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Abstract

Let M be a metric space. An L!-embedding of M into Cartesian k-space R* is a
distance-preserving map of M into R* with the Li-metric. Let c(k) be the smallest
integer for which the following statement holds: for every metric space M, M is L!-
embeddable in R* iff every c(k)-sized subspace of M is L!-embeddable in R*. A special
case of a theorem of Menger (see Blumenthal, Theory and Applications of Distance
Geometry, Oxford Univ. Press, (1953), p.94) says that c(1) exists and equals 4. We
show that c(2) exists and satisfies 6 < c(2) < 11. The proof entails an O(n3)-time
algorithm for L!-embedding an n-point metric space M into the plane when such an
embedding exists. We conjecture that c(k) exists for all £ > 1. Finally, we discuss a

lower bound for c(k).
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1 Introduction |

1.1 On L*-Embeddability of Metric Spaces

Let M be a metric space, and R* denote Cartesian k-space. Say M is L9-embeddable in R*
if there is a distance-preserving map of M into R* with the L%-metric.

In 1928, Menger (6] demonstrated the following bounded compactness theorem for L2-
embeddability in R*.

Theorem 1.1 Fiz any positive integer k. An arbitrary metric space M is L?-embeddable

in R* iff every (k + 3)-point subspace of M is L?-embeddable in RE.

A nice presentation of this result can be found in Blumenthal [5], along with bounded
compactness theorems for other host metric spaces. A key observation in the proof of
Menger’s theorem is the following fact: given any set of t+1 points in Rt not L2-embeddable
in R*-!, and any set of L?-distances from these points, there is at most one point in R!

satisfying these distances.

1.2 On L!-Embeddability of Metric Spaces

It is natural to ask if analogs of Menger’s Theorem hold for other L9-metrics on R* besides
L2. We are convinced they do, but have not seen them discussed in the literature. For
1 < ¢ < o0, we suspect a proof would follow rather closely the proof of Menger’s Theorem
since given any set of t + 1 points in R! not L%-embeddable in Rt-!, and any set of L9-
distances from these points, there is at most one point in R* satisfying these distances.
However, the cases ¢ = 1 and g = oo are different because for any finite set of points in Rt,
there is a set of L! or L*-distances (respectively) from these points, such that infinitely
many points in R satisfy these distances.

The initial goal of this paper was to prove a bounded compactness theorem for L!-
embeddability of metric spaces in RF, for any fixed k¥ > 2. (For k = 1, the bounded
compactness theorem is just a special case of Menger’s Theorem since the L!- and L2-

metrics are identical on R!.) Although we fell shy of this goal, we were successful for the



case k£ = 2. In Section 2, we prove that an arbitrary metric space M is L!-embeddable in
R? iff every 11-point subspace of M is L!-embeddable in R2. Qur suspicions are that the
number 11 can be replaced by 6, but we have not been able to prove this.

Since the mapping f : R? — R? which rotates the plane 45 degrees and then shrinks
it by a factor 1//2 is an isometry from (R?, L!) to (R?, L), our bounded compactness .
theorem for L!-embeddability in the plane is also a bounded compactness theorem for L°-
embeddability in the plane.

Let c(k) be the smallest integer for which the following statement holds: for every metric
space M, M is L'-embeddable in RF iff every c(k)-sized subspace of M is L!-embeddable
in R*. We conjecture that c(k) exists for all k > 1, and that c(k) = 2k + 2. In an earlier
version of this paper, we showed ¢(2) > 6, and ¢(k) > 2k + 1 for all k > 1. Recently, Jim
Schmerle (7] gave a different and more sophisticated argument to show c(k) > 2k +2 for all
k>1.

As stated above, we have not been able to establish the existence of ¢(k) for any & > 3.
Our attempts to extend the ideas we used in the case k = 2 seem to get horribly complicated
in higher dimensions. In Section 3, we describe some even simpler-sounding problems that

we also cannot solve. We hope that some reader will give them a try.

