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Abstract

Many multithreaded multiprocessing systems have simply adopted the scheduling struc-
ture used in single processing systems: the single central queue of ready processes maintained
for the system creates a source of contention. Hence researchers have been trying to elimi-
nate or redefine redundant and inefficient data structures and deal with other aspects that
contribute to excessive waits. :

This paper examines an alternative scheduling structure which reduces the negative ef-
fects of the ready queue bottleneck. The proposed structure is composed of multiple ready
queues which make it possible for several processes to access the queue(s) simultaneously.
Each processor removes a ready thread (request) from a selected ready queue for execution.
The scheduling policy determines which ready queue is selected. The application processes
post ready to run threads in the ready queues according to a gqueuing policy. Different
combinations of the scheduling and queuing policies are possible but the policies have to
be compatible. This relative independence of the two types of policies has allowed us to
implement and test many policy combinations. We also compare their performance with
existing scheduling implementations. Results of tests based on our implementation on a
Sequent Symmetry multiprocessor show that multi-access distributed ready queues offer po-
tential performance benefits for multiprocessor systems and that the overheads of managing
multiple queues is more than overcome by their improved performance.
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2Computer Science Dept. University of Pittsburgh, Pittsburgh, PA 15260
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1 Introduction

Current multiprocessor operating systems such as MACH [4] and Dynix [19] implement
schedulers with FIFO ready queues which have the ability to distinguish between processes
of differing priorities (e.g., multi-level feedback queues). Access to the queue is controlled
by a single mutual exclusion lock. This creates a central source of contention and a system
bottleneck for processes. Every processor and every process must access the ready queue,
therefore a slowdown at the queue will degrade application performance.

In order to reduce the bottleneck, the following changes to the scheduler can be made.

¢ Distributed Queue and Scheduler. In lieu of a single central ready queue, each
processor is assigned its own ready queue and scheduler. The scheduler is responsible
for all the scheduling activity for one particular processor and executes whenever the
processor is idle.

e Multi-Access Queues. Current scheduling implementations allow only a single pro-
cess to access a ready queue at any point in time. The queue is locked for the entire
time necessary to place a ready process on the queue or remove a process from the
queue. While the lock is being held, there may be other ready processes and idle pro-
cessors wasting valuable cpu time waiting for that lock. A queue implemented with
multiple locks would allow multiple processors to access the queue simultaneously, thus
reducing the wasted cpu cycles. The cost for multiple access is the maintainence of the
additional locks for the queue.

In this paper, we propose a scheduling structure in which both mechanisms have been imple-
mented. More precisely, we modify the ready queue to be made up of multiple independently
accessed queues, each controlled by a different set of locks. This allows multiple processes
(or threads) concurrent access to the system queue structures. Typically, there are as many
queues as there are processors in the system. This configuration attempts to minimize in-
terprocess conflicts which occur with a single global ready queue and scheduler. Tests show
that this scheduling structure, described in more detail in the next section, reduces the ready
queue bottleneck for shared memory multiprocessor systems.

Considering a system which consists of multiple processes each consisting of a number of
threads, two approaches are possible: The system level scheduler schedules the processes
and only when a process runs do the threads within it get a chance to run. The other is
for the system scheduler to handle all the thread scheduling. The latter allows multiple
threads of one process to run concurrently and is the preferred approach due to its improved
performance. Hence we take the latter approach in this paper.

Given such a multiple queue structure, two questions arise:

1. Into which queue does a client process’s thread get enqueued?



2. From which queue does a processors’ scheduler dequeue a ready thread?

Whereas most of the prior work (discussed in Section 6) has focussed on individual policies
and their performance, this paper’s contribution lies in the following:

e We have identified a set of client policies (also refered to in this paper as enqueuing
policies) that client processes use to place their requests in queues. (This is in response
to the first question raised above.)

e We have identified a set of scheduler policies (also refered to in this paper as dequeuing
policies) that the schedulers use to remove ready requests from the queues. (This is in
response to the second question raised above.)

¢ We have implemented both types of policies in a real multiprocessor system, namely
‘Sequent’s Symmetry.

e We have conducted extensive tests to investigate the performance characteristics of the
individual policies as well as of the policy combinations.

o We have also compared the results of our policies with two baseline scheduling imple-
mentations: a single global queue and the FCFS distributed ready queues [1].

The next section describes the scheduler structure and defines the policies governing the
enqueueing and dequeueing policies. The following sections discuss implementation details,
performance results and related research papers.

2 System Structure

The system uses a single data structure, called the ready queue to support both communi-
cation between the scheduler and client processes, and to schedule client threads.

The Dynix operating system, that we used to conduct our experiments, does not distinguish
threads from processes in terms of scheduling, and since schedulers and clients are not created
dynamically, the tests were done using processes. For the purposes of the tests, the client
processes post requests in lieu of ready threads. The scheduler services a request and returns
a reply to the client. That is, the system is structured along the client/server model in which
a process, called the client, makes a system call by placing a request in the ready queue.
The scheduler then handles the request and sends back a reply.

2.1 The Queue

The ready queue data structure is a set of logically distributed queues?; one per available
processor (see Figure 1). Each queue consists of an array of mailbozes and a bitmap. A
mailbox is divided into an IN-box and an OUT-box. Client processes place a request into

2The queue referred to in this paper is not a strict FIFO queue.
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Figure 1: Static : Static queue and process structure.

an IN-box. Once a client has successfully posted a request in an IN-box, the OUT-box is
implicitly reserved for the reply to that request. The bitmap provides a 1 : 1 mapping of
bits to mailboxes in the queue. If a bit is set it implies that the corresponding mailbox in
the queue contains a request, i.e., a ready thread.

