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Abstract

Monitoring is a kind of resource management, in which the re-
sources are the events that bring about changes in the environment,
and the goal is to minimize the costs incurred. In this project we were
interested in performing an experiment to check whether humans would
converge on optimal monitoring frequencies. The Boxes Experiment
was designed and implemented for this very purpose. Data was col-
lected and analysed, and statistically it was found that human subjects
performed suboptimally in the monitoring task. We also attempted to
provide reasons for this behavior.
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1 Introduction

1.1 Aim of the project

1. To design and implement an experiment to test whether human subjects learn to
monitor at the optimal rate for an event that occurs probabilistically.

2. To analyze results obtained from running the experiment on human subjects and to
compare them with the optimal performance predicted by the mathematical model.

1.2 The monitoring problem

Monitoring is a kind of resource management, in which the resources are the events which
bring about changes in the environment, and the goal is to minimize the costs incurred.
Changes in the environment can be found by periodically checking for an event (polling
model). But how frequently should checking be done? Intuitively, if the rate of arrival of
events is very low then the frequency of polling should also be low and if the rate of arrival
of events is high then the frequency of polling should also be high. On the other hand, if
the cost of checking is very high, then one is tempted to check less often. Hence, in order
to determine the optimum monitoring frequency, that is, the frequency at which the cost
incurred is a minimum, it is necessary to know the probability of the occurence of events
and the costs involved. For example in a fire-monitoring task, the event is a fire, and one
needs to know how frequently fires are set, what is the cost of monitoring, and what is the
cost of damage due to the fire, in order to determine the optimum monitoring frequency. A
mathematical model for monitoring frequencies is already available. We were interested in
performing an experiment to check whether humans would converge on optimal monitoring
frequencies. If so we could say that the model was true in general. If not we could learn
from the deviations from optimality about how humans set monitoring frequencies. Before
I explain the design of my experiment I will state the underlying assumptions, identify the
parameters and describe the model.

1.3 The mathematical model

The assumption is that events happening in the environment are stationary, independent
bernoulli processes. Stationary means that the probability of the occurence of events on any
given trial is the same and independent means each event is independent of anything that
happened on a previous trial. Further, only one event can happen at any time instant, never
more than one. The parameters are:

p = the probability that the event will happen in any given time unit

H = the cost of monitoring the event (monitoring is done once per r time units)

F = the cost of the damage caused by the event per time unit

r = the monitoring frequency i.e., the number of time units that elapse between monitoring.



2 The Boxes Experiment

For example in the fire-monitoring task, the event is a fire, and monitoring involves
sending up a helicopter. Then, p is the probability that a fire starts in any given time unit,
F is the damage done by the fire in each time unit, and H is the cost of sending up the
helicopter. Only one new fire can start at any given instant. Mathematically the question
now is, for given values of p, H, and F, what value of r minimizes total cost?

An event could happen at time r-1 with a probability p and continue for 1 time unit,
an event could happen at time r-2 with a probability p and continue for 2 time units, etc.,
until an event that happens at the beginning with a probability p would continue for r time
units. The total cost incurred during a monitoring interval r, is the sum of H and the cost
of damage caused by all the events that happened in interval r. Hence,

Expected number of time units for which the events have been causing damage is

Z’:pizpz’:i=m(r+1)

i=1 =1 2
Expected cost of damage caused by the events during interval, r is F p—’(';il

Expected cost during the monitoring interval, r is H + F”—'(’;il

Expected cost per unit time is C = BF

r

In order to find the value of r, which minimizes C, we differentiate C with respect to r,
and equate it to 0, and solve for r.

2 Description of the boxes experiment

The boxes experiment was designed to test whether human subjects learn to monitor at the
optimal rate as predicted by the above model. In this experiment, 1200 boxes appear one
after another on the screen. Each box is analogous to a time unit. The boxes contain dots,
with each box containing at least as many dots as in the box immediately before it, and
possibly one more, depending on chance. So the number of dots gradually increases from
box to box. The way to control this is by monitoring. The subject is repeatedly asked to
choose a monitoring interval, which is the same as the number of boxes. For every monitoring
interval that the subject chooses, the next box in the sequence starts from zero dots again.
So monitoring is a way of preventing too many dots from accumulating in the boxes.

