Logical Time in Visualizations
Produced by Parallel Programs

Janice E. Cuny®
Alfred A. Hough
Joydip Kundu-

COINS Technical Report 92-29
April 1992

Department of Computer Science,

University of Massachusetts,
Amherst, MA 01003

%The Parallel Programming Environments Project at the Uni-
versity of Massachusetts is supported by the National Science Foun-
dation under grant CCR-9023256.



Logical Time in Visualizations Produced by Parallel
Programs

Janice E. Cuny,! Alfred A. Hough, and Joydip Kundu

Department of Computer Science
University of Massachusetts, Amherst MA 01003

Abstract

Visualization tools that display data as it is manipulated by a parallel, MIMD
computation must contend with the effects of asynchronous execution. Because of
asynchrony, the temporal ordering of events in such a system is a partial order but
not a linear order. Animation systems, however, are constrained to frame-by-frame
depictions and thus must impose a linear ordering. What if this ordering is not what
the user expected?

We have developed techniques that manipulate logical time in order to produce
coherent animations of parallel program behavior despite the presence of asynchrony.
Our techniques “interpret” program behavior in light of user-defined abstractions and
generate animations based on a logical rather than a physical view of time. If this
interpretation succeeds, the resulting animation is easily understood; if it fails, the
programmer can be assured that the failure was not an artifact of the visualization.
Here we demonstrate that these techniques can be generally applied to enhance visual-
izations of a variety of types of data as it is produced by parallel, MIMD computations.

1The Parallel Programming Environments Project at the University of Massachusetts is supported by the
National Science Foundation under grant CCR-9023256.



1. Introduction

Visualization tools aid in the understanding of massively parallel, MIMD computations.
They are useful both at the application level where data visualization allows the user to
better understand simulated, real world phenomena and at the programming level where
program animation enables the user to better understand the behavior of his/her code. At
either level, however, visualization tools running on MIMD architectures must contend with
the effects of asynchronous execution.

Processes in an asynchronous computer system execute without the benefit of a global
clock; instead they have their own local clocks which are not mutually synchronized. As
a result, it is not always possible to determine the order of events executed by different
processes. The temporal ordering of events in a parallel, MIMD computer system is a partial
order, not a linear order. Animation systems, however, are constrained to sequential, frame-
by-frame depictions and therefore they must impose a linear ordering on events. But what
if this ordering does not match the programmers expectations? Is the resulting anomaly an
artifact of the visualization tool or is it a misunderstanding of the real world phenomena or
is it the symptom of a program bug?

To date, our work has focused on program animation tools designed specifically for use
in debugging for correctness.? We have developed techniques that manipulate logical time
in order to produce coherent animations of parallel program behavior despite the presence
of asynchrony. Our techniques “interpret” program behavior in light of user-defined ab-
stractions and generate animations based on a logical rather than a physical view of time.
If this interpretation succeeds, the resulting animation is easily understood; if it fails, the
programmer can be assured that the failure was not an artifact of the visualization. Here we
demonstrate that these techniques can be more generally applied to enhance the visualization
of data as it is manipulated by parallel, MIMD computations.

We begin, in Sections 2 and 3, by defining our techniques in their original context, that
is, within systems for program animation. In Section 4, we demonstrate their utility in the
more general context of data visualization. In Section 5, we present our conclusions.

2This is in contrast to a number of program visualization tools designed for use in debugging for per-
formance (2, 5, 15]. In debugging for correctness, it is logical time that is important; in debugging for
performance, it is physical time.



2. Owur Approach: An Overview in the Context of
Parallel Program Animation

Massively parallel computer systems — in which hundreds or even thousands of inter-
acting processes execute concurrently — are enormously complex. In order to understand
their behavior, programmers rely on informal modeling techniques: information traced dur-
ing execution is filtered and abstracted to develop a model of the system’s actual behavior
which is compared with the programmer’s conceptual model of the system’s intended behav-

tor. Visualization tools aid in this process by providing comprehensible views of program
behavior.

Figure 1: Checkered pattern of striped and solid processes for the SOR program.

Consider, for example, a program iteratively approximating the solution to a PDE us-
ing a Successive Overrelaxation (SOR) method [6]. Processes, arranged in a square mesh
repeatedly update their values as a function of the values of their neighbors. To speed
convergence, their execution alternates in a checkered pattern as in Figure 1: first striped
processes execute and then solid processes.

Figure 2 shows snapshots from a straightforward animation of an SOR program but it
does not show the expected behavior. What has gone wrong?

