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Abstract

We investigate the problem of scheduling a sequence of jobs running in a centralized
parallel processing system with identical processors. The jobs represent parallel programs
that contain probabilistic loops of tasks that can be simultaneously executed. We show that
the Smallest Phase first policy is optimal within the class of nonpreemptive policies when
the task processing times are identical and independently distributed random variables with
an increasing likelihood ratio distribution. The optimality extends to the class of preemptive
policies when the task processing times have an exponential distribution. The optimality
is understood to be the stochastic minimization of the process of the numbers of jobs in
the system and the minimization of mean response times of the jobs. Stronger optimality

results on the minimization of job response time are obtained for a simpler job model.
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1 Introduction

We consider the problem of scheduling a sequence of jobs in a centralized parallel processing
system with identical processors. The jobs represent parallel programs that contain probabilistic
loops of tasks that can be simultaneously executed. When a job arrives in the system, it
generates several tasks which form the first phase of the job. These tasks can be executed by
any of the processors. When all of the tasks in a phase have completed execution, a new phase
of the job is generated with some probability. This new phase contains again several tasks. A
job leaves the system when all of its tasks finish execution. The processing times of the tasks
are assumed to be random variables (r.v.’s) and to be identical and independently distributed

(i.i.d.). The numbers of tasks in the phases also form sequences of i.i.d. r.v.’s.

In the literature (see e.g. [?,?, 2,2, 7,2, 2,2, 7]), the problem of stochastic scheduling
of a sequence of jobs on two or more processors was traditionally studied for sequential jobs,
i.e., jobs with single tasks. Stochastic scheduling of a single job consisting of tree structured
tasks has been investigated in [?, ?, 7, ?, ?]. When there is a sequence of jobs which contain
tasks constrained by precedence relations, extremal scheduling policies were established in [?],
under the assumption that the tasks have dedicated processors. There also exist a number of
papers that have analytically studied the performance of different policies for scheduling parallel

programs (e.g. first come first serve [?, ?], processor sharing [?], priority scheduling [?]).

In this paper, we analyze the dynamic scheduling of a sequence of parallel programs con-
taining loops of parallel tasks. The problem is to dynamically assign the tasks to the processors
in such a way that the number of jobs in the system and the response time of the jobs are
minimized. We define a Smallest Phase first (SP) policy to be one that assigns the highest
priority to the tasks belonging to the phases containing the smallest number of tasks remaining
in the system. We prove that when the number of tasks in each phase is constant and the task
processing times have an increasing likelihood ratio (ILR) distribution, the SP policy is optimal
within the class of policies that does not allow task preemptions. The optimality extends to
the class of preemptive policies when the phase sizes form an i.i.d. sequence of r.v.’s having
arbitrary distribution and the task processing times have an exponential distribution. This op-
timality is understood to be the stochastic minimization of the process of the numbers of jobs
in the system and the minimization of mean response times of the jobs. Stronger optimality

results on the minimization of job response time are obtained for a simpler job model—single



phase jobs.

These properties support comparison results of [?], where a performance analysis was carried
out for single phase jobs. Approximate techniques were used for the evaluation and comparison
of four scheduling algorithms under the assumption of exponential task processing times. It
was shown that the central splitting policy, which corresponds to our SP policy, provides the

minimal mean job response time within the four scheduling policies.

The paper is organized as follows. In Section 77, we define the scheduling problem in more
detail, and we present the basic notion on stochastic orderings. In Sections ?? and 77, we
analyze the optimal policies for the minimization of the number of jobs and the response time

of jobs, respectively.

2 Preliminaries

2.1 Basic Model

There are K > 1 identical processors and a central waiting queue. Jobs arrive at arbitrary
times 0 < a3 < ap < --- < ap, < ---. At arrival, job J, (which arrives at a,) generates a
phase (the first phase of J,,) of v, > 1 tasks. All of these tasks are placed in the queue waiting
to be executed by one of the K processors. When all of the tasks in a phase have completed

execution, a new phase of the job is generated with probability 0 < p < 1.