A specific mailbox location is identified using two indices. The queue index, which is a
number from 0..Maz Proc — 1 where Maz Proc is the maximum number of processors in the
system. This queue index is unique for every queue and is used as its id. The second index
indicates exactly which mailbox in the queue is being addressed. The mailbox index is an
integer from 0..MaxzReqs — 1 where MazReqs is the maximum number of client requests
allowed per queue. In our implementation, using an unsigned integer as the bitmap yields

MazxReqs = 32.

In order to enhance concurrency, a two-level locking scheme in conjunction with optimistic
synchronization is used to control access to a queue.- At the queue level, a lock is associated
with the bitmap. That is, there is one bitmap lock per processor queue. At the mailbox
level each IN-box and OUT-box has its own lock. Mailbox locks are used so that processes
accessing the queue always have a valid state description of the mailbox information before
altering any of the information (e.g., posting or removing a client thread (request)).

When a client posts a request, the bit in the bitmap corresponding to the mailbox used is
set. A scheduler then need only search the bitmap to check if a request is ready, instead of
searching the queue directly. When the scheduler finds a bit set in the bitmap it is searching,
it acquires the bitmap lock and, if the bit is still set, resets the bit thus reserving the mailbox
with the ready request. The bitmap lock is relinquished. The request can then be serviced
and a reply returned to the client. If once the bitmap lock is acquired the bit is no longer
set, the lock is immediately relinquished and the scheduler continues to search for ready
requests.

The bitmap locks could be a source of contention when there are many clients accessing a



single queue. This is not seen to be a problem in our tests as a process holds the lock only
to set a single bit. The remainder of the request information is processed while a process
has sole access to an IN-box or OUT-box lock, not a queue lock.

2.2 The Scheduler Structure and Policies

Every processor has its own scheduler which searches one or more ready queues for requests.
The scheduler polls the queues to determine if there are new requests. When a request is
found, the scheduler assigns the request to its processor and handles the request. It then
posts a reply in the OUT-box for the client who originated the request, and then searches
for new requests.

When a processor’s queue is empty, it can either wait for new requests to arrive, or it may
look in other processors’ queues for requests. The method a scheduler uses when searching
for requests is governed by the following scheduling policies (for a summary, see Table 1).

e Static. This policy assigns to a processor a single queue to service. Should the queue
be empty, no attempt is made by the scheduler to look elsewhere for requests. There is
a 1 : 1 mapping of queues to processors, so every processor has a unique ready queue.

e Random. A scheduler randomly chooses which of the ready queues it will poll next.
There is no order to the queue accesses.

e Sequential. A scheduler begins looking for requests in its primary queue; the primary
queue has the same id as the scheduler process. When this queue becomes empty,
the scheduler increments its queue index by 1(modMazProc) and searches the next
queue for requests (i.e., this cycle continues until the queue index = MazProc — 1.
At this time, the scheduler resets its queue index to zero and continues searching for

requests.).

A scheduler will only look for requests elsewhere while its primary queue is empty. If a
new request arrives to a scheduler’s primary queue while a request from another queue
is being serviced, the scheduler process will service its primary queue immediately after
the current request is serviced.

e Primary/Secondary. For the Primary/Secondary policies, each processor is assigned
a static primary queue as in the Sequential policy above. When this primary queue is
empty, the scheduler searches for requests in other queues based on one of the following
policies:

1. Fixed. The processor is also assigned a secondary queue index. This is the only
queue which the scheduler accesses when its primary queue is empty. This is
referred to as the Primary/Fixed scheduler policy.

2. Random. The scheduler randomly chooses one of the remaining queues to access
when its primary queue is empty. This is referred to as the Primary/Random
scheduler policy.



3. Sequential Search. This scheduler policy is referred to as Primary/Sequential. In
this policy, a scheduler starts searching for requests in the queue with an index
one greater than its primary queue. If this queue is empty, the queue index is
incremented by one and the next queue is searched. The search for requests stops
when a non-empty ready queue is encountered. This non-empty queue will be the
only secondary queue serviced by the scheduler before returning to its primary
queue. A scheduler using the Sequential policy described above, however, will
continue to service all non-primary queues while its primary queue is empty.

An additional parameter for these policies governs the direction in which a scheduler
process searches a chosen queue. If no direction is specified, all queues are searched
from left to right. However, such a search policy may create unnecessary contention
for mailboxes when one or more processes are accessing a queue. For example, when
several scheduler processes are searching a queue’s bitmap in the same direction, they
may all find the same bit set. All the processes would then request the bitmap lock
in order to reset the bit, but only one scheduler would be successful in scheduling the
indicated request. The remaining scheduler processes must wait for their turn in the
lock in order to determine the new queue state before continuing to search for ready
requests (this is sometimes referred to as the convoy phenomenon).

Therefore, a bidirectional option was implemented where scheduler processes search
their primary queues from left to right and search their secondary queues in the reverse
direction; from right to left. Using bidirectional search, two scheduler processes are
less likely to interfere with each other’s acquisition of new requests. In the situation
previously described, as long as there is more than one request in the queue, the primary
scheduler and secondary scheduler will usually find different bits set and subsequently
both will be successful in their attempts to schedule the requests.

