»
Ay

Progress in Computer Vision
at the
University of Massachusetts

Edward Riseman
Allen Hanson

COINS TR92-23

March 1992



Pro in Com r Vision niversity of h

Edward M. Riseman and Allen R. Hanson
Computer Vision Research Laboratory
Dept. of Computer and Information Sciénce
University of Massachusetts
Ambherst, MA 01003

ABSTRACT!

This report summarizes progress in image understanding research at the University of
Massachusetts over the past year. Many of the individual efforts discussed in this
paper are further developed in other papers in this proceedings. The summary is
organized into several areas:

1. Mobile Robot Navigation

2. Image Sequence Processing

3. Interpretation of Static Scenes

4. Image Understanding Architecture

The research program in computer vision at UMass has as one of its goals the
integration of a diverse set of research efforts into a system that is ultimately intended
- to achieve real-time image interpretation in a variety of vision applications.

1, Robot Navigati
The UMass mobile robot navigation project continues to integrate a number of
different algorithms with the goal of achieving robust landmark-based navigation.
The primary component technologies are described in several sections of this paper.
Sections 1.1 and 1.2 discuss the use of landmarks derived from a partial geometric
model of the environment to determine the pose of the vehicle. Section 2.2 outlines
one mechanism by which an initial partial model of the environment might be
automatically acquired from a motion sequence. Section 3.1 discusses techniques for
learning recognition strategies within the Schema object recognition system, which is
capable of identifying naturally occurring objects. Our goal is to integrate natural
objects into the landmark-based navigation system for outdoor navigation and to
embed the results of this research into the planning and control framework developed
by Fennema [18] which can effectively utilize landmarks at a number of levels,
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including low-level perceptual servoing for producing accurate motor actions, and
plan-level perceptual servoing for maintaining adherence to a navigation plan.

1.1. Automated Model Acquisition and Extension

We are continuing our efforts towards the robust determination of pose (location and
orientation) of the vehicle in a partially modelled 3D environment via the constraints
derived from recognized 3D landmarks [25].

Recently, Kumar has performed experiments on model extension (Kumar and Hanson
[25, 26] using basic techniques from pose determination. Points or lines whose 3D
positions are known are tracked across frames using the line tracking algorithm of
Williams [39], or the point-tracking algorithm of Sawhney [33]. From these points or
lines, the relative orientation of pairs of frames are determined. The depths of
unmodelled points, which are also tracked over the sequence, are then computed
using triangulation. The sensitivity of the acquired depth to errors in the image center
has also been investigated. In experiments using two image sequences for which
ground truth is available, the 3D positions of the unmodelled points were recovered
with an average error in depth of .25% and 1.3%. The error for the second case is
larger than for the first in part due to the larger field of view (40° compared to 22°)
which increases the sensitivity to errors in the location of the image center. Given that
there must be some error in the original 3D positions of landmarks, recovery of new
3D points to this accuracy is a surprising and dramatic result.

1.2, Landmark Recognition

Beveridge [3] continues to develop his model-directed matching algorithms, which are
being applied to landmark-based robot navigation. His previous research used a
priori knowledge of an approximate robot pose to project landmarks in a 3D model
into the image plane. This allows 2D model lines to be matched with 2D data lines
extracted from the sensory data by minimizing the error in the spatial alignment
under rotation, translation, and scaling transformations in the plane. The resultant
correspondence between landmarks and image features for the best 2D-to-2D match is
used to recover the actual 3D pose of the robot. This system has been effectively
applied to pose recovery in the UMass mobile robot project. However, this system
may not be able to recover from the 2D distortion produced when the projection is
done from an incorrect sensor pose.



A new 3D-to-2D model matching system has been developed to match 3D landmarks
directly to 2D image features. During the iterative matching process, new 3D
transformations between the world and the camera are computed, and landmark
features are re-projected into the image. This accounts for perspective distortion
during the search, and therefore allows recovery of the robot's true position more
reliably than the 2D-to-2D matching system. However, the original system usually
improves the initial erroneous pose estimate, and does so in roughly one fifth the time
required by the second.