There is a cost for monitoring, as well as a cost for the dots. The subject has to weigh the
cost of monitoring against the cost of the dots in order to determine how often to monitor.
The subject is asked to choose a monitoring interval in the range of 5 to 60, with the aim to
bring the score as low possible, where the score for the entire experiment is:
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(total number of dots)*(cost per dot) + (total times monitored)*(cost for monitoring)

Each time the subject monitors, we show a display. The display consists of two parts.

1. In the top part of the display appear some boxes, one for each second that has elapsed
since the last monitoring. Each box might contain a colored dot. If a box contains
a dot, then every box after it contains this same dot. The subject is charged for the
number of dots that appear on the screen, plus a constant charge for monitoring.

2. At the bottom of the display is the message area, which displays the monitoring interval,
the dots cost, the monitoring cost, the total cost (which is the total number of dots
plus the cost of monitoring), as well as the average cost per second for the current
monitoring interval, and the cumulative average cost per second since the beginning of
the session. The subject adjusts the monitoring interval to keep these average costs as
low as possible.

Below is a diagramatic representation of the experiment along with the formulae for the
costs in general terms:

F = the cost of a dot

D; = total number of dots on the screen in interval i
H = Monitoring or uncovering cost for interval i

T; = Time interval for the ith click

A 1200 second session:

Intervall Interval2 Interval3 Intervals

L R e et O==—mm——m————— 0= ===t ittt -===0

Dot cost for interval i = FD;

Total cost for intervali = FD; + H

Average cost per second for intervali = 4; = QI'*{"—H

Average cumulative cost per second since the beginning of the session = C; = ‘=’(FD;.%H)

i=1

This experiment has bearing on the fire-monitoring task. An analogy can be drawn
between the scenario in this experiment and fires starting and being detected in the fire-
monitoring task. Analogous to each box is a time unit and analogous to each dot is a fire.
As time progresses fires get added, analogous to dots increasing from box to box. In order
to prevent damage caused by the fire, periodic monitoring is done, analogous to monitoring
to prevent dots from accumulating. Monitoring is done with a view to minimize costs, given
that F is the cost of damage done by a fire, and H is the cost of monitoring by sending up a
helicopter. This is the same scenario presented to the subjects in the boxes experiment.
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3 Results of the experiment

3.1 Input parameters

The experiment Wés conducted with the following input parameters:
1. Setl: H=100,F =1,p = 0.3
2. Set2: H=200,F=1,p=0.3

The session consists of 1200 boxes, so that the subject had enough time to learn the
optimal monitoring rate. The optimal monitoring rate, 7op, and the optimal cost, Cop, in
each case were:

1. Setl : Top: = 26, Cope = 7.89
2. Set2: rop = 37, Cope = 11.105

In order to see the variation in the expected cost per second with respect to monitoring
interval for each of the above sets of parameters, we plotted expected cost per second vs.
monitoring interval, r (Figure 1), using the formula

2
H4Fpi it
Expected cost per second = —'{'——;—2—

From the plots the following relationships were observed:

Table 1:
Setl Set2

Range of Range of Range of Range of

monitoring | expected cost | monitoring | expected cost

interval, r per sec interval, r per sec
16-43 7.89-9 25-54 11.105 - 12
18-38 7.89 - 8.5 28-47 11.105 - 11.5
22-30 7.89-8

Note from line 1 of the above table, that for nearly the same range of r, the range of
expected cost per second for set 1 is greater than for set 2. This means that set 2 is more
sensitive to changes in monitoring interval as compared to set 1.

