Debugging Plan Failures by
Analyzing Execution Traces

Adele E. Howe, Paul R. Cohen

Computer Science Technical Report 92-22

Experimental Knowledge Systems Laboratory
Department of Computer Science
University of Massachusetts
Amherst, Massachusetts 01003

Abstract

Debugging plan failures involves isolating the actions and events
that contributed to the failure and explaining how they caused the
failure. In this paper, we present an approach to the first step in de-
bugging in which we statistically analyze execution traces of a planner
to isolate dependencies between actions and failures. The analysis is
based on G-test comparisons of observed and expected frequencies of
sequences of actions and failures. We apply the approach to isolate
dependencies between failure recovery actions and failures in execu-
tion traces of the Phoenix planner. Our analysis of Phoenix suggests
that even small changes to the design of a planner result in significant
changes in the planner’s performance. However, our approach allows
us to identify the dependencies between changes in design and changes
in performance.

This research was supported by a DARPA-AFOSR contract F49620-89-C-00113,‘ the
National Science Foundation under an Issues in Real-Time Computing grant, CDA-
8922572, and a grant from the Texas Instruments Corporation. We wish to also thank
Eric Hansen and Scott Anderson for their comments on earlier drafts.

1 Introduction

A plan fails when it does not achieve its desired effect. Plan failures are caused by
unexpected events at execution time [4], insufficient knowledge of the world {2}, actions
not producing their intended effect [6], or unanticipated interactions [12]. Debugging
failures involves isolating the actions and events that contributed to the failure and
explaining how they caused the failure. In this paper, we present an approach to the
first step in debugging in which we statistically analyze execution traces of a planner to
isolate dependencies between actions and failures.

Other approaches to debugging planners are more knowledge intensive than ours.
Sussman’s HACKER detects, classifies and repairs bugs in blocks world plans, but it
requires considerable knowledge about its domain, which is itself limited[12]. Hammond’s
CHEF backchains from failure to the states that caused it, applying causal rules that
describe the effects of actions[5]. Simmons’s GORDIUS debugs faulty plans by regressing
desired effects through a causal dependency structure constructed during plan generation
from a causal model of the domain[10]. Kambhampati’s approach (8], in contrast, is less
domain-dependent; his theory of plan modification compares the validation structure (an
explanation of correctness generated with the plan) to the planning situation, detects
inconsistencies, and uses the validation structure to guide the repair of the plan.

While these systems are comprehensive in scope (i.e., they isolate dependencies, ex-
plain and repair the failure), they assume that the planner knows enough to determine
what is wrong and fix it. The approach presented in this paper requires little knowledge
- either of the domain or of the planner - to identify dependencies between actions and
failures. Complementary to the more knowledge intensive approaches, ours is most ap-
propriate when a rich domain model is not available or when the existing model may be
incorrect or buggy, as when the system is under development.

2 Isolating Failure Dependencies

Previous experiments and analyses of failure recovery in the Phoenix system showed
that changing the set of recovery actions changed the type and frequency of failures
[7]). In these experiments, we discovered that seemingly minor changes to the design of
Phoenix’s failure recovery component, such as adding two new recovery actions with lim-
ited applicability, changed system performance much more than expected. For example,
although we changed how the system responded to only three of eleven failure situations,
performance in the other eight situations degraded, and the number and variety of fail-
ures increased. In the current analysis, we are trying to understand how failure recovery
actions might have effects beyond their expected scope:

1. Does a failure depend on the recovery action that preceded it?

2. Does a failure depend on the failure that preceded it?

3. a: Does the effect of a recovery action on the next failure depend on the failure to
which the recovery action was applied (b: conversely, does the effect of a failure on
the next failure depend on intervening actions)?

To address these three questions, we will describe failures in Phoenix, present some
statistical techniques, and describe the results of applying the techniques to execution
traces from Phoenix.

2.1 Failures in the Phoenix System

Our research on debugging failures was conducted on the Phoenix system[3]: a sim-
ulator of forest fire fighting in Yellowstone National Park and an agent architecture. A
single agent, the fireboss, coordinates the efforts of field agents who build fireline to con-
tain the spread of the fire. Fire spread is influenced by weather and terrain, but even
when these factors remain constant, the spread is unpredictable. Plan failures are a
natural result of this unpredictability of the environment, but they may also result from
flaws in Phoenix’s plans.

