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Abstract

Real-time operating systems are an integral part of complex real-time systems. Three,
general categories of real-time operating systems exist: small, proprietary kernels, real-
time extensions to commercial timesharing operating systems, and research kernels. This
paper discusses each of these areas focusing on how each of these classes deal with pre-
dictability. It is argued that the small, proprietary kernels are predictable, but offer little
help to the real-time systems designer and implementor in producing predictable appli-
cations. Real-time versions of commercial operating systems like UNIX and Mach offer
greater implementation support, but are, in general, NOT predictable themselves nor
offer enough support to applications which require predictability. This, of course, does
not mean that there is no way to achieve predictability with these operating systems.
It is possible to achieve predictability by very careful design, by using a very limited
subset of the overall features provided, and by proving that the features being used for
predictability cannot in any way be impacted by any other part of the system. Finally,
research kernels are attempting to provide greater design, implementation and evaluation
support together with predictability for both the operating system and the application.
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1 Introduction

Real-time computing systems play a vital role in our society, controlling many types of appli-
cations including simple ones such as laboratory experiments and automobile engines, as well
as very complex applications such as nuclear power plants, flight control systems, manufac-
turing processes, and teams of robots working in hazardous environments [1, 19]. In real-time
computing the correctness of the system depends not only on the logical result, but also on
the time at which the results are produced. Explicitly dealing with time (usually via direct
control of equipment that is, in turn, controlling or operating in some larger environment)
makes building and analyzing real-time systems difficult. If we can show that a task or set
of tasks can meet their timing constraints we say that they are predictable. One important
component in producing an effective, predictable real-time system is the real-time operating
system. The operating system itself must be predictable. This means that the execution
times of OS primitives in process management, memory management, IPC, etc. must be
small and bounded. In addition, we believe that the real-time operating system should pro-
vide a significant amount of direct support for achieving application level predictability, not
just operating system predictability. This direct support is missing from current commercial
operating systems. There are many commercial and research oriented real-time operating
systems. In discussing real-time operating systems it is possible to categorize them into three
general groups: small, fast, proprietary kernels, real-time extensions of commercial operating
systems, and research oriented operating systems. In this paper we discuss the current state
of the art in each of these areas. We point out advantages, problems, and future needs in
each of the areas with a particular emphasis on predictability. For tutorial purposes, we also
present a more detailed description of one research oriented kernel — the Spring kernel.

2 Small, Fast, Proprietary Kernels

Existing practices for designing, implementing, and validating real-time systems are still
rather ad hoc. Software engineering practices that advocate modularity and the use of ab-
stract data types are not usually pursued throughout the real-time software production pro-
cess due to their perceived conflict with real-time requirements. This attitude has permeated
the small, proprietary kernels. These kernels are often used for small embedded systems when
very fast and highly predictable execution time must be guaranteed [14]. To achieve speed
and predictability, these kernels are stripped down and optimized versions of timesharing
operating systems. To reduce the run-time overheads incurred by the kernel and to make the
system fast, the kernel

e has a fast context switch,
o has a small size (with its associated minimal functionality),

e responds to external interrupts quickly (sometimes with a guaranteed maximum latency
to post an event but, generally, no guarantee is given as to when processing of the -



event will be completed; this later guarantee can sometimes be computed if priorities
are chosen correctly),

e minimizes intervals during which interrupts are disabled,

e provides fixed or variable sized partitions for memory management (i.e., no virtual
memory) as well as the ability to lock code and data in memory, and

e provides special sequential files that can accumulate data at a fast rate.
To deal with timing requirements, the kernel

¢ maintains a real-time clock,

» provides a priority scheduling mechanism,

e provides for special alarms and timeouts,

¢ supports real-time queueing disciplines such as earliest deadline and jam a message into
the front of a queue, and

o tasks can invoke primitives to delay by a fixed amount of time and to suspend/resume
execution.