3.2 Optimum statistical learner (OSL)

An optimal statistical learner is one who knows the model, but nothing more about the
input parameters than the human subject knows. The value of p is estimated by the optimal
statistical learner by using the formula
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For every monitoring the optimal statistical learner estimates the value of p, and based on

peat -

— Number—of-new—dots—since—~the—session-began

Time—elapsed—since—the—session—began

that calculates the value of the optimal monitoring frequency,

Tosl =

2H
FPen

The optimal statistical learner program was written in order to compare the results obtained
from the subjects with the optimally expected results.

3.3 Data collection

The boxes experiment was carried out on 30 subjects and the results were tabulated. A
sample table for a single subject is shown below:

Table 2:
Click | Monitoring | Cost of | Cost of | Total | Average | Cumulative
no interval dots | monitoring | cost cost | average cost
1 30 166 100 266 8.87 8.87
2 15 48 100 148 9.87 9.20

In order to counterbalance the input parameter settings, half of my subjects got set1 first,
and the other half got set2 first. Data was also collected for 30 optimal statistical learners.
The number 30 was chosen in order to make statistical comparisons of data obtained from
subjects vs. data obtained from the optimal statistical learner. The cumulative average
cost was calculated for the entire 1200 box session for each of the 30 subjects and each of
the 30 optimal statistical learners. The distributions of the cumulative average costs for the
subjects (Figure 2) and the OSL (Figure 3) were plotted, and the mean cumulative average
cost, T, and the standard deviation, o were calculated in each case.

Table 3:
Set Number Eaul:;iet:ta T subjects Tosl Tosl
1 8.657 0.939 7.8 0.174
2 11.996 1.678 | 10.961 | 0.290

From the above table the question to be answered is “How does the performance of the
subjects compare with the performance of the OSL?”

3.4 Data analysis

The one-tailed z-test was performed to find out how significant the above differences in
performance were between the subjects and the OSL. The z-score was calculated using the
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z = -isub'ecu —ZTosl
2
cnnbiccn + ’f,l!
Raubdjects Toal

o Set 1: zyupjects—ont = 4.92 > 2.33

formula:

o Set 2: Zsubjects—osl = 3.33 > 2.33

Both the above z scores are greater than 2.33, and hence we can say with greater than 99%

confidence that F,yupjects 1s statistically different from Z,,. This means that the subjects do
not monitor optimally.

4 Why do subjects monitor suboptimally?

In the earlier section we saw that the subjects do not monitor optimally. But it’s hard to
find an answer to why they do not. It could be for any of the following reasons:

1. Subject may not have a well thought monitoring strategy at first, and may develop
one during the experiment. By the time the subject developed a strategy the game
would have ended. Probably if the subjects were allowed to practice, strategies could
be learned and the performance might improve.

2. Subjects may not have understood the underlying assumptions, that is the events
happening in the environment are stationary, independent bernoulli processes. For
example, few of my subjects had asked me if the probability of dots getting added was
changing with time.

3. The strategy used (learned) may be sub-optimal (i.e., it may rely on heuristics that
are sub-optimal)

4. The strategy may be confused by noise. Noise is due to the probabilistic nature of the
events. Heuristics that work without noise may not work with noise. This is because
noise may reinforce incorrect relationships between moitoring interval and the average
cost per second.

By talking to the subjects after the experiment, I found there were several different
strategies they used. Two of these strategies were implemented to see if they performed in
a similar way as the subjects.

1. Strategy 1:
The idea behind this strategy was to find an interval which would make the dots cost
equal to the monitoring cost. This can also be worked out from the model by making
approximations. Events happening in the model are the same as the dots appearing in
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the boxes experiment. Therefore,
Expected cost of dots getting added in interval r, is F ‘ﬂ’;lll

For large r, r+1 = r, and ,
Expected cost of dots getting added in interval r, is Eéﬂ-

For optimal performance, r = rop; = ,/%.%. Hence

2
Minimum expected dots cost = L’;"L' = %2.}—’:- =H
This shows that for large r, the minimum expected dots cost is equal to the moni-
toring cost.

The program for simulating this strategy, increases the monitoring interval if the dots
cost is lesser than the monitoring cost, and decreases the monitoring interval if the
dots cost is greater than the monitoring cost, until it finds a monitoring interval such
that the dots cost is nearly equal to the monitoring cost.