A failure is detected when a plan cannot execute to completion. Failures may be
detected during plan generation or execution, and are classified into 11 domain-specific
types. Failure classification is a common part of failure detection; many systems monitor
for specific failure events such as on-coming vehicles or changes in vehicle paths [9], and
unexpanded actions or unsupported preconditions in a planner that interleaves planning
and execution [1]. Failures in Phoenix are classified by how they are detected and what
they failed to do. For example, a cant-calculate-projection failure (abbreviated prj) is de-
tected during plan generation, whereas a violation-insufficient-time failure (abbreviated
vit) is detected through execution monitoring when a plan will take longer to complete
than it has been allotted. .

To repair a failure, the planner applies one of a set of actions: usually six, but in one
version of the system, eight. Most of the actions can be applied to any failure, but the
scope and nature of their repairs varies. For example, replan-parent (abbreviated rp) is
applicable to any failure and recomputes the plan from the last major decision point;
while add-another-bulldozer (abbreviated ab) repairs only vit failures by adding a few
actions to the failed part of the plan.

2.2 Techniques for Isolating Dependencies

We answer the three earlier questions about the effects of failure recovery on failures
by statistically analyzing execution traces. The strategy is to view execution traces as
transitions between failure types and recovery actions and analyze these transitions for
dependencies. The analysis is a two step process: Combinations of failures and actions are
first tested for whether they are more or less likely to be followed by each of the failures.
Then the significant combinations are compared to remove combinations subsumed by
more general ones.

Assume we observe the following trace:
F}—»A,,—»A;,—»Ac—ng2—>.4b—>Ff—>Ac—>Ab—>F;

where F'’s are failure types and A’s are actions.! The subscripts indicate individuals
from a set, so F; means failure of type f; the superscripts indicate temporal order. It
appears from .this short trace that failure Fy is always preceded by failure Fy and that
the intervening actions do not matter. If F does indeed cause Fj, directly or indirectly,
then we would expect to see Fy following F; more often than F, follows other failures;
conversely, if the two failures are independent, F, should be no more likely after F; than
after any other failure. Without many more examples of Fy and Fy, we cannot reliably
conclude that F; and Fy are related.

2.2.1 G Test Filtering to Identify Patterns

An execution trace is an alternating sequence of actions and failures. Each failure
is followed by an action to repair the failure, but another failure soon follows. A well-
designed failure recovery component, like the Hippocratic physician, should do no harm;
the cure for one failure should not increase the likelihood of later failures. Fortunately, we
can detect this and related situations if they arise. All we require is a test for statistical
dependence in categorical data. We can isolate a type of failure recovery action, call it
A,, from the set of actions A to see whether a failure F; from the set of failures F is
especially likely to follow A,. We count the instances of Fy that follow instances of A,,
and also the instances of Fy that follow instances of all actions other than A, (abbreviated
Az). We also count instances of failures other than Fy (abbreviated Fr) that follow A,
and that follow Az. These four frequencies are arranged in a contingency table, like the
one in table 1. In this case we see a strong dependence or association between A, and
Fy: 20 cases of Fy follow A, and only 10 failures other than Fy follow A,. But while
action A, leads most frequently to failure F}, actions other than A, lead to Fy relatively
infrequently (30 instances in 130). A G-test? will detect this dependence between A, and
Fy; in this case, G = 25.710,p < .001, which means that the contingency table in figure 1
is extremely unlikely to have arisen by chance if A, and F are independent.

But table 1 might not tell the whole story. Perhaps not A, but something that
preceded A, is responsible for the increased incidence of failure Fy. What immediately
preceded A, was, of course, a failure (recall that A, is a failure recovery action); so
perhaps the numbers in table 1 represent a dependence between successive failures, and
A, just happened to get caught in the middle. A third possibility is that both are true:

In our analysis, the actions are recovery actions, but they could as well be any planning decisions,
actions or percepts thought to influence failures. The analytical techniques do not require single inter-
vening actions, but could support multiple actions and could certainly support planning actions instead
of recovery actions.

?We explain the G-test in the appendix using data from a later example.

F; Py
4,[20 10
Az | 30 100

Table 1: A contingency table of frequencies of failure Fy and all other failures, following
action A, and all other actions.

successive failures are not independent and the intervening action increases the likelihood
of the second failure.