Because access to each queue is not strictly FIFO in the above policies, lack of starvation is
ensured by having each scheduler remember which mailbox it last serviced in its primary and
secondary queues®. When a scheduler searches the bitmap for new requests, it increments its
mailbox index by one and sequentially searches the queue. When the scheduler remembers
where it left off searching a queue, this becomes a strictly increasing function (to a max of
MazRegs — 1) and all mailboxes in a queue will eventually be serviced. The manner in
which the secondary queues are used merely supplements this primary queue service.

The following two policies were also implemented to serve as baselines to compare our policies
with. '

e Global. There is a single global FCFS queue which is maintained for the system. Each
scheduler and client process must acquire the lock to the queue before it can post a
request to or remove a request from the queue. This models a single queue typically
used in shared memory multiprocessors.

3A scheduler does not remember an index for each queue in the system, therefore, some policies will
provide better service than others.



[[ Scheduler Policy | Policy Description I

Static 1: 1 static mapping of queues

Random random 1 : 1 queue service

Sequential sequential search of queues
Primary/Secondary | bidirectional search policies

- Random primary static, random secondary

- Fixed primary static, fixed secondary

- Seq. Search primary static, sequential secondary
Global single global queue - FCFS

Distributed FCFS | 1 :1 static mapping - FCFS guaranteed

Table 1: Summary of the Scheduler Policies.

e Distributed FCFS. The distributed FCFS policy is based upon the work done by
Anderson et al [1]. There is a ready queue per processor in the system. The difference
between this policy and the static policy is that this policy restricts access to one
process posting or removing a request from a single queue at any time. Requests to a
particular queue will be serviced in the order in which they were posted. The policy
does allow a scheduler to search other processors’ queues in the event that its own is
empty. This secondary search is done in a sequential manner.

2.3 Client Processes and Policies

Client processes enqueue requests in the queues for the schedulers to service. The clients
have the ability to post requests both synchronously and asychronously.

In the synchronous case, a client posts a request and only when a reply to the previous
request is received can the client post another request to the queue.

We tested two asynchronous request arrivals.

1. Uniform Asynchronous. In this case, all client processes wait for the same average
length of time between requests. It is NOT necessary for a client to wait for a reply to
its previous request(s) before posting another.

2. Non-Uniform Asynchronous. In the non-uniform case, the client processes are di-
vided into Maz Proc sets. Each set contains approximately the same number of client
processes®. One set of clients generates requests at the maximum possible rate, while
the other (Maz Proc—1) sets wait a longer length of time between arrivals. The average
wait between requests is the same for the (MazProc — 1) sets of client processes.

4Some queues may contain one more client than another. For example, if there are 12 clients and 3
processors, there will be 4 clients/queue. If there are 13 clients and 3 schedulers, then there is one queue
with 5 client processes and the other 2 queues will service 4 clients.



Which queue a client will use to post a request is governed by the following queueing policies.
(for summary, see Table 2).

e Static. A client is allowed to assign requests to only one queue during its lifetime.
There is not necessarily a 1 : 1 mapping of clients to queues, however, the policy
attempts to distribute the clients equitably amongst the queues.

e Random. When a client is ready to post a request it randomly selects a queue.

e Sequential. Each client is assigned a starting queue based upon its id, to reduce
startup contention for resources, and posts its first request in this queue. For each
subsequent request posted by the client, the queue index is incremented by 1(mod
MazProc) and the appropriate queue is used.

e Primary/Secondary. There are two primary/secondary policies governing the post-
ing of requests. For each, the primary queue is assigned using the static policy. When
this primary queue already contains a predetermined number of client requests, the
client posts its next request in a secondary mailbox. The predetermined number of
requests, referred to as the cutoff capacity, assumes a queue’s length is an indication
of the delay associated with that queue. When a primary queue is filled to the cutoff
capacity, it is assumed that better service may be provided by posting the new request
elsewhere. In these tests the cutoff capacity was set to be the number of client processes
in the system.

The secondary policy is determined in one of the following two ways;

1. Fixed. A secondary queue index is assigned to the client for the duration of the
test.

2. Random. The client process randomly chooses a secondary queue whenever the
primary queue is overloaded.

In both cases, the secondary queue is distinct from the primary queue.

¢ Global. There is a single global queue and it is accessed by a single process in a
strictly FCFS manner. '

e Static FCFS. This is one of the sister policies of the Distributed FCFS scheduler
policy. Each client is assigned a queue index for the duration of the test and mutually
exclusive access to the queue is enforced. As in the static policy, the policy distributes
the clients amongst the queues as equitably as possible.

¢ Random FCFS. Another sister policy of the Distributed FCFS scheduler policy,
permits a client process to randomly select a queue in which to post its next request.
Mutually exclusive access to the queues is enforced.



[ Client Policy | Policy Description |

Static static queue assignment
Random random use of queues
Sequential sequential use of queues
Primary/Random | primary/ random secondary

Primary/Fixed primary/ fixed secondary
Global global queue - FCFS
Static FCFS multiple queués - FCFS

| Random FCFS multiple queues - FCFS random

Table 2: Summary of the Client Policies.

3 Implementation Details

We tested a system with a set of scheduler processes and a disjoint set of client processes.
This tested scheduling structure was implemented on top of the Dynix operating system.
Therefore, it was necessary to minimize the interaction with Dynix. There are also a num-
ber of parameters which have an impact on the test performance results. The following
subsections describe the choices made in the implementation and the effects these choices
have on the performance results.

