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Abstract

Transient extremal properties of some service disciplines are established in the G/GI/s
queueing system for the minimization and maximization of the expectations of the Schur convex
functions, convex symmetric functions and the sums of convex functions of the waiting times,
response times, lag times and latenesses. When resequencing is required in the system, the FCFS
and LCFS disciplines are shown to minimize and maximize, respectively, the expectations of
any increasing functions of the end-to-end delays. All of these results are presented in terms
of stochastic orderings. The paper concludes with extensions of the results to the stationary

regime and to tandem as well as general queueing networks.
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1 Introduction

Queueing models with multiple servers are frequently used in the performance analysis of multi-
processor systems (see e.g. [17]) and communication networks (see e.g. [14]), where the servers
represent the processors or communication channels. In this paper, we analyze the effects of diffe-
rent service disciplines in such queueing systems. We will first focus on a simple G/GI/s queueing
model consisting of a single queue and s servers. The extension to queueing networks with multi-
server queues will be discussed at the end of the paper.

In the G/G1I/s queue under consideration, the arrival times of the customers are arbitrary, whereas
the service times are independent and identically distributed (i.i.d.) random variables (r.v.’s)
independent of the arrival times. A customer can be served by any of the s servers. These servers
are identical and have the same service rate, say 1.

When the service disciplines are non-preemptive and use only the information on the distribution
of service times, it has been established by various authors (see Kingman [13], Vasicek [22], Foss
[9, 10], Wolff [24, 25] and Daley [7]) that the First Come First Serve (FCFS) discipline minimizes
the stationary waiting times in the sense of convex ordering. (Note that the transient results in
Foss [9, 10], Wolff [24, 25] and Daley [7] are for the (e.g. Kiefer-Wolfowitz) workload vector).

When preemption is allowed and there is a single server s = 1, Shantikumar and Sumita [19]
showed that if the service times have an Erlang distribution, then the FCFS discipline minimize the
stationary waiting times in the sense of increasing convex ordering. This last result was generalized
by Hirayama and Kijima [11], and Chang and Yao [6] to the case when the service time distribution

is of Increasing Failure Rate (IFR) type.

When due dates (also called soft real-time constraints or soft deadlines) are associated with the
customers, Pinedo [18] analyzed the expected weighted number of late jobs. Baccelli, Liu and
Towsley [2] obtained extremal service disciplines, within a queueing network of single-server queues,

for the vector of transient customer latenesses in the sense of Schur convex ordering.

The resequencing problem in communication networks is often analyzed using the multi-server
queueing model (cf. Kleinrock et al. [14], Baccelli et al. [1, 3]). Whitt [23] analyzed the number of
customers overtaken by an arbitrary customer for GI/M /s and M/GI/s models with FCFS service
discipline. Iliadis and Lien [12] studied the resequencing delay for two heterogeneous servers under

a threshold-type scheduling.

In this paper, we compare different service disciplines in the G/GI/s queueing model with delay

dependent customer behavior. More specifically, we analyze two cases:

e Each customer carries a due date with it. The performance metrics under consideration are
the lag time (i.e., the difference between the service beginning time and the due date), and the

lateness (i.e., the difference between the service completion time and the due date). When the



customer due dates are identical to the customer arrival times, the lag time and the lateness
correspond to the customer waiting time and response time, respectively.

e There is a resequencing buffer. Every customer enters the buffer after being serviced and
leaves when all of the previous arrived (to the queueing system) customers have left the
resequencing buffer. The performance measure of interest is the end-to-end delay defined as
the difference between the time when the customer leaves the resequencing buffer and its
arrival time.

For the first case, we devise two new service disciplines, referred to as Stochastically Smallest Due
Date (SSDD) and Stochastically Largest Due Date (SLDD), which are defined to be such that,
as soon as there is an available server, the customer waiting in the queue with the stochastically
smallest and largest due dates, respectively, is assigned to the server. Such disciplines include, as
a special case, the Smallest Due Date (SDD) and Largest Due Date (LDD) disciplines. When the
due dates are set to the arrival times, SSDD and SLDD coincide with FCFS and LCFS disciplines,
respectively.

In accordance with the assumptions on the due dates and service times, these disciplines are shown
to be extremal for the customer lag times and the latenesses in the sense of the E; ordering (i.e.
Schur convex ordering), Ey ordering (convex symmetric ordering) and E3 ordering. All of these
comparison results on the vector of transient performance metrics imply the convex ordering on
the corresponding stationary performance metrics.

For the second case, we prove that FCFS and LCFS disciplines bound from below and above,
respectively, the end-to-end delays in the sense of strong stochastic ordering. Owing to the fact
that FCFS and LCFS disciplines also bound the response times in the sense of convex ordering,
our results are consistent with Whitt’s conjecture [23, Conjecture 1.3], which says that in an open
Jackson network, the total sojourn time increases in the sense of convex ordering as customer
overtaking increases.

Finally, the paper concludes with results for queueing networks. These include results for tandem
queueing networks whose constituents are either -/D/s or -/M/s queues. In the latter case, the
scheduling policies can be preemptive resume. Additional results for other classes of queuing
networks are also given.

The paper is organized as follows. In the next section, we define in a more precise way the model,
as well as the notation and assumptions. We also present some preliminaries on the stochastic
orderings. In Section 3, we analyze the extremal properties within the class of non-idling and non-
preemptive disciplines. In Section 4, we generalize the results to the class of non-idling preemptive
disciplines under the assumption that the service times are exponentially distributed. In Section 5,
we prove the optimality of the FCFS discipline within the class of idling (and possibly preemptive)
disciplines. In Section 6, we extend the extremal properties to the stationary regime and to other
performance metrics. These results are further extended to some queueing networks with multi-
server queues.



2 Notation and Assumptions

2.1 Model Description

The queueing system under consideration is a G/GI/s model, i.e., there are s > 1 servers associated
with a single waiting queue and a resequencing buffer, both of infinite capacity. The servers are
identical and have the same speed, say 1. When a customer enters the system, it waits for service
in the waiting queue. After having been served by one of the s servers, the customer enters the
resequencing buffer. A customer, say n, can leave the resequencing buffer (and, thus the system),

if and only if all the customers 1,2, --,n — 1 have already left this buffer.

Let N > 1 be the arbitrarily fixed number of arrivals. Denote by a,, and o, the arrival time and the
service time of customer n, respectively, l <n < N,witha; =0<ay <---<a, <---<ay. The
sequence of service times S = {7, })_, consists of i.i.d. random variables. The sequence of arrival
times A = {a,}2_, is independent of the service times, but is otherwise arbitrary. In particular, it

can be a deterministic sequence.

We associate with customer n, 1 < n < N, a due date, denoted by d,,. Let r, = d,, — a,, be the

relative due date of customer n. Both d,, and r,, are (not necessarily positive) real numbers. We

assume that the sequence of due dates D = {d,}2_, is independent of the service times S.