Three kinds of contingency tables differentiate these three possibilities. We illustrated
an action-failure (A — F') table in table 1. We construct one such table for each action-
failure pair that arises in our execution traces. When we see an instance of 4, in the
execution trace, we look at the next failure; if it is Fy, we add one to the first quadrant
of the table. Otherwise, we add one to the second quadrant. When we see an instance of
an action other than A, (i.e., Az), if the following failure is Fy we add one to the third
quadrant, and if the following failure is F; we add one to the fourth quadrant. We build
failure-failure (F — F) tables similarly, with one table for each pair of successive failures.
Lastly, we build failure-action-failure (F A — F) tables by treating the first failure and
the intervening action as a unit, and looking for dependencies between the second failure
and each such unit.

With these tables and the G-test, we can answer the three questions we asked earlier.
To answer the first question, whether a particular action A, influences the incidence of
a particular following failure, F'}, we simply construct an A — F' contingency table like
the one in table 1 and run a G-test. Similarly, we answer the second question, whether a
particular failure F, affects the incidence of a partmula.r next failure F?, by constructing
an F—-F contmgency table and running a G-test.

Answering the third question is slightly more involved, so it will help to review the
question:

Question 3a Is the dependency between action A, and the following failure F? signifi-
cant in the context of all or just some of the previous failures F'! € F?

Question 3b Is the dependency between failure F! and failure F? significant for all or
. . . . g f g
just some of the intervening actions a € A?

Imagine the answer to question 3a is that a dependency holds between action A, and
F} irrespective of the first failure F'*. In this case, the 4, — F} interaction subsumes all
51gn1ﬁcant Fl A, — F} interactions for all first failures Fl. The first failure is irrelevant
to the dependency between Aq and F}. Similarly, if the dependency between F, and
F} holds regardless of the intervening a.ctlon then the F} — F} interaction subsumes all
significant F} A — F} interactions.

FZ FZ
Fid, | 20 5
Fl4.| 2 5
Fla,| 1 3
Fla,| 2 4

%5 17

Table 2: Example contingency table in which A — F dependency is due to a particular
F A — F dependency

Another answer to question 3a is that a dependency holds between 4, and F} for
some first failures but not others. In this case, we should not claim an overall 4, — F}
dependency, despite finding it in an A— F contingency table. The reason is that the effect
we observe in the A — F table could be due entirely to a strong F'!A — F? dependency.
This situation is shown in table 2. We see that a particular failure, ng, is relatively likely
to follow the sequence, F}A,, but is relatively unlikely to follow any of the sequences
FlAq, F}Aq or FlA,. Yet because the Fl A, — F? dependency is so strong, we are quite
likely to find a general A, — F? dependency, also. If we claim on this basis that F?
is especially likely to follow A,, then we are ignoring the other three rows in table 2.
Running a G-test on table 2 tells us whether the second failure depends on the preceding
FlA, sequence. If it does, then we must report particular ¥ A — F dependencies in the
table, not a general A — F' dependency. If the G test is insignificant, it means that
the A — F dependency subsumes all the FA — F dependencies represented in the table.
Therefore, when we detect a significant A — F' dependency, we always construct another
contingency table, like the one just described, to test whether the A — F effect subsumes
corresponding F'A — F' effects.

We follow the same strategy to answer question 3b but we construct a slightly different
contingency table. Assume we find a significant dependency between F} and Fy. 2 If this
effect subsumes the F} A, — F? effects for all intervening actions A4,, then a G test on
the F;A; — F? table should not be significant. If the test is significant it means one or
more pa.rticula.r sequences (e.g., F}A.) influence the incidence of .ng, and we cannot cite
a general F} — F? effect.

Another way to run these tests is suggested by the column marginal frequencies in
table 2. These are the observed frequencies, summed over all actions, of the incidence
of F? and F} following A,. They can be compared with the e*cpected ratio of F? and
FZ observed in the entire population of execution traces. A G-test comparing these
observed and expected frequencies will tell us whether the A — F'? dependency in table 2
is significant. (It is closely related to the A — F test, discussed earlier, but not identical.)
Then we can ask how much each of the individual FAF rows contnbutes to this pooled
effect. Two outcomes are particularly interesting: the pooled effect (F! — F'2) is significant

but the individual rows (F'A — F'?) are less significant; and, both the pooled effect and
the individual effects are significant. In the first case, the pooled effect subsumes the
individual effects; in the second, the individual effects may conflict, resulting in a diluted
pooled effect. Because the test and its interpretation are somewhat involved, the next
subsection will work through examples of each case.

