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Abstract

Consider the poset of non-negative lattice points in the plane, where A =
(az,8y) < B = (bz,by) < a: < b; and ay < by. An S-chain is a
set of S points which are pairwise comparable. Consider the family of
lines £ +y = k, where k¥ > 0. Select a point from each of these lines
starting with the Oth line (the origin). Giver S > 0, we obtain optimal
upper bounds on the number of points that need to be selected in order
to guarantee the existence of an S-chain among the selected points. In
n-dimensions, the family of lines above is replaced by a family of planes:
a point belongs to the kth plane if the sum of its coordinates equals k,
k > 0. Now, select a point from each of these planes starting with the
Oth plane. Given S > 0, we obtain upper bounds on the number of points
that need to be selected in order to guarantee the existence of an S-chain
among the selected points. For n > 2, however, the bounds obtained are
not optimal.
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Figure 1: The 2-D Poset and its Diagonals
1 Introduction

Consider points in the first quadrant in 2-dimensions with non-negative integer
coordinates. These points form a poset. Point A = (a,ay) is < B = (b, by) if
and only if a; < b; and ay < b,. Points A and B are comparable if and only if
either A < B or B < A; otherwise they are incomparable. An S-chain in this
poset is a set of S points any two of which are comparable. We define the kth
(k > 0) diagonal in this poset as the line with (k + 1) points that satisfies the

equation
z+y = &k

For k£ > 0, the points on these diagonals partition the poset.

Figure 1 shows the 2-d poset.

Now consider the following problem, which we formulate as a game G, and
which we state for the above 2-d poset. (Its generalization to n-dimensions is

considered in subsequent sections). G consists of several steps. At the ith step,



Figure 2: A Game of 6 moves on a 2-d Poset

a point is selected from the (i — 1)th diagonal. G stops when there exists an
S-chain among the points selected.

Figure 2 shows a game up to its sixth step. (Note: If the value of S was
4, the game would have stopped after 5 steps — points A, B,C and E form a
chain of length 4).

A “clever” choice of points will prolong G (increase the number of steps of
G) while a bad choice will force G to terminate quickly. We seek upper bounds
(and if possible, optimal upper bounds) on the number of steps in G.

This paper is organized as follows. In section 2, we describe out notation. In
section 3, we present by means of a recurrence relation, an upper bound for the
general version of the above problem. In section 4, we show that the optimal

upper bound on the number of steps in G for the above 2-d poset is 251
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2 Notation

Consider points with non-negative integer coordinates in the first orthant in n
dimensions. These points form a poset P. A point A = (a1,az,...,84) is <
B = (b1,b2,...,b,) if and only if ¢; < b; (1 < i < n). Two points A and B
are “comparable” if and only if either A < B or B < A; otherwise they are
“incomparable”.

An S-chain is a set of S points any two of which are comparable.

We identify the n axes by variables zy,z5...2,.

For k, k' > 0 and i, (1 < i < n), a wall is an infinite set of points which

satisfy the equation
zi=k, 1 +22+...+Tic1+Tiv1+...+zp >k (1)
Bounding walls are given by equations

z;=0, zy+z2+...+zi-1+Zip1+...+2, 20, (1<i<n)

Note that there are n bounding walls, and all points in P lie inside the region
formed by these walls.

For any k > 0, the kth base ( H}) is the finite set of points A = (ay,a3,...,an)
given by

Hy={A=(ay,az,-..,a,)|a1 +a2+...+a, =k} 2)



The kth plateau (Pg) is the infinite set of points given by

P = UHj (3)
izk
Clearly,
P.={A=(a1,82,-.-,8n)|a1 +a2+...+an >k} : (4)

We say plateau Py has height k. Let H be the function that computes height:
H(P:) = k.
The ideal of C (I¢) is the infinite set of points A satisfying A > C:

Ic={A|A>C} (5)

(Note that I¢ is isomorphic to the original poset P, and that if C € Hp,
then Ic C P.)