2.2 Service Disciplines

A service discipline decides the time at which a particular customer is to be served. The service
discipline is called non-preemptive if the service of any customer cannot be stopped unless its service
is finished. The discipline is preemptive (resume) if it is preemptive and if the service is resumed
at the point where it was preempted. The discipline is called non-idling or work conserving if no
server is allowed to stay idle whenever there is a customer waiting in the queue.

Throughout this paper we assume that the service disciplines cannot use the information on the
exact values of the service times, but only the distribution of the service times. This assumption
implies that the service disciplines like Shortest Remaining Processing Time are not under conside-
ration. We also assume that the service disciplines are not anticipative in the sense that a decision

can never use information on future arrivals.

Denote by ¥ the class of (possibly idling and/or preemptive) disciplines fulfilling the above as-
sumptions, ¥,, C ¥ the class of non-preemptive (possibly idling) disciplines, and ¥,; C ¥ the
class of non-idling (possibly preemptive) disciplines, and finally, ¥ = ¥,, (| ¥,; C ¥ the class of

non-idling and non-preemptive disciplines.

Among the well-known extremal disciplines, there are First Come First Serve (FCFS) and Last

Come First Serve (LCFS) disciplines, which are defined to assign, as soon as possible, the first



and the last arrived customers to available servers, respectively. Note that here FCFS and LCFS
disciplines are defined to be non-idling.

When the customers are associated with known due dates, there exist the Smallest Due Date (SDD)

and the Largest Due Date (LDD) disciplines, which assign customers according to their due dates.

When the due dates are comparable in the strong stochastic ordering sense <,; (see the definition
below), which is the case when they are known or when they are unknown but the relative due dates
are i.i.d. random variables, we define the disciplines Stochastically Smallest Due Date (SSDD) and
Stochastically Largest Due Date (SLDD) to be such that as soon as there is an available server, the
customer waiting in the queue with the stochastically smallest and largest due dates, respectively,
is assigned to the server. Again, by definition, the SSDD and SLDD disciplines are non-idling.

Observe that when the relative due dates are i.i.d. random variables independent of the arrival and

service times and are unknown a priori, then the SSDD and SLDD disciplines coincide with the
FCFS and LCFS disciplines, respectively. When the due date are known, the SSDD and SLDD
disciplines coincide with the SDD and LDD disciplines, respectively.

For the Preemptive (P) version of these disciplines, we will use the notation PLCFS, PSDD, PLDD,
PSSDD, PSLDD, etc.

Within the general class of idling preemptive disciplines, we define the class of FCFS disciplines,
denoted by llpcrs, to be such that every discipline in IIporg assigns, when it decides to assign a
customer, the first arrived customer among the waiting customers to an available server. It is clear
that FCFS € llpcrs.

2.3 Performance Metrics

Let m € ¥ be an arbitrary service discipline, 7, be the identity of the n-th assigned customer,
1 < n < N. Denote by b,(7) (resp. cn(r)) the random variable (in IR*) of the service beginning
(resp. completion) time of customer n. Denote by W, (), Rn(7), ln(7) and L,(7) the waiting

time, the response time, the lag time and the lateness of customer n under # € W, respectively,

defined as

Wn(r) = bp(m) — an, (2.1)
Rp(m) = cp(m) — ap, (2.2)

(7)) = bu(r)—dy, (2.3)
Lo(7) = cn(n)—dn. (2.4)

Let



() = (lu(x),---,In()),
L(m) = (Li(m), -+, Ln(m)).

Denote by gn(7) and D,(7) the departure time and the end-to-end delay, respectively, of customer

nunder 7 € ¥, i.e.,

4n(7) = max(en(7), gn-1(7)) = max e (7), (2.5)
Dp(7) = gu(7) — an = 112%}51 c(m) — an. (2.6)

The purpose of this paper is to find extremal disciplines that minimize or maximize these per-
formance measures in some stochastic semi-partial ordering sense. Hence, we define the partial
orderings of interest to us in the remainder of this section.

2.4 Stochastic Orderings

Let X,Y € IR™ be two random vectors.

Definition 2.1 The random vector X is stochastically less than the random vector Y in the sense
of strong stochastic ordering (X <, Y ), conver ordering (X <., Y ), and increasing convex

ordering (X <;cz Y ), respectively, if

E[f(X)] < E[f(Y)], V increasing f:IR" — IR, (2.7)
E[f(X)] < E[f(Y)], V convez f:IR" — IR, (2.8)
E[f(X)] < E[f(Y)], V increasing and convez f : IR" — IR, (2.9)

respectively, provided the expectations exist.

The reader is referred to [20] for properties concerning these orderings. In what follows, =,; denotes

equality in distribution. The following lemma is due to Strassen [21]:

Lemma 2.1 Two random vectors X and Y satisfy X <, Y if and only if there exist two random

vectors X and Y defined on a common probability space such that X =g y(, Y = ?, and X < Y

componentwise almost surely (a.s.).

Define now the notion of majorization. Let z,y € IR™ be two real vectors.



Definition 2.2 Vector ¢ is said to be majorized by vector y (written ¢ < y) iff

k k
dogi < > i, k=1,---,n—1 (2.10)
=1 =1
Yogio= > 6, (2.11)
=1 =1

where the notation &; is taken to be the i-th largest element of x. If

k k
Y &i<> G, k=1,---,n (2.12)
i=1 i=1
then vector ¢ is said to be weakly majorized by vector y (written z <., y)

Definition 2.3 A function f: IR™ — IR is Schur-convez if for all z,y € IR™,

z<y = f(z) < f(y)

We define the following classes of functions

e C; (ClT ) - the class of (increasing) Schur-convex functions,
o Cy (CzT ) - the class of (increasing) symmetric and convex functions,

e C3 (CJ) - the class of functions of the form f(X) = Y%, f(z;) where f is (increasing) convex.

Definition 2.4 Let X and Y be two random vectors in IR™. We define the following stochastic
orderings between these r.v.’s

X<pY, if E[f(X)]<Ef(Y), VfeC,i=123

and
X<g¥, i BFX)<EfY), Viecl, i=1,23.
Various properties concerning these orderings can be found in [16]. According to Proposition C.2

of [16, p. 67], any function f: IR™ — IR is Schur-convex if it is symmetric and convex. Therefore,

Proposition 2.1 The following implication relations between the stochastic orderings hold:

<, = <E, = <Eg
U U U

Sst = SET = SET = SET

1 2 3

The relations still hold when <g, and < g1 are replaced by <., and <;.,, respectively.
1



The following lemma is another application of Strassen’s Theorem (cf. [21]) to the semi-partial

orderings < and <,,. A proof was provided in [16, Theorem B.1, p. 483].

Lemma 2.2 Two random vectors X and Y satisfy X <g, Y (X <p Y, respectively) if and
1

only if there exist two random variables X andY defined on a common probability space such that

X=X, Y=3Y,and X <Y (X <w Y, respectively) a.s.