3.1 Signalling by Clients vs. Polling by Schedulers

One interaction between our code and Dynix arises in the manner in which the scheduler
processes are made aware of new requests. There are two ways in which a scheduler process
can be made aware of new ready requests in a queue. One method is by the use of Dynix
signals. When a client posts a request, it then signals one or more scheduler processes that
there is a new request ready for service. Which scheduler processes should be signalled by a
client is dependent upon the scheduling policy in use during a particular test. For any of the
static scheduler policies, because the scheduler processes service the queue with the same
index as their process id only the index of the queue need be known to determine which
scheduler to signal. However, once the scheduler policies assign secondary queues, it is not
clear which schedulers need to be signalled. If both the primary and secondary schedulers
for a queue are signalled, then the secondary scheduler may be unnecessarily interrupted,
resulting in poorer overall system performance. If only the primary scheduler is signalled, the
new request may remain undetected in the queue for a relatively long time, again resulting
in poorer overall service. If a random policy is employed by the scheduler processes, it is
impossible to determine which scheduler is servicing a queue at any time and issues similar
to those of the primary/secondary service arise.

Another drawback of signalling is the length of time it takes for the signal to propogate to its
destination. Using Dynix, the average delay due to signalling is approximately 0.6 - 0.7 ms,
however, the service time for a NULL request is only 0.11 ms. Clearly, the time required to
deliver a signal will dominate the per request delay measured by the NULL test. In addition



there are certain policies where explicit signals are not required. For all policies, a scheduler
will continue to service requests as long as there are requests in the queue. A single global
queue has a greater probability of continuously having ready requests than a distributed
queue structure. Therefore, when using a global queue it is not necessary that a scheduler
be signalled. With a distributed queue, a scheduler will more often need a signal to restart
itself. Thus, between the global and distributed queue results a maximum discrepancy of
0.6-0.7 ms/req in delay may be solely attributable to a Dynix specific implementation.

There is also the risk of “losing” a signal with the Dynix operating system. That is, even if
the client religiously signals the correct scheduler when a new request is enqueued, there is no
guarantee that the signal will be received. To guarantee that all signals are received requires
additional fault tolerance overhead; for example, duplication of signals after a timeout period
and/or timer interrupts. The problem with using a timing interrupt as a backup mechanism
is that the minimum granularity allowed by the Dynix operating system is 10 ms. This time
is much greater than the typical service time for a request and is not useful for these tests.

Therefore, a different method was used: A scheduler process polls the queues. This is a
much more robust implementation and was the method chosen for the tests.

Signals are, however, used when schedulers reply to the client requests. Returning replies to
the clients involves the same amount of work for all scheduler and client policies. Therefore,
the effects of using signals for replies is the same for all tests and the results remain com-
parable. In the synchronous tests, the time between requests will be the time to service the
request plus the signal propogation time and the time to service the interrupt created by
the signal. For the asynchronous tests, the reply signals do not affect the request generation
rate directly. ’

3.2 Limiting the Effects of the Dynix Scheduler

A second source of interaction between the test code and the Dynix operating system is due
to the Dynix scheduler and the context switch time involved in moving a process from one
processor to another after a Dynix time quantum has expired. In order to minimize the test
code’s interaction with the Dynix scheduler, each scheduler process was given affinity for a
particular processor. This insures that the scheduler process is not affected by the Dynix
scheduler. The client processes were given affinity for the processors not used by scheduler
processes. That is, the client process occupied a subset of processors disjoint from that used
by the scheduler processes.

Assigning the client processes to a disjoint subset of processors also guarantees that the
client and scheduler processes do not interfere with one another’s progress during the tests.
To guarantee that client processes do not interfere with one another’s creation of requests,
the total number of client and scheduler processes involved in a test was limited to the total
number of available processors in the system. For our Sequent multiprocessor this number
is 16.
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Given these assignment constraints, a scheduler process now represents a single processor
and a client process represents an application creating threads (i.e., requests) which must be
scheduled on these processors. Tests can then be run to determine the relative performance
of any combination of the policies described in the previous sections.

4 Performance Parameters

There are several factors which must be considered when running these tests.

4.1 Service Time

The amount of CPU time required by a request is a test parameter. The longer the average
CPU requirements of the client requests, the longer the average queue length will be. In
turn, this will affect the average delay per request. The delay refers to the total time a
request is in the queue, or, more specifically, is the time from request generation until the
end of servicing by a scheduler. A request’s service time is determined by the client process
generating the request. Client processes post an operation which specifies the requested CPU
time as part of the request. The NULL operation simply requires the scheduler to remove a
request from the IN-box, do the required bookkeeping® and return a reply in the OUT-box.
Other operations increased the operation time in intervals of approximately 0.05 ms. The
bookkeeping time for the NULL operation was approximately 0.11 ms. All requests for a
particular test had the same average request time.

4,2 Interarrival Time

Synchronous tests are used to simulate a very lightly loaded system. At any point in time,
there are at most the same number of requests in the queues as there are client processes.
The time between request generation for a specific client process is based entirely on the
delay and service time of the previous request. This includes the return signal’s propogation
time and the time necessary to service the interrupt generated by the signal.

Asynchronous request generation has the potential to impose higher loads. For a given set
of test parameters, all policy combinations have the potential to generate an equal number
of requests in the same amount of time. However, there are other factors which affect the
generation rate of requests by the client processes.