The co-ideal of C € Hi, (Dc), is the infinite set of points given by the
equation

Dc=P-Ic (6)

Thus, Ic contains only those points in P, which are > C, while D¢ contains
those points in P which are incomparable to C.

Note that in all the terms defined above, n, the dimension of P has been
suppressed. We write H, Pi*, D2, etc. only when needed.

We state the following fact without proof.

Fact 1 Let W be any wall in n dimensions whose equation is given by (1).

Then the poset structure of W is isomorphic to the poset structure of P,‘,"l.



We now state a lemma which describes D¢ for an n-dimensional poset in

terms of plateaus of (n — 1) dimensions.

Lemma 1 Let C = (c1,¢2,¢3,...,¢n) be a point in HY. Then D% is a union of
k (n — 1)-dimensional plateaus. Further, let P denote any of these k plateaus.

Then H(P) < H(PP~ ') = k.

Proof: Since C € HP, 37_, ¢j = k. Let Wi, 1 < i < n be the following

set of walls.

Wi={zi=j, i+ z2+...+ i1+ Zipa+...+2. 2 (k—j), 0<j<(a—1)}
(7)
These are walls “paraliel” to the bounding wall z; = 0 and bounded above
by the wall z; = ¢; — 1. There are a total of ¢; walls in W;. By Fact 1, the first

wall in W; (substitute j = 0 in the definition of W;) is isomorphic to Py ~1 the
second wall (j = 1) is isomorphic to PP~} and so on up to the c;th wall, which

is isomorphic to P,:'_"cl‘ +1

Let W = |J;-; W;. The cardinality of W is

Wl = IWi[+[Wal+...+ Ws|
= c+e2t...+cn

= k

We will show that D} = W. Let A = (a1,a2,...,8,) € Dg&. Since A is
incomparable to C and since A € Pg, there exists p, 1 < p < n, such that

ap < cpand @y +a2+...+@p_1 +0ap41+...+8q > k—ap. Thus, A satisfies the



edﬁﬁaﬁ of the wall 2, = ap, 21+ 22...2p_1 + Zp41+ ...+ 2n 2 k —ap. But
this is a wall in W,. The converse can be proved similarly. Now, since every
wall in W isomorphic to a plateau in (n — 1)-dimensions and since |W| = k, the
first part of the lemma is proved. Also, as noted earlier, the first wall in any W;
is isomorphic to Py’ =1 the second wall is isomorphic to P,’:_'ll and so on. Thus,

the height of any plateau in W cannot be greater than k. O

3 Problem Description

We now describe the general version of the problem presented in section 1. It
consists of playing a game G such that at step ¢, ¢ > 1, a point is selected from
base H;_;. G stops when there exists an S-chain among the selected points.
The problem then is to find an upper bound on the number of steps of G.

We first derive an upper bound for a slightly different game G'. G' is essen-
tially G with the exception that at the first step, a poiat from base Hy (k > 0)
is selected (and not‘necessarily from base Hy as in G). At the ith step, we pick
a point from base Hiy4;—3. G' is thus played on P;. Again, G’ stops when an
S-chain exists among the points selected. We denote this bound by L(n, k, 1, S)
where n is the dimension number, k is the first base from which a point is se-
lected and S is the chain length which stops G’. (The significance of “1” in
L(n,k,1,S) will become clear in the next paragraph).

In order to compute upper bounds for higher dimensions from the previous
bounds for lower dimensions, we will need to play G” — which is essentially G’
played with some ¢ (¢ > 1) copies of P (i.e. ¢ plateaus in n dimensions, each

with height k). At the first step of G”, a point is picked from base H from



any of the ¢ plateaus. At any subsequent ith step (i > 1), we first select a copy
(from among the ¢ copies) and then choose a point from base Hi4i—; in that
copy. G" stops when an S-chain exists among the points from some copy. We
denote this bound by L(n,k,c,S) where n,k and S are as above, and c is the
number of copies of the plateau on which G” is played.