In general, the kernels also perform multi-tasking and inter-task communication and syn-
chronization via standard, well-known primitives such as mailboxes, events, signals, and
semaphores. The kernels often provide very fast interrupt handling and context switches.
While all these features are designed to be fast, fast is a relative term and not sufficient
when dedling with real-time constraints. Nevertheless, many real-time system designers be-
lieve that these features provide a good basis upon which to build real-time systems. This
is probably true where the proprietary kernels are most useful, that is, in small embedded
applications such as instrumentation, communication front ends, intelligent peripherals and
many areas of process control. Then because the application is so simple it is relatively easy
to show that all timing constraints are met. Consequently, the kernels provide exactly what
is needed!. However, as applications become more complex it becomes more and more diffi-
cult to craft a solution where all timing, computation time, resource, precedence, and value
requirements are mapped to a single priority for each task. In these situations demonstrating
predictability becomes very difficult. For example, a task may block when it attempts to
access a semaphore, new tasks may be dynamically invoked at higher priorities, messages
may not be available when a task begins execution, events may be posted very quickly but
there may be no guarantee that the processing required to respond to the event will execute
in time, etc. Given this large amount of asynchrony, concurrency, and blocking, the unfortu-
nate implementor is required to assign the proper priorities that ensures the system always
meets all of its deadlines. Because of these reasons, some researchers believe that current
kernel features provide almost no direct support for solving the difficult timing problems, and

lExamples of commercials kernels include LynxOS, PDOS, pSOS, VCOS, VRTX32, VxWorks.



would rather see more sophisticated kernels'that directly address timing and fault tolerance
constraints. Many research kernels are addressing these issues.

Recently there have been efforts to produce seamless real-time kernels that scale from the
small, proprietary kernels to large kernels that support the full POSIX/UNIX interfaces (see
Section 3). The idea is to let the user select tradeoffs in size, performance and functionality
depending on the application. The lowest level of support is being called a nanokernel or
alternatively a microkernel. However, it is still not clear if the larger of the seamless kernels
will suffer from the same problems discussed in the next section, or if all these problems can
be overcome.

3 Real-Time Extensions to Commercial Operating Systems

A second approach to real-time operating systems is the extension of commercial products,
e.g., extending UNIX to RT-UNIX (5], or POSIX to RT-POSIX, or MACH to RT-MACH
[22]. The real-time version of commercial operating systems are generally slower and less
predictable than the proprietary kernels, but have greater functionality and better software
development environments. For example, one advantage of RT-UNIX is that it is based on a
set of familiar interfaces (standards) that speed development and facilitate portability. How-
ever, since many variations of UNIX have evolved, a new standards effort, called POSIX,
has defined a common set of user level interfaces for operating systems. In particular, the
POSIX P.1003.4, subcommittee is defining standards for real-time operating systems. To
date, the effort has focussed on eleven important real-time related functions: timers, priority
scheduling, shared memory, real-time files, semaphores, interprocess communication, asyn-
chronous event notification, process memory locking, asynchronous I/0, synchronous I/0,
and threads.

Various problems exist when attempting to convert a non real-time operating system to
a real-time version. These problems can exist both at the system interface as well as in the
implementation. For example, in UNIX interface problems exist in process scheduling due to
the nice and setpriority primitives and its round robin scheduling policy. In addition, the
timer facilities are too coarse, memory management (of some versions) contains no method
for locking pages into memory, and interprocess communication facilities don’t support fast
and predictable communication. The implementation problems include intolerable overhead,
excessive latency in responding to interrupts, partly but very importantly, due to the non-
preemptability of the kernel, and internal queues are FIFO. These and other problems have
been solved to result in a real-time operating system that is used for both real-time and non
real-time processing. However, because the underlying paradigm of timesharing systems still
exists users must be careful not to use certain non real-time features that might insidiously
impact the real-time tasks. For example, in [5] they list over 60 RT-UNIX system calls
that are not recommended to be used when running a real-time application. This is very
disturbing because in converting from UNIX to RT-UNIX the following aspects were changed:
scheduling, interrupt handling, IPC, the file system, I/O support, how the user controls
resource use, timer facilities, memory management and the basic synchronization assumptions



of the kernel. The juxtaposition of changing almost everything and then ending up with over
60 system calls that should still not be used, should lead one to question whether extending
a commercial timesharing OS is the correct approach. We believe that it is not the correct
approach because too many basic and inappropriate underlying assumptions still exist. This
includes optimizing for the average case (rather than worst case), assigning resources on
demand, ignoring most if not all semantic information about the application, independent
cpu scheduling and resource allocation possibly causing unbounded blocking, etc. On the
other hand, the trend to begin with a completely new implementation of UNIX based on
microkernels may reduce or eliminate some of the above problems. Consider several more
detailed examples from MACH.