3 Comparisons within the Class of Non-Idling and Non-Preemptive
Service Disciplines

In this section, we focus on the class of non-idling and non-preemptive disciplines. The comparison
of other service disciplines will be discussed in the following sections.

3.1 Lag Times and Waiting Times

Theorem 3.1 Assume that the due dates are known. Then the SDD (resp. LDD) discipline
minimizes (resp. mazimizes) the vector of lag times within the class of non-preemptive non-idling

disciplines ¥ in the sense of <g, ordering:

Vr €®o:  (SDD)<g, i(r) <g, (LDD). (3.1)

Proof. Consider an arbitrary discipline 7 € ¥y. Let the sequence of arrival times A be arbitrarily
fixed. Let m,1 < m < N —1, be the first time that 7 does not follow the SDD rule, i.e., m; = SDD;,
1 <4 <m — 1. Suppose that at the m-th assignment, 7 selects customer j, whereas customer &
would be chosen for service if the SDD rule were applied, i.e.,

d; > dg, (3.2)

and 7, = 7, SDD,, = k. Suppose further that 7,, = k, namely, customer k is the n-th that starts
service under 7, m < n < N, which implies that

b;(m) < by(m). (3.3)

Construct now a non-idling discipline 7’ which differs from 7 only in the customer selections of j
and k, viz.,

= T, )= Tom, w=m;, i#m, i#n, 1<i<N.
The discipline ' operates on the sequence of service times S’ = {a/}¥ ,, with

U;':Uk: 0']"::0'1', 0'1{:0'1', 7’7£.77 7:7&]% 1<i<N.



It is verified that S’ is equivalent to S in law, and independent of the arrival and due dates (see

[15] for a formal proof). One can check that
bi(m") = by(w), be(r') = bj(w), bi(r')=bi(w), i#3, i#£k, 1<i<N, (3.4)

so that 7’ is feasible.

It follows from the relations (3.2), (3.3) and (3.4) that
I(x") < I(m).

Since S’ is identical to S in law, we have, conditioned on the arrival times, that for all Schur-convex
functions f : IRN — IR,
E[f(U"))|A] < E[f(U(r))| A

Unconditioning with respect to the arrival times in the above inequality yields
E[f(I(="))] < E[£(I(x))]- (3.5)

Consider now the discipline #’. If it follows the SDD rule everywhere, one gets the desired result.
Otherwise, suppose m; > m is the first time that it violates the SDD rule: m,, # SDDy,. One

can construct a discipline #” in a similar way such that " follows the SDD rule until m; and that

for any Schur-convex function f : IRY — IR,

Bf((="))] < B[f(U(x"))].

After repeating this process for at most N times, one finally obtains the SDD discipline for which
the relation

E[f(I(SDD))] < E[f(I(r))];

holds, provided the function f: IRM — IR is Schur-convex. This completes the proof of the first
inequality in (3.1).

In an analogous way, one can prove that for any Schur-convex function f: IRY — IR, the LDD
discipline satisfies the relation

E[f(I(r))] < E[f({LDD))].

In the above theorem, if we set the due dates to be the arrival times, the SDD and LDD disciplines
coincide with the FCFS and LCFS disciplines, respectively, and the lag times represent the waiting
times. Thus, as an immediate consequence of the above theorem, we obtain

Vre¥y:  W(FCFS)<p, W(x)<g, W(LCFS). (3.6)



Remark: In [22], a weaker result was obtained:

Vre¥y:  W(FCFS)<g, W(x)<g, W(LCFS).

Corollary 3.1 Assume now that the due dates are unknown a priori. Assume further that the

relative due dates are 1.i.d. random variables that are independent of the arrival and service times.
Then
Vr € ¥y : I(FCFS) <g, l(r) <g, l(LCFS) (3.7)

Proof. We have
l(r) = (Wi(r) —r1, Wa(m) — 7o, - -, Wn(7) — 7n),
where 71, - - -, 7y arei.i.d random relative due dates being independent of the waiting time variables.

Appealing to the closure (under convolution) property of the <g, ordering (cf. [16, Proposition
F.6.a, p. 314]) and making use of Proposition 2.1 and (3.6) readily yield (3.7). |

Theorem 3.2 Assume that for any fized sequence of arrival times A = {a,}_,, the due dates are
stochastically comparable in the sense of <., viz., for any m,n > 1, either d,,, <z d,, or d,, < d,,.
Then the SSDD (resp. SLDD) discipline minimizes (resp. mazimizes) the vector of waiting times

within the class ¥g in the sense of <g, ordering:

Vre¥y:  I(SSDD)<g, I(r) <g, (SLDD) (3.8)

Proof. The scheme of the proof is similar to that of Theorem 3.1. We will only consider the first
inequality of (3.10). The second one can be shown in an analogous way. Let f : IR — IR be an
arbitrary convex function and the arrival times A = {a,})_, and service times S = {0, }Y_; be

arbitrarily fixed.

Consider an arbitrary discipline 7 € ¥y defined on the sequence of service times §. If = is SSDD,
then we are done. Otherwise, let m, 1 < m < N — 1, be the first time that = does not follow
the SSDD rule, ie., m; = SSDD;, 1 < ¢ < m — 1. Suppose that at the m-th assignment, 7
selects customer j whereas customer k£ would be chosen for service if the SSDD rule were applied:
d; >4 d, and mp, = j, SSDD,, = k. Suppose further that 7, = k, namely, customer k is the n-th

that starts service under 7, m < n < N, which implies that b;(7) < bg().

Construct now a non-idling discipline #’ which differs from 7 only in the customer selections of j
and k, viz.,

o I _ 1 _ i . . .
T = Ty T = Ty =7, t#m, i#mn, 1<i<N.

The discipline ' operates on the sequence of service times S’ = {a/}¥ ,, with

U;':Uk: 0']"::0'1', 0'1{:0'1', 7’7£.77 7:7&]% 1<i<N.



One can verify that S’ is equivalent to S in law, and independent of the arrival and due dates (cf.

[15]), and that

so that 7/ is feasible.

Define

AA,S (71', f) - EW,A,S

Observe first that
Aus(m, f) = Aas(7', f)
= Eras[f(li(m)] + Ex,as[f(lk(7))] = Ex as[f(15(7")] = Exr,as[F(Ik(7'))]
= Eras[f(bj(r) — d;)] + Er,as[f(br(m) — di)]
—E 'As'[f(bk( ") = di)] = Ex a5 [f(bi(7") — dj)]
i(m) — dj)] + Ex,as[f(br(m) — di)]
i(7) — di)] — Er a,s[f(br(7) — dj)].

Applying Strassen’s theorem to the random variables d;, dj; entails that there are two random

variables (ij, dj, on a common probability space such that

dj =g dj, dp =5 dr, and d; >d, a.s.