(Note: The upper bound for G is just a special case of the upper bound for
G" and is given by L(n,0,1,5)).

Lemma 2 Suppose we play G” on ¢ copies of n-dimensional plateaus with pos-
sibly different heights. Let the upper bound for G” on these copies be Uy. Let k
be the mazimum height of all these copies. Let Uy be the upper bound for G” on

¢ copies of n-dimensional plateaus all having the same height k. Then, U; < Us.

Proof: The proof follows from the simple observation that an n-dimensional
plateau with height < k is contained in an n-dimensional plateau with height
k. Thus, every game G" played on the earlier set of ¢ copies can be duplicated

on the latter set. O

3.1 The Base Case — L(1,k,c,S)
Lemma 3 Forall $>1, k>0

L(1,k,1,8) =S (8)

Proof: Any two points in a 1-d poset are comparable. Hence, starting

with any base, the first S points that are selected form a chain. O



Lemma 4 Forall S>1, k>0andc>1

L(L,k,e,5)=(S - 1)e+1 (9)

Proof:  Consider playing G” for ((S — 1)c + 1) steps on ¢ copies of 1-d
plateaus starting with any base k. One of the copies must have been selected

for S or more steps, yielding an S-chain. O

3.2 Breaking up an (VN + 1) dimensional region

We have so far obtained bounds for any S-chain in 1-dimension. We now show
how to obtain bounds for higher dimensions.
Suppose we know L(n, k,c,S) forall n<mng, k>0, c>1and S>1.

We want to obtain L(no + 1,.k,1,S5). Let us define the following recurrence

1 ifi=0
w; = L(no,k,k,S) ifi=1
) i-1 i—1 ..
L (no, (k + 5= wj) ) (k + i1 w,-) ,S) otherwise (i > 2)
(10)
Lemma 5
L(no + L,k 1,9 <wo+wy +wa+...+ws— (11)

where the w;’s are given by (10).

Proof: Consider playing G’ on P,:"'°'*'1 for wo+w; +we+...+wg_; steps.

Let t; = Z;'.=0 wj, 0<i<(S—1). Let Z be the following invariant.



Ci: Either G’ has stopped before t; steps because there exists an S-chain

among the points already selected in P;"'"'l; or

C2: There exists a chain in PP°*! whose size is (i + 1) after t; steps of G'.

T is true provided either of C; or C, is true. We will show that Z holds for
G’ aftér every block of w; steps.

The base step, i = 0, is immediate, since the point selected at the first step
of G’ ensures a chain of length one. So suppose that Z holds up to t, = 3_7_q w;
steps. If G’ has stopped before ¢, steps (i.e. C is true), then Z is trivially true
for any future steps. So suppose Cs is true. Then there exists a chain of length
(r + 1) among the points selected so far. Let A be the last point on this chain.
Note that A was selected either at the ¢.th step or before. In either case, 14,
the ideal of A, contains at least one point (A’) such that A’ € Hg4¢,—1. (Note
that A and A’ may be the same point if A was chosen at the ¢,th step.) Also,
at the next step (step ¢, + 1), a point will be selected from Hyy, .

Consider D/, the co-ideal of A’. By Lemma 1, D 4: is a union of (k+¢, —1)
copies of nqo-dimensional plateaus, each of height at most (k +¢, — 1).

Now play G’ for w,4+; more steps. By (10)

g r)

= L (no, (k-i—(iwj)—l) ) (k+(iwj)— 1) ,S)

= L(no,(k-l-t,-—1),(k+t,-—1),5)

We41



The following cases arise.

Case 1: At least one point has been selected from the ideal of A’ in the next
wr4 steps. In this case, the chain of length (r 4+ 1) ending at A at the previous
inductive step has now increased by one (since I C I4). Thus, C2 (and hence
7) holds.