The primary factor is the time spent waiting for a queue or mailbox lock. If this time is
longer than a request’s CPU time, a signal may be received by the client while it is posting
a request. After posting a request, the client process will then service the interrupt before
posting another request. This results in a slower request generation rate by client processes

5Bookkeeping refers to calculating the delay of a request in the queue, counting the number of requests
serviced, etc.
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for certain policies. The shorter the lock duration, the greater the number of requests which
can be input into the queues by client processes between interrupts.

The measured arrival rate of requests to the system is referred to in the results as throughput.
Some confusion may result from trying to interpret the results using a queueing theoretical
definition of throughput. The difference between the two definitions, is that the throughput
represented in the results is not entirely dependent upon the delay in the system. The delay
plays a large factor, but the locking delay, which is generally much less than the end-to-end
delay, affects the rate at which a client is able to generate requests. The performance of a
policy pair must be represented not only by the average delay per request, but also by the
effect it has on the system’s ability to originate requests.

4.3 Load Distribution

Load balancing effects of different policies must also be considered. A viable scheduler/client
policy pair must have provisions for distributing the work equally amongst the processors.
During a test, each request has the same average service time, therefore, the total number
of requests serviced by a scheduler (processor) can be tallied to determine the effective load
balancing effects of a policy pair.

We created two situations to model imbalance in work offered to different processors:

1. Provide a number of clients which is not a multiple of the number of schedulers. This
causes more clients to be mapped to some schedulers than others.

2. Use the non-uniform asynchronous request generation rates. In addition to being
unbalanced, the sets of clients are also offering requests to the system at different
rates.

The load distribution of a test case is determined by measuring the percentage of the
requests serviced by each scheduler process (e.g. processor). ‘

5 Performance Results

This section defines the queueing policies tested, the test parameters used and then discusses
the results. For a set of tests, a fixed number of client processes and another number of
scheduler processes is chosen. Both synchronous and asynchronous requests are tested. The
service time of the requests begins as NULL and is then incremented for each successive test.
Not all policy pairs are tested for the entire set of tests. As a queueing policy is eliminated,
the reasons for its elimination from future testing are discussed.

Several combinations of scheduler and client policies are possible as outlined in Table 3. The
possible pairs can be determined by the table delineations. For example, Global : Global

12



[ Scheduler Policy | Client Policy |

Static, Random, Static, Random, Sequential
Sequential Primary/Random, Primary/Fixed
Primary/Secondary

Global Global |
Distributed FCFS | Static FCFS, Random FCFS |

Table 3: Scheduling Algorithms

is the only possible global policy pair, whereas the Static scheduler policy can be combined
with the Static, Random, Sequential or either of the Primary/Secondary client policies.

All scheduler primary/secondary policies use the bidirectional search option. Preliminary
tests were run comparing results from the policies with and without the option. In all
cases, using the bidirectional search option for the secondary queues resulted in delays and
throughputs which were less than or equal to the results obtained without using the option.

5.1 First Round of Eliminations

The policy pairs from the first block of Table 3 were run initially with non-uniform asyn-
chronous request generation, 3 scheduler processes, 10 client processes, and the NULL oper-
ation. Each test was run for the duration of 20,000 requests and was repeated 15 times. The
average results of these runs are repored in -the tables and graphs presented in this paper.
Longer request durations were tested (e.g., 100,000 requests) with very little difference in
the performance results and standard deviations. Also, several tests were run with varying
repetitions; 20, 30 and 50, also with little difference in the measured performance metrics.
Therefore, 15 repetitions of 20,000 requests was determined to be an accurate representation
of an algorithm’s performance. '

The results from these test runs were used to determine the poorer performers and eliminate
them from future tests. The criteria for discontinuing a policy were load distribution, delay
and throughput, defined in the previous section. The policies in the bottom block of Table
3 are discussed later in this section.

As the operation (service) time increases, the average length of the queue and the delay per
request also increase. For large service times, the probability that a scheduler will access
its secondary queue approaches zero. In addition, the amount of delay incurred waiting
for a lock will become negligible when compared with the per request delay. Therefore,
the potential benefits of the policies will be most evident from the tests using the NULL
operation. :

The results of the NULL tests are shown in Table 4, and the policies surviving the first cut
are shown in Table 5. The delay in Table 4 is the average per request delay measured in ms.
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Scheduler | Client Delay Thruput | Load Distrib
Policy Policy (ms/req) | (req/ms) | (% off balanced) “
Static Static 8.1710 5.6585 6.7 -33 -3.3
Random 4.9520 5.9854 03 0 -0.3
Sequential 4.2764 6.5503 0.1 -02 0.1
Primary/Rand | 3.2533 6.2391 31 -0.8 -23
Primary/Fix | 3.6144 6.1895 26 07 -33
Random Static 6.7913 6.1674 -0.1 -06 0.7
Random 5.1990 5.9835 02 -05 0.3
Sequential 5.0565 6.4927 01 -03 0.2
Primary/Rand | 3.5762 6.2862 -0.1 -0.5 0.6
Primary/Fix | 4.2916 6.2908 0 -05 0.5
Primary/ Static 6.9040 5.8623 21 -1.2 -09
Random Random 3.8734 6.1394 0.1 -03 0.2
Sequential 4.3092 6.5787 02 -03 0.1
Primary/Rand | 3.1489 6.2452 2 -1 -1
Primary/Fix 3.2645 6.2989 22 -0.7 -15
Primary/ Static 6.0331 6.0389 14 -15 0.2
Fixed Random 3.4852 6.1544 0.1 -0.5 0.4
Sequential 4.1814 6.5559 0.1 -04 03
Primary/Rand | 2.8564 6.2897 11 -11 0
Primary/Fix 2.6960 6.2780 11 -0.6 -0.5
Sequential | Static 5.9908 6.0120 08 -05 -03
Random 3.3805 6.1688 0.1 -05 04
Sequential 4.2864 6.5777 0.1 -04 03
Primary/Rand | 2.8865 6.3131 1.1 -0.8 -0.3
Primary/Fix | 3.0036 6.3616 1.2 -0.5 -0.7
Primary/ | Static 6.0252 6.0319 08 -0.6 .-0.2
Sequential | Random 3.5523 6.1241 0 -04 04
Sequential 4.2806 6.5742 0.1 -04 03
Primary/Rand | 2.8435 6.2853 1.2 -1 -02
Primary/Fix 2.8429 6.3162 1.1 -05 -0.6