Due to the assumption that the sequence D = {dk}kN:1 is independent of the sequences of arrival

and service times, we get that
Aus(m, )= Aas(n', f)
= Eraslf(bi(r) = d)] + Ex.a,s[f(br(r) — d)]
~ B 4,5'[f(b5(7) = di)] — Ex a5 [F(bi() — dj)].
The facts that bj(7) < bi(7) and that the function f is convex immediately imply
F(bj(m) — ds) + F(br(7) — di) > f(bj(m) — di) + F(ba(r) — d;).

Therefore,
Aus(m, f)— Aas(7', f) > 0.

Repeating this interchange process for at most N times yields

AA,S(”: f) 2 AA,S”(SSDD7 f)

10



Table 1: Comparison Results on the Lag Times and Waiting Times

performance due relative service time best worst stochastic
metrics date due date distribution | discipline | discipline | ordering
lag time known — general SDD LDD Ey
lag time unknown iid. r.v. general FCFS LCFS E,
lag time <4t comparable — general SSDD SLDD Ej
lag time unknown <4t increasing general FCFS LCFS Ej
waiting time — — general FCFS LCFS Ey

for some permutation §” of S. Unconditioning with respect to A and S entails that for any convex
function f: IR — IR,

N N
Y E[f(li(m))] 2 Y E[f(L(SSDD))],
=1 =1
provided the expectations exist. |

Corollary 3.2 Assume that the relative due dates are independent, stochastically increasing ran-
dom variables that are independent of the arrival and service times. Assume further that the due
dates are unknown a priori. Then

Vr € ®o:  IFCFS) <g, I(x) <g, (LCFS) (3.9)

Proof. Under these assumptions, the SSDD and SLDD disciplines coincide with the FCFS and
LCFS. Applying Theorem 3.2 immediately yields the desired result. |

The results obtained in this subsection can be summarized in Table 1.

3.2 Latenesses and Response Times

Theorem 3.3 Assume that for any fized sequence of arrival times A = {a,}\_,, the due dates are
stochastically comparable in the sense of <. Then the SSDD (resp. SLDD) discipline minimizes

(resp. mazimizes) the vector of latenesses within the class ¥q in the sense of <g, ordering:

Vr€®o:  L(SSDD)<g, L(r)<g, L(SLDD) (3.10)

11



Proof. Observe that for any customer n, 1 < n < N, the lag time l,(7) = b,(7) — d,, is indepen-
dent of its service time o,,. Since L,(7) = l,(7) + o,, the relation (3.10) follows from Theorem 3.2
and the closure (under convolution) property of the <g, ordering (cf. [16, Proposition F.6.a, p.
314)). n

Remark: In the single server queue, one can show by a coupling argument (see Baccelli et al.
[2]) that the E; ordering holds:

Vre¥,:  L(SDD)<g, L(x)<g, L(LDD).

When the relative due dates are independent and stochastically increasing random variables, the
SSDD and SLDD disciplines coincide with FCFS and LCFS, respectively. Applying Theorem 3.3
implies:

Corollary 3.3 Assume that the due dates are unknown a priori, and that the relative due dates
are independent, stochastically increasing random variables that are independent of the arrival and
service times. Then

Vr€®o:  L(FCFS) <g, L(r) <g, L(LCFS) (3.11)

Setting the due dates to be the arrival times in Corollary 3.3 immediately yields:

Vr € ®:  R(FCFS)<g, R(r)<g, R(LCFS) (3.12)

Stronger orderings can be obtained in G/D/s or G/M/s systems where the service times are

deterministic or i.i.d. exponentially distributed r.v.’s, respectively.

Theorem 3.4 Assume the queueing system is G/D /s or G/M/s. If the due dates are known, then
the SDD (resp. LDD) discipline minimizes (resp. mazimizes) the vector of latenesses within the

class ¥, in the sense of <g, ordering:

Vr€®o:  L(SDD)<g, L(r) <g, L(LDD). (3.13)

Proof. In the case of the G/D/s queueing system, the proof is analogous to that of Theorem 3.1,
using in addition the fact that majorization is preserved when all components of the vectors are
increased by the same fixed amount. In the case of the G/M/s queueing system, the assertion can
be shown with the same argument as that used in the proof of Theorem 4.1 below. The detailed
proofs are omitted. |

12



Table 2: Comparison Results on the Latenesses and Response Times

performance due relative service time best worst stochastic
metrics date due date distribution | discipline | discipline | ordering
lateness known — Dirac SDD LDD E;q
lateness known — exponential SDD LDD Eq
lateness unknown iid. r.v. Dirac FCFS LCFS E,
lateness unknown iid. r.v. exponential FCFS LCFS E,
lateness <4t comparable — general SSDD SLDD Ej
lateness unknown <4t increasing general FCFS LCFS Ej
response time — — Dirac FCFS LCFS Eq
response time — — exponential FCFS LCFS Eq
response time — — general FCFS LCFS Ej

Setting the due dates to be the arrival times in the above result implies extremal properties of the

FCFS and LCFS disciplines on response times: in the G/D/s or G/M/s queueing systems:

V€ ¥y : R(FCFS) <g, R(r)<g, R(LCFS). (3.14)
Using the same argument as the proof of Corollary 3.1 we obtain

Corollary 3.4 Assume the queueing system is G/D /s or G/M/s. If the due dates are unknown a
priori, and if the relative due dates are i.1.d. random variables which are independent of the arrival

and service times. Then

Vr€®o:  L(FCFS) <g, L(r) <g, L(LCFS) (3.15)

The results obtained in this subsection can be summarized in Table 2.

3.3 End-to-End Delays

Theorem 3.5 The FCFS (resp. LCFS) discipline minimizes (resp. mazimizes) the end-to-end

delays in the sense of stochastic ordering within the class of non-idling non-preemptive disciplines:

Vr € By, Yn,1<n<N: Du(FCFS) <y Dn(r) <y Dn(LCFS). (3.16)

Proof. We consider the FCFS discipline first. Let 7 be an arbitrary non-idling non-preemptive
discipline. For any fixed n, 1 < n < N, we will show that there is a probability space such that

gn(FCFS) < gu(m) a.s. (3.17)
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We arbitrarily fix the arrival times {a;}}¥,. Denote by {¢7}Y, the sequence of service times of
policy 7. Let Z = {i; : 1 < j < n} be the set of scheduling indices under 7 such that i; < i3 <
... <ipand m;; € {1,...,n}. Define a new policy v that schedules customers n + 1,n+2,---, N

according to m and switches the relative service order of the first n customers to FCF'S,

Yi; = 3 1=12,...,nm,
mn = m, l¢7T

The sequence of service times of policy v, {0} ¥ ., is defined on the same probability space in such

a way that the service times are accordingly switched:

Y 0-77::17 j:17"'7n7

. = 3 .