Let {un}32, be a sequence of i.i.d. nonnegative integer r.v.’s such that for all n > 1,
Plu, > 0] = p. If u,, > 0, then the n-th completed phase initiates a new phase consisting of u,,
tasks belonging to the same job as the n-th completed phase. Otherwise, it generates a phase
of u,, tasks belonging to the same job. These u,, tasks are thus put into the waiting queue for
execution. Otherwise it has no successor phase and the job that it belongs to is finished. Note
that the number of tasks contained in the first phase of execution of a job need not have the

same distribution as the number of tasks in subsequent phases.

The phases are denoted by ¢,, n = 1,2, ... where phase ¢, is the n-th generated phase
(either by a job arrival or by a phase completion). The i-th task of phase ¢, is denoted by T} .

A job is considered completed and leaves the system when, upon completion of a phase, it



does not generate a successor phase. The processing times of all the tasks are i.i.d. r.v.’s with

a common distribution.

The problem is to dynamically assign the tasks to the processors in such a way that the
number of jobs in the system and the response time of the jobs are minimized. The scheduler
has no information on the exact value of the processing times. We assume throughout this
paper that the policies under consideration are work conserving or nonidling, i.e., a processor

should never be idle when there is a task waiting for execution.

It is easy to see that optimal policies should be work conserving either when the policies are
allowed to be preemptive, when the task processing times have an exponential distribution, or

when the number of tasks in each phase is a constant.

Denote by ¥ the class of such scheduling policies. A policy is called task nonpreemptive if
the executions of the tasks are never preempted. (Note that a task nonpreemptive policy need
not contiguously schedule all tasks of the same job). A policy is a Smallest Phase (SP) policy
if, when it schedules a task, it selects a task from a job whose current phase has the smallest
number of tasks in the system. Denote by ¥° C ¥ the class of task nonpreemptive policies, by
¥sp C ¥ the class of SP policies and by ¥gp C ¥° the class of task nonpreemptive SP policies.
Note that the SP policies differ only in the way ties are broken.

Let m be an arbitrary policy. The following notation will be used:

e Ni(m): the number of jobs in the system at time ¢ € IRT under T;

e N(m): the number of jobs in the stationary regime of the system under =, provided it

exists;
e Q7(m): the number of tasks of phase ¢,, n =1,2,--- in the system at time ¢ under =;

e hi(m): the number of phases generated (due to either a job arrival or a phase completion)

under 7 by time ¢;
e ¢; ,(m): the completion time of task T}, under ;

e Cp(m): the completion time of job J,, under 7; when p = 0 (so that there is a single phase

in each job), Cp(7) = maxi<i<y, in(T);



e R,(m) = Cp(m) — apn: the response time of job J,, under T;

e R(m): the stationary response time of jobs under 7, provided it exists.

Let Hy(m) be the number of zeros in the set {u1,us, -, Up,(x)}. Then, the number of jobs

in the system by time ¢ under policy m can be expressed as
Ny(m) = n(t) — Hy(m), (1)
where n(t) denotes the number of jobs that arrive by time ¢. Note that H;(7) is monotonically

increasing in h(m).

2.2 Stochastic Ordering and Majorization

In the proof of our results, we will use the notion of majorization. Let =,y € IR™ be two real

vectors. Vector z is said to be majorized by vector y (written z < y) iff

k k
Zm[l] < Zy[l]i k=1, ,n—1;
i=1 =1

T = DYl
i=1 =1

where the notation z[; is taken to be the i-th largest element of z. Last, a function f: IR™ — IR

is Schur convez if f(z) < f(y) for every pair of vectors such that z < y. Note that all convex
symmetric functions are Schur convex. For example, the functions max; <j<, z; and Y 7" ; g(z;),

where g : IR — IR is convex, are Schur convex.