1.3 Algorithmic Aspect of L!-Embeddability

The real sequential random access machine (RSRAM) is a device which can manipulate
real numbers and perform simple arithmetic operations on them in unit time with infinite
precision. It happens that our proofof the existence of ¢(2) translates into an O(n®)-time
algorithm (for the RSRAM) to detect whether or not an arbitrary n-point metric space is
L'-embeddable in the plane, and construct such an embedding when one exists. (We have
emphasized the word proof because as far as we can tell, the mere existence of ¢(2) is only
enough to guarantee an algorithm for detection, not construction, of an L'-embedding,.)
Let k be a fixed positive integer. Clearly, the existence of c(k) would _imply a polynomial
time algorithm for detecting the L!-embeddability of finite metric spaces in R*. Such an
algorithm would be of interest since the L!-embeddability problem for unrestricted & is

known to be NP-complete (see Avis and Deza [3]). -



2 L'-Embeddability in the Plane

In this section, we prove

Theorem 2.1 An arbitrary metric space M is L'-embeddable in the plane iff every 11-point
subspace of M is L'-embeddable in the plane. ‘ "

To start the proof, let M = (W,d) be an arbitrary metric space. Let (*) denote the
assumption that every 11-point subspace of M is L!-embeddable in the plane. In what
follows, we show that (*) implies that every finite subspace of M is L!-embeddable in the
plane. Hence by the Compactness Theorem of Logic, M itself is L!-embeddable in the

plane.

2.1 Preliminary Definitions

Let u = (2y,¥u) and v = (2y,yy) be two points in the plane. The relative location of u
w.r.t. v is described as follows. Write u / v if v is up and to the right of u. Say u /" v is
strict if z, < 2, and Yy < Yy. Similarly define u \, v and strict u \, v. If A and B are sets
of points in the plane, write A / B to mean all points of B lie above and to the right of
all points in A. Similarly define 4 \, B.

Given a finite set V, a function g : V — R? is called an ezact location of 1. We often
write g(V') to indicate that g is an exact location acting on the set 7. If X is any subset
~of V, we write g(V)|X to denot‘e.the restriction of g(V) to X. Two exact locations are
considered to be the same if one is merely a translate of the other. If A,B C 17, then
we write g[A / B](V) to mean that the exact location g(V’) satisfies the relative location
A/ B.

Three points u, v, w in the plane form a 3-chain with v as centerif v /v / w
oru \, v\, w. Clearly, the L!-distances associated with a 3-chain satisfy the triangle
equality. Three points u, v, w in an abstract metric space M = (W, d) form a 3-chain with
v as center if d(u,v) + d(v,w) = d(u, w).

An L!-embedding of a metric space‘ M in the plane is called a planar L!-embedding of

M. Given a planar L!-embedding of M, there is a smallest rectangle (drawn parallel to



- the coordinate axes) that circumscribes it. This rectangle is called the bounding rectangle
of the embedding.

2.2 Points on the Bounding Rectangle

We begin with a lemma.

Lemma 2.1 Let M = (W, d) be a metric space for which (*) holds. Let N = (V,d) be any
finite subspace of M. Then there is a subspace B of N such that: (1) each point z € N — B

13 the center of a 3-chain involving two points of B, and (2) B does not contain a 3-chain.

Proof Say a subset Y of N is a bounding set if for every point z € N - Y, z is the center of
a 3-chain involving two points of Y. We show that N has a bounding set B that does not
contain a 3-chain.

To do this, we construct a decreasing sequence of bounding sets Y5 D 7 O --- D 15,
where Y, does not contain a 3-chain. Let Yo = M. It is vacuously true that 15 is a bounding
set. Now suppose we have obtained the bounding set ¥;, and Y; contains a 3-chain, say
{%,v, w} with center v. Let Y;4; = Y¥; — {v}.

We claim Y;4, is a bounding set. For contradiction, suppose not. Then since Y; is a
bounding set, there is a point z € N — ¥; such that all 3-chains involving two points of ¥;
and z as center must contain v. Let y € ¥; be such that {v,z,y} is 2 3-chain with z as
center. (Notice y may equal u or w.) Let § = {u,v,w,z}U {y} C ¥;. We claim that (S, d)
is not planar L!-embeddable. For if there were such an embedding, the points v, z, y would
form a 3-chain in the plane with z as center, the points u, v, w would form a 3-chain in the
plane with v as center, and thus (a quick drawing helps here) = would also be the center of
a 3-chain in § not involving v. This contradicts the third sentence of this paragraph. Thus
(S,d) is not planar L'-embeddable. But this violates (*). Thus Y;4; is a bounding set.

