tasks be given input representations compatible with common
forms of similarity metrics. Change of representation offers great flexibil-
ity and power for improving similarity-based generalization across a diverse
range of domains.

Efficiency requires that, as learning progresses, strong generalization bi-
ases are acquired. A general approach is to increasingly constrain resources,
forcing fewer and fewer resources to implement larger and larger portions of
the approximation. Resources can be constrained by limiting the number and
ranges of free parameters, e.g., by eliminating terms, nodes, units, or weights
(e.g., Alpaydin, 1991; Mozer & Smolensky, 1989; Le Cun et al., 1990) or by
restricting parameter values (e.g., Weigend et al., 1991; Nowlan & Hinton,
To appear).

Handling learning constraints Strengthening initially weak biases dur-
ing learning addresses several issues in the DP framework. Although local
methods do not guarantee bounds on generalization errors, one expects them
to be small typically, and in any case such errors will be highly localized in
the state space during the early stages of learning. This should allow for
recovery from errors for commonly visited states. As subsequent learning
leads to generalizations at larger scales, any types of states receiving signifi-
cant generalization errors should have only low probabilities of being visited.
Furthermore, because control improves as learning progresses, the diversity
of state trajectories should shrink, thus further removing an agent from en-
counters with states having inaccurate value estimates. Localizing initial
generalizations should thus allow the DP backup process to converge to an
approximation of V* that is highly accurate for the types of states likely to
be visited during control.

Constraining resources should also help track non-stationary targets and
remove noisy estimates because eliminating allocated resources amounts to a
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form of forgetting. Value estimates that are “out of line” with current infor-
mation because they are old or have been corrupted by noise (e.g., through
generalization errors), will be replaced with more current estimates as the re-
sources used to represent the eccentric values are removed. This may also be
viewed as a process of smoothing: reducing resources reduces the complexity
of the functions that can be implemented.

Finally, beginning with a highly local method helps ensure that input
dependencies will not lead to temporal crosstalk, i.e., the usurpation of ap-
proximation resources allocated to regions of the state space not recently
visited. Subsequent deallocation of resources should strive to ensure that
some remaining resources still approximate V* in the affected regions.

Accommodating function complexity Although the goal of constrain-
ing resources is to produce concise descriptions of V*, an important advan-
tage of local methods is their ability to implement highly complex nonlinear
functions. This ability is especially needed when given state representations
lack explicit functional features. In general, purely structural state represen-
tations lead to complex optimal value functions because information about
task goals and system dynamics is absent. Therefore, it is important to
retain sufficient approximation resources to cover important regions of the
state space where V' has high complexity.

Not all approximation errors need be treated equally. Accurate value
estimates are most important for frequently visited regions of the state space
and for states affecting critical action selections. An action selection is critical
if different choices produce great differences in performance, i.e., if V* has
a steep gradient with respect to the available actions. It makes sense from
the “economic” standpoint of maximizing control performance to allocate
necessary resources for the approximation of V* for important states, at the
possible cost of losing accuracy in less important regions of the state space.

Sections 6 and 7 discuss specific approaches for implementing approxima-
tion methods with the properties outlined here. The basis for the approaches
is the use of abstract, hierarchical representations of values and states. Hi-
erarchies allow one to allocate representational resources in an intelligent
manner: increasing resources for important regions with high complexity,
restricting resources where they are unnecessary either because V= is well-
behaved or because the regions in question are relatively less important. As
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resources become increasingly restricted, one may consider that an approxi-
mation method is strengthening, i.e., that it is incorporating a stronger gen-
eralization bias for the specific task. This can also be viewed as abstracting
the task by transferring episodic information about individual states (state-
actions), into semantic “rules” for determining "values for classes or types of
states.

4 Exploration for Optimization

In addition to constraints on learning, optimal control introduces the goal of
ezploration. Recall that optimal state trajectories for a task are not provided
to an agent, which must consequently search through the space of policies.
DP implicitly organizes this search based on the Principle of Optimality,
but practical limitations on knowledge and computational resources often
force one to approximate the DP process. Consequently, in considering the
efficiency of function approximation methods, the issue of exploration must
not be overlooked.

In fact, there are at least two types of exploration problems in optimal
control. One type, which is not of concern here, seeks information about
the state transitions of a system or the payoffs of a task. By executing
actions whose immediate effects are imperfectly known, one can build or
improve models of system dynamics or payoffs (e.g., Barto & Singh, 1991;
Schmidhuber, 1991b; Thrun & Méller, To appear; see Thrun, To appear, for
an overview and further references). A second type of exploration, which
is of current concern, seeks information about the optimal values of states.
Even if complete, accurate models of dynamics and payoffs are available,
one must explore the consequences of actions whose effects on long-term
performance are not known with certainty. Such exploration is unavoidable
if optimality is to be guaranteed. In practice, of course, one often settles
for good performance which may be suboptimal. Unfortunately, practical
limitations can also make it difficult to exploit the DP optimization process
in its purest form.

Solving the DP recursion DP backups are recursive: the new value
estimate for a state z depends on the current estimates of z’s successors,
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Current Backed-up

estimate estimates
Viz) — Vi) Result
good «— good useless (usuaﬁy)
bad — bad uséless
good «— bad destructive
bad «— good useful

Table 2: Four types of value backups.

the V;(y) in Equation (4). Thus, like all recursive processes, DP implicitly
proceeds by first solving the base cases, those cases with no recursive portion.
“Base-case backups” are those for which the value estimates of succeeding
states V;(y) are accurate with high certainty. For example, many tasks have
terminal states (e.g., wins, losses, and draws in a game) whose values do
not depend on any succeeding states. Tasks without terminal states may
nevertheless have states whose optimal values are known with high accuracy:
e.g., states might be associated with very large payoffs that are certain to
~overwhelm the values of succeeding states. In general, the more difficult it
is to obtain base cases for a task, i.e., known optimal values for states, the
more difficult it is to exploit DP to organize the optimization process.

DP recursion then proceeds “backwards” from the base cases, forming
new value estimates from those whose recursive parts have been previously
solved. This propagates the true values of V* across the state space as quickly
as possible. Organizing backups in any other fashion could lead to wasted
effort. Table 2 characterizes four general types of backups. Replacing a good
optimal value estimate with a good one or replacing a bad estimate with
a bad one, makes virtually no progress in determining V*, and replacing a
good estimate with a bad one does obvious harm. Only the replacement of
a bad estimate with a good one is useful. Performing backups in the wrong
order can negate DP’s organization of the optimization process and may even
compound the problem by forcing one to explore specific action sequences
multiple times before accurate estimates of V* are ever obtained.