Table 4: Results for Non-Uniform Asynchronous NULL requests (3 schedulers & 10 clients).

This is a system measurement, not a per processor measure. The throughput (thruput is the
rate at which requests were generated by the test system when using the policy combination
indicated. This is measured in requests/ms. The load distribution is measured during the
tests and the percentage of the requests serviced by each scheduler process is indicated. The
worst case is the Static : Static policy pair where one scheduler services 40% of the requests
and the remaining two only service 30%of the requests each. We would like the load to
be distributed equally across the processors (e.g. 33.3% for all processors). The ideal load
distribution is indicated by 0% in the Load Distribution column of Table 4.

The Static client policy is eliminated due to its inability to equitably distribute the load

amongst the processors when combined with most scheduling policies. When combined
with the Sequential and Primary/Sequential scheduler policies, the load distribution is more
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[ Scheduler Policy | Client Policies I

Primary/Fixed, Primary/Random
Sequential Random, Sequential,
Primary/Sequential | Primary/Fixed

Table 5: Policies performing best with non-uniform asynchronous NULL requests.

equitable, but the delays are much longer than when using other client policies. All the
scheduler policies except Random, assign a primary queue to the scheduler. Other queues
are accessed only in the event that the primary queue becomes empty. In this test, only one
queue is overloaded with requests. When the other queues become empty, this single queue
with requests acts as a central global queue, and causes the same bottlenecks which our
approach, in general, attempts to avoid. Therefore, it is necessary for the client processes to
make an attempt to distribute the load to the queues.

The Static scheduler policy is also eliminated as it does not distribute the load equitably
amongst the processors except when combined with the Random client policy. When com-
bined with the Random client policy, the delays are longer than for other policies offering
equivalent throughput. Relying solely on the client policy for load distribution, the Static
scheduler performs poorly in the non-uniform loading environment.

Among the remaining policies, the Random and Primary/Random scheduler policies have a
lot of variance in their performance. The time at which a queue is serviced varies, and there-
fore, these policies do not offer consistent performance, nor do they result in a competitive
delay.

Increasing the service time for each test, several tests were run on the policy sets in Table
4 to determine which yield the best performance in a variety of loading situations. The
throughput, delay and load balancing data from these tests were compared to determine the
potential benefits of the algorithms with respect to each other and the base case global and
distributed FCF'S policies. These are discussed next.

5.2 Load Balancing

Some of the scheduler and client policies can be eliminated due to their load distribution
characteristics. Partial results for these policies are represented in Table 6. Using the Ran-
dom client policy, the Primary/Fixed and Sequential scheduler policy results are compared.
The load distribution capabilities of both scheduler policies are similar, however, the stan-
dard deviation is greater for the Primary/Fixed policy indicating it is less reliable than
the Sequential scheduler policy. When combined with the Primary/Random client policy
the Primary/Fixed scheduler policy performed less effectively than the Sequential scheduler
policy in terms of load balancing, yet delay and throughput results were similar. The Pri-
mary/Fixed scheduler has no distinctive characteristics that warrant it being included in
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Client Scheduler | Sve | Thruput | Delay Load Distrib
" Policy Policy (ms) | (req/ms) | (ms/req) | (% off balance)
Random | Primary/Fix | 0.319 | 4.587 16.433 0 -03 03
Sequential 0.319 | 4.588 16.639 -0.1 -0.2 0.3 "
Primary/Fix | 0.420 | 4.032 21.313 02 -03 0.1
Sequential 0.420 | 4.039 21.601 0.2 -0.3 0.1 "
Primary/ | Primary/Fix | 0.319 | 4.999 12.769 03 -09 0.6
Random | Sequential 0.319 | 4.998 12.842 -0.1 -0.2 03
Primary/Fix | 0.420 | 4.570 16.434 08 -15 0.7
Sequential 0.420 | 4.575 16.437 02 -02 0

Table 6: Load Distribution for Scheduler policies vs. Service time (3 schedulers & 10 clients).

future tests and therefore, the policy was eliminated from further consideration.

The Fixed FCFS client policy also did not provide load balancing to the system for the same
reasons the static client policy did not. Therefore, only the Random FCFS client policy was
considered further.

5.3 Throughput and Delay

In presenting the remaining results, since the Sequential and Primary/Sequential scheduler
policies perform nearly equally, only the Sequential policy results are shown to make the
graphs clearer. Their similar performance is attributed to the fact that, in our tests, there
are always requests being generated, therefore, the time spent servicing a secondary queue
while a scheduler’s primary queue is empty is relatively short. If a primary queue were
empty for a longer duration, it is anticipated that the Sequential policy would outperform
the Primary/Sequential policy. In such a situation, a scheduler using the Sequential policy
will continue to search for work in all the other queues in the system, whereas, a scheduler
_ using the Primary/Sequential policy will search for the first queue with requests it finds and
only service this queue, thus resulting in a possible load imbalance, and longer delays if the
secondary queue selected is not the overloaded one.