Case 2: All next w,4, points have been selected from D4/. By the previous
bounds for no dimensions, there exists a chain of length S inside one of the
no-dimensional plateaus constituting D4:. In this case, G’ stops, and C; (and
hence ) holds.

To complete the proof, note that if Z holds after the last block of wg_; steps,
then either C; or C; holds. In either case, there exists a chain of length S among

the selected points. O

3.3 - Increasing the number of copies

Now we show how to obtain L(ng, k&, ¢ + 1, S) once we have obtained
1. L(n,k,c,S)forall n<ng, >0, ¢>1, S>1;and
2. L(ng,k,c,S)forall k>0, c<co, S>1.

Let us define the following recurrence

L(no, k, co, S) ifi=1
u= { L(no=1,(k+Tizin) (0 + 1) (k+ Tiziv;),8) i>1
(12)
Lemma 6 Let u=(co+1)*(S—1)+1. Then
L(ng,k,co+1,5) <vi+va+...+ vy (13)

10



where the v;’s are given by (12).

Proof: Consider playing G” on (¢o + 1) copies of P;° for vy +v1 +...+ vy
steps.
Let t; = Ej'=1 vj, 1 <1 < u. We will show that the following invariant Z

holds for G” after ¢; steps.

Ci: Either G” has stopped before t; steps because there exists an S-chain in

some copy among previously selected points; or

Ca: For 1< j<(co+1), there exists a chain of length S; > 1 in the jth copy

such that
¢o+1
D Sjzeoti (14)
i=1
Thus, Condition C claims that after every block of v; steps, there exists
a chain in copy 1, another in copy 2, etc. such that the sum of the lengths

of all these chains is at least co + ¢. The S;’s above depend on .

Z is true if either C; or C is true.

Consider the base case when ¢; = v,. For these first v, steps, either all the
(co + 1) copies have been considered for selection at least once, or some copy
has been ignored. In the former case C; is true (S; > 1 for all j). In the latter
case, by previous bounds, there exists an S-chain in one of the copies. In this
case, C; is true. Thus, T holds for the base case.

r

Suppose Z is true after t, = ) .

j=10j steps, 1 < r < u. Now, if C; is true,

then G” has stopped before ¢, steps. In this case, Z holds trivially for all future

steps.

11



So suppose C; holds. Then there exists a chain of length S; > 1 in the jth
copy such that the S;’s satisfy (14). Let A;, 1 < j < (co + 1) be the last point
in the Sj-chain for copy j. (A; was selected by G” at some prior step). So far,
the last base from which a point was selected is H;, 4x—1. Also, there exists at
least one point A;’ in base H; ;) for each copy such that A;' € I4;. Applying
Lemmal, U;";l'l D, is a union of (co+1)*(t,+k) copies of (ng—1)-dimensional
plateaus each of height at most (¢, + k).

Now consider playing G” for v,4, more steps. By (12),

: (1 (Hi,,,.) (o4 1) (Hiv,.) ,s)
ij=1 j=1

= L(no—-1,(k+t),(co+1)*(k+12),5)

Ursl

Either all of these v,,; selected points belong to U;"__."il

D4, or there exists
a point which belongs to the ideal of some A;'. In the former case, C, is true by
previous bounds for copies of (ng — 1)-dimensional plateaus. In the latter case,
at least one of the Sj’s increases by one. Therefore C; holds.

Thus, after t, = Z}-‘:; v; steps, Z holds. If C, is true, then there exists an

S-chain among the selected points. If C; is true, then there exists a Sj-chain in

the jth copy such that

co+1
Z Sj 2 Co+u

ji=1

12



Therefore, there exists at least one S; such that

co+t+u
S; 2 [c°+1]
00+(CO+1)(S—1)+1]
co+1

S

v

Hence the result. O.
We can now state the following theorem whose proof follows immediately

from the earlier lemmas.

Theorem 1 The number of steps of G described in section 3 is bounded above
by L(n,0,1,S). This bound can be compuied from equations (8), (9), (11),
and (13). O.