MACH is heavily based on lazy evaluation, meaning that you never do anything until it is
really needed. One example of this strategy is copy-on-write. Here either a message or part
of an address space is not actually copied at the message send time or at address space create
time, respectively, but delayed until that message (memory) is actually accessed. On the
average this provides excellent performance. The problem is that large amounts of execution
time may be required at the wrong time to finally perform the copy, causing a task to miss
a deadline. Basically, it is unpredictable when slowdowns will occur. Can one eliminate all
forms of lazy evaluation to push MACH towards predictability? Yes, but it is difficult because
of the overpowering integration of this philosophy in the kernel. Virtual memory is another
problem. It is possible to lock pages in memory to remove some of the unpredictability
(except, it is nontrivial to decide when to lock and unlock, accounting for the cost of the lock
and unlock, and ensuring that the pages are locked in time). Does locking pages, by itself,
make the virtual memory part of the system predictable? What about unpredictabilities
due to the memory map tables (lookup and maintenance), the MMU TLB entries (present or
not), hash table entries used for quick lookup (access time in the table), and indirect problems
such as how by locking many pages we might effect the performance of both real-time and
non real-time threads needing pages now being drawn from a smaller pool?

Another fundamental problem is that most operating systems want to remove control
over resources from the application. These operating systems consider it their prerogative
to decide who should get resources for the best average case performance. For example, a
multi-level feedback queue will modify the user specified priorities to balance I/O and CPU
performance. A real-time application designer who just went through torture to map all the
complexities of his application into a set of priorities, and if the system adjusts these priorities,
then the analysis and evaluation were for naught. Allowing fixed priorities or another real-
time scheduling algorithm helps, but insidious interactions from the non real-time threads,
through their resource use and scheduling policy, might slow down the real-time tasks (in
some unanticipated way).

Given all these problems for RT-UNIX or RT-MACH can they be used in real-time ap-
plications? For real-time applications where missing a deadline has no severe consequences,
then they can be used. If deadlines must be guaranteed to be met, these operating systems
can still be used if they are very simple systems and if the designers can hand craft a set of
priorities that will always work. For example, given 5 independent periodic tasks with certain



periods and deadlines, running only these at fixed priorities on these operating systems can
easily be shown to work (it would be just as easy to use the proprietary kernels). However,
as we add aperiodics, interrupts from the environment, shared data structures, precedence
constraints between tasks, non real-time background processing, etc. assigning priorities such
that it will always work becomes a nightmare and the designer is still not certain that lurking
problems don’t exist due to the underlying timesharing design. Such an approach typically
has very high cost and is very difficult to maintain because any change requires a new map-
ping of priorities. New approaches are needed for real-time computing that challenge the
basic assumptions made by timesharing operating systems and provide easy re-analysis upon
modifications.

4 Research Operating Systems

While many real-time applications will be constructed with commercial real-time operating
systems, as mentioned, significant problems still exist. In particular, the commercial offerings
emphasize speed rather than predictability, thereby perpetuating the myth that real-time
computing is fast computing [19]. Research in real-time operating systems is emphasizing
predictability and argues that totally different approaches are required. In this section we
will briefly mention two research projects: the MARS kernel which is based on a time driven
model (rather than an event driven model), and the CHAOS system which is based on
objects, and conclude with a more detailed description of the Spring kernel which is based
on integrated, on-line, planning mode schedulers and global replicated memory to support
predictable distributed computing.