The next performance metric is the throughput, i.e, the request generation rate, sustained
by the system when using different policy pairs. The throughput of the remaining policies
and the Distributed FCFS policy are competitive (see Figure 2 - a : b denotes scheduler
policy a combined with client policy 4). The global policy performs much worse than the
distributed algorithms and is eliminated from further consideration as a useful scheduling
structure. This is in line with the results in [1]; the distribution of the ready queue offered
improved system performance, measured in terms of delay and throughput, over a single
global ready queue.

The Primary/Fixed client policy is also eliminated based upon its throughput. The through-
put is approximately 8% less than the throughput of the Random FCFS policy and the
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Primary/Random or Random client policies.

Based on the delay results (See figure 3), the Sequential client policy can be eliminated.
For short service times the delay incurred is approximately twice the delay measured for
other policies in the worst case. When the average delay per request for each of the re-
maining algorithms is examined, there are policy pairs for which the multiple access queues
described in this paper offer better performance than the single access distributed FCFS
queues. The scheduler policies remaining offer this improved performance; the Sequential
and the Primary/Sequential algorithms.

Using the Sequential scheduler policy, the client policies which perform the best are the
Random and the Primary/Random policies. Of the two client policies, the Primary/Random
performs slightly better than the Random client policy. The Primary/Random policy will
only redistribute work when its primary queue has reached a certain predetermined capacity;
for these tests, the capacity was set as the number of client processes in a test. This feature
avoids randomly determining a new queue for every request a client makes. Generating
a random number takes a certain amount of time. If the time necessary to generate a
random number were significantly reduced, there should be no difference between the policies’
performances. The randomness of the two policies allows the request load to be equally
distributed amongst the processor queues, while reducing the probability that several clients
are accessing the same queue at the same time.

Let us compare the top performance pair, Sequential : Primary/Random policies with the
Distributed FCFS : Random FCFS base case policies. Though the throughput is roughly
equivalent, there is a distinct difference in the per request delay for each algorithm. These
results are illustrated in Figure 3. For NULL request (i.e. 0.11 ms service time) the Sequen-
tial : Primary/Random policy pair outperforms the Distributed FCFS queue structure by
50%. As the service time and hence, the queue length increases, the difference in per request
delay diminishes to 8% but Sequential : Primary/Random remains the better performer.

Synchronous tests using 3 schedulers and 10 client processes were also run to determine
whether the benefits of the multi-access queues is evident at very light loads. For very
lightly loaded systems, the Primary/Random client and the Sequential scheduler policies in
these tests offer no improvement over a Distributed FCFS scheduler tested with a Random
FCFS client policy (See figure 4). This point is more clearly illustrated by the tests run
using 2 schedulers and 11 clients (See figure 5) where the Sequential : Primary/Random
policy has a slightly longer delay than the Distributed FCFS policy pair. However, as
the the ratio of clients to schedulers increases, from 10 : 3 to 11 : 2, the performance of
the Sequential : Primary/Random policy becomes similar to that of the Distributed FCFS
queue. :

Additional asynchronous tests were run using 4 scheduler processes and 9 client processes(See
figures 6 and 7). The results from these tests more clearly illustrate the performance of the
policies under a variety of loading conditions. When the system is lightly loaded (e.g. the
queue lengths are relatively small), the Distributed FCFS policy pair performs better than
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the distributed multi-access queues. However, as the average queue lengths increase, the
multi-access policies perform better than the Distributed single access queue scheduling
structure. Therefore, we project that the improvements already noted by distributing the
scheduler and the ready queues [1] can again be improved by allowing multiple concurrent
access to each queue in conjunction with other simple scheduling policies.

These results suggest that the Sequential : Primary/Random policy pair offers the best per-
formance for asynchronous loads. For synchronous loads, this policy pair may offer improved
performance over the Distributed FCFS : Random FCF'S policy pair as the client to scheduler
ratios is increased.

6 Related Work

Closely related to the work done in this paper is the work by Anderson et al and described
in their paper [1]. They ran a series of experiments to determine how the reorganization
of the system data structures would affect application performance in terms of la.tency and
throughput. The tested configurations included:

e A central (global) locked ready queue. The global base case policies described in
this paper model this particular implementation.

o Per processor free lists with a single locked ready queue. Each processor
maintains a local list of deallocated control blocks which it uses when scheduling a
new thread to run. This local “free list” requires no lock as each control block can
be accessed by exactly one processor. This structure reduces the amount of time a
processor must hold the ready queue lock if the processor has a free control block. In
the event a processor has an empty free list, there is a global pool of control blocks
which is guarded by a lock and is accessable to all processors. This protocol does
not eliminate the central ready queue, it only intends to reduce the length of time a
processor holds the lock when scheduling a thread.

e Per processor free lists with a central queue of idle processors. This structure
is implemented to allow parallel creation of threads when a processor is idle and there
is no outstanding work to be done. In such an instance, the idle processor creates
a control block and places itself in the idle queue. The next task (thread) to enter
the system checks the idle queue for available processors and schedules itself on the
first available processor. In other words, the threads look for processors instead of
processors searching for threads.

e Per processor ready queues. Each processor maintains a local ready queue of
runnable processes (threads). Each ready queue is protected by a single mutex lock.
Runnable processes are assigned to the queue in a randomly. In the event a processor’s
local ready queue is empty, it will search other queues for work. A processor searches
the queues sequentially to find additional ready threads.
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The application processes post their new threads in the queues, randomly selecting a
queue to use for their next ready thread. The Distributed FCFS/Random Distributed
FCFS base case policies of this paper were used to model this situation.