The techniques we have described are fully automated. A program runs G-tests on
all combinations of failures and actions: F! — F?) A — F? and F'4 — F2. For every
significant pair of FA — F and F — F combinations (e.g., F}A, — F? and F} — F}),
the program executes a G-test on a FA — F contingency table with F} held constant
and A varied. If the G-test on the FA — F table shows the pooled effect to be more
significant than the individual effects, then each F; A4, — F? effect is removed from the
set of effects; otherwise the individual effects are removed. (We explain what we mean
by “more significant” in the next section.) Similarly, for every significant pair F'} A, — F?
and A, — ng, a G-test is run on an FA — F table with F?! varied and with A, held
constant; if the pooled effect is more significant, then each F} A, — F? effect is removed;
otherwise, the A, — F? effect is removed.

2.2.2 Examples of Comparing Effects

To answer questions 3a and 3b, we compare the expected and observed frequencies
of the pooled effect (FF — F or A — F') to the individual effects (F4 — F). The two
interesting results are that the pooled effect subsumes the individual effects, or that the
pooled effect is diluted and the individual effects are required. To explain how these
tests are performed, we will work through two examples, one for each of the possible
interesting results of the test, on data from the recovery experiments. In these examples,
the subscripts will refer to specific recovery actions and failures in Phoenix.

Subsumed Effects Imagine that G-tests showed significant effects for F.; — F2; and
.Fpl,.jA,p - F:,j. Is Fz}rj responsible for both ei.Tects, making A, irrelevant? Figure 1
illustrates the steps needed to answer the question.®

First we determine the frequencies of F2 and F1 for each of the actions used to

repair F.; (shown in the table A in figure 1) We sum over the actions to get the column
margins of 116 and 126. Second, we construct a contingency table (table B) for these
sums and the frequencies of F2; and F:r—j observed in the population. A G-test on this
table yields a significant result, Gp = 72.8,p < .001, suggesting that F,,, — F2.1is a
significant effect. Gp denotes this pooled effect. Then, we construct contingency tables
for each of the row distributions in table A, comparing the observed frequencies of F2 .

prj
and F2. — given each of the actions, to the expected population frequencies. Summing the

individual G values yields a total G (called Gr). Gr is also the sum of the pooled effect

3The one step not shown in the figure is the computation of the G-test itself. The equation for the
G-test and a description of its computation for this example are presented in the appendix.

C. Contingency Tables
for Each Action

A. Observed Fr, X G |
Frequencies B. Contingency Table Fl A, 12 19 391
., FL for Pooled expected | 52 25 ;

Fl:An| 12 19 FZ, Fff—; FriAra 7 8 || 4.09
ForjAra 7 8 F; 116 126 expected | 31 10 .
FlLiAa| 18 14 expected | 508 163 FliAa 18- 14 || 16.56 |
Fl.A,| 79 85 Gp = T2.8,p < .001 expected | 79 18 5

| Pooled | 116 126 | Fr,Ap | 79 85 50.22

expected | 346 110

[Gr] | 7478]

Figure 1: G-test comparing observed frequency of F2; following F}.; to expected, for
pooled and action specific dependencies

(Gp) plus any variance in the general direction or trend of the pooled effect introduced
by differences in the individual samples (called Gy for heterogeneity) or:

Gr=Gp+Gg

Because Gt = 74.78 and Gp = 72.8, Gy = 1.98, which is not significant. Thus, we gain
no more information knowing all the F ;A; — FZ effects than we have knowing only

the pooled effect, F.. — F2 .. Consequently, the pooled effect subsumes the F'A — F?
effects.

Diluted Effects If both Gp and G are both significant, however, then the F1 4 — F?
effects may conflict, resulting in a diluted pooled effect. In this case, we are inclined to
disregard the pooled effect and credit the F* A — F? effects for the dependencies. Table 3
shows just such a situation. Applying the G-test, we find effects for Fophwp — FZ,,
FrerArp — Fip, Fp A — F2, and A,, — F2 . But two of the individual observed ratios
(those involving prj and ner) are significantly lower than expected, that is, they tend to
encounter ccp less often relative to the population distribution of F,., and Fzz, and one,
ccp, is greater than expected. As in the previous example, we compute Gp for the sum
of the frequencies of F2, and FZ; following A,, and all F! relative to the population
proportions. Gp quantifies the strength of the similarity across all individuals (each
F1 in which A,, is applied). Gr is the extent to which the individual rows match the
population proportions plus the extent to which they differ from each other. When we
remove Gp from Gr, we are left with the extent to which the individual rows differ, Gy,
which for this table is a significant difference. So we gain considerable information by
knowing all the F} A,, — F2, effects over knowing simply the A, — F2 effect.