The most obvious problem is that the programmer did not think of the individual behavior
of processes but instead thought of a global pattern of activity in which all processes were
“doing the same thing at the same time.” Here we assume that the visualization tool supports
some type of abstraction, allowing the user to group program actions into absiract evenis.
In this example, we group read and update actions into striped and solid events which we
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Figure 2: Snapshots from the original animation of the SOR program.

Abstraction alone, however, is not enough.

The abstract striped and solid events are not atomic but occur over a period of time
(starting with the first read and ending with the last update). Because of asynchrony, the
time periods for successive events can overlap; thus, the logically sequential striped and
solid events may appear as concurrent. Worse, since they are executed on the same set of
processes, their animations may be superimposed making them incomprehensible (see, for
example, Figure 4b below).

Our visualization techniques produce comprehensible pictures by ordering events in log-
ical rather than physical time. Events are ordered in logical time by

process dependencies: processes are sequential and their actions are totally ordered
by local timestamps, and

interprocess dependencies: messages must be sent before they can be received.?

For the SOR program, striped and solid steps are ordered by process dependencies and thus
we animate them in successive frames as shown in Figure 3. In the figure, the abstract events
of interest have been temporally separated, providing visual discrimination and allowing the
user to understand his program’s behavior in terms of his/her own conceptualizations.

The behavior in this new animation is logically equivalent to the behavior in the original
picture; that is, all processors execute the same sequences of operations with the same
interprocess dependencies. For many parallel computations, however, such simple orderings
are not possible because of intertwined dependencies.

3Here, we consider only nonshared memory paradigms but the definitions can be extended to the shared
memory case as discussed in Section 4.
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Figure 3: Intended, logical sequence of striped and solid steps in the SOR computation.

Consider, for example, a program that implements a dictionary search in which queries
are pipelined from the host to a database of key-ordered records stored in a hypercube
[14]. Queries are routed within the cube to the proper node using a binary search. In the
animation of primitive events shown in Figure 4a, multiple queries are active simultaneously
and it is difficult to understand whether or not each query is proceeding as intended.

To view this behavior in a more understandable format, we define an abstract event
to be all of the communications generated on behalf of a single query. These new query
events cannot be separated on the basis of logical time because they follow data-dependent
paths through the cube, arriving in different orders at different processes. There is no single,
logically consistent ordering that can be imposed by the animator.

For such cases, we introduced perspective views which enable the user to selectively ignore
logical dependencies in establishing partially consistent event orderings. In this case, we can
choose to ignore all dependencies other than those caused by send events on the host process.
This creates the perspective views shown in Figure 4c — d in which queries are shown in the
order that they were issued from the host and each query completes before the next begins.

This animation is clear and understandable. In spite of the fact that it is not logically
equivalent to the actual execution trace (queries appear to arrive at some processes out of
order), it enables the programmer to easily comprehend relevant aspects of program behavior.
In this case, it enabled us to discover a bug that was not apparent in the original animation:
in Figure 4d, a query crosses a dimension of the cube twice indicating an error in the routing
of messages.) Thus, ignoring some temporal orderings in the original erecution sequence
made it possible for the programmer to understand aspects of the program’s behavior relevant
to its correctness.



Figure 4: Snapshots of an animation of the Dictionary Search. Low-level communication events
(a); abstract events with several concurrent search requests (b); a perspective view of abstract

events showing the path taken by an individual pequest (¢); erroneous communication between p3
and p7 (d).



3. Owur Approach: The Technical Details

We base our animations on Lamport’s happened before relation [12] which is defined on
primitive actions, each assumed to have a processor-local timestamp, denoted timestamp(a)
for an event a. Positioning events on their process time-line according to their local times-
tamps (increasing from left to right), event a happened before event b, denoted a — b, iff
one of the following conditions holds:

i) events a and b happen on the same process and
timestamp(a) < timestamp(b)

b )
Process 1 - ® -

(V]

ii) a is the act of sending a message and b is the act of receiving it (denoted by an
arrow from a to b)

Process 1 -
b
Process 2 Lot

iii) @ — bis in the transitive closure of i) and ii)

[

and
a .
Process 1 —
\ b
Process 2 - -
Two events are unordered if they are not related by happened before:*

a || biff not (a — b) and not (b — a)

. a
Process 1 L |

b
Process 2 e c

— is defined on primitive events. For our purposes, we extend the definition to nonatomic
events, defining three relations — precedes, parallels, and overlaps — between abstract events.
Other extensions have been proposed [12, 1, 11, 3] but ours has been tailored to the needs
of visualization systems.

4This notation is slightly different than Lamport'’s.