J ¥, j=n-+1,...,N

Note that the service times in {0}, are still i.i.d. and have the same distribution as those in

{UZ’ i]il'

It is easy to see that under such a construction, the sequences of increasingly ordered service

completion times are the same under 7 and y. Moreover, gn(7) = ¢n(7).

Now, consider FCFS. We construct again the sequence of service times of the FCFS policy on the
same probability space and define it to be identical to that of ~: O'fCFS =0/,1<i<N. It
should be clear that ¢;(FCFS) < ¢;(7), 1 < i < n. (Observe that the service completion times
under FCFS may or may not coincide with those under .) Therefore, g,(FCFS) < gu.(7), so that
relation (3.17) holds. Applying Strassen’s theorem (cf. Lemma 2.1) immediately yields the first
inequality of (3.16).

Consider now the LCFS part. The idea of the proof is similar. For any fixed n, 1 < n < N, we will
show that there is a probability space such that

gn(LCFS) > gu(7) a.s. (3.18)

As in the previous case, we arbitrarily fix the arrival times {a;}}¥,, and the service times {o7}¥,

of policy . Let p be a new policy whose service times are defined on the same probability space
and identical to those of m: {d?}N | = {067} ,. Define p to be such that the LCFS rule is applied
to the customers n+ 1,7+ 2,---, N. Due to the fact that in p, customers n+ 1,7+ 2,---, N have
higher priority than those of 1,- - -, n, we have the inequalities: ¢;(p) > ¢;(7), 1 < ¢ < n. Therefore,

qn(p) > qn(ﬂ-)'

Consider now policy p. We examine the scheduling of customers 1, ---,n. We interchange, whene-
ver necessary, their scheduling positions as well as their service times according to the LCFS rule.

Since the sequence of the increasingly ordered service completion times remains the same (due to
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the interchange of service times), the resulting policy is LCFS. Further, ¢,(LCFS) = gn(p). Hence,
relation (3.18) holds. An application of Strassen’s theorem readily implies the second inequality of
(3.16). ]

4 Comparisons within the Class of Non-Idling and Preemptive
Service Disciplines

In this section, we generalize the results obtained in the previous section to the class of non-idling
preemptive disciplines. Throughout this section, we assume that the service times are i.i.d. random
variables with an exponential distribution. Such an assumption allows us to place some restrictions
on the class of service disciplines that we need to consider.

Lemma 4.1 For any function of the state variables R, L and T, there exists an optimal discipline,
that minimizes or mazimizes the expectation of this function, whose decision points occur only at
the arrival times and all but the last service completion time.

In other words, preemptions and new customer assignments occur only at the customer arrival
instants and at the instants of all but the last service completion. This fact results from the
memoryless property of the exponential distribution. Indeed, between these instants the state
represented by the existing customers and their remaining service times does not change. The
formal proof is left to the interested reader. Throughout this section, we will confine ourselves to
the service disciplines having the property given in Lemma 4.1.

The results obtained in this section are summarized in Table 3. Result 1 of Table 3 are restated
and proved in Theorem 4.1 below. Result 2 is a trivial corollary of Theorem 4.1. Result 3 follows

from Result 2 and the convolution theorem for the <g, ordering (cf. [16, Proposition F.6.a, p.
314]). Result 4 can be established by using the ideas contained in the proofs of Theorems 3.3 and
4.1. Result 5 is a consequence of Result 4. Finally, a proof of Result 6 can be obtained by making
use of the ideas in Theorems 3.5 and 4.1.

Theorem 4.1 Assume that the due dates are known. Then the PSDD (resp. PLDD) discipline
minimizes (resp. mazimizes) the vector of latenesses within the class non-idling and preemptive

disciplines ¥ ,,; in the sense of <pg, ordering:

Vr e ¥,;:  L(PSDD)<p, L(x)<p, L(PLDD). (4.1)

Proof. We consider the system as if each server is continually serving customers. Whenever a
service completion occurs and there is no customer assigned to that server, it corresponds to the
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Table 3: Comparison Results within Preemptive Disciplines

performance due relative best worst stochastic

metrics date due date discipline | discipline | ordering
1 lateness known — PSDD PLDD E;q
2 response time — — FCFS PLCFS Eq
3 lateness unknown iid. r.v. FCFS PLCFS E,
4 lateness <4t comparable — PSSDD PSLDD Ej
5 lateness unknown <4t increasing FCFS PLCFS Ej
6 || end-to-end delay — — FCFS PLCFS <gt

completion of a fictitious customer. When a customer is assigned to a server, it is assigned a service
time equal to the remainder of the service time already underway at that server. The exponential
assumption guarantees that the customer service times are i.i.d. exponential r.v.’s.

Consider the result pertaining to PSDD (a similar argument can be used to obtain the desired result
for PLDD). Assume that the arrival times and service times are given. Let 0 = ¢; < &3 < -+ < tan
be the decision epochs (note that there are at most 2N decision epochs). Let 7 be an arbitrary

service discipline that is not PSDD. We will construct a new discipline 7’ that violates the PSDD
rule one less time and decreases the lateness vector in the sense of E; ordering.

Let m, 1 < m < 2N — 1, be the first time that = does not follow the PSDD rule, i.e., at time ¢,,,
there exist customers j and k in the system with d; > dj and that customer j is assigned to a

server at time t,, but not customer k.

The policy #' is constructed as follows. The (residual) service times under #’ are, as under ,
associated with the servers, and are the same as those with w. The decisions of 7’ are defined as
follows. For all 1 < n < m, the decisions of #’ at time ¢,, is the same as w. At time t,,, 7’ assigns
customer k in place of j to a server and maintains the same assignment for all other customers. If
at time ¢,,,1, customer j finishes under 7, which implies that customer k finishes under ', then
for all m < n < 2N, the assignment decisions of = at time ¢,, are the same as = except that when
customer k is assigned to a server under =, the customer j will be assigned to the server under =’.
Otherwise, if customer j does not finish under 7 at time ¢,,41 (nor does customer k£ under '), then
for all m < n < 2N, the assignment decisions of 7 at time ¢,, are exactly the same as 7 (even for

customers j and k).

This can be

performed repeatedly to produce a service discipline where the PSDD rule is applied everywhere so

In both cases, one easily verify (using the inequality d; > di) that L(x') < L(r).

that L(PSDD) < L(r). Removal of the conditioning on the arrival times and service times yields
the desired result for PSDD. |
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5 Optimality of Non-Idling FCFS Service Disciplines

In this section, we establish the optimality of non-idling FCFS service disciplines compared with
idling disciplines. The following lemma provides the basis of our proofs in this section and has
independent interest.

Lemma 5.1 For any non-preemptive discipline # € ¥,,, and any non-idling non-preemptive dis-

cipline ' € ¥y, we have

(ba (7 by (1), b (7)) <ot (b (7), By (), by (). (5.1)

(emt (s ey (1), s e (7)) <ot (Cmy (7)s €y (7), -+ Capy (). (5.2)

Proof. Owing to the fact that the service times are i.i.d. random variables, we can couple the

service times in such a way that the service time of the n-th assigned customer in both = and =’ is
On.