4 Optimal Upper Bound for the 2-D Poset

We now return to the 2-d poset presented in section 1. For this poset, its
diagonal lines are bases, and successive diagonal lines starting with some kth
diagonal form plateau P; (refer to Figure 1). Note that the kth diagonal has
(k + 1) points. Also, any point in this poset can be uniquely identified by its
(z,y) coordinates.

We will show that the optimal upper bound for an S-chain on the number
of steps of G for the 2-d poset is 25—1.

The proof is divided in two parts. First, we prove that if the game continues

25—1

for or more steps, then there exists an S-chain among the points selected.

13



To establish optimality, we then show that there is a way of selecting (25! —1)
points (a game with 25~! — 1 steps) such that the maximal chain length among
these points is at most (S — 1).

In order to prove the above bounds, we need to consider the following game
(denoted by G) which is a slightly different version of G'. G starts by picking a
point from some pth (p > 0) diagonal. Suppose at the ith (i > 1) step we have
selected a point from diagonal p’. Then at the (i + 1)th step we select a point
from any diagonal p” such that p” > p’. Thus in G we relax the restriction
of selecting at successive steps a point from successive diagonals. G continues
provided at the next step a point can be selected which is incomparable to all
the previously selected points.

We prove the following lemma for G.

Lemma 7 G has at most (p+ 1) steps. Further, this bound is optimal.

Proof: For any point C in the pth diagonal there are two points greater
than C in the (p + 1)th diagonal, three points greater than C in the (p +
2)th diagonal and so on (In general there are g points greater than C in the
(p + g — 1)th diagonal.) Thus, once a point A is selected in the pth diagonal
at the first step, for any subsequent diagonal p’, p’ > p, there are at most
(¢’ +1— (¢’ = (p+1))) = p points incomparable to A. Select any point B from
among these p points on some p’(> p)th diagonal at the second step. Now, for
any subsequent diagonal p” > p’, there are at most (p — 1) points which are
incomparable to both A and B. It is easy to see that the number of points in

subsequent diagonals which are incomparable to the points selected at previous

14



steps decrease by one for every selection. (It could reduce by more than one
provided one does a “bad” selection at some step). This gives us the required
upper bound of (p+ 1).

To show that this bound is optimal, select the following (p+ 1) points (given
by their (z,y) coordinates): (p,0), (p — 1,2), (p — 2,4), ...and (0,2 % p). All
of these points are incomparable to each other and lie in successive diagonals

starting with the pth diagonal. O

4.1 A Directed Acyclic Graph representation of a Game

We now introduce a Directed Acyclic Graph (DAG) G corresponding to m steps
of a game. For each of the m points selected there is a corresponding node in

G. There is a directed edge from a node N; to node N3 in G if and only if

1. the points C; and C> corresponding to N; and Nz are such that C; > C)

and

2. there does not exist a selected point C’ such that (C’ # C)) and (C’ # C3)

and C; > C' > ().

Figure 3 shows the DAG for the game in Figure 2.

In any game G, the origin (0,0) is the first point selected. It becomes the
root of G. Nodes in G can be partitioned into “levels” depending upon their
distance from the root node. The root node forms level 1, nodes at distance one
from the root form level 2 and so on. The MLN, the maximum level number

of the DAG, is the number of its maximum non-empty level.

In Figure 3, the MLN of the DAG is 4.

15



MLN = 4 A: o Level 1
/N
B D o Level 2
P

- / F —- Level 3
'ﬁ—/
L E 3 o Level 4

Figure 3: DAG for the Game in Figure 2

In what follows, we use the terms “points” and “nodes” interchangeably to
refer both to points selected along diagonals and their corresponding nodes in

the DAG.

The following two facts follow directly from the definitions.

Fact 2 For any game G, the length of the mazimal chain amceng the poinis

selected equals the MLN of the DAG of G.