F'A,, | FZ, FL G P
FLA,, | 53 151 0.690 .406
FlA,| 3 12| 0105 .746
FLA,| 25 23] 18.294 .000
Fl_A,| 11 116 19.141 .000
Fl.A»| 3 3| 1981 .159

FlA,| 2 7| 0008 .928

Fr:A., | 16 148 20.739 .000
Gr 60.958 .000
pooled | 113 460 4.704 .030

| Gy | 56.254 .000 |

Table 3: Example of diluted effects: Homogeneity Test for A,, and FZ,

2.3 Results

The analysis requires frequency counts for all combinations of failures and their im-
. mediate predecessors. We culled these data from the set of experiments in which we
evaluated failure recovery[7]. For that set, we ran three experiments of 100 trials each
to evaluate three different designs for failure recovery: a basic design, the basic design
augmented by an analytically derived control strategy, and the basic design augmented
by the control strategy plus two new recovery actions. In each experiment, we collected
data on failures and their repairs. For each trial of the experiments, we temporally or-
dered the data into execution traces and grouped the data into [F, A, F'2] triples where
F! is repaired by A and F? is the following failure. The grouping resulted in about 950
triples for each experiment. From these, we generated contingency tables.

Because the experiment conditions differed between the three experiments, we ana-
lyzed each data set separately. The first and second data sets included instances of ten
failure types and six recovery actions; the third included eleven failure types and eight
recovery actions. Table 4 summarizes the number of effects found in each of the exper-
iments as each test was applied. The failure types and actions in the three experiments
produce 2697 possible different combinations, of which 632 were observed in the data.
Because the G-test cannot be applied to contingency tables with empty cells (i.e., combi-
nations without examples in the data), only 632 combinations were tested. Of these 632
combinations, G-test filtering identified 190 as significant: 42 A — F2, 58 F! — F? and
90 F'A — F? effects. Testing for subsumed and diluted effects (called Gy in the table)
dropped the total number to 101.

The analysis above addresses dependencies within an experiment. Yet, part of our
motivation was to understand why the pattern of failure changed across our three exper-
iments. Because the incidence of failure changes, we expected the failure dependencies

Exp. 1 | Exp. 2 | Exp. 3 || Totals |
A — F? | combinations 60 60 88 208 |
non-empty 42 38 48 I 128
G-Test 7 15 20 42
Gg 4 8 15 27
" F1 — F? | combinations 100 100 121 321
non-empty 58 37 38 123
G-Test 15 21 22 58
Gy 13 19 15 47
F'4 — F? | combinations 600 600 968 2168
non-empty 125 97 109 331
G-Test 21 29 40 90
Gr 7 4 16 27
Totals | combinations 760 760 1177 2697
non-empty 225 192 215 632
G-Test 43 65 85 190
Gu 24 31 46 101

Table 4: Summary of effects found by G-test and G tests on the data sets

to change also. To test this intuition, we compared the sets of dependencies discovered
by the analysis across combinations of the experiments, both for which dependencies
are found and for the directionality of the dependency (i.e., the dependency reflects an
increase or decrease in the incidence of failure). The results are summarized in Table 5.
Experiment three is a variant of experiment two, which is a variant of experiment one.
Thus, we would expect adjacent experiments (i.e., one and two, and two and three) to
be the most similar in terms of their shared dependencies; and non-adjacent experiments
(i.e., one and three, and one and two and three) to be least similar, that is, to share
few dependencies. In fact, the data exhibits Just this phenomenon: experiments one and
two had the most dependencies in common; experiments one and three and the full set
(one, two and three) had the fewest in common. Some of the implications of the limited
overlap across all three experiments will be discussed in the last section.

2.4 Discussion: Shortcomings and Extensions

We have analyzed the failure recovery performance data for dependencies between
failures, recovery actions and the failures that immediately follow repairs. Given our
original goal, debugging planning failures, this analysis seems limited. In fact, debugging
failures in Phoenix requires considerably more work. In this section, we will address some
potential shortcomings of this approach and describe how we are extending this analysis.