Exploration: control of uncertainty Exploration for optimization is
simply the problem of actually implementing DP backups in the manner
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implied by the Principle of Optimality. The goal is to maximize the frequency
of useful backups and minimize, especially, the frequency of destructive ones.
Determining the utility of a backup requires knowledge of the accuracies
of value estimates, or, at least, knowledge of their relative accuracies. An
approximation method capable of supplying such information could thus be
very beneficial.

Two facets of the exploration problem are (a) obtaining information about
the accuracies of value estimates and (b) propagating the information. The
best source of accurate value estimates for a task usually comes from its
definition which often includes setting fixed values for special states such
as goal states or hazards. Such values define the “boundary conditions”
of a task, and the DP process is used to propagate these optimal value
constraints throughout the remaining state space. Heuristics might also be
used to determine the accuracy of values. For example, if an agent has
extensive experience in a region of state space (where regions are determined
by system dynamics) and the values of various states within the region are
stable, then there is reason to believe that the values are close to the optimal
ones. Of course, there will always remain some chance that a future course
of action could significantly alter the estimates.

Propagating the accuracies of estimates also has two aspects. The first
is the mechanism by which such information is transferred during a backup.
In addition to backing up the value estimates themselves, a mechanism is
needed for backing up accuracy information. For example, one could keep
information on variance together with the estimates (e.g., Kaelbling, 1990).
Alternatively, one could maintain a separate function that gauges the ac-
curacy of the value function estimates (cf. Schmidhuber, 1991a; Thrun &
Moller, To appear).

The second aspect of propagating accuracy is tied to the issue of orga-
nizing backups, i.e., the issue of how the accuracy information is actually
used to approximate DP. The exploration problem is exacerbated if it must
be conducted on a real system, i.e., without the benefit of models of system
dynamics and task payoffs. Actually executing exploratory actions, which
generally include actions expected to lead to poor results, could seriously
degrade control performance. This poses the classic tradeoff between control
and estimation, i.e., between acting to optimize performance according to
current estimates and acting to gain information that might improve those
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estimates (cf. Berry & Fristedt, 1985).

If sufficiently accurate models of transition dynamics and payoffs are avail-
able, exploratory actions can be simulated, leaving one free to execute on
the real system the actions currently deemed best (cf. certainty equivalence).
Additional benefits of models often include the ability to explore faster than
real time and to explore in any region of the state space at any time (Sutton,
1990). Of course, attaining such models might itself entail significant costs,
possibly including the first type of exploration conducted on a real system. If
exploration of either type must be conducted on a real system, there might
be a conservative tendency in executing exploratory actions, which might
decrease the likelihood of finding truly optimal policies.

Exploration heuristics If a DP task provides sufficient structure, heuris-
tic exploration strategies can improve learning efficiency. For example, Peng
and Williams (Submitted) augment Sutton’s (1990) Dyna-Q system, using
a “surprise heuristic” to preferentially select backups for states whose pre-
dicted Q-values differ greatly from their backed up estimates. They show that
their Dyna-Q-queue system, facing grid-world navigation tasks, converges to
optimal performance faster using the surprise heuristic than using a simple
random exploration strategy.®

Referring again to Table 2, the surprise heuristic suppresses good-good
backups and bad-bad backups for which there is little “surprise,” and it ex-
ploits special features of the task and learner. Destructive bad-good backups,
which can also be surprising, seldom arise in Dyna-Q-queue because the
initial Q-value function is zero everywhere, and there is no generalization:
Q-functions are implemented by lookup tables. Thus, if a surprise occurs, it
is most likely because a low-valued state should truly have a higher value.
This structure also allows the surprise heuristic to eliminate many bad-bad
backups for which bad predictions are consistent with bad backed-up esti-
mates. Such cases are common in Dyna-Q-queue whereas, in general, bad-bad
backups can also be surprising.

In structured learning situations, the use of appropriate exploration heuris-
tics (e.g., see also Kaelbling, 1990; Moore, 1990, 1991) can yield substantial

5The surprise strategy is applied only to a partially developed model of a grid-world en-
vironment. On the real environment, random exploration alone is used both for developing
the partial model and for additional Q-learning.
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improvements over more expedient strategies such as introducing random
noise into actions. Although heuristics inappropriately applied could be far
worse than random strategies, it is possible that many tasks of practical in-
terest are compatible with straightforward exploration strategies. Finally,
note that if certainty estimates are available for a function approximator,
then good-good backups can also be useful, if they change an uncertain es-
timate into a certain one. Due to the problem of exploration, knowledge
about the accuracies of estimates is almost as important as the estimates
themselves—a point rarely stressed in learning research on function approx-
imation. The analysis presented here emphasizes both the difficulty of the
exploration problem in general and the gains that can be achieved by con-
sidering structured subclasses of Markov decision tasks.

5 Features of the T2 System

We have seen how a class of optimal control tasks can be formalized as
Markov decision tasks and how they can be solved in principle via dynamic
~ programming, which forms the optimal value functions of tasks. We have ex-
amined issues in approximating optimal value functions, focusing on special
learning constraints, generalization, representation, and exploration. From
weak beginnings, agents should be capable of automatically acquiring strong
generalization biases appropriate for their specific tasks. This proposal fo-
cuses on the acquisition of representational biases through the formation of
abstractions. In particular, learned abstractions are expected to significantly
improve the efficiency of DP-based learning methods. Sections 6 and 7 each
propose approaches addressing these goals. Because significant aspects of the
approaches originated from earlier work on a game-playing system, T2, this
section briefly discusses the relevant aspects of that work as background.

The T2 system  Precursors of some of the proposals presented in Sec-
tions 6 and 7 were implemented in a learning system called T2 (Yee et al.,
1990), which formed concepts and features for evaluating states arising in
two-person games. T2 combined a DP-based method similar to the one
used in Samuel’s checker-playing system (Samuel, 1959) with more recently
developed generalization methods from machine learning, namely ezplana-
tion-based generalization (EBG) (Mitchell et al., 1986) and goal regression
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Figure 3: The structure of value classes in T2. Each value class contains
states having a specific value. Each class definition is composed of Boolean
features, structured as multilevel counterfactuals.

(Waldinger, 1976). Samuel first used a lookup table to approximate the
value function (he later used polynomials whose terms corresponded to hand-
crafted features of the game). T2 enhanced the efficiency of the lookup table
approach by integrating an explicit generalization step into the DP backup
process. It was tested on Tic-tac-toe. Instead of caching specific Tic-tac-
toe boards into a lookup table, T2, relying on an explicit model of its task,
applied EBG and goal regression to to produce accurate, large-scale general-
izations individual boards. The generalizations were then cached in memory.
The application of domain knowledge reduced the size of T2’s value func-
tion representation from that of a full lookup table and, more importantly,
accelerated the DP learning process.