To finish the proof, we simply let B = Y. (Notice |B| > 2.) B

From now on, we shall always assume (*) holds for M, and thus for any finite subspace
N = (V,d) of M. As remarked above, |B| > 2. We now claim |B| < 4. For contradiction,

suppose not. By (*), every 5-point subspace of B would planar L!-embeddable. But any 5
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points in the plane contain a 3-chain. Thus B would contain a 3-chain, contradicting the
definition of B. Hence |B| < 4.

It is clear from the definition of B, that in any planar L!-embedding of N (assuming one
exists), all points of B must lie on the bounding rectangle, and every edge of the bounding
rectangle is incident to a point of B.

Suppose |B| = 4. Let g(B) be any planar L!-embedding of B. If there exists a point
7 in the plane, r ¢ B, such that a translated coordinate system centered'at r puts each
point of g(B) in a different quad.rant{(see Figure 1), then we can extend g(B) to a planar
L!-embedding of N. This follows from two observations that are not difficult to see: (1)
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<
3
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g is the unique planar L!-embedding of B up to translation, reflection, and relabeling of
axes; (2) every point of R? inside or on the rectangle induced by g(B) satisfies a unique set
of L!-distances from the points of B. By (*), B U {v,w} is planar L!-embeddable for all
v,w € N-B. By (1) and (2), the planar L!-embeddability of BU{v,w}forallv,we N-B
implies the planar L!-embeddability of N.

2.3 A Small Extension of N

If |B| # 4 or B has a planar L!-embedding not of the above form, then significantly more
work is required to demonstrate the planar L'-embeddability of N = (V, d). To do this,
we begin by extending N to a new metric space N, = (V U {r},d). Later we show how
to construct a planar L!-embedding for this extended metric space using p as a convenient

reference point in the plane. We define N, in accordance with the following cases.

Case (i): |B| = 2. Arbitrarily select p to be either point of B. Thus Np,=N.

Case (ii): | B| = 4. To be distinct from the case already considered in Section 2.2, B must

—

Tt have a planar L!-embedding g(B) like that shown m:Fxgur:2 Now there is a point 7 in the

//l,/'nw"\:‘:‘,‘ e plane such that a translated coordinate system centered at r puts two points z,y of B in
one quadrant and the other two points u,v in the diagonally opposite quadrant. It is readily
seen that all planar L!-embeddings of B have this form (2, y in one quadrant, u, v in the

diagonally opposite quadrant.) By (*), BU{z} is planar L'-embeddable for all z € N -B.



Consider any particular z € N — B. It is easy to see that the Ll-distance between z and
the corner point p (see Figure 2) is constant (and say equals 5,,) over all L!-embeddings
of B U {z}. To obtain Np, extend the domain of d from pairs in V to pairs in V' U {p} by
setting d(p, z) = §,, for each z € N - B.

Case (iii): |B| = 3. In this case, there are two distinct relative locations II; and II, of B
(where II; cannot be obtained from II; by reflection or relabeling of axes) such that B has

a planar L!-embedding satisfying II; and another satisfying II;. These relative locations

- - are depicted in{Figures 3(a) and 3(b). In either case, there is exactly one point of B at the
v -

A -~  corner of the induced rectangle.

Jreer—r

By (*), every 11-point subspace of N containing B is planar L!-embeddable. Each of
these planar L!-embeddings satisfies either II; or II; on B. Thus every 7-point subspace of
N containing B has a planar L!-embedding that satisfies II; on B, or every 7-point subspace
of N containing B has a planar L!-embedding that satisfies II; on B. For if this were not the
case, then there would be 7-point subspace §; = BU {s,t,u,v} C N for which every planar
L'-embedding satisfies II;, on B, and another 7-point subspace S, = B U {w,z,y,z2} C N
for which every planar L!-embedding of S; satisfies II; on B, and thus S; U S; would be an
11-point subspace of N with no planar L!-embedding at all, thus violating (*).