The experiments indicate that the per processor ready queues, yield the greatest system
throughput and a reasonable latency due to the reduction in contention for scheduling locks.
The only contention for locks occurs when a processor has no runnable threads in its local
queue. In this case, the processor may access other ready queues. This results of this work
make it clear that a single global ready queue is less efficient than multiple, per processor
ready queues for scheduling,.

In their paper, Anderson et al suggested using hyrids of their proposed data structures. The
work presented in our paper, extends their ideas to allow multiple access to the per processor
ready queues. We also extend the policies governing the posting and servicing of threads
to/from the queues. In addition to the Random/Sequential policy pair described above, the
policies outlined in Tables 1 and 2 offer a variety of scheduling 1mplementa.t10ns to be tested
and compared with the original work.

Another related work is by Squillante and Nelson [14]. They created a queueing theoretic
model of task migration for a shared memory multiprocessor. They examine the benefits
and/or detractions of allowing processors to access ready queues other than their own. Their
work indicates that there are upper and lower bounds for system loads beyond which migrat-
ing processes from one cpu to another has no noticeable benefits. They assume per processor
ready queues as the data structure to be used by the system.

The performance of the locking mechanism, critical to these policies may benefit from the
‘implementation discussed by Mellor-Crummey and Scott[11]. They suggest that altering the
lock implementation may be the best- way to reduce the traffic on the bus due to contention.
They suggest an algorithm for mutual exclusion which virtually eliminates bus contention.
This algorithm guarantees FCFS lock service, and shows improved application performance.
This lock implementation would show improvement in a system where there is great con-
tention for a single lock (i.e. the Distributed queue structure used by Anderson et al [1]).
Our scheduler structure, however, is designed to minimize contention for ready queue locks.
Therefore, though the locking algorithm proposed by Mellor-Crummey and Scott can be ap-
plied to our proposed scheduling structure, we do not expect this to improve the performance
of the algorithms significantly.

7 Conclusions

A problem with many multithreaded multiprocessor operating systems is that they have
been derived directly from uniprocessor operating systems with little modification. This
paper examines the system resource contention caused by having a single central scheduling
structure. To this end, the queue was distributed amongst the processors in the system and
each processor given a scheduling thread. In addition, the ready queue was modified to have
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multiple locks, allowing multiple processes (or threads) concurrent access to the structure.
Using this configuration reduces interprocess conflicts which occur with a global ready queue
and scheduler.

Various policies were used to govern the application and scheduler processes access to the
queues. The policy combinations were tested, and the results compared to base case schedul-
ing implementations: the single locked global queue and the FCFS distributed ready queues.

Our test results support Anderson et al’s findings[1] that a distributed ready queue performs
better in terms of delay and throughput than a single global ready queue. The results also
support our expectation that concurrent access to a queue by several processes would im-
prove the performance of the scheduler despite the additional locks required. At very low
loads, our scheduler implementation offers little, if any, improvement over that examined by
Anderson et al [1]. As the loads and hence the queue lengths increase, the Sequential : Pri-
mary/Random policies provide improved performance over the Distributed FCFS : Random
FCFS policies. Qur scheduling structure, however, is not a strict FIFO queue implementa-
tion. It is not necessarily true that the next request enqueued in a queue will be the next
request removed from that queue. However, posting and removing requests to and from the
queues is done in such a manner that starvation is avoided and has caused no increase in end
to end service time for a request. Therefore, using our scheduling structure several threads
may be scheduled from a queue concurrently. With the strictly FIFO distributed queues
proposed in [1], access to a queue is confined to a single process at a time. If there is only
one queue with ready threads and there are several idle processors, the distributed FIFO
scheduling mechanism reduces to a single global queue.

It would be of interest to implement different types of schedulers using the multiple access
ready queues described in this paper. For example, none of the algorithms tested for this
paper emulate the MACH scheduler which is a two-level scheduling structure. There is a
single global queue from which all the processors can schedule ready threads. In addition,
each processor has a local queue of threads it can run. A processor will only access the global
queue in the event that there are no runnable threads in its local queue (assuming all threads
are of equal priority). Implementing our scheduling structure would require modifying the

MACH scheduling structures to allow multiple processors concurrent access to all the queues,
both global and local.

Other remaining work is to implement these algorithms and data structures so that they
actually do the scheduling for a shared memory multiprocessor. It will be useful to test the
approaches with respect to benchmark multiprocessor applications which attempt to utilize
the parallelism of the shared memory multiprocessor. We expect the results will be similar
if the schedulers are user-level processes scheduling application threads to the processors.
If the schedulers are implemented as kernel threads, the kernel overhead may change the
results [2].

In order to measure the load distribution characteristics of the scheduling policies, the ser-
vice time required by each request was nearly equal. System loads are rarely uniform in
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their service requirements. Implementing a working scheduler and measuring the user’s re-
sponse time may provide new performance results. We expect, however, that the relative
performance of one policy pair to another will remain the same.
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Figure 2: Non-Uniform asynchronous loading: Service Time vs. Throughput (3 schedu lers
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