Representing values The approaches described in Sections 6 and 7 draw
upon aspects of T2’s implementation of the value function. Figure 3 illus-
trates the type of structures used in T2 to determine values for states. Each
possible state value is represented by a tree whose nodes are Boolean fea-
tures representing subsets of states. The value of a state is determined by
comparing it to the features of the trees. When a match is found, the state
is deemed to have the value represented by the tree, i.e., to be in the tree’s
value class. The matching of states to value classes requires recursively test-
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ing both positive and negative features (depicted as black and white nodes
respectively) beginning from the roots of the value class trees. A match
occurs when a positive feature is satisfied and none of its negative children
are recursively matched. Negative features represent exceptions to their pos-
itive parent’s “rule.” The structure of the value trees thus correspond to
multilevel counterfactuals (Vere, 1980), in which alternating tree levels have
features describing either positive or negative (exceptional) instances of the
value class.

The first proposed extension of T2 generalizes the idea of value classes.
Instead of defining a value class for a single value, a class may represent a
range of values. The range of a value class can be broad or narrow, and it
can overlap the ranges of other classes. Thus, a hierarchy of value classes
can be defined. One expected advantage of this approach over T2’s imple-
mentation of value classes is that the learning of the class definitions will
be more efficient because the definition of one class is distributed, partially
overlapping with many other classes. A second advantage should be the cre-
ation of abstract features for representing states which should be induced
by the definitions of the abstract value classes, i.e., the classes representing
large ranges of values. Overall, using abstract value classes should lead to
better scaling properties than T2’s single-value classes. In particular, they
should support the learning of continuous values much better than T2’s dis-
crete representation. This proposal for representing values is discussed more
thoroughly in Section 6.

The second proposed extemsion of T2 generalizes the class definitions
which, in T2, were essentially lookup tables. Value class definitions are
Boolean functions defined over a state space. Section 7 describes a new
approach for approximating Boolean functions as hierarchical connectionist
networks. Although it is based on a learning rule developed independently of
the T2 work, the overall approximation approach will be specifically designed
for compatibility with DP-learning tasks as previously outlined. That is, the
approximation approach will try to exhibit the properties deemed necessary
and desirable for function approximation in the control and learning frame-
work. Additionally, the approach for approximating Boolean functions will
likely incorporate the counterfactual structures used in T2’s value class defi-
nitions. Work with the T2 system suggests that the counterfactual structures
support good generalization and are efficient to evaluate during recognition.
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Thus, they are promising structures for defining abstraction hierarchies.

The primary goal of the T2 work was to develop a general method for ex-
ploiting task-specific knowledge to enhance the efficiency of DP-based learn-
ing methods. Although the current emphasis is on weak approaches, it is
hoped that the abstract features formed using the proposed approaches will
provide a useful basis for the higher-level, explanation-based reasoning pro-
cesses used in T2, as well as other methods for exploiting knowledge. Synthe-
sizing strong and weak approaches to generalization should be a promising
line for future research, beyond the current proposals.

6 Top-down Abstraction: Value Hierarchies

Dynamic programming exploits the Markov property of system states to
optimize backwards, working from the end of a task toward its beginning.
The idea that states allow one to ignore the past is both subtle and powerful.
It is common to view dynamical systems as existing “out there” in the world,
intrinsically characterized by their states and state transitions. In truth, what
determines states, and therefore systems, depends on what information an
agent wants to predict and control. States are simply the information of
primary interest and any secondary information necessary for predicting and
controlling the first. Logically, goals precede systems.

Given this observation, determining values for states seems somewhat
backward. A more profound issue might be: given goals for controlling cer-
tain types of feedback, how should an agent define states? This section
describes an approach for learning optimal value functions which is based on
the view that one should use values to determine abstract state representa-
tions.

Value hierarchies I propose using a hierarchy of abstract value classes
to induce abstractions over the state space of a task. An abstract value class
can be an arbitrary set of values in general, but we restrict attention here
to classes representing intervals of integers or reals. Each class represents
a single, fixed interval which may differ from other classes in size and may
overlap some of them. Value classes are defined over the given state space of
a task: a class contains every state z whose optimal value V*(z) lies within
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Figure 4: A hierarchy of abstract value classes representing the interval
[0.0,1.0]. The hierarchy is a binary tree lying on its side. Each tree node
is an abstract value class representing the interval depicted in black. White
intervals denote the states that a class must correctly exclude from its inter-
val. Grey intervals denote don’t care’s, i.e., states for which the class is not
responsible. Don’t care’s may be classified in any manner. The value of a
state is determined through a sequence of classes proceeding from the root
to a leaf.

the class interval. The value classes of T2 are simply abstract value classes
representing single-integer “intervals.”

Because value classes may overlap, the subset relation partially orders
them, forming a hierarchy from the most inclusive, i.e., abstract, classes to
the most exclusive or specific classes. For simplicity in the following dis-
cussion, we present hierarchies of value classes, value hierarchies, structured
as binary trees. In the proposed research it is possible that more general
hierarchical structures will also be investigated, e.g., lattices.

A single hierarchy represents the values of all states in a space X which are
assumed to lie within the global interval spanned by the hierarchy. Figure 4
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shows a value hierarchy representing the global real interval [0.0,1.0]. This
hierarchy is a binary tree lying on its side with the root value class at the
left. Given a hierarchy, the exact value of a state is represented in general by
a sequence of classes proceeding from abstract value classes toward specific
ones. Such a scheme is used, for example, in thé& standard numbering system
where exact value of, say, 42 is first within the integer interval [40,49] and
only then further resolved to the third position 42. This same principle is
used to represent values in a value hierarchy, but the base is binary instead
of decimal. In Figure 4, for example, each level of the hierarchy is analogous
to a “bit place” in the binary representation of values. The value of a state
is determined by proceeding from the root class toward the leaves, branching
right (down) if z is in a node’s class, branching left (up) if it is not.

Top-down abstraction Abstract value classes induce abstract state clas-
ses, i.e., the states belonging in a given value class form an abstract class
of states. This approach to the abstraction of states is the reverse of many
approaches, e.g., Michie & Chambers’ BOXES scheme (1968), where the basis
for abstracting states is a similarity metric defined a priori over the input
state space. Such approaches operate bottom-up, learning outputs for coarse-
coded inputs. The values learned for coarse-coded states will approximate
the true values of true states if states were originally abstracted appropriately.
Success, again, depends on either a strong similarity metric or an appropriate
input representation.

The value hierarchy approach works top-down, defining an a prior: coarse
coding of output values. Learning then defines state abstractions correspond-
ing to the abstract value classes. Top-down abstraction, proceeding from
output values to input states, should be a preferable approach in general be-
cause it allows the goals and dynamics of a task to determine which regions
of the state space to partition coarsely and which to partition finely.