Without loss of generality, suppose every 7-point subspace of N containing B satisfies

II; on B. To construct the extension N,, we let p = a (see Figure 3(a)). Thus N, = N.

2.4 A Graph Construction

Let (1) denote the assumption that every 5-point subspace ({p, u, v, w, z},d) of N, is planar
L!-embeddable with p ,/ {u,v,w,z}. Notice that from the way N, is defined, (*) implies
(1). In the subsections that follow, we will show how to construct a planar L!-embedding
of N, with p / Np — {p}. The construction is based on a certain graph whose vertices are
the points of N, — {p}.

First, define an equivalence relation .L on the points of N, — {p} as follows. Say u ~ v
iff there is a planar L!-embedding of ({p,u,v},d) such that p / {u,v} and strict u \, v.

(Notice that for all such embeddings, the exact location of u w.r.t. visis always the same.)



Let 2 be the reflexive, transitive closure of ~.
Let V3,..., Vi be the equivalence classes of <. For each i, let E; be those vertex pairs

in V; that are directly related by ~, and let G; be the graph (V;, E;).

2.5 Creating a Planar L!'-Embedding for N,

Let T; be any breadth-first search tree in G; rooted at some node r;. Suppose u,v,w is
any path of length 2 in T;. By () and the definition of ~, there exists a planar L!-
embedding of ({p, u, v, w},d) satisfying p /* {u, v, w} and strict u \, v. Notice that in all
such embeddings, the exact location of w w.r.t. v is always the same.

Let (r;, 3;) be any edge of T;.. Let f({p, ;, 3;}) be any planar L'-embedding of ({p, r;, s;}, d)
satisfying p ~ {r;, s;} and strict r; \ s;. Let f({r;, s;}) be the restriction of f({p, i, 3:})
to {ri,si}. We extend f({r;, s;}) to an exact location of T: inductively as follows. Let T!
be any subtree of T; that contains the edge (;,s;). Suppose the exact location F(T!) has
already been constructed. Let w; be any vertex of T; — T{ such that (w;, ;) is an edge of
T; for some vertex v; in T. Let (u;, v;) be an edge of T!. By (t), ({p, i, v;, w;},d) is planar
L'-embeddable with p ,* {u;,v;, w;} and strict v N\ vi- By the preceding paragraph, all
such embeddings place w; in the same exact location w.r.t. v;. Extend f(T!) in accordance
with this unique placement of w; w.r.t. v;. Continue in this manner, expanding the current
tree one vertex at a time until an exact location for all of T; is obtained. Call the resulting
exact location f(T;). Notice that f(T}) is independent of the edge we started with—any
starting edge for T} will yield the same exact location F(T3).

Clearly, the above construction can be applied to any connected acyclic subgraph H of
G;.

Definition 2.1 Let (u,v) be an edge in in the connected acyclic subgraph H of G;. Then
flu ™\ v)(H) shall denote the ezxact location for H (satisfying strict u \, v) oblained by the .

method described above.

A cycle C in G; will be called minimal if the subgraph of G; induced by the vertices of
C equals C, i.e., C has no chords. Similarly, a path P in G; will be called mim'mai if the

10
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subgraph of G; induced by the vertices of P equals P.

Lemma 2.2 Let P = uy,us,...,u; be a minimal path in G;. Without loss of generality,

. flur \\ u2)(P) satisfies the relative locations depicted in( Ft;:; 4 s

————— ——

o Proof. Let P; be the length-3 subpath u;,uz, us,us of P. Since (}) and u; ~ u§ hold,
(P, U {p}, d) has a planar L!-embedding with p /* P, and strict u; \, u2. By definition,
flur \\ u2](Py) is the restriction of this embedding to P,. Since P; is a minimal path,
flur \, u2)(Py) satisfies uy /* u3 or uy / uz. Without loss of generality, assume u; / us.
Thus flu; \, uz](P,) satisfies the relative locations depicted in Figure 4.

Similarly, let P, be the length-3 subpath u,,us,us,us. Since () and us ~ u3 hold,
(P2 U {p}, d) is planar L'-embeddable with p ./ P, and u3 \, u;. Hence by the minimality
of Py, flus \, u)(P,) satisfies the relative locations depicted in Figure 4.