Fact 3 For any DAG corresponding to a game G, all nodes in a level are in-

comparable to each other.

4.2 An upper bound for 2-d games

Consider the incremental construction of a DAG for any game of m steps. After
the first step the DAG has just the root node. After every step, the number of
nodes in the DAG increase by one. A new node added in the DAG (correspond-
ing to a newly selected point) either falls in a new level (in which case the MLN

of the DAG increases by one) or it is assigned a level formed at a previous step.

16



For any game of m steps, let g;, (1 < a; < m) be the first step which increases
the MLN of the DAG to i. Let ap = 0. Clearly, a) = 1, and a3 = 2. Also we

must have i < a; since every step can increase the MLN by at most one.

Lemma 8 If the MLN of a DAG is h, then the following relationship holds for

alla;, 1 <i<h.

a; < (§ aj) +1 (15)
j=0

Proof:  Consider any game of m steps and its corresponding DAG. At
step a;, leli B be the point chosen from diagonal a; — 1. By definition of a;, the
MLN of the DAG increases to ¢ after B is selected. |

We first show that the number of nodes in level i is at most a;. Suppose
not: i.e. assume that there are r > @; nodes in level i. By Fact 3, the r
points corresponding to these nodes are mutually incomparable. These r points
constitute a game G of more than a; steps starting with diagonal a; — 1. This
contradicts Lemma 7.

Thus the maximum number of selected points that can fall in level 7 is a;.
We can “delay” the increase in MLN of the DAG to (i+ 1) by at most the total
number of nodes that are possible in all the previous i levels. Therefore, a:4,
can be no bigger than the sum of all the previous a;’s, 1 < j < i plus one. O.

We now state a corollary (the proof of which follows from Lemma 2).

Corollary 1 For all i > 1,

a; < 206-1 (16)

17



Proof by Induction: For the base case a; = 1. Therefore, suppose the

result holds for all § < t¢. Then by Lemma 8, we have

( ;:;a,-)+1
0+14+2+4+22...201 41

2-1+1

2t o

Ge+1

INIAIA A

The above corollary and Fact 2 gives us the the required lower bound which

we now state in the following lemma.

Lemma 9 For any game with m steps played on a 2-d posel, there ezists an

S-chain among the m selected points provided m > 2(s-1),
4.3 Optimality
To establish optimality, we need to prove the following lemma.

Lemma 10 For any given positive integer S, there ezists a game with (25 — 1)

steps such that the MLN of its DAG is at most S.

Proof: For every i, 1 <i< S, let T; be the set of points as given below.
T: = {(2¢-1) = 1,0), (26-V - 2,2),(20-V - 3,4),...(0,2* (26D - 1))}

Clearly, |T;| = 2°-1.
Figure 3 shows T}, T> and T.

(Note: All the points in any T; are incomparable to each other.)

18



Figure 4: 71,7 and T3

We now prove that if all points in T) followed by all points in T3 and so on
up to all points in T’s are selected (a game with (25 — 1) steps), the maximum
chain length is at most S. We prove this by induction. T} contains just the
origin. This constitutes a chain of length one. Suppose the induction hypothesis
is true up to r. Thus, up to 27 — 1 steps, all points from T},T5...T; have been
selected, and the maximum chain length is at most . Now, since all points in
T:+1 are incomparable to each other and since the maximum chain length so far
is r, selecting all the points in T;4+; can increment the maximum chain length
at most by one. Hence after (2"t! — 1) steps the maximum chain length is at
most (r+1). O

We can now state the following theorem which follows from Lemmas 9 and

10.

Theorem 2 To ensure a chain of length S in the 2-d poset, one has to play G

for at least 25! steps. Further, this bound is optimal.
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5 Conclusion

We have shown that the number of steps of G played on P is bounded. We
have also shown a dynamic programming method to obtain the bound. These
bounds grow tremendously with n. Further, we have shown that the optimal

upper bound for G on the 2-d poset is 251,
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