Let X,Y € IR™ be two random vectors. Vector X is stochastically smaller than vector Y
in the sense of strong stochastic ordering (X <, Y), convex ordering (X <., Y), increasing

convex ordering (X <;., Y'), increasing Schur convex ordering (X < gt Y'), and marginal convex
1

ordering (X < B} Y') respectively, if

E[f(X)] < E[f(Y)], Vincreasing f:IR" — IR,
E[f(X)] < E[f(Y)], Vconvex f:IR" — IR,



E[f(X)]< E[f(Y)], V increasing and convex f : IR" — IR,
E[f(X)] < E[f(Y)], V increasing and Schur convex f: IR" — IR,

E [z”: f(XZ)] <FE [z”: f(YZ)] ) Y increasing and convex f : IR — IR,
=1 =1

respectively, provided the expectations exist. The notation “<;+” and “<+” is taken from [?].
1 3

A real-valued process {X;}: is said to be stochastically smaller than process {Y;};, denoted

{Xi}t <st {Yi}s, iffor allm and all ¢ < ty < -+ < &,

(thatha"'ath) Sst (th“}/tz:"':}/tn)-

The reader is referred to [?] for more properties concerning the <, <., and <;., orderings

and to [?] for more properties concerning the SEI and SEBT orderings. In what follows, =,

denotes equality in distribution. The following lemma is due to Strassen [?]:

Lemma 2.1 (Strassen) Two random vectors X and Y satisfy X <, Y if and only if there
ezist two random vectors X and ¥ defined on a common probability space such that X =4 X ,

Y =4 Y, and X <Y componentwise almost surely (a.s.).

Some of our results will require that processing times have increasing likelihood ratio (ILR)
distributions. In order to define such distributions, we first define the likelihood ratio ordering.
Let X,Y € IRT be two continuous nonnegative random variables with density functions fx and
fy respectively. The random variable X is smaller than the random variable Y in the sense of

likelihood ratio (X <; Y) if

fr(z)/fx(z) < fr(y)/fx(y), 0<z<uy.

One of the properties of the likelihood ratio ordering is that it implies the strong stochastic
ordering, i.e.,

XSl'rY = XSstY-

The random variable X € IR" is said to be increasing in likelihood ratio (ILR) (or has an
ILR distribution) if
Xle'rXt; 0<s<t,



where X; is the remaining life from ¢, having lifetime X which has reached the age of ¢.

A random variable is ILR iff its density function is log-concave (or, Polya frequency of order
2). A random variable is ILR if it has a gamma distribution with shape parameter greater or

equal to 1.

The likelihood ratio ordering can also be defined for discrete random variables that are

defined over the same set of values. We say that X <; Y if P(Y = z)/P(X = ) increases in

Z.

A r.v. X € IR" has increasing failure rate (IFR) (or has an IFR distribution) iff
XsZstXt; OSSSt,

where X; is the remaining life of X which has reached the age of . An ILR random variable
has an IFR distribution.

3 Minimization of Number of Jobs

In this section, we consider the optimal policies for the minimization of the number of jobs in
the system. Recall that a Smallest Phase first (SP) policy is one that always assigns a task of

an unfinished phase having the mimimum number of unfinished tasks to a processor.

Theorem 3.1 Assume that the task processing times have a common exponential distribution.
Then any preemptive Smallest Phase first policy stochastically minimizes the process of the

number of jobs in the system:

Vo e W : {Ne(SP)}e <ot {Ne(m)}s.

Proof. It is easily seen that the processes of the numbers of jobs in system under SP policies

are all stochastically identical.

Due to the memoryless property of the exponential distribution of the task processing times,
the remaining processing times of the tasks at any stopping time are still exponentially dis-
tributed with the same parameter. Therefore, we can consider a system where the processors

are continuously executing tasks. Whenever an execution completion occurs and there is no



task assigned to that processor, it corresponds to the completion of a fictitious task. When a
task is assigned to a processor, it is assigned a execution time equal to the remainder of the
processing time already underway at that processor. We fix these task processing times as well

as the job arrival times.

Let m € ¥ be an arbitrary non-SP policy. Let 0 = e; < e3 < ---e, < --- be the decision
times of . Assume that e,, is the first time when © makes a non-SP decision. At e,,, 7 assigns

task T}, n, to a processor instead of task T}, ,, if the SP rule were followed. In other words, task

Tk, n, is enabled and phase ¢, has fewer unfinished tasks than phase ¢, : Q72 (1) < Q7 (7).