Rationale Learning values through hierarchies is intended to help DP-
based methods scale to tasks with large state spaces and/or long delays
between actions and their significant payoffs, e.g., the achievement of goal
states. The rationale for the approach is that the information in specific
value backup can be generalized more effectively when it is in a distributed,
hierarchical form. In such a value backup, learning is distributed across sev-
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eral value classes ranging from abstract to specific ones. The more abstract
a class is, the more likely it is to participate in many backups. Thus, the
most abstract classes will receive a disproportionate share of the training
information. This is desirable because they represent the most significant,
high-order, bits of states’ values—the most important bits to recognize cor-
rectly.

Learning the “high-order” value classes should be efficient not only be-
cause they receive much training data, but also because no class needs to
learn the exact values of any states. Because the most abstract classes repre-
sent relatively large ranges of values, one should often be able to exploit very
general information to determine accurate classifications for many states. In
the current formulation using binary trees, the learning of fine distinctions
may still be necessary for some states, especially perhaps for states whose
values are close to the boundary of a class interval. Formulations of lattice-
structured hierarchies to alleviate this sensitivity have been investigated, and
may be used in the research. In any case, the learning of each abstract value
class is, by itself, a much less constrained problem than learning the exact
values of states, and for the most abstract states this should lead to efficient
learning of the value information that is of greatest importance for attaining
even moderate levels of performance in a task.

Learning the low-order value classes, which represent the most specific
value intervals, is also expected to be efficient. Although they do not gen-
erally receive as much training information as the more abstract classes, the
more specific classes’ learning problems are correspondingly less constrained.
A specific class is only responsible for correctly classifying a portion of the
states classified by its parent. Ideally in a binary tree structure, each child
would receive about one-half of its parent’s responsibility. The states for
which a class is not responsible, are don’t care’s; they may be classified in
any manner. Thus, the more specific a class is, the more freedom it has to
exploit don’t care’s in forming generalizations. This should allow more effi-
cient global approximation methods, e.g., linear ones, to succeed in learning
the specific classes.

From the standpoint of performance, it is significant that the most quickly
learned value classes are expected are the most abstract ones, e.g., those near
the root of a tree structure. These classes provide the most important value
information for performing reasonably well in a task because they represent
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the high-order (“low frequency”) distinctions between states. It should be
possible to propagate such coarse value information much faster and further
than the fine distinctions represented by the low-order value classes. Because
each value class is only a partial indicator of any state’s value, its learning
task should be relatively easy. Moreover, genefalization is enhanced by the
large don’t care regions in the domains of many classes. When values are
represented by a sequence of abstract classes, the complete learning of specific
values—i.e., learning to recognize all and only the states with those values—
entails the partial learning of many related values, with greater transfer at the
more abstract levels of representation. Finally, in addition to generalization
it should be possible to propagate abstract value information by using more
extensive backups, e.g., by using “differential eligibility traces” (cf. Sutton,
1988), where in performing backups along an action sequence, abstract values
are eligible further backward than specific values.

Discussion Forming abstractions top-down, from values to states, is nec-
essary without strong prior knowledge about a given task. Given represen-
tations for any two system states for a task, the only basis for judging their
similarity are their relationships to the goals of the task, as given by a per-
formance measure for example, and the relative costs of transforming the
states in desired ways, which depends on system dynamics. A weak learn-
ing system, therefore, can only determine appropriate groupings of states by
regressing values backward through the dynamic structure of the controlled
system. The efficiency of this process can, of course, be greatly affected
by the prior quality of the given input representation of states. Weak ap-
proaches cannot depend upon being given good input representations, but
when they are available, it would be good to exploit them to make learning
more efficient.

Function approximation is required to learn the mappings from states
to the classes of a value hierarchy, and a hierarchy itself begins to address
the crucial issue of controlling approximation resources. Note that the range
of values of V* for a task might not require representation at a uniform
resolution. This is shown in Figure 4 by the varying widths of value intervals
across the global interval [0.0,1.0]. In a value hierarchy, it should be possible
to allocate more levels of specific classes for critical subranges of values,
again, possibly at the cost of reducing resolution for other subranges. An
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exact algorithm for dynamically allocating value classes will be pursued in
the proposed research. Such considerations also raise interesting possibilities
for representing and learning the relative values of states rather than their
absolute values. This question, too, will be studied. Finally, it seems clear
that priority in the allocation of function appréximation resources generally
goes to the more abstract value classes with more specific classes receiving
resources to the extent that they are available and that allocating them is
Jjustified by improved performance.

7 Address Learning: Units and Networks

Each class in a value hierarchy requires a class-membership definition, i.e.,
a characteristic function, that covers the given states of a task. Figure 5
shows a class definition implemented as a connectionist network. The collec-
tion of all such class definitions for a hierarchy constitute a value function
for a task. Learning V* using a value hierarchy, therefore, entails learning
class definitions that together form the optimal value mapping from states
to the value classes. Any learning approach used should address the function
approximation and exploration issues presented in Sections 3 and 4.

This section outlines a novel approach for approximating Boolean func-
tions, which will be used to learn value class definitions. A Boolean function
f:{0,1}" — {0,1} is implemented as a multilayer feed-forward network
composed of linear threshold units (LTU’s) (e.g., see Nilsson, 1965; Duda &
Hart, 1973; Minsky & Papert, 1969). (Nilsson, 1965; Duda & Hart, 1973;
Minsky & Papert, 1969) A new rule for training LTU’s, called the address
rule, is presented, and an approach is outlined for constructing hierarchical
networks of units that implement the address rule, henceforth called address
units. Both the address rule and network construction methods are incre-
mental.

Although the approach implements supervised learning from examples,
it is specifically designed for the current control and DP-based learning
framework. In particular, the approach will facilitate control over general-
ization behavior through the management of approximation resources, fore-
most among which are Address units. Address units are LTU’s with proper-
ties similar to local basis functions (Poggio & Girosi, 1989; Kanerva, 1988),
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states —— value class

Figure 5: A value class defined by a connectionist network. A characteristic
function for each value class is learned by constructing a hierarchical network
of linear threshold units.

i.e., they have receptive fields that can be tuned to cover local or global
regions of an input space. Hierarchical networks of address units will be
used to control resources—units and connections—in a manner analogous to
value hierarchies. Hierarchical networks will be composed of address units
with large receptive fields at the “top” of the hierarchy and units with very
small, local receptive fields at the bottom (cf. Figure 5). The local units are
used to correct the errors of the more global units in a manner analogous
to the counterfactual (exception-based) structure of value trees used in T2.
Thus, as a value hierarchy allows one to place attention and resources on
important abstract value classes above the lower-order details, so, too, a hi-
erarchical network allows one to manage, for an individual value class, the
inevitable tradeoff between approximation accuracy/complexity and the use
of resources, e.g., address units. Finally, because the approach has features
similar to memory-based instance-based or approaches, it might be possible
to provide confidence estimates on values, which could be useful for both ef-
ficient exploration and greater robustness in value hierarchy representations.
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Figure 6: A linear discriminant with no false-positive errors. The instance
producing the maximum activation, the address, is determined by the signs
of the weights w;. The weight magnitudes determine distances from the
address. The threshold determines the hyper-plane which is set so as to
exclude the negative instance nearest the address (011 in the figure).