By sliding this “window” of length 3 over the entire length of the minimal path P, we
see that f[u; \| uz|(P) satisfies the relative locations of Figure 4. B

Lemma 2.3 Let P = ul,uz,...ﬁ, u; be a minimal path in G;. Suppose flu, \, u;|(P)
satisfies the relative location shown in Figure . Let f[uy \, ua](PU{p}) be an ezact location
of P U {p} whose restriction to P is flu; \, u2](P), and whose restriction to {p,u;, uz} is
a planar L!-embedding of ({p, u1,u2},d) with p /* {uy,us2}. Then flu; \, u2](PU{p}) isa
planar L-embedding of (P U {p},d) satisfyingp /* P.

Proof Given how f[u; \ up](P) is constructed, clearly the L!-distance between p and any
w; in flu; \, u2](P U {p}) is equal to d(p,u;). Also, given any two vertices u;, us in P of
distance at most 3 from each other, (1) implies that the L!-distance between u; and u; in
flur \, w2](P U {p}) equals d(u;, ug).

As an induction hypothesis, suppose that for any two vertices u;, ux in P of distance
at most s (where s > 3), the L!-distance between them in f{u; \, u3](P U {p}) equals
d(u;, ue). '

We now show the same holds for distance s + 1. Suppose u;,u, are any two vertices

in P of distance s + 1 > 4. Glancing at Figure 4, there is a vertex uj in P such that

11
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u /" uj /" ug is satisfied by flur \ u2](P U {p}). By thé induction hypothesis, the L!-
distance between u; and u; in flu; \, uz])(P U {p}) equals d(u;,u;), and the L!-distance
between u; and ug in flu; \, uz2](PU{p}) equals d(uj, uz). Thus, any planar L!-embedding
of ({p, ui, uj, ur},d) with p /* {u;, uj, u} (such an embedding is guaranteed to exist by (}))
satisfies p /" u; /" u; /" uy. Hence the L1-distance between u; and uy in flu; \, u)(PU{p})
equals d(u;, uz). B

Lemma 2.4 Any minimal cycle C in G; has length at most 4.

Proof Suppose, for contradiction, that C' = uy,uy,...,ux, u; is a minimal cycle in G; of
length at least 5. Let P be the path u;,us,...,uz. Since C is minimal, every length 3
subpath of P is minimal. By Lemma 2.2, f[u; \, uz](P) satisfies the relative locations of
Figure 4. By Lemma 2.3, flu; \, u2](P U {p}) is a planar L'-embedding of (P U {p}, d)
satisfying p /* P. But u; / ug in this embedding. Thus (u,, u) is not an edge of G;. But
this violates the fact that C is a cycle in G;. R

Lemma 2.5 f(T;) is a planar L!-embedding of (T}, d).

Proof First, we show that f(T;) observes the correct L!-distances between all vertex pairs
z, y in T; where y is a descendant of z. Since T is a breadth-first search tree in G;, the
path P in T; connecting z and y is a minimal path in G;. Clearly, f(T})|P = f(P). By
Lemma 2.3, f(P) is a planar L!-embedding of (P, d). Hence the L!-distance between z and
y in f(T;) is correct. ‘

It remains to show that f(T;) observes the correct L!-distances between all vertex pairs
z, y in T; where neither z nor y is a descendant of the other. Let P be the path in T} from
z to y. Let @ be some minimum path (i.e., a path utilizing the smallest number of edges)
in G; from z to y. Since T is a breadth-first search tree, we may asume without loss of
generality that the vertices and edges shared by Q and T; form an initial subpath of Q@ and
a final subpath of Q. lrSee Fig_u_r_e—z“5 Let C be the indicated cycle.

By Lemma 2.3, f(Q) is a planar L'-embedding of (Q, d). Hence the L!-distance between

z and y in f(Q) is correct. What we want to show is that the L!-distance between z and y

12



in f(T;)| P (which equals f(P)) is correct. To do this, we prove that f(P) and f(Q) place
y in the same exact location w.r.t. z. By (}), it suffices to show that there is an exact

location g(C) for C that is 2-consistent, i.e., for every length-2 subpath a,b,c of C, there
holds ¢(C)|(a, b,¢c) = f((a,b,c)).