10

Experiment Combinations
1&2 | 2&3 | 1&3 | 1,2&3
A-F? 1 1 0 0
F! — F? 9 3 2 2
F14 - F? 1 1 0 0
Totals 11 7 2 2

Table 5: Number of dependencies shared by combinations of experiments

The algorithm for discovering the dependencies is combinatorial: as the number of
factors increases and the number of values for the factors increases, so does the number
of potential dependencies and the number of tests to be done. However, this complexity
is mitigated by the sparseness of observed transitions in the data (e.g., not all actions
are applied successfully to all failures) and by the automation of the analysis. Because
transitions are only interesting if they are observed, the only transitions even considered
are those that appeared in the data; for the failure recovery data, this filtering reduced the
set by three quarters. Additionally, because the analysis is simple and fully automated,
the calculations are fast and can be run in a batch. Realistically, the computation time
required for this analysis was far shorter than that required to generate the data in
the first place (less than five minutes for the analysis, but about a week for the data
collection).

A more critical shortcoming of the analysis is that it considered only temporally
adjacent failures and actions, and only one at a time. The combinatorial nature of the
analysis precludes considering every possible ordering of precursors. However, we don’t
know how many dependencies we are missing by limiting our attention to [FA— F) triples.
We strongly suspect that the incidence of dependencies over longer chains is small. We
are working on a new experiment design to selectively eliminate recovery actions from
the available set to test whether each causes or avoids particular failures. For example,
if we remove an action from the set, say rp, and the frequency of vit relative to other
failures decreases, then we could see whether dependencies in F}A,, — FZ, triples explain
all the surplus F; failures when A, is in the set, or whether A,, affects F,; over longer
chains.

Our results tell us roughly why changing the design of failure recovery changes the
incidence of failure, but do not tell us how these effects came about. The analysis
described here is the first step of a four step procedure called failure recovery analysis:
First, we search failure recovery data for statistically significant interactions between
recovery efforts and failures. Second, we map these effects to structures in the planner’s
knowledge base known to be vulnerable to failure: the structures may be sensitive to
changes in the environment or intolerant of inadequacies in plan knowledge. Third, from
the interactions and vulnerable plan structures, we generate explanations of why the

11

failures occur. Finally, we use the explanations to separate the occasional, acceptable
failures from chronic, unacceptable failures, and recommend redesigns of the planner and
recovery component.

3 How Uncovering Contributors to Failure Can Lead
to Better Planning

Analyses of dependencies can contribute in several ways to our understanding of
planner performance. As described, they can identify contributors to failure and assist
in the testing and debugging of planners with incomplete or incorrect domain models.
Additionally, these tests provide a measure of similarity between test situations. The
overlap between adjacent experiments was moderate, but negligible across the entire set.
The more the environment and agent changes, the more we expect observed effects to
change; thus, we can use dependencies as a kind of similarity measure across planners and
environments. If we defined domain-independent categories of failures, we could compare
the behavior of different planners on the basis of their failure dependencies.

The most compelling result of our analysis is not any single dependency, but rather,
how those effects changed as the experimental situation changed. We changed the selec-
tion strategy used by the failure recovery component and the number of dependencies
increased; we added two new types of actions, actions that could be applied to only three
failure types, and the number of dependencies increased further. Seven of the dependen-
cies introduced in the third experiment are directly attributable to the two new actions.
In addition, we found 32 new dependencies and saw 24 dependencies disappear; these
must be due at least in part to interactions between the existing architecture and the
two new actions. The interactions are either cases in which the new action caused cer-
tain types of failures, or in which the new action precluded application of other actions
that contributed to particular failures; thus, the new actions can be either causing or
inhibiting effects.

The lesson from our analysis is that while design changes rarely have isolated effects,
we don’t have to give up hope of analyzing the effects. We can track the effects: We make
minor changes and havoc ensues, but now we have a way to measure the havoc. Phoenix
is an example of a system that can interleave plans in arbitrary ways, as dictated by
situation. Debugging its failures by “watching the system” or by predicting all possible
execution traces is simply not feasible, but running Phoenix many times and analyzing
the data is feasible. If we intend to build large planning systems or if we intend to
reuse plans in complex but apparently similar situations, then we should start exploring
techniques for debugging failures based on execution traces. The techniques described in
this paper isolate indirect, difficult-to-identify effects of design changes and so can assist
in debugging new planner designs.

