POSITION PAPER: A COMPARATIVE
STUDY OF CONSISTENCY IN
DIFFERENT REPLICATED DOMAINS

K. Ramamritham, E. Brown, J. Dey, M. Kamath,
J. Kundu, L. Molesky, E. Nahum, C. Pedregal,
B. Purimetla, R. Sivasankaran and D. Yates

COINS Technical Report 92-36
May 1992

Position Paper:
A Comparative Study of Consistency
in Different Replicated Domains!

K. Ramamritham, E. Brown, J. Dey, M. Kamath, J. Kundu, L. Molesky,
E. Nahum, C. Pedregal, B. Purimetla, R. Sivasankaran, D. Yates
Dept. of Computer Science, University of Massachusetts, Amherst, MA 01003

Replication is a ubiquitous technique employed in different parts of today’s computer
systems. These include:

e Memory System: The use of memory hierarchies, multiprocessor caches, and distributed
shared memories imply that a data item may be found in different parts of a system’s
memory.

e File System: The use of file caches on the one hand, and distributed file systems on the
other imply that a certain file or portion thereof may be replicated.

¢ Communication System: When a message is sent from one node to another and in par-
ticular, in a multicast or broadcast environment, the transmitted information is being
replicated.

¢ Database System: Replicated data clearly occur in replicated distributed database sys-
tems.

Typically, replication is resorted to for two reasons: improved reliability/availability and im-
proved performance. Also, what is common across these areas is the recognition that given
replicated data, it is important to ensure that different copies of the data are consistent with
each other, especially in the presence of concurrent accesses to the data. However, work in each
of these areas has approached replication in ways that are seemingly unique to that area. Specif-
ically, the fact that different terms are used to refer to consistency notions in the different areas
gives the impression that they are unrelated or that there is little in common. For example,
with regards to consistency, one comes across the term coherence in the context of memories,
UNIX semantics in the context of files, causal ordering in the context of communication, and
serializability in the context of databases.

Our goal, during the last few months, has been to conduct an in-depth investigation of the
semantics of (the different terms used to refer to) consistency notions adopted in the different
areas in order to accomplish the following [11]:

e Understand the similarities and differences in consistency requirements in the different
areas.

e Investigate whether concepts/techniques used in one are applicable to (or have been ap-
plied to) other areas. '

1This material is based upon work supported by the National Science Foundation under grant IRI-9109210.

[Area || Unit of Consistency | Operations [Some Consistency Notions |

File ~ || Entire file/block Read, Write UNIX Semantics,
System Open, Close Session Semantics
Memory Cache block/page Read, Write Sequential Consistency,

(global performing of) | Processor Consistency,
Release Consistency

Replicated Database object Transaction Serializability
Databases and its variations
Multicast Multicast “Send, Receive, Causal ordering,
Communication || message Delivery Single source ordering

Table 1: Aspects of Consistency in Different Areas

| Memory | File System | Multicast Comm. [Replicated DB:s |
Sequential Consistency UNIX Semantics/ | ABCAST Serializability
Session Semantics?
Causal Memory CBCAST
Processor Consistency (PRAM) Single Source QSR ®
Slow Memory NFS PWSR

Table 2: Relationships between Consistency Notions in Different Areas

¢

¢ Unify consistency issues across different areas so as to provide a common set of conceptual
and implementation-oriented tools that have broader applicability.

In order to achieve the above goals, we started by asking the following questions with respect
to each area.

e What is the unit of consistency (i.e., what is the granularity of data)?

e What is the unit of work at the end of which consistency is expected to hold (i.e., what
is the granularity of the consistency preserving operation(s))?

o What are the different notions of consistency employed?

The answers with respect to each area are tabulated in Table 1. Table 2 shows how
the different consistency notions in the various areas are related. Below we summarize, very
briefly - given the page limitations — some of the entries found in Table 2. Specifically, we have
attempted to show how consistency notions in the context of memory can be related to those
in multicast communication, file systems, and databases.