Claim : For any cycle T in G;, T has an ezact location g(T) that is 2-consistent.

The proof is by induction on the length of T.

Suppose the length of T' is at most 4. Then by (}), we know that (T U {r},d) has a
planar L'-embedding, call it g(T' U {p}), with p ,/ T. Let ¢(T) = ¢(T' U {p})IT. Clearly,
f((a,b,c)) = g(T)|(a, b,c) for any length-2 subpath a,b,cin .

Now suppose the claim is true for all cycles T in G; of iength < k, for some fixed k& > 4.

Consider a cycle I in G; of length k + 1. We show that " has an exact location g(T)
that is 2-consistent. Since the length of T is greater than 4, it follows from Lemma 2.4,

—————]
that T has a chord (s,t) in G;. Let Ty and I', be the two induced cycles! (see Figure 6).!

By the induction hypothesis, I'; has a 2-consistent exact location g(T1) with strict s \ ¢,
and I'; has a 2-consistent exact location g(I';) with strict s \, . Let g(T') be the exact
location of I' obtained by glueing together g(I';) and g(T'2) at the vertices s and ¢. Let a
be the vertex other than ¢ that is adjacent to s on Iy, and let 8 be the vertex other than
t that is adjacent to s on T';. Specializing (1) to the 5-space ({p, s,t, ¢, B},d), it must be
that g(T)|(a, s,8) = f((a,s,8)). W

Lemma 2.6 Let T; be a breadth-first tree in G; with root vertex r;, where r; is chosen so
that d(p, ;) = minz¢g, d(p,z). Then the planar L!-embedding F(T:) can be extended to a
planar L'-embedding f(T; U {p}) satisfying p / T..

Proof Consider the set § = {s;,...,9]} of vertices such that (r:,85) is an edge of G;
for j = 1,...,l. By (1), there is a planar Ll-embeQdmg of {{p,7i,85,,85,85},d) with
p /" {ri,85,,35;, 85} for every 3-element subset {s;,,3;,, 35, } of S. It follows that (Su{p},d)
has a planar L!-embedding, call it f(S U {p}) with p / S. Let f(T; U {p}) be an exact
placement of T; U {p} whose restriction to T; is f(T;), and whose restriction to S U {p} is
f(SU {p}). Observe that f(T:U {p}) satisfies p / T;. ) |

13



Now let v-be any vertex in G;. Let P be the path in T; from »; to v. Since P is a
minimal path in G;, Lemma 2.3 tells us that the L!-distance between p and v in f(T;U {p})
is equal to d(p,v). W

Consider the planar L!-embedding f(T;). Of those vertices possessing least y-value, let
b; be the vertex with least z-value. Of those vertices in f(T;) possessing least z-value, let /;
be the vertex with least y-value. Of those vertices possessing largest y-value, let ¢; be the
vertex with largest z-value. Of those vertices possessing largest z-value, let 7; be the point
with largest y-value.

We now show that N, is planar L'-embeddable with p / N, — {p}. Let by,...,b
be a listing of the b; in order of increasing distance from p. By (t), the 5-point space
({p, ti, i, lig1, biy1}, d) is planar L!-embeddable with p ,~* {t;, r;, liy1, 841} for each i. Since
t; and r; are in a different equivalence class from [l;;; and b;4,, it follows that any pla-
nar L'-embedding of ({p, ¢, i, li+1, bis1},d) satisfying p / {t;, 7, liz1, bi41} also satisfies
p / {ti,7} / {li+1,bi41}. Furthermore, any such planar L!-embedding coincides with
F(T){ti, ri} and f(Tivr){liv1, biva}

Let f(Np) be any exact location of N, such that:

e p/ Ny -{p}h
o f(NIT: = f(To);

o f(Np)l{p,ti,7i,lis1, 0541} is a planar L!-embedding of ({p, ¢, 7, li+1, bis1}, d) for each
: .