Since 7 is non-preemptive, we have the following recursive equation concerning the customer service
beginning and completion times:

br, (™) = max (a.,,n,c%_s(.,,,n)) + &r, (), (5.3)
Cr,(7) = ba(7)+ on, (5.4)

where, 7;(7,n) is the index of the i-th largest number in {cr, (7), ¢, (7), -, Cn,_, (%)}, &n(7) > 0
denotes the time interval between the epoch that one of the servers is available for the service of
customer 7, after its arrival and the epoch when the customer starts service under (idling) discipline

m. By convention, ¢; = 0 and ;(w,n) = 0 for all ¢ < 0.

For the non-idling and non-preemptive discipline 7', we have that

bt (7)) = max(a.,,rn,c%_s(.,,,,n)), (5.5)
c.,,rn(ﬂ") = b.,,rn(7r')—|—0'n. (5.6)

It is thus clear from equations (5.3—5.6) that

Vn, 1<n<N: bt (7') < g, (),
and that
Vn, 1<n<N: ear (1) < e, (),
which imply the relations (5.1) and (5.2), respectively. |
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Corollary 5.1 For any non-preemptive discipline a € llpcrg, we have

(b1(FCFS),bao(FCFS),---,bny(FCFS)) <& (b1(a),ba(a),---,bn(a)), (5.7)
(c1(FCFS),co(FCFS),---,en(FCFS)) <a (c1(a),ca(a), --,en(a)). (5.8)
Proof. It suffices to note that for all a € lIgcrs, a, = n. [ |

We are now in a position to prove the optimality of the FCFS discipline within the class of non-
preemptive idling disciplines. We consider the customer end-to-end delays in Theorem 5.1 below.
Other optimality properties of the FCFS are presented in Table 4 (Results 1—8) and can be shown

in an analogous way.

Theorem 5.1 FCFS minimizes the end-to-end delays in the sense of stochastic ordering, within
the class of non-preemptive idling disciplines:

Vr € ¥, Vn,1<n<N: D,(FCFS) <4 Dp(7). (5.9)

Proof. Observe first that for all 7 € ¥,,,,, there exists a € Ilpcrg such that
Vn,1<n<N: gn(a) <st gn(m). (5.10)

This last relation can be shown by mimicking the proof of Theorem 3.5. It consists in constructing
the new discipline a according to = in such a way that a has the same decision times and the same
idling times as .

The assertion of the theorem becomes now a consequence of Proposition 2.1 and Corollary 5.1
together with relation (5.10). [

Remark: Result 5 in Table 4 can also be obtained from the Schur convex ordering established
by Foss [9, 10].

Consider now the optimality properties of FCFS within the class of preemptive idling disciplines
¥: Results 9—12 in Table 4. The proof of these results rely on the following lemma.

Lemma 5.2 Assume that the service times are i.i.d. r.v.’s with exponential distribution. For all
discipline = € ¥, there is a non-idling discipline p € ¥,,; such that

(ca(p), - -,en(p)) <ot (ci(m),---,en(m)), (5.11)
L(p) <« L(m), (5.12)
p) <& R(7). (5.13)



Table 4: Optimality of FCFS within Idling Disciplines

class of performance due relative service time | stochastic

disciplines metrics date due date distribution | ordering
1 || non-preemptive waiting time — — general E1T
2 || non-preemptive lag time unknown iid. r.v. general EzT
3 || non-preemptive lag time unknown | <, increasing general Eg
4 || non-preemptive | response time — — Dirac ElT
5 || non-preemptive | response time — — general Eg
6 || non-preemptive lateness unknown ii.d. r.v. Dirac EzT
7 || non-preemptive lateness unknown | <, increasing general Eg
8 || non-preemptive | end-to-end delay — — general <st
9 preemptive response time — — exponential ElT
10 preemptive lateness unknown ii.d. r.v. exponential EZT
11 preemptive lateness unknown | <, increasing | exponential Eg
12 preemptive end-to-end delay — — exponential <st

Proof. We consider the system as if each server was continually serving customers. Whenever a
(virtual) service completion occurs and there is no customer assigned to that server, it corresponds
to the completion of a fictitious customer. When a customer is assigned to a server, it is assigned
a service time equal to the remainder of the service time already underway at that server. The
exponential assumption guarantees that the customer service times are i.i.d. exponential r.v.’s.
Assume that the arrival times and service times are given. We show that in such a probability

space, there is a discipline p which is non-idling and that

(c1(p)sea(p), -+ en(p) < (cx(m), calm), -+ en(m) as, (5.14)
which will imply the assertions of the lemma.
Let 0 < 51 < 82 < --- be the superposition of the sequences of arrival times and of the (virtual)

service completion times in the system. Define discipline p as follows: For m = 1,2, .-,

o If a customer n, 1 < n < N, is assigned to a server at s,, under 7, and if this customer is not
finished by s,, under p, then n is also assigned to a server under p.

o If there is a server such that no customer is assigned to at time s,, under =, or if the customer
that is assigned to at s,, under 7 is already finished by time s,, under p, then p assigns a
customer waiting in the queue, if any, to that server.

Under this construction, it is easy to see that p is non-idling and that relation (5.14) holds. |
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Results 9—12 in Table 4 now follow from Lemma 5.2 and Proposition 2.1, together with Results 2,
3, 5 and 6 in Table 3.

Remark: When preemptions are allowed, Hirayama and Kijima [11] obtained that in the
G/IFR/1 model (i.e., the service times are of IFR type),

Vre ¥ R(FCFS) <pr R(r).
3

A slightly stronger relation was obtained in Chang and Yao [6]. However, this result does not hold

for arbitrary G/IFR/s model, s > 2. Here is a counterexample. Consider a G/D /3 queue with 10
arriving customers. The service times are all 5 and the arrival times are 0,1,2,3,4,5,6,14,14.001,14.002.
Under FCFS, the average response time is 6.0998. The following preemptive schedule gives 6.0 Ser-

ver 1 serves customer 1 at ¢ = 0, customer 2 at ¢ = 5, customer 5 at ¢ = 7, and customer 8 at

t = 14. Server 2 serves customer 2 at ¢t = 1, customer 4 at ¢ = 4, customer 7 at ¢ = 9, and customer

9 at t = 14.001. Server 3 serves customer 3 at ¢ = 2, customer 6 at ¢t = 7, and customer 10 at

t = 14.002. Note that customer 2 was preempted at ¢t = 4.