€m

Construct a new policy 7’ as follows. The assignment decisions of 7’ are identical to w until
time e,,. At time e,,, w’ assigns task T}, n, to a processor instead of task Tk, n, . If at time e, 41,
task T, n, does not finish execution under m, then from time e, 1, the assignment decisions
of 7’ are still identical to «. If at time e,,1, task Tk, ,, finishes execution under 7, then the
execution of task Ty, , is finished under n’, and from time e, 1, the assignment decisions of
n' are still identical to m but for tasks Tk, n, and T, n,, where the decisions are switched, i.e.,
at any time, task Tk, n, (resp. task Tk, n,) is assigned under 7 iff task Tk, n, (resp. task Tk, n,)

is assigned under 7’.

It then follows that this construction either switches the completion times of tasks T%, n,
and Ty, n, or not. Moreover, task Tk, , finishes after T}, ,, under 7’ only if Tk, ,, finishes after
Ty n, under 7. If gy ny (') < gy my (7'), then a phase may complete earlier under «’ than under

7. Therefore, it is readily checked by induction on the event epochs ej,es, - -, ey, - - - that for

all time £,
(Qi(m), Qi)+, Q1™ (m)) < (@i, Q(x), -, Q™ () .

and that (owing to [?, p. 117])
ht(ﬂ') S ht(ﬂ'l).

More generally, for allt > 0, all j =1,2,---,and all 0 < #; <ty < --- < t; <&, we have
that:
VZE{]—::]} hti(ﬂ-)ghti(ﬂ-l)i



so that (cf. (?77))

(N (m), -+, Ny(m)) = (N ('), -+, Ny ()

Note that ' makes one less non-SP decision than w. This interchange process is repeated
until we get a policy p such that, at each decision epoch, a task of the smallest phase is scheduled.

We obtain that, forall ¢ > 0,all j =1,2,---,and all 0 < #; <ty <---<t; <,

(Ney(m), -, Niy(m)) > (N0, Ny )

Note that the new policy p may be an idling policy while 7 is a nonidling one due to the
fact that more phases are generated under p than under 7. Let SP be the policy obtained from
p by removing the idling in p and assigning tasks as early as possible. Then, for all £ > 0, all
7=1,2,--,andall0 <t <ty <---<t; <,

(Ney (7), -+, Neg(m)) > (Noy (p), -+, Ny () > (Nes(SP), -+, Niy(SP)) .

Unconditioning the arrival times and the task processing times entails that

{N:(SP)}s <ot {Ne(m)}s-

Theorem 3.2 Assume that the task processing times have a common ILR distribution. Assume
further that the number of tasks in each phase is a constant V. Then, any task nonpreemptive
Smallest Phase first policy (SP°) stochastically minimizes the process of the number of jobs in

the system within the class of policies W°:

Ve ¥ {N:(SP°)}e <ot {Ne(m)}s.

Proof. The scheme of the proof is similar to that of Theorem ??. Fix the arrival times.
For the given policy 7, fix the task processing times and determine the task assignment times
and task completion times. Denote by s; ,(7) and ¢; ,(7) the execution starting time and the

duration of the execution, respectively, of task 7T}, under policy .



Let o be the generic r.v. of the task processing times. In the proof we will assume that o
is a continuous r.v. and has a density function f,. In case o is a discrete r.v., we can replace

fo by its distribution and the proof can be carried out in an analogous manner.

Assume that at time by = sg, », (7), policy 7 assigns task T%, ,,, whereas there is an unas-
signed task Tk, n, such that Qp?(m) < Qp'(w). Suppose task Tk,n, is assigned at time by =
Sky my (m) > by under m. Let €1 = ¢y, (T) = b1 + Oy ny (7) and eg = Cpy iy (T) = bg + Oky iy ().

Let also A = by — b;.

