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Abstract

Let ! and o be constants, [ a positive integer, « a real number in the interval (0,1].
Letting the positive integer N vary, we exhibit a sequence of bounded-degree N-node
graphs {Jy} possessing O(N®)-separators such that any load-! embedding of Jn into
the N-node hypercube has dilation Q(log N). This extends a result of Bhatt et al.,
Efficient embeddings of trees in hypercubes, SIAM J. of Computing (to appear), who
considered &8 the special case a = 1.
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1 Introduction

The hypercube architecture is one of the most popular architectures for universal parallel
computation. The reasons are many. It has a convenient recursive structure that lends itself
well to many divide-and-conquer algorithms. It supports efficient message routing schemes
which form the backbone of universal parallel computation. It is highly fault-tolerant, able
to withstand a very large number of random faults while incurring only a small degradation
in performance. And last but not least, many other useful networks (e.g. muiti-dimensional
grids, complete binary trees, butterflies, pyramids, meshes of trees, etc.) are embedded or
nearly embedded in the hypercube as subgraphs. The hypercube can therefore simulate
algorithms on these networks with very little or no communication overhead.

Recently, Bhatt et al. [1] showed how to embed any bounded-degree N-node network
having O(1)-separator (e.g. trees, outerplanar graphs, etc.) into an N-node hypercube
with constant load, dilation, and congestion. It follows that the hypercube, using con-
stant communication overhead, can simulate any bounded-degree network possessing O(1)-
separator. As for interesting lower bounds, they showed that any constant-load embedding
of a bounded-degree N-node expander graph (these have O(N )-separators) into an N-node
hypercube requires dilation Q(log ).

The purpose of this note is to elaborate a little further on the relationship between
separator-size of the guest network and its minimum dilation under constant-load embed-
dings in the hypercube. Specifically, for any fixed a in the real interval (0,1], we exhibit a
sequence of bounded-degree graphs {Jy} (parameterized by number of vertices) such that
Jn has an O( N®)-separator and requires dilation {}(log V) under any constant-load embed-
ding into the N-node hypercube. The Jy’s are constructed by taking the d.isjoint.unic'm of
a bounded-degree N*-node expander graph together with N — N isolated nodes.

This note has relevance to an open question posed by Bhatt et al., namely can every
bounded-degree N-node planar graph graph (these have O(W )-separators) be embedded
in the N-node hypercube with constant load and dilation? Our result shows that if the

answer to this question is yes, then it does not follow merely as a corollary to the fact that



bounded-degree N-node planar graphs have O(v/N)-separators.

2 Definitions

An embedding < ¢,p > of a graph G = (Vg, Eg) into a graph H = (Vg, Eg) is defined
by a mapping ¢ from Vg to Vg, together with a mapping p that assigns each (u,v) € Eg
onto a path p(¢(u), #(v)) in H that connects ¢(u) and ¢(v). The load on a vertex v € H
i§ the number of nodes of G that are mapped onto v, and the load of the embedding is the
maximum load on any vertex in H. .

The dilation of an edge (u,v) € Eg under < ¢,p > equals the length of the path
p(¢(u), (v)) in H. The dilation of the embedding is the maximim dilation of any edge in
G. The average dilation of the embedding is the average dilation of all the edges in G.

The congestion of a node or edge in H is the number of edges of G that are routed
through it. The congestion of an embedding is the maximum congestion of any node or
edge in H.

A class of graphs closed under the subgraph relation has an O(f(N))-separator if there
exist constants a and b where 0 < a < -;- and b > 0 such that every N-node graph in the
class can be partitioned (by the removal of at most b f(N') edges) into disjoint subgraphs
having a’N and (1 — a’)N nodes, wherea < a'<1-a.

A graph G = (V, E) is an ezpander graph if there is a constant o su& that every vertex
set X C V with |X| < |V|/2 is adjacent to at least a|X]| vertices in V' — X.

3 Graphs with O(N?*)-Separators Requiring Dilation Q(log IV)

Theorem 3.1. Let G =< V,E > be a bounded-degree expander graph with m nodes.
Then any load-lembedding of G into the N-node hypercube yields average dilation €(d),

where d is the largest integer such that m/l > 3 ;<4 (toe2 M.

Proof. Let < ¢,p > be any embedding of G into the N-node hypercube with load I.
Let D(< ¢,p >) be the sum of all the dilations of all the edges of G. By adding up the



number of edges in G routed across each dimension of the hypercube, we will show that
D(< ¢,p >) = Q(dm). This means that the average dilation of the embedding is (d) since
G has O(m) edges.

To begin the argument, enumerate the dimensions of the hypercube 1,2, ...,log N in any
manner. Partition the hypercube across some dimension, say dimension i. This partitions
#(V), and hence V, into two subsets. Let S; be the smaller subset of V. (In the case of a
tie, arbitrarily designate one of the two subsets as smaller.) Since G is a bounded-degree
expander graph, the number of edges routed across dimension i is Q(]S;|). Hence

D(<¢,p>) = O Y ISi).

i<logy N

Another way to count the quantity on the right is to add up over all vertices v € V', the
number of dimensions that place v in the smaller set. For each v € 17, let P, be a binary
log N-vector with a 1 in the ith position iff v € ;. Let w(P,) be the number of 1's in P,.
Then

SIS = 3 w(B).

i<logy, N veV
What is the smallest value that }_,.y w(P,) can assume? We know two things: (1) at

most ! nodes of V' are mapped to the same image, and (2) the relation ¢(u) # ¢(v) implies
P, # P,. Hence }_,cy w(P,) is minimum when ¢(V') is a ball centered at 0!°82 ¥ and each
node of this ball is the image of exactly ! nodes of V. Clearly the radius of such a ball is
at least as large as the largest integer d such that m/l > 3.4 (l°3§ M), Thus we have the

lower bound

Y wPp,) > Y (l°g;f’ N).

veV i<d
This latter quantity is easily shown to be Q(dm) by considering the separate cases d >

3log, N and d < Llog, N. Hence D(< ¢,p >) = §(dm). Since G has O(m) edges, the
average dilation of the embedding is Q(d). B

Corollary 3.2 Let [ and a be constants, ! a positive integer, a a real number in (0, 1].
There is a sequence {Jy} of bounded-degree N-node graphs with O(N®)-separators such
that any load-! embedding of Jy into the N-node hypercube requires dilation 2(log N )-



Proof. Let Jy be the disjoint union of an N%-node bounded-degree expander graph,
GnN~, and a set of N — N isolated nodes. Certainly Jy is a bounded-degree N-node graph
with O(N®)-separator. We now show that any load-! embedding of Gy« (and therefore of
Jn) into the the N-node hypercube requires dilation Q(log N). By Theorem 3.1, any load-{
embedding of Gya into the N-node hypercube requires dilation > d where d is the largest
integer satisfying 3,4 (&2 ¥) < N2/1. Let § = min(d, 1log, V). Since (&2 %) > 2('g N

for all i < §, it follows 3¢5 (8 M) < 2(l°8g M. Suppose § = Blog, N. Then

R Blog, N
)3 (log? N) < 2(log2N) <3 (elogzN) -9 (5) T
i<t i 5 ] Ji)

Blogy N

Now 2 (5) < N%/[ holds iff (g)ﬁ < 2"(1/21)‘“8127" . Since [ is a constant, there is a

fixed value of 8 in (0, 1) that makes the latter inequality hold for all N. Hence § = Q(log N),
and thus d = Q(log N), since d > §. B
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