4If we consider Open = Read and Close = Write and the entire file as a single memory location.

3In the PRAM model the writes issued by a single processor are seen in the same order everywhere. Similarly
in quasi-serializability (QSR) [2], all local transactions and global subtransactions executed at a single site are
serializable.

Our motivation is to point out that in fact there are many ideas used in one area that
are applicable to others and that such cross-fertilization possibilities should be recognized and
exploited for overall improvement in system design and performance. In what follows, we are
going to confine ourselves to consistency issues and not discuss related issues, such as atomicity,
recovery, and durability of the data.

Relationships between Consistency Notions. We begin by relating memory con-
sistency notions to consistency in multicasting environments. In a distributed/multiprocessor
system, multiple processes may need to cooperate, e.g., manage replicated data, monitor one
another’s state and so forth; they do so by forming process groups and communicating among
themselves by means of group multicast or broadcast. In a multicast environment, a process
sends a message to all the processes in the group - this can be viewed as a write update per-
formed on a single variable (cache block or word) shared among different processors. Thus, the
members of a particular multicast group can be thought of as processors that share a particular
variable. We can also relate the primitive operations in both the areas. The primitives in a
communication system are send, receive and deliver [1], while those for a memory system are
read and write. The send and receive events together correspond to the write event, while
delivery can be thought of as a read. The point in time at which consistency is maintained for
a communication (memory) system is immediately prior to a delivery (read), after a sequence
of zero or more sends and receives (writes).

With these analogies, it becomes easier to compare the consistency models in the context
of communication systems with their counterparts in memory systems. In a communication
system, the ABCAST protocol or the notion of total causal ordering, as introduced in [1], has
the following properties:

1. If a process sends a message m, before m,, then all the processes receiving both- m, and
ma should have m, delivered before m,.

2. Messages in the system are partially ordered with respect to potential causality (or just
causality - see [1] for a complete definition). In property 1, m, (potentially) causes m..
For a multicast transmission, the send of message m;, causes all receives (and deliveries)
of m;.

3. If at any process m; is delivered before m,, then all the processes which receive both m,
and mg, should have m, delivered before m;.

These three conditions impose a total order (across overlapping multicast groups) in which
messages can be delivered, where a send and receive cause a delivery. This is equivalent to the
notion of sequential consistency [8] in a memory system where a total order is imposed on all
reads and writes, and all memory accesses from each processor appear to execute in program
order.

The CBCAST protocol [1] onlyt imposes the first two conditions on multicasts. This
resembles causal memory [6] that requires all processors to agree on the order of causally
related accesses, but allows concurrent events that are not causally related to be observed in
different orders.

Single source ordering [3] is a weaker form of CBCAST, since it does not contain the notion
of causality, only requiring that the first of the three properties stated above be satisfied. This

is closely related to the notion of PRAM (Pipelined RAM [10]) and processor consistent (5]
memory systems, where the only requirement is that all processors agree on the order of all
observed writes by a single processor.

It is important to point out several differences between consistency models for commu-
nication and memory systems. For multicast communication, the unit of work after which
consistency is expected to hold is the multicast transmission. For memory, the analogous unit
of work is the globally performed read or write. There is no analogous notion of weak ordering
[4] in communication. Also the notions of multiple source ordering and multiple group ordering
[3] do not have suitable analogies in the context of memory consistency.

We can make some analogies between memory consistency techniques and those in dis-
tributed file systems by examining the semantics of sharing in a distributed file system. Two
common protocols are UNIX semantics and and Session semantics [9]. UNIX semantics guaran-
tee sequential consistency by enforcing coherent memory (files) and assuming the file accesses
of a program are executed in program order. Session semantics, on the other hand, has no
direct memory consistency analogue. The problem is that all reads and writes are done to the
local copy and no writes are made globally visible until the file is closed. However, if we equate
the open of a file with a main memory read and the close of a modified file with a main memory
write (essentially treating the entire file as a single memory location), it is possible to draw
some analogies. Session semantics now provides sequential consistency across the file system as
long as the file server services open and close requests in FIFO order and multiple requests from
a given client to the file server arrive at the server in the same order in which they were issued
from the client. The granularity of consistency is the entire file and consistency is maintained
at file open and close operations.