2. Strategy 2 :
The basic idea is hill-climbing with gradient descent. The aim is to find a cumulative
cost scale with three points on it such that the middle one has the lowest cost associated
with it. This would form a v-shaped scale. The program moves the 3 points about,
trying to find the v-shaped costs. If the weights on the scale make a slope, roll down
the slope. It first finds a v-shaped scale with the points 10 units aparts, then 5, 2, and
finally 1 unit apart. ’

Again a program was written to generate 30 data sets using each of the above strategies.
This was done in order to compare their performance with the subjects and with the optimal
statistical learner. The distributions of the cumulative average costs for strategy 1 (Figure
4)and strategy 2 (Figure 5) were plotted , and the mean cumulative average cost, 7, and the
standard deviation, o were calculated in each case.

Table 4:
Set Number -z-stratcgyl O strategyl EatﬂztegyZ O strategy?
1 8.005 0.190 8.285 0.358
2 11.2334 0.218 11.299 0.360

Based on the above statistics the following z-scores were calculated:
1. Strategy 1:

o Set 1: Zsubject—strategyl = 373; Zosl—strategyl — 4.36

o Set 2: Zsubject-strategyl — 247: Z2osl—-strategyl = 4.14
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2. Strategy 2:

o Set 1: Zsubject—strategy? — 2.03, Zosl—strategy? = 6.68

o Set 2: Zsubject—strategy2 — 2227 Zosl—-strategy2 = 4.00

The above z-scores are greater than 2.33 in most cases and are greater than 1.65 in some.
Hence we can say with greater than 99% and 95% confidence in each of these two cases
respectively that T,; and Z,; are statistically different from Z,upjects 2nd from the T,y. From
this we see that there isn’t really one strategy that is being used. there are several different

strategies. Further to see how the two strategies compare with each other, the following
z-scores were computed:

o Set 1: Zstrategyl —atrategy2 — 3.78
o Set 2: Zstrategyl —strategy? — 0.84

The z-score for set 1 is greater than 2.33 and hence we can say with greater than 99%
confidence that strategy 1 is statistically different from strategy 2. Whereas for set 2, we
cannot say that there is a statistical difference between the two strategies.

5 Conclusion

In this project the boxes experiment was carried out on 30 human subjects and 30 optimum
statistical learners, in order to be able to make statistical comparisons of their performances

- on the monitoring task. From the data collected the cumulative average costs were computed
for each of the 30 human subjects and each of the 30 OSLs. It was found that the mean of
the cumulative average costs of the 30 subjects, ZT,ubjects Was greater than the mean of the
cumulative average costs of the 30 OSLs, Toy. The one-tailed z-test was performed, and it
was found that with greater than 99% confidence, T,upjects Was statistically different from
Tos- Based on this, we reached the conclusion that human subjects performed suboptimally
in the monitoring task.

We suggested four possible reasons for this, and did further experiments to investigate one
of these possibilities, that humans do not monitor optimally because they rely on strategies
that are not optimal. We programmed two of the strategies that subjects claimed to use
and found that although they performed quite well, in fact better than the subjects on
average, they still performed sub-optimally. This provides some evidence for the conclusion
that humans monitor sub-optimally because the strategies they rely on, consist of heuristics
that give good, but sub-optimal, performance. To support the other two reasons, additional
studies can be carried out to see the effect of practice and the effect of noise.

It would also be interesting to decide what level of performance can be considered to
represent deviation from the model. This is because humans may follow the model, but dif-
fer from optimal performance due to factors like fatigue, cognitive distraction, and learning.
Further work can be done to take these factors into account.
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FIG 1: EXPECTED COST PER SECOND
VERSUS
MONITORING INTERVAL
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FIG 2: HISTOGRAMS FOR THE SUBJECTS
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FIG 3: HISTOGRAMS FOR THE OSL
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FIG 4: HISTOGRAMS FOR STRATEGY 1
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FIG 5: HISTOGRAMS FOR STRATEGY 2
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