We begin with a relation partially precedes, denoted —. Let A and B be sets of events.
Informally, A — B if some part of A happens before some part of B or they share a primitive
event; formally

i)A—~Bifdac A)be B:a—bora=b
and

ii) ~— is closed under transitivity

Using partially precedes we define the three possible relations between two abstract events:
Precedes: A = B iff A— B and NOT (B — A)

Parallels: A || Biff NOT (A — B) and NOT (B — A), (alternatively, iff Va € A,b €
B:a|b)

Overlaps: A Bif A~ Band B— A

Precedes captures the notion that one abstract event logically occurs before another. Parallels
captures the notion that no logical ordering exists between the events and overlaps captures
the notion that the events are logically intertwined (that is, some part of each event must
happen before some part of the other).

Our techniques associate with each relation a transformation that assigns animation
times. In the case of precedes, we separate the events by assigning animation times so that
all elements of the first event complete before any element of the second event begins. In the
case of parallels, we assign the the same animation time to the earliest events in each set.
The transformation for precedes, for example, separates the striped and solid steps of the
SOR program in Figure 3, while the transformation for parallels synchronizes the subevents
of each step.

For events related by precedes or parallels, the transformations produce consistent or-
derings; that is, all processes execute the same sequence of events and the happened before
relation remains unchanged. For events related by overlaps, however, we cannot construct
consistent reorderings and, thus, we introduce partially consistent orderings in which each
process executes a subsequence of its original event sequence and the happened before relation
is a subset of the original happened before relation.

We base our partially consistent orderings on a user-selected subset of the events called a
perspective. Only events named in the perspective are used in computing ordering relations.
Events not named in the perspective and not needed for the display of named events are
deleted and the remaining events are reordered in a manner consistent with the computed
relations. We might, for example, consider the following behavior where all constituent events
of an abstract event are labeled with the same uppercase letter from the partial perspective
of Process 1:



Process 1

o wWwe

Process 2

in this case, we would use only the Process 1 primitive events for computing ordering rela-
tions. Thus,

becomes
A B A B
Process 1 \—e ® - Process 1 - 2 4 -
C A B
Process 2 —e ® *—- Process 2 @ —o— ° -

where circles indicate the events used to compute the ordering. The ordering on Process
1 has been applied to all events, including those on Process 2; abstract event C has been
deleted since it does not contain elements in the perspective. Alternatively, the same system
can be decomposed from the perspective of Process 2, in which case

becomes
A B B A
Process 1 —e Process 1 b > -
B B A C
Process 2 Process 2 —e -& *—

Each reordering is meaningful; each exposes the order of events on an individual process and
provides some insight to the code and environment of that process. The two reorderings
together characterize the complete behavior of the system.

Further details of the transformation algorithms can be found in [9] and [10].

4. Examples: Logical Time in Visualizations Produced
by Parallel Computations

We have successfully used the logical time manipulations described here in the Belvedere
animation system [7, 8, 10] which was specifically designed to aid in the debugging of parallel
programs for correctness. Here, we demonstrate their more general application to visualiza-
tions of domain-specific data.

Example 1. Sharks and Fishes [16]. For this example, we use a program that performs
an underwater simulation taken from a paper on the Voyeur animation system [16]. The
simulation consists of a 2D world where sharks eat fish that come too close.
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Figure 5: Logically consecutive time steps in the lives of sharks and fishes. Each process is labeled
with its current time.

Initially, the simulation might be configured as in Figure 5a. After a single logical
timestep, it might be configured as in Figure 5b where both sharks in the first row have
moved into the top middle square and the shark on the right has eaten a fish. Figure 5
displays the logical timesteps for each process; it shows synchronized processes moving to-
gether from Step 1 to Step 2. If, however, the processes are not synchronized, the confusing
display shown in Figure 6 might be seen. In that figure, some processes are at Step 1 while
others have advanced to Step 2. The image is difficult to interpret; sharks in the top row,
for example, are not displayed at all because during Step 2 they have moved to processes
still displayed at Step 1. The problem is not in the code but in its visualization.
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Figure 6: Actual execution of the sharks and fishes program. Processes at different time steps are
executing concurrently.

Existing animation tools solve this problem by explicitly simulating a global or real
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world time. Each process outputs clock “ticks” and all data produced between successive
ticks is displayed at the same time. This simulated time has been called “phase time” [13] or
“generation” time [16] and it works well for SPMD (Single Program Multiple Data) programs
where all processes proceed in unison. It does not work well for less regular programs in
which processes independently update data at different points in their execution. In these
programs, processes that are not involved in an update do not have any way of knowing
that time should be advanced. Examples of such programs include the dictionary search
discussed above and the FIFO queue discussed below.