Perhaps the most well known distributed file system is NFS. The granularity of consistency
here is the file block, and consistency is maintained on a client by client basis when the client
queries the server for a conmsistency check. The period of consistency checking is arbitrary,
making the point at which consistency is guaranteed nondeterministic. This allows the effects
of writes (at the block level) as seen by other clients to be arbitrarily delayed. Assuming that
block writes by a client are performed at the server in the same order, then the order of writes
by a given client to the same location (block) as seen by all other clients is maintained, but the
order of writes to different locations is not. This results in a consistency notion similar to Slow
Memory (6].

Turning to databases, the sequential consistency correctness criterion in memory systems
is analogous to serializability in databases, if we consider each memory read and write (which
typically would translate into multiple writes to different cache blocks, due to replication) as
a transaction. Similarly Slow Memory is analogous to predicatewise serializability (PWSR)
[7] where each data item is a consistency unit. Also the motivation behind weak ordering in
memory is similar to that of e-serializability in the database area.

Conclusions. Our goal in this work has been to understand the issue of consistency and
its maintenance in different components of computer systems. Our motivation was to identify
common threads across areas and to thereby see if the ideas and techniques have broader
applicability than is obvious on the surface. We believe that we have been successful in this
endeavor and have been able to discern many interesting and useful similarities and differences
across the areas. We plan to continue our investigations, especially with a view to understanding
the performance implications of our initial findings.

References

(1] Kenneth Birman, André Schiper and Pat Stephenson. Lightweight Causal and Atomic
Group Multicast. ACM Trans. on Computer Systems 9(3):272-314, Aug. 1991.

[2] Weimin Du and Ahmed K. Elmagarmid. Quasi Serializability: a Correctness Criterion for
Global Concurrency Control in InterBase. Proceedings Fifteenth International Conference
on Very Large Data Bases, pp. 347-55, Amsterdam, The Netherlands, Aug. 1989.

[3] Hector Garcia-Molina and Annemarie Spauster. Ordered and Reliable Multicast Commu-
nication. ACM Trans. on Computer Systems 9(3): 242-71, Aug. 1991.

[4] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta
and John Hennessy. Memory Consistency and Event Ordering in Scalable Shared—Memory

Multiprocessors. Proceedings 17th Annual International Symposium on Computer Archi-
tecture, pp. 15-26, May 1990.

[5] James R. Goodman. Cache Consistency and Sequential Consistency. Technical Report 61,
SCI Committee, Mar. 1989.

[6] Phillip W. Hutto and Mustaque Ahamad. Slow Memory: Weakening Consistency to En-
hance Concurrency in Distributed Shared Memories. Proceedings IEEE 10th International
Conference on Distributed Computing Systems, pp. 302-09, May-June 1990.

[7] Henry F. Korth and Gregory D. Speegle. Formal Model of Correctness Without Serializ-
ability. Proceedings ACM SIGMOD International Conference on Management of Data pp.
379-86, June 1988. ’

[8] Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multi-
process Programs. IEEE Trans. on Computers, C-28(9): 690-91, Sept. 1979.

[9] Eliezer Levy and Abraham Silberschatz. Distributed File Systems: Concepts and Exam-
ples. ACM Computing Surveys 22(4):321-74, Dec. 1990.

(10] R. J. Lipton and J. S. Sandberg. PRAM: A Scalable Shared Memory. Technical Report
CS-TR-180-88, Princeton University, Department of Computer Science, Sept. 1988.

[11) K. Ramamritham, E. Brown, J. Dey, M. Kamath, J. Kundu, L. Molesky, E. Nahum, C. Pe-
dregal, B. Purimetla, R. Sivasankaran, D. Yates, “A Comparative Study of Consistency in
Different Replicated Domains”, (in preparation).