2. Image Sequence Processing

2.1. The p-Field: A Computational Model for Binocular Motion Processing

Balasubramanyam [1, 2] is developing an integrated framework for stereo and motion
analysis. Given a binocular camera system moving thrdugh a static environment, it is
possible to obtain a three-dimensional field of vectors, where each vector is parallel to
the induced relative 3D motion of an imaged point and scaled in magnitude by the
depth of that point. This 3D vector field, referred to as the p-field, is derived from
optic flow and disparity, over a pair of stereo frames at successive time instants. The
behavior of the p-field is examined for specific cases of restricted motion, as well as for
general motion. In particular, the behavior of the p-field under translational vehicle
motion promises to be more stable under small vehicle rotations than the behavior of
the flow field. We expect that the p-field will allow. more robust recovery of the
sensor motion parameters, and tracking of 3D points through a sequence of images.
Ultimately, this analysis should provide more robust recovery of 3D environmental
information than independent stereo and motion analyses whose results are combined
after the fact.

2.2. Reconstruction of Shallow Structures

In many man--made environments, obstacles in the path of a mobile robot can be
characterized as shallow, that is, they have relatively small extent in depth compared to
the distance from the camera. Sawhney [32] (these proceedings) presents a framework
for segmenting shallow structures from the background over a sequence of images.
Shallowness is first quantified in terms of affine describability. This is embedded in a
tracking system within which hypothesized model structures undergo a cycle of
prediction and model—-matching. Structures emerge either as shallow or non--shallow
based on their affine trackability. This work rejects continuity heuristics for purely
image motion in favor of temporal continuity defined as the consistency of generic 3D



models, namely shallow structures. This work will be applicable to obstacle
avoidance.and model acquisition by a mobile robot. In two indoor experiments, object
structure represented as frontal planes was recovered to a depth accuracy in the range
of 2-5%.

2.3. Multi-Frame Structure from Motion

Recovering structure from motion, even using information from multiple image
frames, is difficult, partly because motion error can introduce large, correlated errors
in the structure estimate. Thomas and Oliensis [35] (these proceedings) propose a
method for recursively recovering structure from motion that can deal with this
problem. The algorithm is based on the observation that errors in the motion produce.
cross-correlations in the structure errors across the 3D points. Conversely, these
correlations are the record of the motion error. Thus, to explicitly incorporate motion
error in a recursive algorithm, a record of the correlations in the structure errors must
be maintained and updated.

Input for the algorithm consists of point correspondences tracked over many image
frames. Horn's relative orientation algorithm [23] is used to provide two-frame
structure estimates. For this algorithm, a somewhat complex error analysis is used to
estimate the expected structure errors, including the cross-correlations. The fusing of
the new structure estimate with the old is done using a standard Kalman filter, but
with the cross-correlations taken into account. The results on synthetic images show
that the structure estimates improve over time as expected; encouraging results on
real images are also reported [30, 34, 35].

3. Interpretation of Static S

3.1. Learning 3D Recognition Strategies

In an effort to automate aspects of model acquisition for image interpretation, Draper
[13-16] has been examining the role of learning in model-based vision. In particular,
he is addressing the automated construction of robust control strategies responsible
for creating 'instance-of' relations during interpretation. Given a set of generic
parameterized knowledge sources, the goal is to construct the Schema Learning
System (SLS) which will learn (from a set of training images) a recognition strategy for
a particular object class that minimizes the cost of recognition, subject to a set of
accuracy constraints supplied by the user. Recognition strategies are represented by
recognition graphs, which are similar in many ways to decision trees. Unlike decision



trees, however, recognition graphs direct hypothesis creation as well as hyinothesis
verification. Object-specific strategies are learned in a two step process [15] (these
proceedings). The first step involves learning which hypotheses should be generated.
The second learns how to verify them efficiently. Thus, the task of SLS is to learn
control and evidence combination strategies, not new models or knowledge sources.
Injtial experimental results demonstrate the potential of this approach.