The MARS kernel [4, 8] offers support for controlling an application based entirely on
time events rather than asynchronous events from the environment. Emphasis is placed on an
a priori design (including static scheduling) and analysis to demonstrate that timing require-
ments are met. An important feature of this system is that flow control on the maximum
number of events that the system handles is automatic and this fact contributes to the pre-
dictability analysis. This system is based on a paradigm, i.e., the time driven model, that is
different than what is found in timesharing systems.

The CHAOS system [15] represents an object based approach to real-time kernels. This
approach allows easy creation of a family of kernels, each tailored to a specific hardware or
application. This is important because real-time applications vary widely in their require-
ments and it would be beneficial to have one basic paradigm for a wide range of applications.
The family of kernels is based on a core that supports a real-time threads package. This core
is the machine dependent part. Virtual memory regions, synchronization primitives, classes,
objects, and invocations all comprise additional support provided in each kernel. This system
does not alter the basic paradigm presented by timesharing systems, but rather tries to work
within that paradigm. This example system serves to show that some researchers do not
agree that a new paradigm is necessary.

The Spring kernel [18] contains real-time support for multiprocessors and distributed
systems. It uses on-line, dynamic planning and retains a significant amount of application



semantics at run time. These features are integrated to provide direct support for achieving
both application and system level predictability. A novel aspect of the work is the integration
of real-time cpu scheduling and resource allocation. Another is the use of global replicated
memory to achieve predictable distributed communication. The abstractions provided by
the Kernel include guarantee, reservation, planning, and end-to-end timing support. Spring,
like MARS, presents a new paradigm for real-time operating systems, but unlike MARS (to
date), it strives for a more flexible combination of off-line and on-line techniques.

4.1 The Spring Kernel

In the remainder of this paper we focus on three main areas of the Spring kernel: process
management, memory management and IPC, and stress how they relate to predictability.

4.1.1 Process Management

Processes are the conventional process model seen by the programmer where such things as
critical sections, shared memory, and synchronous and asynchronous communication ¢an be
used. Collections of processes may be grouped to form a process group with a single timing
constraint. This approach enables programmers to use an approach to programming that they
are comfortable with and enables the specification of end-to-end timing constraints. How-
ever, these programming language abstractions are not convenient for predictable execution
because of the unpredictable use of resources and the resulting unbounded and unpredictable
blocking that can occur. We use the compiler to transform processes into run time units of
execution called tasks which are conducive to predictability. A task is a non-preemptable
execution episode of a process with known worst case execution time, resource requirements,
value, and timing constraints. A single process is decomposed into a set of tasks (called a
task group) with precedence constraints [10]. A process group is transformed into a set of
task groups. Once the transformation is complete, each task is completely predictable. The
dynamic composition of predictable tasks is handled by the on-line planning scheduler [12].
It is important to note that as part of the transformation from processes to tasks, critical
sections are eliminated. This is done by identifying the resources protected by the critical
sections and associating those resources with a non-preemptable task (again, a piece of a
user level defined process). Then, the Spring scheduling algorithm works with these well
defined, categorized, and predictable entities called tasks. The scheduler, by planning execu-
tion of tasks to avoid resource contention, supports the policy of eliminating critical sections,
minimizes context switches, and identifies deadlines that will be missed long before they are
actually missed.

Another decision made by the Spring approach is to retain significant application seman-
tics about processes at run time. This enable much more intelligent decisions to be made with
regard to actions to be taken if deadlines will be missed. Some of this semantic information
is reflected in the information retained for each process.

Processes are characterized by:



C (a worst case execution time - may be a formula that depends on various input data
and/or state information pertaining to a specific process invocation)

o D (Deadline) or period or other real-time constraint

e preemptive or non-preemptive property

¢ maximum number and type of resources needed (this includes memory, ports, etc.)
e type: critical, essential, or non-essential

¢ importance level for essential and non-eﬁsential processes

¢ incremental process or not (an incremental task computes an initial answer quickly and
then continues to refine the answer for the rest of its requested computation time)

¢ location of process copies indicating the various nodes in the distributed system and on

which processor of each node the process resides,
L}

e precedence graph (describes the required precedence among tasks in a process group)

e fault model that indicates what action to take if this process is not guaranteed to make
its deadline.