Define a new task nonpreemptive policy 7’ which differs from 7 only in that the scheduling

of tasks Ty, n, and Tk, n, are switched. The processing times of all the other tasks are kept the

same under 7’. The processing times of T}, ,, and T}, n, are interchanged in the following way:

(Oksna (), Ok1,ma (7)) = Ller < b3) (ks (7)), Tk, (1))
F1(bs < €1 < €2) [U(0ky o (T), Ty (), A)(Chyyy (), Ty s (7))
+ (1= U(0kijn1 (7), Ohigymy (1), A)) (A + Okiy iy (), Ty g (1) — A)]
+1(ez < €1)(A + Thymy (1), Ohy g () — A) (2)

where U(a, b, A) is a Bernoulli r.v. with probability distribution Pr[U(a, b, A) = 0] = p(a, b, A),
Pr[U(a,b,A)=1]=1 - p(a, b, A) where

fa’|0'>A(b + A)fﬂ(a - A)

p(a,b,A) = folo>a(a) fo (b) ,
_ S0+ A)fo(a—A)
fo(a) £+ (b)

The construction of the processing times of tasks T%, », and Tk, n, under policy n’ is illus-

trated in Figure ?7.

It is easy to see that this construction either switches the completion times of tasks T%, n,
and T, n, or not. Therefore, the (increasingly re-ordered) sequences of the assignment times
and of the completion times of 7’ are identical to those of w. Moreover, task Ty, », finishes after

Tk, n, under 7’ only if Ty, n, finishes after T%, », under w. Hence, if the order of the completions



Processing times under 7

by €2

Processing times under =’

Okany (ﬂ-l)
e ——————

b, €2

F A Oki,mq (ﬂ-l)
S
b2 €1

Figure 1: Construction of Processing Times of Tasks Tk, n, and Tk, n, under Policy =’



of tasks Tk, n, and T}, n, under 7’ is the same as under 7, then for all ¢: h;(7) = h;(n') and

(QF(m), @(m), -+, Q1™ (m)) = (QF ("), Q2"+, Q™ (x")) .

Otherwise, it is checked by induction on the scheduling decision epochs that for all ¢:

he(m) < ho(r’), and  (Q}(m),Q¥(r), -+, Q" (m)) < (@), Q}(x"), -+, Q™ (")) .

Therefore, for allt > 0,all j =1,2,--, and all 0 <#; <ty < ---<t; <t, we have that:
VZE{]—::]} hti(ﬂ-)ghti(ﬂ-l)i
so that

(N (@), -, Ny () > (N, (), -+, Ny (). (3)

We now need to show that the random variables of the task processing times under «’ are
i.i.d. Thisis done by evaluating the joint density function for the processing times (0%, n, ('), Oky ny (7).

According to (??), if ¢ < A, then
fa’kl iy (7', kg ny (71) (mi y) = fa’(m)fa'(y)'
In the case that A < # < y + A we have

fa'kl iy (7', kg ny (71) (IE, y) = fa’(m)fa'(y)(]- - p(y: Z, A)) + fa’(A + y)fa’(m - A):

fe(A+y)fo(z —A)
fo (=) fo(y)

= fa’(m)fa'(y) 1- ‘|‘fa’(A‘|‘y)fa'(m_A):
= fa’(m)fa'(y)'
Finally, in the case of y + A < =,

fe(A+y)fo(z — A)
fo(2)foy) 7

Fory my (7),0k3 g () (2, 9) fo(A+y) fo(z - A)
= fa'(m)fa'(y)-

The necessity that the task processing times have a distribution with ILR should be obvious

from this construction.

11



Therefore we conclude that for all (z,y) € ZR"'Z,
fa’kl - (71"),0';62'"2 (W')(mi y) - fa’(m)fa'(y) - fa’kl - (7T),0'k2 na () (:E, y)

It then follows that the task processing times under #’ are i.i.d. r.v.’s with ILR distribution.

Hence, according to inequality (??), we obtain that

{Ne(7) }e <ot {Ni(m)}s.

This interchange argument can be repeated until a (possibly idling) task nonpreemptive policy
p is obtained such that at each decision epoch, a task of the smallest phase is scheduled. Thus,

we obtain that

{Ne(p) }e <ot {Ni(m)}s.