12

A. G-test Computation

The G-test is similar in form and application to the more familiar chi-square test.
The advantage of the G-test over the chi-square test is that it is additive: the test can
be applied to subsamples and summed to get the same value as if it had been applied
to the whole sample. Our analysis relies on this characteristic to detect subsumed and
diluted effects.

The G-test as computed in our analyses is called an interaction or heterogeneity G-
test; it is a form of the G-test used to test goodness of fit to an expected ratio. To
explain its computation, we will work through the derivation of the pooled effect given in
figure 1A. We wish to know whether the data matches the frequencies of the population:
does F72; follow FJ . at the same frequency, relative to other failures F2, that it follows
all failures-#*? The frequencies for F2; and Fl; following F)) . for each A, are given in
table 1. The frequencies for the population are obtained by counting all occurrences of
F2 and F{' for all possible precursors, which yields a population frequency of 215 F:,J
a.nd 726 F

The G test equation (taken from Sokal and Rohlf [11, page 722]) for comparing the
observed with the expected frequencies is:

_2[Zf1 (bel)-l-z:fz (Z;fz)—nlnn]

where b is the number of rows in the contingency table, °° fi is the sum of the first
column in the contingency table, T°° f, is the sum of the second column, 7 is the expected
fraction of the total for the first column, § is the expected fraction of the total for the
second column, and 7 = Y0 fy + 3% f, or the total observations. The intuition behind
the test is that we compare the observed frequencies, 32° f;, to the expected frequenc1es

Z— , disregarding the overlap nlnn. So for table 1, b =4, 0 f; = 116, 0 f, = 126

A0 218 A 728
P = siiyraer 4 = smemae and n =242 or:

G=2 [llﬁln (%) +1261n (%) — 2421n 242] =728

2154726 2154-728

To determine whether this value of G is significant, we compare the result to a x2 dis-
tribution with 1 degree of freedom (number of ratios, two, minus one) and find that it is
significant at p < .001.

Similarly, we can compute the results for the each row in the table in a similar
fashion by comparing them to the same population frequencies. The results of each of
these calculations are the G statistics listed in table C in figure 1.

13

References

[1] Jose A. Ambros-Ingerson and Sam Steel. Integrating planning, execution and moni-
toring. In Proceedings of the Seventh National Conference on Artificial Intelligence,
Minneapolis, Minnesota, 1988. American Association for Artificial Intelligence.

2] R.T. Chien and S. Weissman. Planning and execution in incompletely specified envi-
ronments. In Proceedings of the Fourth International Joint Conference on Artificial
Intelligence, pages 160-174, Tiblisi, Georgia, USSR, 1975. '

(3] Paul R. Cohen, Michael Greenberg, David M. Hart, and Adele E. Howe. Trial by
fire: Understanding the design requirements for agents in complex environments. 47

Magazine, 10(3), Fall 1989.

[4] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing gen-
eralized robot plans. Artificial Intelligence, 3(4):251-288, 1972.

[5] K.J. Hammond. Learning to anticipate and avoid planning problems through the
explanation of failure. In Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, PA, 1986. American Association for Artificial Intelligence.

[6] Philip J. Hayes. A representation for robot plans. In Proceedings of the Fourth
International Joint Conference on Artificial Intelligence, Tiblisi, Georgia, USSR,
1975. International Joint Council on Artificial Intelligence.

[7] Adele E. Howe and Paul R. Cohen. Failure recovery: A model and experiments.
In Proceedings of the Ninth National Conference on Artificial Intelligence, pages
801-808, Anaheim, CA, July 1991.

[8] Subbaraoc Kambhampati. A theory of plan modification. In Proceedings of the Eight
National Conference on Artificial Intelligence, pages 176-182, Boston, MA, 1990.
American Association for Artificial Intelligence.

[9] James C. Sanborn and James A. Hendler. Dynamic reaction: Controlling behavior

in dynamic domains. International Journal of Artificial Intelligence in Engineering,
3(2), April 1988.

[10] Reid G. Simmons. A theory of debugging plans and interpretations. In Procecdings
of the Seventh National Conference on Artificial Intelligence, Minneapolis, Min-
nesota, 1988.

[11] Robert R. Sokal and F. James Rohlf. Biometry: The Principles and Practice of

Statistics in Biological Research. W.H. Freeman and Co., New York, second edition,
1981.

14

(12] Gerald A. Sussman. A computational model of skill acquisition. Technical Report
Memo no. AI-TR-297, MIT AI Lab, 1973.

15