7.1 The Address rule

The address rule is somewhat unusual among LT U learning rules (cf. the per-
ceptron rule) in that its goal is to form an optimal linear discriminant that
produces no false-positive errors, i.e., a unit tries to recognize a maximal
number of inputs from a particular classes while maintaining 100% accu-
racy on its positive identifications (i.e., without commission errors). Because
many classification tasks are not linearly separable, false-negative (omission)
errors must be permitted. Visualizing this goal may help in understanding
how the address rule tries to achieve it. Figure 6 depicts an LTU discrimi-
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nant formed for a non-separable Boolean function on a 3-dimensional input
space. The discriminant, which is a plane through the space, identifies three
positive instances: thie three solid black nodes. Because the function is non-
separable, the remaining positive instance, 001, cannot be included without
also including at least one of the negative instarces, represented by the white
nodes. Thus, this is an optimal linear discriminant for this problem, given
the restriction against false-positive errors.

For training LTU’s, Frean (1990a) describes the whittling rule, which is
a variation of the thermal rule. The whittling rule also tries to develop a
unit having no false-positive errors. One difference between the whittling
and address rules is that the whittling rule is error-driven, modifying a unit’s
weights only if a misclassification has occurred, whereas the address rule
adapts weights on every training instance regardless of whether the instance
is currently classified correctly. It is not yet known how the two rules com-
pare in performance. Presumably, each will have its respective strengths and
weaknesses depending upon the type of discrimination task and the presen-
tation of training data. Because the address rule learns on all the data it
encounters, it may be more efficient in certain cases. Empirical evaluations
of the performance of the address rule will be conducted.

In focusing attention on smaller and smaller regions of the input space,
both the address and whittling/thermal rules are related to the density es-
timation technique of Parzen windows (Duda & Hart, 1973). Other related
work includes Frean’s (1990b) Upstart algorithm and Gallant’s methods for
training LTU’s and constructing networks from them (Gallant, 1986b; Gal-
lant, 1986a).

The address of a unit An LTU’s discriminant is determined by its weight
vector and its threshold. Additionally, Kanerva (1988) describes the address
of an LTU, a concept which was the inspiration for the address rule. The
address of an LTU is the input yielding the maximum possible activation of
the unit. The maximum activation is attained by summing all of the unit’s
positive weights and none of its negative ones. Thus, the address is the input
having 1’s on all of the positively weighted input dimensions and a 0’s on all
the negatively weighted ones. Notice that the address is determined solely
by the signs of the weights; neither the weight magnitudes nor the threshold
affect a unit’s address.
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In Figure 6, for example, the weights are positive, positive, and negative:
2, = +0.3; 2, = +0.7; and 2o = —0.1, where the indices taken left to
right are in descending order. Hence, the address is 110. (Determination of
the address is illustrated by the small arrows adjacent to the weights: the
arrow for each dimension points in the directionof the corresponding address
bit.) The number line at the bottom of the figure shows the activations of all
inputs. The address input 110 yields the largest activation, 1.0 (= 0.3 + 0.7),
while its complement, 001, yields the smallest activation —0.1. Clearly, the
address’s complement always produces the smallest activation because its
activation is the sum of all the negative weights and none of the positive
ones. All other inputs yield activations lying between the activations of the
address and its complement. '

Activation and distance Inputs lying close to the address in Hamming
distance ® generally produce activations greater than those of inputs lying
further away. The exact relationship between distances and activations also
depends on the magnitudes of weights. The following equalities hold:

N
D(z) = ;lwz'(ﬁ—wi)l
= §(7)=5(z)

where D*(z) is the absolute weighted Hamming distance” between an input
z and the address z*; N is the dimension of the input space; w; and z; are,
respectively, the weight and input on dimension 4, and S(z) = YN wiz;is
the activation of input z. Thus, input z yields a greater activation than input
¥, S(z) > S(y), if and only if z is closer to the address than y, D*(z) < D*(y).
Note that an input can be close to the address in standard Hamming distance
and yet be far in the absolute weighted distance if one or more of the differing
dimensions is heavily weighted. Similarly, an input differing from the address
on several dimensions may yet be close to the address if all of the differing
dimensions have small weights. These observations reveal the function of the

5The Hamming distance between two inputs is the number of dimensions with differing
bits.

"Note that the absolute value |-| in D"’s summation is unnecessary because of the
definition of the address: z; is 1 or 0 exactly when w; is positive or negative, respectively.
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weight magnitudes: they are used to distort distances in the input space,
pushing or pulling inputs away from or toward the address. Positive inputs
near the address are kept close, while negative inputs are pushed away from
the address.

Consider, for example, inputs 100 and 011 in Figure 6. Although 011 is
standard Hamming distance 2 from address 110, the two dimensions have
small-magnitude weights, —0.1 and 0.3, yielding a total difference of 0.4
from the address. On the other hand, 100 differs from the address only on
the second dimension, but the weight on this dimension is 0.7, resulting in a
greater difference from the address than 110 and, hence, a correspondingly
lower activation. The reason for these differences is that 011 is surrounded
by 3 positive inputs positive inputs: 001, 010, and 111. Because both 010
and 111 are within 1 bit of the address they are kept close and, therefore, so
is 011. Input 100, on the other hand has two negative neighbors: 000 and
101. Therefore, all of these inputs are kept distant from the address.

The linearity of an LTU strictly limits the flexibility of adjusting dis-
tances, via weight magnitudes, to locate negative and positive instances rel-
ative to the address. In particular, all inputs lying on a minimal path
between the address and its complement will always have activations whose
ordering is the same as the ordering of the inputs along the path (Kanerva,
1988). In other words, no combination of weights can give an input a greater
activation than another input lying closer (in standard Hamming distance)
to the address on along some minimal path. For example, 000 will always
have a lower activation than either 100 or 010, given that 110 is the address.