Note that policy p may be idling while 7 is nonidling due to the fact that more phases are
generated under p than under w. Let SP° be the policy obtained from p by removing the idling
in p and assigning tasks as early as possible. Since all the phases have V tasks, there is no gain

in idling processors. Therefore,

{N:(SP°)}e <ot {Ne(p)} <st {Ni(m)}s-

When a policy m admits a stationary regime for the number of jobs in system, then the

above theorems imply:

Corollary 3.3 If the task processing times have a common exponential distribution, then
Vre ¥ N(SP) <, N(m).

If the task processing times have a common ILR distribution, and if all of the phases have a

constant number of tasks, then

Vre ¥ N(SP°) <4 N(m).

12



4 Minimization of Response Time

Consider now the minimization of the response times of the jobs. First, by Little’s formula (see
e.g. [?]), we have that for all nonidling policies 7 € ¥ such that the mean stationary number

of jobs and the mean stationary job response time exist,
E[N(m)] = AE[R(n)],

where A is the arrival rate of the jobs. Applying Corollary 77 immediately implies the following

results.

Corollary 4.1 Assume that the task processing times have a common exponential distribution.

Then any SP policy minimizes the average job response time :

Vr e : E[R(SP)] < E[R(m)].

Corollary 4.2 Assume that the task processing times have a common ILR distribution. As-
sume further that the number of tasks in each phase is a constant V. Then any task nonpre-
emptive Smallest Phase first policy minimizes the average job response time within the class of

task nonpreemptive policies:

Vr € ¥° E[R(SP°)] < E[R(m)].

We now focus on the class of task nonpreemptive SP policies ¥%p. We will restrict ourselves
to the case of single phase jobs with V' tasks, where V is a constant. Define the First Come
First Serve (FCFS) policy as the one that assigns higher priority to tasks of job J,, than job
Jn if m < n. Clearly, FCFS policy is a task nonpreemptive SP policy.

Lemma 4.3 Assume that all jobs have a single phase with a deterministic number V of tasks.
Assume further that the task processing times have a common IFR distribution. Then the FCFS
policy minimizes the vector containing the response times of the first n > 1 jobs in the sense of

marginal conver ordering, within the class of task nonpreemptive SP policies:

Vr€Wgp i (Ri(FCFS), -+, Ra(FCFS)) <py (Ri(), -+, Ba(m)).

13



Proof. Observe that under a task nonpreemptive SP policy m € ¥%p, the tasks of the same
job are scheduled contiguously, i.e., in between the first and the last assignments of the tasks of
a job, no task of another job is assigned. Denote by sj ,, () the time when task T} ,, is assigned
for execution under 7. Then m € ¥, implies that for all m > 1, there is no [ # m such that

in sim(7) < 834(m) < max sim(7).

Consider the first n jobs and fix the arrival times. Let f : IR — IR be an arbitrary increasing

and convex function. Define F(m) as follows:

Fm) = 3 Balf (B = 3 Bal (em(r) ~ am(),

where F/4 denotes the conditional expectation given the arrival times. We will show by induction
that there exist policies 71,7y, +, T, € ¥gp such that in policy m,, 1 < m < n, the first m

jobs are scheduled according to the FCFS rule, and that
F(r) > F(my) > F(mg) > -+ > F(my). (4)

Note that 7, is identical to FCFS policy in scheduling the first n-jobs. Therefore, unconditioning
with respect to the arrival times in the above relation readily implies the assertion of the

theorem.

Since 7 is nonidling and is a task nonpreemptive SP policy, job J; is scheduled by 7 in
accordance with FCFS rule. Thus, we can define m; to be identical to w. Assume that for some
2 < m < n, there exist policies m,ma, -+, Tm_1 € ¥gp such that in policy m;, 1 <I <m —1,

the first [ jobs are scheduled according to the FCFS rule, and that
F(r) > F(my) > F(mg) > -+ > F(mm-1).

We will construct a policy 7, based on 7,,,_1 in such a way that in m,,, the first m jobs are

scheduled according to the FCFS rule, and that F(m,_1) > F(my,).