6 Extensions

6.1 Comparisons in the Stationary Regime

The extremal properties of the FCFS, LCFS, SDD, LDD, SSDD, SLDD disciplines can be extended
to the stationary regime, provided it exists. To this end, we let N go to co and denote by W(w),
R(m), l(r), L(w), D() the limit r.v.’s of the weakly convergent r.v.’s W,(7), Rp(7), l,(7), Ln(7),
D, (7), respectively, when n goes to 0o, provided such convergence exists under the service discipline
e ¥,

Since the stochastic ordering <,; is preserved for the limit r.v.’s of weakly convergent sequences,
the stochastic ordering <, for the r.v.’s D,(7) is preserved whenever D,(7) weakly converges to

D(m) as n goes to co.

For other performance metrics, we recall that the sequence of random variables X,, € IR, n > 1, will
be said to converge weakly to the random variable X for the class of Borel mappings F : IR — IR
in the Cesaro sense (cf. Feller [8, p. 249]) if

N
vfer:  Jim 3> B = ELFX)) (6.1)

Observe that for any given family F, a sufficient condition for (6.1) to hold is that X,, couples
in finite time with a stationary and ergodic sequence. Such a coupling exists, for example, for
the waiting time and response times of the non-idling FCFS discipline when the arrival process is
stationary (cf. [5, Theorem 5.5.7 and Lemma 5.5.8]).
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Lemma 6.1 Let {X,}3°, and {Y,}2, be two sequences of r.v.’s such that

Yn>1: (X1, -, Xn) <g, (resp. SEaT) (Y1, -, Yn).

If the sequence {X,} and {Y,} converge weakly to X and Y with respect to the class of convex

functions (resp. increasing convex functions) in the Cesaro sense when n tends to co, then

X <Y (resp. X <;ex Y).
Proof. For all convex functions f: IR — IR, the weak convergence assumptions yield

E[f(X))] = lim = ZE )] < lim — ZE E[f(Y)].

n—oo 7 n—oo 7

This last lemma entails that the stochastic ordering <p, and SEJ (recall that <g, =<g,=<g, and
that <p1=<p9 :>§ET) established in the paper on the transient performance metrics W (), R(x),
1 2 3

I(r) and L() reduce to the stochastic orderings <. and <,., on the corresponding stationary
performance metrics W(x), R(x), {(r) and L(w), respectively, provided the weak convergence

assumptions with respect to the convex functions, and the increasing and convex functions, are

fulfilled.

Table 5 summarizes the comparison results in steady state where “G” stands for “general” and
“E” for “exponential”. In Results 4—7 and 10—12 of Table 5, “E” corresponds to ¥,; and ¥,
respectively, i.e., the service times should be exponentially distributed when preemption is allowed.

6.2 Other Performance Metrics

Denote by 6(r) = P[L(w) < 0] the goodput of discipline = € ¥, i.e., the proportion of customers
that finish service by their deadlines. Result 6 of Table 5 implies

Corollary 6.1 Assume that the due dates are unknown a priori and that the relative due dates are

i.1.d. 7.v.’s with concave distribution. Then, in a G/GI/s queueing system,
Vr € ¥y, 6(LCFS) > 6(r) > 0(FCFS),
and in a G/M/s queuveing system,

Vr € ®,;,  O6(PLCFS) > 6(x) > 6(FCFS).
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Table 5: Comparison Results in Steady State

class performance due relative service best worst stochastic

metrics date due date time discipline | discipline ordering
1 ¥, lag time <, comparable — G SSDD SLDD <ex
2 ¥, lag time unknown <,¢ increasing G FCFS LCFS <ex
3 ¥, waiting time — — G FCFS LCFS <cx
4 || ¥o,¥,,; lateness <,¢ comparable — G,E | (P)SSDD | (P)SLDD <z
5 || ¥o, ¥y lateness unknown <4t Increasing | G, E FCFS (P)LCFS <z
6 || ¥o, ¥y response time — — G, E FCFS (P)LCFS <z
7 || ¥g,¥,; | end-to-end delay — — G, E FCFS (P)LCFS <st
8 Yop lag time unknown <,¢ increasing G FCFS — <icx
9 ¥yp waiting time — — G FCFS — <iex
10 || ¥, ¥ lateness unknown <t increasing | G, E FCFS — <iex
11 || ¥y, ¥ response time — — G, E FCFS — <iex
12 || ¥,p, ¥ | end-to-end delay — — G, E FCFS — <st

Proof. Note that §(7) = P[L(r) < 0] = P[R(x) < r], where r is the relative due date. Thus, if r
has a concave distribution, the goodput §(7) is a convex function of the response time. Therefore,

applying Result 6 of Table 5 yields the assertion of the corollary. |

In the literature, the tardinesses of customers are also analyzed. Let T,, = max(0, L,) be the
tardiness of customer n, and T = (T1,---,Tn). Observe that for z € IR, the function f(z) =
max(0, ) is increasing and convex, and that the composition of an increasing and (Schur) convex
function with such a function f is still increasing and (Schur) convex. Therefore, the stochastic

orderings <g; and <gt obtained above on the vectors of latenesses L imply the stochastic orderings

<g1 on the vectors of tardinesses T', 7 = 1,2, 3.

6.3 Comparisons in Queueing Networks

The extremal properties obtained above do not hold in general queueing networks with multi-server
queues. However, some of the results obtained earlier in this paper can be extended to tandem
queueing networks. In addition, the extremal disciplines can be applied to the source nodes and
sink nodes, if any, of some queueing networks.

6.3.1 Tandem queueing networks

Consider a tandem network X consisting of K > 1 multiple server nodes. N customers arrive to
node 1 according to an arbitrary arrival process. Customers departing from node k enter node

22



k+1,k=1,...,K — 1. Finally, customers depart the system from node K. Let the arrival times
to node 1 be given by {a,})_, and the service times at node k, {or o} ;,1 < k < K. Let {d,},

n=1?

be the due dates associated with the N customers.

Let ¥, ¥,,,, etc. denote the same classes of policies as before, except over K nodes rather than
a single node. Let the SDD and LDD disciplines be the policies that always serve the customer
with the smallest and largest due dates, respectively, in all the nodes. Let the FCFS and LCFS
disciplines be defined with respect to the arrival times {a,,b}k]\’v:1 and be applied to all the nodes.
Let L,(7) and D,(7) be the response time and end-to-end delay of the n-th customer in the entire

network under policy .

We have the following extension to Theorems 3.4 and 3.5 to tandem queueing networks.

Theorem 6.1 Assume that in the tandem queueing network, the nodes are either -/D/s or -/M/s
and that service times are independent of each other and the arrival times. Then the FCFS (resp.
LCFS) discipline minimizes (resp. mazimizes) the end-to-end delays in the sense of stochastic

ordering within the class ¥y:
Vr € Oy, Vn,<n<N: D,(FCFS) <4 Dnp(r) <g D,(LCFS).

If the due dates are known, then the SDD (resp. LDD) discipline minimizes (resp. mazimizes) the

vector of latenesses in the sense of the <pg, ordering:

Vr € ¥y: L(SDD)<p, L(r)<p, L(LDD).