Forming a neighborhood of the address and setting the threshold

Within the limitations of linearity, however, it is possible to adjust the
weight magnitudes so as to push negative instances away from the address
while keeping neighboring positive instances nearby. The address rule can
thus be described qualitatively. Given an LTU that is to identify positive
instances of one class with 100% reliability, the rule tries foremost to locate
a good address. A good address is a positive (or, possibly, unobserved) in-

8A minimal path between two instances is a sequence of instances obtained by flipping
once each bit on which the two instances differ, thereby transforming one instance into
the other in a minimal number of steps. Different minimal paths correspond to different
orderings of the bit selections.
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Figure 7: The input space separated on the i dimension.

stance that is densely surrounded by many other positive instances. The
address is determined by the signs of the LTU’s weights. Concurrently, the
learning rule tries to push negative instances away from the address while
keeping, to the extent possible, other positive instances nearby. These rela-
tive distances are determined by the weight magnitudes. The aim is to settle
upon a configuration in which a large neighborhood of positive instances has
been located and isolated at the high-activation end of the range of input
activations. The address will have the maximum activation and will roughly
correspond to the “center” of the neighborhood.

Having formed such a neighborhood, the LTU’s threshold is set higher
than the largest activation of any negative instance. This ensures that no
false-positive identifications are made. Setting the threshold defines a bound-
ary around the address. The bounded region should exclude all negative
instances while including as many positive instances as possible.

Learning the weights Each input dimension i partitions instances into
two sets depending upon the value of the instance component z;. This is
illustrated in Figure 7 which also shows that each set is composed of observed
positive or negative instances and unobserved ones (black, white, and grey,
respectively). The sign of the corresponding weight w; determines which set
will contain the address: if w; > 0, the i* bit of the address is 1; if w; <0,
the i** bit is 0. How should w; be chosen so as to select the best set for the
address?

For the moment, let us ignore the influences of weights on dimensions
other than i. An obvious heuristic for choosing the best address set on the
i** dimension is to choose the one having the most positive instances and the
fewest negative ones. Of course, it is possible that a single set could have the
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most of both types. In general, then, one must distinguish four types of in-
stances, corresponding to the two classes, positive and negative, and the two
values of the i** bit. Let the four parameters P; [pos, 0], P; [pos, 1], P; [neg, 0],
and P;[neg, 1] represent the number of instances of the corresponding type
that have been observed for dimension 7. The set #; = 1 (w; > 0) should be
a good choice for the address if there are many positive instances whose i*
bit is 1 (P; [pos, 1] instances), or if there are many negative instances whose
i bit is 0 (P; [neg, 0] instances, indicating that the set 2; = 0 (w; < 0) would
be a bad choice). Clearly, z; = 0 would be a good choice in the reversed
situation: P; [pos,0] and/or P; [neg, 1] large.

It is reasonable, therefore, for w; to have the same sign as the correspond-
ing first-order Walsh coefficient: '

diff; = (P; [pos, 1] + P; [neg,0]) — (P: [pos,0] + P; [neg, 1]) .

Moreover, the magnitude of diff; also provides a reasonable measure for de-
termining the magnitude of w;. The greater the difference between the two
subexpressions in diff;, the less likely it is that the non-address set will con-
tain many positive instances sufficiently close to the address to be included
in its neighborhood. On the contrary, it is more likely that the non-address
set will contain many negative instances close to the address (in standard
Hamming distance). Thus, in such cases, separating the two half-spaces by
giving w; a large magnitude should allow a larger neighborhood to be formed
around the address. -

Figure 8 illustrates the sign and magnitude of diff; for three types of data.
In case 1, the data are nearly evenly balanced between preferring the address
in set ; = 0 and z; = 1. The magnitude of diff; is small in such a case,
and its sign is essentially arbitrary. In case 2, there is a small but distinct
trend indicating that =; = 0 is preferred for the address. The magnitude
of diff; is still rather small, but, barring a shifting trend, its sign is not
likely to change with future data. In case 3, the data overwhelmingly favor
locating the address in set @; = 1. The magnitude of diff; is large, so its sign
is essentially fixed: a large number of significantly different data would be
required to change it.

A simple way to determine w; is to set it equal to the normalized value
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(10-13)/283 = -0.13 (15-3)/18 = +0.67

Figure 8: Three examples of how data affect diff;.Case 1: diff;’s magnitude
is near zero, and its sign is arbitrary. Case 2: diff; has a small, negative
value which could be changed if the data were to shift. Case 3: diff; is large
and positive; its sign is essentially fixed.

Of azﬁi .

- ik (5)
~ P;[pos, 1] + P;[neg,0] + P; [pos,0] + P;[neg, 1]

Wy

This ensures that as weights are updated, they converge toward fixed values.
It also constrains weight values to lie in the range [—1, +1]. Convergence of
the weights is a desirable property for several reasons which will be discussed
below. It is less clear whether bounding the weights yields any significant
advantages or disadvantages.

Weighting the instances Unfortunately, learning each weight simply
according to rule (5) does not always lead to the identification of a good
address. The weakness is that each weight considers only the numbers of
positive and negative instances in its two half-spaces. However, the locations
of the instances is also important. Because false-positive classification errors
are prohibited, a good address must be located in a dense region of positive
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instances. Even sparsely distributed negative instances near the address can
severely restrict the size of the neighborhood that can be formed. (Later,
we will consider ways of relaxing such stringent conditions, but the goal of
locating an address in a reasonably dense positive region will remain.) Thus,
rule (5) must be augmented with a mechanism that allows all of the weights to
influence each other so that each will be sensitive, not only to the numbers
of its various types of instances, but also to their locations, as viewed by
weights along the other dimensions.

To illustrate both the problem and a simple solution, consider the 4-
dimensional space shown in Figure 9. If each weight were to compute its value
from (5) independently, then node 1010 would be identified as the address.
Notice that the third dimension selects 0 as its address bit: there are slightly
more positive instances in the bottom half-space (five with z3 = 0) than in
the top (four with z; = 1).

Unfortunately, 1010 is not the best address. A neighborhood of only four
positive instances can be formed around it. Positive instances 0111 and 1111
cannot be included because negative instances 0011 and 1011, respectively, lie
on a minimal paths between them and 1010. A better address would result
by flipping the third dimension’s address bit to 1, making node 1110 the
address. One can form a neighborhood around 1110 that includes instances
0111 and 1111 in addition to the previous four instances, giving a total of
six.

How can one cause the weight on the third dimension to select 1 rather
than 0? Notice that the most significant cluster of positive instances is in
the right-hand half-space (i.e., z; = 1). This is reflected in the fact that,
for weight w,, diff, has a magnitude of 6 while the other three diff; have
magnitudes of only 2. Notice further that in the right-hand half-space, all
four of the upper instances (0110, 0111, 1110, and 1111) are positive, while
only two of the lower ones (0010 and 1010) are positive. Thus, in this half-
space, ¢3 = 1 is clearly preferred over 3 = 0. If the instances in this half-
space (z; = 1) carry great enough influence over w3—wvis-d-vis those in the
left half-space (z; = 0)—then wj; will select an address bit of 1 rather than
0. This interaction between the weights is represented in Figure 10 which
illustrates the difference in wj’s view of instances before and after factoring
in the influence from w,.
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Figure 9: Interdependencies among weights on a 4-dimensional problem.