The claim is that f(N,) is a planar L!-embedding of N,. We already know from Lemma
2.6, that f(Np)|(T:; U {p}) is a planar Ll-embedding for each i. So what has to be shown
now is that for any two points u € T, v € Tj, i < j, the L!-distance between © and v in
f(Np) is d(u,v). By () and the assumption i < j, ({p,u, v}, d) is planar L!-embeddable
with p /v /7 v. Thus d(u,v) = d(p,v) — d(p,u). We know that in f(N,), there holds
p./ u ./ v, the L!-distance between p and u is d(p, 1), and the L!-distance between p and
v is d(p, v). Therefore in f(N,), the L!-distance between u and v is d(u,v).
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This completes the proof of Theorem 2.1. We have shown that assuming (*), any finite
metric space N = (V, d) is planar L!-embeddable. Hence, any infinite metric space satisfying
(*) is also L!-embeddable. B

3 Higher Dimensions—Two Conjectures

Surprisingly, we have not been able to show that ¢(k) exists for any k > 3. Our attempts to
extend the methods of the last section seem to get wildly complicated in higher dimensions.
The purpose of this section is to describe two related problems that appear to be simpler,
but which we still cannot solve. A solution to either of these two problems might provide
useful insights for demonstrating the existence of ¢(k) for all k.

First we need a few definitions. Let M = (W,d) be an arbitrary finite metric space.
Let IV consist of elements py,p;...,p,. Let G be a complete digraph with vertex set 11"
each of whose arcs (p;, p;) is labeled with a k-vector o;; consisting only of +1’s and -1’s,
and such that ¢;; = —0;j;. Furthermore, assume the labeling is transitive in the following
sense: if the {th coordinate of both o;; and 0j, is +1, say, then the lth coordinate of o},
is +1. Similarly for -1. Call such an object G a k-dimensional transitive plane assignment
(k-TPA).

Let f be an L!-embedding of M into R*. Let f(p;)[I] denote the Ith coordinate of f (p:)-
Let 0y;(l] denote the Ith coordinate of ¢;;. Say f satisfies G if for every i,j € {1,...,n}
with i # j, and for every | € {1,...k}, there holds oi;[l] = +1 implies f(p;)[] < f(p;)[1),
and oy;(l] = -1 implies f(p;)[!] > f(p;)[l].

Conjecture 3.1 Fiz any positive integer k. There is a constant €(k) such that for any
metric space M and any k-TPA G for M, M has an L!-embedding in R* that satisfies G iff
every ¢(k)-sized subspace N of M has an L!-embedding in R* that satisfies G (restricting
G to the points of N.)

Given any mapping g : W — R*, and k-TPA G, let the G-distance between g(p:) and
9(p;) be the quantity [¢(p:) — 9(p;)] - 0ij. In words, the G-distance between g(p;) and 9(p;)
is the least L!-distance between g(p;) a;ld a point on the hyperplane (z,,...,z%) - 0y +
9(p;) (or equivalently, the least L!-distance between 9(p;)) and a point on the hyperplane
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(21,..-,2k)  0ji + g(pi) . A G-embedding for M is a mapping g : W — R such that
[9(p:) - 9(p;)] - o = d(ps, p;) for all p; and p;.

Conjecture 3.2 There is a constant y(k) depending only on k such that for any finite
metric space M = (W,d) and any k-TPA G for M, M has an G-embedding iff every v(k)-
sized subspace N of M has a G-embedding (restricting G to the points of N.)
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Figure 1. A planar L!-embeddingof B = ({w, z,¥, 2}, d)

where each point of B lies in a different quadrant.

Figure 2. A planar L!-embeddingof B = ({u,v, z,y},d).
Pairs u,v and z,y lie in diagonally opposing quadrants.
The point p represents a corner of the bounding rectangle

for B. The point z represents a member of N — B.

Figure 3. Two planar L'-embeddings of B = ({a, b, ¢}, d)
satisfying different relative locations II; (Figure 3(a)) and
II, (Figure 3(b)).

Figure 4. The relative locations satisfied by

flu1 \, ©2](P), where P is a minimal path in G;.

Figure 5. The paths P and @, and the induced cycle
C.

Figure 8. The cycle I' with chord (s,t), and the two
induced cycles I'; and I,.
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