With our techniques, the user defines abstract events composed of single updates to shark
and fish positions on all processes. These abstract events are ordered by precedes and, thus,
they are automatically separated to produce the desired animation (as shown in Figure 3).

Example 2. Recursive Matrix Transposition [5]. In this example, we consider a pro-
gram that performs a recursive matrix transposition. Starting with the matrix as displayed
in Figure 7, we successively transpose submatrices of sizes 2 X 2, 4 x 4 and 8 x 8. A visual-
ization in which processes asynchronously update the display as they compute produces the
incomprehensible snapshots of Figure 8. Using our techniques, abstract events correspond-

B =

ODZEBERBEA

=
X
%S

5

3
3

]

et

O &
O &

Figure 7: Snapshot from of the matrix before transposition.

ing to the recursion levels are shown in a logically coherent manner as in Figure 9. This
enhanced visualization is considerably easier to understand than the original.

It should be noted that for this algorithm, where all processes recurse to the same depth,
the use of phase time or generation time would also suffice. If, however, the depth of
recursion was not uniform as, for example, in a binary search, then only our techniques
would produce coherent pictures. In the next example, we demonstrate a program that
cannot be successfully animated with phase or generation time alone.
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Figure 8: Snapshots from the original animation of the recursive transposition program.
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Figure 9: Snapshots from the enhanced animation of the recursive transposition program showing
the matrix after the transposition of 2 X 2, 4 X 4 and 8 x 8 submatrices.
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Example 3. Parallel FIFO Queune [4]. Here, we discuss an animation of a parallel queue®
but the scenario is typical of many simulations that model concurrent, nonatomic updates
of data.

Figure 10a shows an empty circular queue. Each trapezoid represents a location in the
queue; the head pointer is labeled I and the tail pointer is labeled D. In Figures 10b and c,
we use a solid trapezoid below the queue (blank trapezoid above the queue) to indicate that
an Insert (Delete) is in progress. Note that Figure 10 shows both an Insert and a Delete
in progress at the same location but this does not indicate an error. Neither Inserts nor
Deletes are atomic. A Delete takes three steps: first it gets the position of the next queue
element, then it waits until any Inserts on that location have completed, and then it removes
the element. Its start can legitimately overlap with the previous Insert. Figure 10d shows
several Inserts and Deletes in progress; shaded queue locations are full. All of these pictures
show the queue behaving as expected. But what if there is an error?

Suppose that the wait is omitted during Deletes so that it is possible for them to access
the queue before data has been inserted. Figure 11 shows snapshots from the animation
of an execution sequence in which this actually occurred. It looks as if the first Insert has
completed and the first Delete is still in progress. Why doesn’t the error show up?

The problem is in the timing of the screen updates. In this trace, the Delete accessed
the queue first but the sequence of operations that made up the Insert finished before the
sequence of operations that made up the Delete. The screen was updated as the sequences

‘completed and, thus, it showed the Insert first, masking the error. Using logical time,
however, this anomaly does not occur. Figure 12, for example, shows the same execution
trace animated with our techniques. Inserts and Deletes were treated as abstract events
and they were ordered logically by the dependencies caused by queue accesses (dependencies
resulting from the process waits were ignored). The error is clearly visible.

This scenario is typical of simulations in which different parts of a data structure are
concurrently updated by nonatomic operations. Simulated global time is not useful because
not all processes participate in each update and, thus, not all processes are aware of the
need to advance their clocks. Qur techniques allow the user to focus on just those temporal
orderings that are relevant to the logical behavior under investigation. They also allow the
user to change that focus as different aspects of the behavior come under scrutiny.

SNote: We have assumed a nonshared memory paradigm but for this example we simulate a shared
memory location as a process: if pis a process and m a memory location, a write from p to m is treated as
a message from p to m and a read by p from m is treated as a message from m to p.
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Figure 12: Snapshots from the logically ordered animation of the erroneous version of the parallel
queue.



5. Conclusions

All visualization tools that display data as it is manipulated by a parallel, MIMD com-
putation must contend with the effects of asynchronous execution. In some cases, this is
done with the explicit simulation of a global clock but that is not always feasible. Here we
propose a less restrictive mechanism in which logical time is manipulated in order to produce
coherent animations of parallel program behavior. Our techniques “interpret” program be-
havior in light of user-defined abstractions and generate animations based on a logical rather
than a physical view of time. In this paper, we have demonstrated the application of these
techniques more generally to a variety of types of data visualizations.
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