Denote by j > m the random variable representing the index of the job that is the m-th
scheduled under 7,,_;. Define 7, as the one that differs from m,,_; only in that the scheduling

of tasks T} ; and Tj ,, are switched forall 1 << V.

14



Denote by 0; ;(mm—1) the processing time of task T; ; under policy w1 forl > 1,1 <i < V.
Define the processing times of policy @, in the same probability space P in such a way that

the processing times of tasks 7T} ; and T ., are switched forall1 <: <V :

Oii(Tm) = 0i1(Tm—-1), Oim(Tm) = 0i;j(Tm=1), 0i;j(Tm) = Oim(Tm-1), l#m, 1#£j 1<i<V.

With such a coupling, we have that

5i1(Tm) = $i1(Tm-1), Sim(7") =s;j(7), s;(7) =sim(n), l#m, 1#j, 1<i<V,
cii(Tm) = cii(Tm-1), cim(T) =cij(7m), cij(7")=cim(m), 1#m, 1#j 1<i<V.

Fix the processing times of the tasks belonging to the first m — 1 jobs. Denote these
processing times by S = {0 (7)), 1 <i <V, 1 <1< m — 1}. Define the functions:

Fs(tma) = 3 Baslf (Bi(mmr))]
=1

Fs(rm) = 3 Eas[f (Bu(mm)]
=1

where E4 s denotes the conditional expectation given the arrival times and the processing times

of the first m — 1 jobs S.

We will study the difference Fg(mm—1) — Fs(mm). Denote by Ps(j = k), where k > m, the
conditional probability of the event {j = k} given the arrival times and S. Note that when
S is fixed, for any k > m, the event {j = k} is independent of the processing times of tasks
belonging to jobs J, Jm+1, - - . Therefore,

Fs(mm-1) — Fs(mm)

Il
NE

Ps (.7 = k) {EA,S[f(cm(ﬂ'm—l) - a?'n)] + EA,S[f(ck(ﬂ'm—l) - ak)]
k=m+1

- EA,S[f(CTn(ﬂ'Tn) —am)] - EA,S[f(ck(ﬂ'm) - ak)]}

+ i Fs(j = k) {Baslf(em(Tm-1) = am)] — Eas[f(cm(mm) — am)]}
k=n+1

15



n

Y. Ps(i = k) {Easlf(cm(Tm-1) = am)] + Eas[f(ck(mm-1) — ax)]
k=m+1

— EA,S[f(ck(ﬂ'm—l) - a?'n)] - EA,S[f(CTn(ﬂ'm—l) - ak)]}

+ i Ps(j = k) {Eas[flem(Tm-1) — am)] — Eas[f(ck(mm-1) — am)]} (5)
k=n+1

Consider an event {j = k}, where k& > m. Let b; and by denote the times at which jobs
Jr and J,,, respectively, begin execution under m,,_;. By defintion, b; < by. Denote by
i k(Tm—1) = max(s; k(Tm—1) + 0i k(Tm—1) — bz, 0) the residual life of task T;; at time by under
m. Since the processing times have an IFR distribution, we get that &; x(7Tm—1) <st 0 k(Tm—-1).

Therefore,

ck(ﬂ-m—l) < b2+122)%/ &i,k(ﬁm—l) <st b2+122)%/ U’i,k(ﬂ-m—l) —st bz—l_lrsnzaé}%/ U’i,m(ﬂ-m—l) < cm(ﬂ-m—l)-
Applying Strassen’s theorem to the random variables cg(Tm—1), ¢m(7Tm—1) entails that there

are two random variables éx(7m—1), ém(Tm—1) on a common probability space P’ such that

ék(ﬂ-m—l) —st ck(ﬂ-m—l): ém(ﬂ-m—l) —st cm(ﬂ-m—l): and ék(ﬂ-m—l) < ém(ﬂ-m—l): PI —a.s..