Scheduling is an integral part of the Kernel and the abstraction provided is one of a
currently guaranteed task set. It is the single most distinguishing feature of the Kernel.
Our scheduling approach separates policy from mechanism and is composed of 4 levels. At
the lowest level multiple dispatchers exist; one type of dispatcher running on each of the
application processors, and another type executing on the system processor. The application
dispatchers simply remove the next (ready) task from a system task table (STT) that contains
previously guaranteed tasks arranged in the proper order for each application processor. The
dispatcher on the system processor provides for the periodic execution of systems tasks, and
asynchronous invocation when it can determine that allowing these extra invocations will
not affect guaranteed tasks, or the minimum guaranteed periodic rate of other system tasks.
Asynchronous invocation of system tasks are ordered by importance, e.g., the local scheduler
is of higher importance than the meta level controller (see below).

The three higher level scheduling modules are executed on the system processor. The
second level is a local scheduler. The local scheduler on a node is responsible for dynamically
guaranteeing that, given the current guaranteed task set, a new task or task group can be
scheduled locally so as to meet its deadline. In effect, this algorithm dynamically composes
predictable entities (tasks) into a predictable set of entities (the run time execution plan).
It does this by ordering the tasks in the STT to reflect the order of their execution from
the current time out into the future and in such a way that each task is guaranteed to meet
its deadline (taking timing, resource and task value information into account). The logic
and implementation details involved in this algorithm are major innovations of our work and
details can be found in [12, 13, 16]. In contrast, most other real-time scheduling algorithms are



myopic and only decide the nezt task to execute. Such algorithms may fail catastrophically
on overloads because they have no concept of total system state.

The third scheduling level is the distributed scheduler which (under certain conditions,
e.g., the laxity of the task is large enough) attempts to find a node for executing any task
or components of a task group that have to execute on different nodes [11], because they
cannot be locally guaranteed. The fourth level is a Meta Level Controller (MLC) which
has the responsibility of adapting various parameters or switching scheduling algorithms by
noticing significant changes in the environment. These capabilities of the MLC support some
of the adaptability and flexibility needs of next generation real-time systems. The distributed
scheduler and MLC are not yet implemented in the Spring Kernel.

Process management primitives include creating a process which loads the executable
image and sets up system data structures such as memory maps, PCB, etc. Currently, this
is not done under strict time constraints because we would then require a predictable file
system. However, once the process is created it then is eligible for hard real-time scheduling
and it is predictable. In the current version, we restrict calling the primitive create_process
to system initialization time and upon mode changes. Other primitives allow the actiyation
(takes an initialized process and hands it to the scheduler) and deactivation (currently, this
process is not to be executed but its image and system structures still exist) of a process.
Using the activation and deactivation primitives allows periodic and aperiodic processes to be
aynchronously scheduled. Two key aspects of the Spring Kernel are the retention of significant
amounts of semantic information and flexibility. Using the set primitive, applications can alter
any information about a process contained in the PCB. For example, information that can be
dynamically changed includes its value, deadline, or fault model. This and other information
might vary as a function of system mode and allowing the dynamic updates supports a great
degree of flexibility.

4.1.2 Memory Management

Many real-time systems use physical memory techniques in order to facilitate predictability
as well as for speed. However, physical memory management has many disadvantages with
respect to large, complex real-time systems including difficulty in handling dynamics and
protection. The Spring Kernel uses logical memory management to allow for greater protec-
tion, dynamic loading, and sharing of portions of address spaces between processes. Logical
memory can be implemented in a predictable fashion by using an MMU, but where there are
no unexpected page faults (by having the used parts of the address space memory resident).