The comparisons in this theorem can be established using interchange arguments similar to those
used in earlier proofs and the ordering on permutations (see [2]). Similar results can be established
in some cases where due dates are not known and for the class of policies ¥,,;. Last, these results
can be extended to the stationary regime in which case the underlying orderings become <,; and
<z among the stationary end-to-end delay and lateness, respectively.

6.3.2 Source and sink nodes in general queueing networks

Consider a network X with K > 1 nodes. A node consists of a waiting queue and several servers.
When a customer finishes service at a node, it is (randomly) routed to one of the successor nodes.
The nodes with no predecessors are called the sources, and those having no successors are called
the sinks. Let K¢ and K; denote the sets of source nodes and sink nodes, respectively. Note that
the set Ko N K1 may not be empty.

It is assumed that all the customers arrive in the system by one of the source nodes, and that a
customer can leave the system only when it finishes service at one of the sink nodes. There is a
resequencing buffer with infinite capacity in the system. When a customer leaves a sink node, it
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Figure 1: Example of a queueing network containing source and sink queues

enters the resequencing buffer. The resequencing is performed with respect to the global arrival
times of the customers to the system. Figure 1 illustrates an example of such queueing networks.
A particular case is the queueing system with K > 1 independent and parallel multi-server queues:

K() - Kl.

Let a3 = 0 < ap < --- < ay be the time epochs when customers arrive in the system (i.e., at one
of the source queues). For any discipline w, let b,(7) (resp. cn(7)) be the service beginning (resp.
completion) time of customer n at one of the source (resp. sink) queues. Then, the performance
metrics are defined as I,(7) = by(7) — dn, Wh(7w) = bp(7) — an, Lp(7) = cn(w) — dn, Ru(w) =

en(T) — @, and ¢n(T) = Maxi <m<n em(T), Dn(T) = gn(7) — an.

If the servers of each source queue are identical, then all the previously established results pertaining
to the customer lag times and waiting times hold in the queueing network /C, provided the extremal
disciplines are applied to all the source queues. Similarly, if the servers of each sink queue are
identical, then all the previously established results pertaining to the customer latenesses and
response times as well as end-to-end delays hold in the queueing network X, provided the extremal
disciplines are applied to all the sink queues.

References

[1] F. Baccelli, E. Gelenbe, B. Plateau, “An End-to-End Approach to the Resequencing Problem”,
Journal of the ACM, Vol. 31, pp. 474-485, 1984.

24



[2] F. Baccelli, Z. Liu, D. Towsley, “Extremal Scheduling of Parallel Processing with and without
Real-Time Constraints”, to appear in the Journal of the ACM.

[3] F. Baccelli, A. M. Makowski, “Queueing Models for Systems with Synchronization Con-

straints”, Proceedings of the IFEFE, Vol. 77, Special Issue on Dynamics of Discrete Event
Systems, pp. 138-161, Jan. 1989.

[4] R. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing. Holt, Rinehart and
Winston, 1975.

[65] A. Brandt, P. Franken, B. Lisek, Stationary Stochastic Models. Akademic-Verlag, 1989.

[6] C. S. Chang, D. D. Yao, “Rearrangement, Majorization and Stochastic Scheduling”, IBM
Research Report RC 16250, 1990.

[7] D. J. Daley, “Certain Optimality Properties of the First Come First Served Discipline for
G/G/s Queues”, Stochastic Processes and their Applications, Vol. 25, pp. 301-308, 1987.

[8] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Second Edition,
John Wiley & Sons, 1971.

[9] S. G. Foss, “Approximation of Multichannel Queueing Systems” (in Russian), Sibirski Mat.
Zh., Vol. 21, pp. 132-140, 1980. (Transl.: Stberian Math. J., Vol. 21, pp. 851-857, 1980.)

[10] S. G. Foss, “Comparison of Servicing Strategies in Multichannel Queueing Systems” (in Rus-
sian), Sibirski Math. Zh., Vol. 22, pp. 190-197, 1981. (Transl.: Siberian Math. J., Vol. 22, pp.
142-147, 1981.)

[11] T. Hirayama, M. Kijima, “An Extremal Property of FIFO discipline in G/IFR/1 Queues”,
Adv. Appl. Prob., Vol. 21, 481-484, 1989.

[12] I. Iliadis, L. Lien, “Resequencing Delay for a Queueing System with Two Heterogeneous Servers

Under a Threshold-Type Scheduling”, IEEE Trans. on Communications, Vol. 36, pp. 692-702,
1988.

[13] J. F. C. Kingman, “Inequalities in the Theory of Queues,” J. Roy. Stat. Soc., ser. B, Vol. 32,
pp- 102-110, 1970.

[14] L. Kleinrock, F. Kamoun, R. Muntz, “Queueing Analysis of the reordering issue in a distribu-
ted database concurrency control mechanism”, Proc. of the 2nd International Conference on
Distributed Computing Systems, Versailles, France, 1981.

[15] Z. Liu, P. Nain, “Optimal Scheduling in Some Multi-Queue Single-Server Systems.” [EEE
Transactions on Automatic Control, Vol. 37, pp. 247-252, 1992.

25



[16] A. W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic
Press, 1979.

[17] R. Nelson, D. Towsley, A. N. Tantawi, “Performance Analysis of Parallel Processing Systems”,
IEEFE Trans. on Software Engineering, Vol. 14, No. 4, pp. 532-540, April 1988.

[18] M. Pinedo, “Stochastic Scheduling with Release Dates and Due Dates.” Oper. Res., Vol. 31,
No. 3, pp. 559-572, May-June 1983.

[19] J. G. Shantikumar, U. Sumita, “Convex Ordering of Sojourn Times in Single-Server Queues:
Extremal Properties of FIFO and LIFO Service Disciplines.” J. Appl. Prob., Vol. 24, pp.
T37-748, 1987.

[20] D. Stoyan, Comparison Methods for Queues and Other Stochastic Models. English translation
(D.J. Daley editor), J.Wiley and Sons, New York, 1984.

[21] V. Strassen, “The existence of Probability Measures with Given Marginals,” Ann. Math. Stat.,
Vol. 36, pp. 423-439, 1965.

[22] O. A. Vasicek, “An Inequality for the Variance of Waiting Time Under a General Queueing
Discipline.” Operations Research, Vol. 25, pp. 879-884, 1977.

[23] W. Whitt, “The Amount of Overtaking in a Network of Queues,” Networks, Vol. 14, pp.
411-426, 1984.

[24] R. W. Wolff, “An Upper Bound for Multi-Channel Queues,” J. Appl. Prob., Vol. 14, pp.
884-888, 1977.

[25] R. W. Wolff, “Upper Bounds on Work in System for Multichannel Queues,” J. Appl. Prob.,
Vol. 24, pp. 547-551, 1987.

26