Using the facts that a > a,, and that the function f is increasing and convex implies that
f(ém(ﬂ-m—l) - am) + f(ék(ﬂ-m—l) - ak) 2 f(ék(ﬂ-m—l) - am) + f(ém(ﬂ-m—l) - ak);

F@m(Tm-1) = am)] > f(ek(Tm-1) = am).

Therefore, it follows from relation (??) that

Fs(tm-1) > Fs(mm).

Unconditioning with respect to S implies that F(mm—1) > F(7mm), so that, by induction, rela-
tion (??) holds. This completes the proof. [
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A sequence of random variables {X,},, is said to converge to a stationary random variable

X in the sense of Cesaro with respect to the class of functions C, if for all f € ¢C,

1™
lim - 3 BSCK] = B

A sufficient condition for such a convergence to hold is that X, couples in finite time with a

stationary and ergodic sequence [?]. For example, the coupling exists when X, is the response

time of job J,, under FCFS policy, provided the arrival process is stationary (cf. [?, Theorem

5.5.7 and Lemma 5.5.8]). In the remainder of this paper, we will assume that the policies under

consideration admit the convergence of the response times in the sense of Cesaro with respect

to the class of increasing and convex functions.

Theorem 4.4 Assume that all jobs have a single phase with a deterministic number V of tasks.
Assume further that the task processing times have a common IFR distribution. Then the FCFS
policy minimizes the stationary job response time in the sense of convex ordering, within the

class of task nonpreemptive SP policies:

Vr e ¥gp - R(FCFS) < R(m).

Proof. Let f: IR — IR be an arbitrary increasing and convex function. According to Lemma

?9
77,

B[f (RFCFS)] = lim © 3" B[f (Ra(FCFS))] < lim * 2 Ef [(Rm(r))] = E[f (R())].

m=1

Thus, R(FCFS) <;cz R(m). Since 7 is a SP policy, E[R(FCFS)] = E[R(m)]. Therefore,
R(FCFS) <o R(r). "

In the case that the task processing times are constant, we can prove that FCFS minimizes

the response times within the general class of non-preemptive policies.

Lemma 4.5 Assume that all jobs have a single phase with a deterministic number V of tasks.

Assume further that the task processing times are a constant. Then the FCFS policy minimizes

17



the vector of the response times of the first n > 1 jobs, in the sense of increasing Schur convez

ordering, within the class of task nonpreemptive policies:

Ve ¥ i (Ry(FCFS), -, Ra(FCFS)) <ps (Ru(r), -, Ra(r)).

Proof. Fix the arrival times. Let ¢, denote the n-th task completion time (which is identical
for all nonidling policies). For all m# € ¥°, let I,(w) be the index of the n-th completed job.

Under the assumption of determistic task processing times, it is clear that
I,(FCFS)=n, and CL(FCFS)=cuv < Cp, () (7), [=1,2,---
Thus, for all n > 1,
(Ri(FCFS),---,R,(FCFS))
< ((Crmm) = @), (Crum(r) — an))
< ((Ci(7) = ar), - -+, (Cn(m) — an))

(cf. [?] for the second inequality). Thus, upon removal of the conditioning on the arrival times,

it follows that for all increasing and Schur convex function f : IR™ — IR,

E[f(Bi(FCFS),- -, Ro(FCFS))] < E[f (R1(r), - -, Bn(m))] -

Theorem 4.6 Assume that all jobs have a single phase with a deterministic number V of tasks
and that the task processing times are constant. Then the FCFS policy minimizes the stationary
response time in the sense of increasing convex ordering, within the class of task nonpreemptive
policies:

Vo e ¥° R(FCFS) <jex R(m).

Proof. It follows from the preceding lemma and the definition of the <.+ ordering that
1

n

> BIf (Ru(FOFS))] < 3 B[f (Ru(m))]

=1

18



for n = 1,2,... and all increasing and convex function f : IR — IR. Dividing by n on both

sides of the above inequality and letting » go to infinity yields

n—oo n

B[f (RFCFS))] = lim = 3" B[f (Ra(FCFS))] < lim & 2 Ef [(Rm(r))] = E[f (R())].

m=1

Therefore, we obtain

R(FCFS) <ics R(n).
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