A simple method for determining the relative influence of instances is to
weight them according to their weighted Hamming distances from the current
estimate of the address. Instances further from the estimated address, le.,
ones with lower activations, will be diminished in their ability to influence
weight updating relative to instances closer to the estimated address. Fig-
ure 11 illustrates qualitatively how instances differentially influence weight
updating. Each positive instance tries to move the weights so as to reduce
the distance between itself and the address. In effect, each positive instance
tries to move the address to itself. Conversely, each negative instance tries to
move the address away from itself, to its complement. The relative degree to
which an instance can move the address is determined by an instance wezght
which is made proportional to the instance’s distance from the current ad-
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Figure 10: The influence of one weight upon another. For the space shown in
Figure 9, weight w, strongly prefers an address with z, = 1 while, initially,
ws slightly prefers one with =3 = 0. Weighting instances according to w,,
however, causes w3 to change its preference to #3 = 1, which yields a better
address.

dress. Perhaps the most straight-forward weight to use is the ratio between
the instance activation and the maximum possible activation S™2= (i.e., the
address’s activation), using the minimum possible activation S™" (the com-
plement’s activation) as the baseline, rather than 0. Thus, the weight of
instance z is:

) S({B) _ Smin
nst-wit = w (6)

Differential convergence Weights do not select their values indepen-
dently. They are coupled through the feedback mechanism of instance weight-
ing. Large weights have more influence than small ones because they have a
greater capacity for diminishing the influence of instances that do not agree
with the weight’s choice of address bit. By thus distinguishing among in-
stances, the large weights provide a context. A large magnitude on a weight
implies a significant asymmetry in the distribution of positive and negative
instances between the two half-spaces of the corresponding dimension. A
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Figure 11: Weighting instances by distance from the address. The ability of
instances to influence the adjustment of weights diminishes with increasing
distance from the current address.

set of large weights identifies a subspace of the input space that is likely to
contain a good address. Smaller weights may then further refine the selected
subspace along dimensions that previously held no strong preference for the
location of the address.

In order for the smaller weights to select a good address—perhaps revers-
ing their initial tendencies as in the case of wj in the example of Figure 9—
they must remain adaptable until the more significant weights clearly identify
a good subspace for the address. Because weights converge toward fixed val-
ues, smaller weights should converge more slowly than larger ones. This is
currently implemented by controlling the frequency with which weights up-
date. Each training instance is weighted according to (6). For each weight
w;, the instance weight is added to the appropriate parameter, P; [pos, 1],
P; [pos, 0], P; [neg, 1], or P;[neg,0]. If either the sum (P; [pos, 1] + P; [neg, 0])
or the sum (P;[pos,0] + P;[neg,1]) exceeds 1.0 (any reasonably small con-
stant should do as well, e.g., 2.0 or 10.0), then the weight is updated accord-
ing to (5). This means that weights for which there is a strong asymmetry
in the types of instances encountered will tend to update more frequently
(hence converge sooner) than weights for which the instances are more bal-
anced. These more frequently updating weights will also be the larger ones
because the magnitude of the difference diff; will be larger than for the more
balanced weights.
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Input: An LTU, an input instance z, and its classification z-class.

Output: The weights of the LTU have been updated so as to better identify
a good address. -

Method: All weights w; and their corresponding 4 parameters P;[.,:] are
initialized to 0. K is a constant controlling the relative frequency at
which a weight can be updated. A typical value of K would be 1.0
or 2.0 but might range up to 10.0. The Rec-mean; are recursively up-
dated averages. (Note: the LTU’s threshold is updated in a separate
procedure.)

S™* «— sum of positive weights
S™in « sum of negative weights

If (S™= = S™") then z-wt« 1
else z-wt — (A(z) — S™") /[ (Sme= — S™in)

For each weight w;:
1. P;[z-class, z;] — P;[z-class, z;] + z-wt
2. If (P; [pos, 1] + P;[neg,0] > K) or (P;[pos,0] + P;[neg,1] > K) then
(a) w; « Rec-mean; (P; [pos, 1] + P;[neg,0] — P;[pos,0] — P; [neg,1])
(b) Reset all four parameters P;[-, ] back to 0.

Table 3: The algorithm for updating weights.

As the larger weights converge forming a subspace for the address, in-
stances within the subspace will consistently outweigh their counterparts
outside the subspace. This introduces a bias that may cause previously bal-
anced weights to strongly favor instances from one of their half-spaces over
those from the other. This, in turn, introduces new biases that may further
the convergence of still more weights. Thus, there is a cascading effect in the
convergence of the weights of an Address unit.
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Discussion Table 7.1 describes the weight updating algorithm in pseu-
docode. This version of the algorithm is still preliminary. It has been tested
on several problems and works reasonably well, but further testing or the-
oretical investigations might uncover deficiencies or suggest enhancements.
Because weights are computed in a manner suggestive of Walsh coefficients,
it might be possible to develop a more coherent mathematical framework for
the rule, one relating it to more traditional digital signal processing tech-
niques. Weight values also seem closely related to the correlation between
the value of the input bit z; and the instance class, positive or negative.
However, the relationship between these two measures is also not yet clear
to me.

Another unsettled issue is the means for propagating constraints between
weights so that weights having clearly asymmetric distributions will influence
ones having more balanced distributions. The current version of the algo-
rithm discounts instances by the same amount for all weights but weight-
updating may occur at varying rates. The constant K affects the rate of
updating, larger values causing a greater difference between fast and slow
weights. One possibility might be to “anneal” K, starting it at a large value
so that there is initially a large difference between weights, and moving it to
a small value as the larger weights converge. Another alternative might be to
allow weights to update at the same rate but discount instances differently for
different weights. It is not clear whether such an approach would be a more
effective way of locating an address in a dense region of positive instances.
In short, the current algorithm could still undergo substantial revision in its
mechanisms or even, possibly, in the heuristic principles underlying them.

Learning the threshold Unlike many connectionist learning methods
which treat the threshold or bias as a special weight to an input of constant
value 1, the threshold @ of an Address unit is adjusted separately from the
weights. The purpose of the threshold is to define a homogeneous neigh-
borhood of positive instances around the address. Thus, a straight-forward
setting for § would be slightly above the largest activation of any negative
instance. This would produce largest possible neighborhood. However, if
there are unobserved instances in such a neighborhood, it is possible that
some of them could prove to be negative, in which case § would have to be
readjusted upward to exclude them. Call the observed negative instance with
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the largest activation maz-neg. A more conservative setting for § would be
slightly below the lowest activation of any positive instance whose activation
is above that of maz-neg. Call such a positive instance min-pos.