3.2. View Description Networks

Model-directed object recognition becomes much more difficult when the viewpoint
of the three-dimensional object is unknown [6-8]. Burns 5] (these proceedings)
describes a system designed to effectively match a single 2D image of a potentially
cluttered scene to a library containing multiple polyhedral objects and demonstrates
its performance on several scenes. This approach to recognition can be characterized
by three general ideas. Description networks optimize the search for matches to objects
from a multiple object library by organizing information about the objects into a single
network representation. View descriptions contain organized descriptions of the
projections of the objects from views for which the objects are expected to-be seen; these
are used during the match phase. Finally, the correctness of view description matches
are verified by estimating the 3D pose of the associated object, evaluating the
estimation error and searching for additional assignments between object and images
features, given the estimated pose. ' '

An important part of this approach is the design of the recognition phase of the system:
given a compiled view description network for an object library, the sy;stem must
direct an effective search for the correct matches in cluttered images. This implies that
three key problems are addressed: recognition from an unknown view, the indexing
problem (selection of a few high probability candidates based on key features), and
model based incremental recognition among. the candidate competing hypotheses
based on partial matches.

3.3. Model Extension Using Projective Invariants

Collins [9, 11] has developed a new approach to modeling man-made environments
based on results from projective geometry. It is well known that the images of
coplanar points and lines under rigid-body motion are related by a linear
transformation in homogeneous coordinates. Given four known reference points or
lines on the plane, the positions of all other points/lines on that plane can be
reconstructed, regardless of camera position or intrinsic calibration parameters.



Collins [10] (these proceedings) has extended these results; it is shown that it is
possible to obtain partial and in some cases complete 3D reconstructions of those
points and lines lying outside the reference plane. The main results are that with a
calibrated camera, one reference plane tracked through two images is enough for
complete reconstruction of the environment, while for an uncalibrated camera it is
sufficient to have two reference planes tracked through two images. The effects of
noise in the observations are considered, resulting in a general framework for data
fusion in projective space.

3.4. Shape from Shading Revisited

Shape from shading has traditionally been considered an ill--posed problem.
However, in recent work, Oliensis [28, 29] has demonstrated that the solutions to
shape from shading are often well--determined, with little or no ambiguity. For the
case of illumination that is symmetric around the viewing direction (i.e. the light
source is behind the camera), it was shown in [27] that there is in general a unique
solution to shape from shading. This proof is valid for general Lambertian objects
(without holes), and is the first proof that the problem of shapé from shading can be
well--posed in general. These arguments were extended to the case of general
illumination direction in [29], where it was demonstrated that, in this case also, the
solutions to shape from shading are strongly constrained over much of the image.

Recently, Dupuis and Oliensis [17] (these proceedings) has developed a new approach
to shape from shading, based on a connection with a calculus of variations/optimal
control problem, and has demonstrated its performance on reasonably complex
images. The approach leads naturally to an algorithm for shape reconstruction that is
simple, fast, provably convergent, and, in many cases, probably convergent to the
correct solution. The algorithm is robust against noise and, in contrast with standard
‘'variational algorithms, does not require regularization. An explicit representation is
given for the surface: its height is expressed as the minimal cost for an optimally
controlled trajectory. '

The TUA project continues as a three-way collaboration between UMass, Amerinex
Artificial Intelligence, Inc. (AAI), and the Hughes Research Labs (HRL); this
coordinated effort is summarized in [36] in these proceedings. The first IUA
prototype hardware has been assembled, tested, and is almost fully functional. The



low-level processor for the second generation TUA and its controller have been
designed, and a software simulator has been built for the controller and low-level
array. The design for the intermediate level has just been completed.

UMass has developed a SIMD version of the Wormhole Routing technique that takes
advantage of the Coterie Network in our low-level prbcessor, in order to provide
general permutation routing capability roughly. equivalent in performance to that
found in the Connection Machine, without the need for special hardware. The
significance of this routing capability is that it allows us to build very compact, low-
cost, mesh-based parallel processors, of reasonable. size (up to about a million
processors) that can perform general data-parallel processing. '

Our experience with the Coterie Network has resulted in the description of a more
general programming paradigm, called multi-associative processing. In turn, the
capabilities of the Coterie Network have been explored for directly and indirectly
supporting multi-associativity. :

Consideration of a set of issues that must be addressed by a parallel-syinbolic database
for intermediate-level processing is in progress. These include the problems of
managing data from continuous streams of images, controlling persistence of the data,
representations of the data, distribution of the data and maintenance of its
consistency, and real-time systems issues.

A C++ class library has-been implemented for an image plane data type that supports
the develdpment of low-level vision operations that are easily implemented by a
parallel processor. This approach to parallel programming has the advantage that it
does not involve a non-standard language - it is merely a new object class written in
C++. The only difference between a sequential implementation and a parallel
implementation is the run-time library selected for linking.

5. Ongoing and New Work
5.1. Multi-Sensor Dextrous Manipulation

Grupen and Weiss [20, 21] are collaborating on a multi-sensor approach to dextrous
mampulatlon in a robot workcell. Models of objects in the environment are
constructed incrementally using an active sensing paradigm in order to support the



ability to form stable grasp configurations with a Utah-MIT hand. The system consists
of a camera mounted on one robot arm and the hand mounted on another. The
transformation from the camera coordinate system to the hand coordinate system is
computed using the pose refinement algorithm developed in [24].

One of the major issues with respect to modeling is fusing information from multiple
views and different sensors. The particular application involves the integration of
haptic and visual data to produce a trianéulation of the surface of an object to be
grasped. Haptic sensing here is the determination of the point of contact of the hand
with the object based on force measurements. This gives a véry rough estimate of the
position and normal to the surface. The Giblin-Weiss [19] algorithm provides
estimates of position, surface normal and curvature from a sequence of image with
known camera motion.

5.2. Figural Completion from Principles of Perceptual Orgamzahon

Visual psychology provides strong evidence that generic knowledge of surfaces and
occlusion is exploited very early in the perceptual grouping of image contours.
Previous work by Williams [38] showed how generic knowledge of this sort could be
captured as integer linear constraints and how the prbblem of segmenting -simple
scenes into (potentially overlapping) surfaces could be cast as an integer linear
programming problem. The first system built along these lines demonstrated the
completion of gaps in straight sided figures, such as those caused by occlusion of one
(opaque) surface by a second (opaque) surface, and subsequent recovery of the
surfaces using only straight line interpolating contours. This limitation severely
restricted the range of figures to which the system could be applied (reconstruction of
occluded corners, for example, was impossible). In the past year,'a new system has
been built which uses cubic bezier splines of least energy as the interpolating
contours. The system now captures curved illusory contours in figures that have been
formulated by Kanizsa and other perceptual psychologists.

5.3. Perceptual Orgamzatxon of Curves -

Token-based grouping has thus far been applied to the problems of recovering
straight-line structure [4] and more recently curvilinear structure [12] from the edge
data of images. Dolan is currently extending this approach to local parallel
implementations of this grouping paradigm. A SIMD model of curvilinear grouping
has been designed to be implemented in the CAAPP layer of the IUA [37]. The model
is relatively simple and promises many orders of magnitude speedup in extraction of



straight and curved lines. A MIMD version is currently being designed which should
alleviate the contention problems in the SIMD design by utilizing both the CAAPP
and ICAP layers.

54. Qualitative Nawgahon

One way to solve the computational burden of maintaining accurate geometnc maps
for navigation is to eliminate such maps altogether. In contrast to model-based
approaches to navigation where a map is required that explicitly represents the
geometry and location of 3D objects in the world, Pinette [22, 31] is developing a
method for qualitative, image-based navigation via homing. This approach maintains
only a topological map of the world, representing particular places in the world and
the directions between neighboring places. A place is represented expiicitly in the
map by the image of the world as seen from that location. Spatial reasoning is
performed directly on images using only the bearings of landmarks from a current
location and a neighboring target location, and does not need to acquire exact shape
and range information. ‘The work is developing a theoretical foundation for
qualitative reasoning in the incremental homing paradigm, including cases with a lack
of precision in recovering the dlrecnon of landmarks, and the presence of errors in
landmark correspondence. ’
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