In general, as the weights are adjusted, the activations of both maz-neg
and min-pos will fluctuate, especially during tHe early stages of learning. In
fact, the actual instances filling these roles will change. Thus, the current
version of the algorithm keeps a running record of maz-neg and min-pos,
and dynamically computes the threshold 6 to be the average of their two

activations:
S (min-pos) + S (maz-neg)
6 = 50 . (7

Since the classifications produced are likely to be unreliable until a reasonably
good address has been located, an even more conservative approach would

start @ at a value very close to that of S™*° and gradually lower it to a value
such as that in (7).

7.2 Networks of Address units

Because a single address unit can only implement linearly separa.Ble Boolean
functions, it is necessary to consider more general approximation methods.
This section sketches an approach to constructing networks of address units
which can implement broader classes of Boolean functions. The networks
must be designed to learn in a manner well-suited to the DP framework.

The construction of address networks will take advantage of the special
properties of address units. Because they are trained to recognize locally
dense regions of positive instances, address units act as local basis functions
(Poggio & Girosi, 1989; Kanerva, 1988). A unit’s receptive field is defined
by its address, which acts as a “center,” and its threshold, which defines a
“radius.” The relative size of a unit’s receptive field is determined by the
relative amount of the unit’s range of weights, from 5™ to S™", that lies
above the threshold 4. If 4 is close to S™*, then the unit will respond to
inputs only from a very small neighborhood of the address. If # is close to
S™n then the unit will respond to nearly the entire input space.

A unit’s address can be set to a particular input and its threshold @
can be kept very close to S™*. Such a unit thus effectively memorizes the
classification of a specific positive input. Additional training can be used for
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local generalization by maintaining constraints on . Such units thus act like
cells in a lookup table that perform local generalization, much like a CMAC
(Albus, 1975b). Units whose thresholds are a significant percentage of their
weight range [S™", §™%*] or who have a number of weights close to zero,
have large receptive fields. Rather than memorizing specific positive inputs,
such units act more like general “rules” for classifying positive inputs of a
certain type. By constraining a unit’s threshold and weights, therefore, one
can control whether a unit acts to memorize specific positive data or tries
to identify abstract subclasses of such data. Allocating such different types
of address units will be the primary mechanism for constructing hierarchical
networks.

The larger a unit’s receptive field is, the more likely it is to include neg-
ative instances, unless the target function happens to be nearly separable.
Such negative instances can be considered as exceptions to rules. Thus, to
prevent false-positive errors for such “abstract” units, more specific units,
with smaller receptive fields, will be used to recognize negative instances
(exceptions) and prevent more abstract units from responding to them, re-
sulting in a hierarchical counterfactual structure similar to the value trees
used in T2. Such an approach is also related to Salzberg’s (1991) function
approximation method which employs structures with nested exceptions.

The construction of a hierarchical network structure will proceed from
the specific to the abstract. That is, specific units will first be to used to
memorize and classify incoming data. More abstract units will then learn,
probably more slowly, to perform the work of two or more specific units of
the same class and when sufficiently accurate, will supplant the more specific
units. Because large receptive fields may include smaller areas of exceptions,
abstract units may recruit more specific units of the opposite class to override
potential classification errors. This enables abstract units to build up very
large receptive fields and still respect the prohibition against false-positive
€rrors.

The replacement of many specific units by fewer, more-abstract ones is
expected to lead to better overall generalization because the “rules-plus-
exceptions” structure should to produce concise and efficient implementa-
tions for many function approximation problems encountered in practice.
Also, if resources must be reclaimed, then the more specific units will most
likely be deleted first. Thus, two hierarchical structures will be used to control
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the allocation of resources: value hierarchies tend to concentrate resources on
more abstract value classes, and within the definition of each class, hierarchi-
cal address networks concentrate resources on abstract units which represent
general subclasses of states. Ultimately, the goal is to characterize a value
function using a small number very abstract value classes and address units,
with more specific classes and units used as needed to refine performance.

8 Discussion

The central goal of this research is to enhance the scaling properties of DP-
based learning methods, extending their applicability to tasks of greater size
and complexity. Toward this end, we have examined function approxima-
tion for learning a task’s optimal value function V*, focusing on the issue of
generalization and representational bias. Because little a prior: structure is
imposed on Markov decision tasks, DP-based learning calls for approximation
methods that initially produce only local generalizations. However, learning
efficiency requires that as experience accrues, generalization behavior accel-
erates toward strong, task-specific biases. Therefore, I have advocated the
acquisition of representational biases through the formation of hierarchies of
abstract values and states. The mechanism for strengthening generalization
biases is the increasing restriction of approximation resources, which forces
initially rote memories to abstract the information they contain.

Using hierarchies to allocate resources allows detailed information about
values and states to become abstracted in accordance with task goals and
constraints imposed by system dynamics. Value hierarchies induce abstract
classes of states in a top-down fashion, reducing the need for highly engi-
neered state representations that encode task-specific biases. State classes
can be defined using address units, which form receptive fields defining pos-
itive or negative sets of class members. A unit’s receptive field can be kept
local or allowed to cover a large region of the state space. This facilitates
the construction of hierarchical networks and, consequently, the control of
approximation resources.

Because both value hierarchies and address learning are based on heuris-
tics, I do not anticipate deriving significant theoretical results. The ap-
proaches will thus be tested empirically to determine their appropriateness
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for the value iteration process of DP. Testing can include specially designed
function approximation problems in addition to control tasks. Initial testing
should establish the ability of the approaches to handle the special func-
tion approximation concerns of the control and DP framework. Subsequent
testing should then focus on the generalization"and scaling properties of the
approaches, determining how task performance and resource usage (both
time and memory) scale with task size and complexity. The hierarchical con-
trol of approximation resources is expected to provide reasonable leverage in
confronting the difficulties of function approximation in DP-based learning
methods.

In concentrating on values and states, many important issues in optimal
control have not been directly addressed. These include the formation of
Markov state descriptions, abstract representations of policies and actions,
the learning of various types of models, interactions between value functions
and policies, planning in abstraction spaces, and principled exploitation of
prior knowledge of tasks. In some cases it might be possible to combine
current proposals with existing approaches to such problems or, at least,
to synthesize new approaches in reasonably straightforward ways. In other
cases it might be necessary to rethink the boundaries that have been drawn
between these issues. In any event, it is clear that the issue of representation
will remain central. The proposed approaches for developing meaningful ab-
stractions are perhaps step toward providing learning agents with somewhat
greater autonomy.
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