In Spring, each process has its own logical address space as- does the Kernel. A logical
address space is supported by using the MMU TLB, partitioned to include the current exe-
cuting process and the Kernel. In other words, the entire Kernel is always mapped and new
process maps are loaded at context switch time. All code and data is memory resident so
there is never a page fault. Note that memory management techniques must not introduce
erratic delays into the execution time of a task. Since page faults and page replacements in
demand paging schemes create large and unpredictable delays, these memory management
techniques are not suitable for real-time applications with a need to guarantee timing con-



straints. The Spring Kernel memory management has three main parts. First, allocating
the memory resources is done in a careful manner to support predictability. Such resources
are either preallocated or handled via the integrated cpu and resource allocation scheduler.
More on this below. Second, memory management primitives exist to create memory pools of
various types. For example, pools can contain physical pages, various Kernel data structures
such as PCBs and ports, logical address spaces, and pools for variable sized blocks. Access
to the pools is predictable. Third, there are a number of low level primitives to support the
logical address space in a predictable manner. We now discuss each of these parts.

Using Memory Resources Except for the CPU, resources are modeled as memory re-
sources. Many memory resources are created and preallocated at initialization time or mode
change. For example, if two tasks of different processes share a data structure in exclusive
mode, this data structure becomes a memory resource which is created at initialization time,
the same as the tasks. Each of the two tasks is identified as requiring this resource in exclu-
sive mode and the scheduling algorithm uses this resource requirement in its planning. This
is a static allocation of resources and a run time guarantee approach. It is also possible to
realize the scenario where the resource is not preallocated, but rather allocated at scheduling
(guarantee time). This is a dynamic allocation and run time guarantee approach. In this
case if the allocation cannot be done due to shortage of the resources, then the task is not
guaranteed. Finally, it is possible that a task dynamically creates a new resource. However,
for such a task the worst case execution time must include the cost of invoking and executing
the allocation primitive (which can execute with a bounded cost). If enough resources are not
available, then it is an error and the task making the call should perform some appropriate
action. Note that the task still completes by its worst case time, thereby not directly affecting
the deadlines of other tasks. When a new resource is created it must be made visible to the
scheduler and possibly other tasks. This approach is a dynamic allocation without guarantee
for new resources. In a complicated hard real-time system, application semantics will require
all three approaches to be supported. Initially, we are supporting the first approach. We
hope to add the other approaches later.

We also point out that tasks are identified a priori to require a maximum number of
memory resources of different types, but at activation time a task may request fewer resources.
This feature potentially allows more tasks to be guaranteed.

Memory Pools Most memory pools are chunks of pre-allocated memory in the Kernel
space consisting of a number of fixed-size blocks. Some pools require variable sized blocks,
e.g., the graphs describing the process groups and task groups require a size that is dependent
on the group size. The purpose of having pools is to support fast, predictable, and dynamic
allocation/deallocation of Kernel objects such as PCBs, address translation maps, etc. Pre-
dictable primitives for fixed sized pool management include get_block and free_block. The
get_block primitive takes a pool’s starting address as input and returns a free block’s start-
ing address as output. Access time is essentially constant. The free_block primitive inserts
a block at the head of a pool’s free block list. Again, access time is constant. The init_pool



primitive structures a pool of a particular type of memory resource. The input parameters
to this primitive are the starting address of the pool, total number of blocks contained in this
pool, the size of each block in bytes, and the alignment requirement of each block. This prim-
itive then initializes the pool header accordingly, links all the blocks together after aligning
them appropriately.

Logical Address Space Support As mentioned above, using logical address spaces has
a number of advantages including protection, ease of supporting mode changes, and dynamic
loading. The memory management primitives to support logical address spaces include those
necessary to initialize memory maps, set page attributes, map and unmap pages, load maps,
configure the MMU, make MMU TLB entries valid and invalid, and flush entries out of the
TLB. We emphasize that all of these primitives are used to support logical address spaces,
not virtual memory. Virtual memory with page faults is highly unpredictable and virtual
memory where the application locks only certain pages in memory is still not completely
predictable. See again the discussion of this fact in Section 3.

To support predictable logical address spaces our solution combines two basic and simple
ideas.

e Avoid page faults by preallocating, at process creation time, a physical page for every
page in a prgram’s address space, and loading that page in memory. This eliminates
unpredictability due to page faults.

e Explicitly mange the contents of the TLB to ensure that all memory references experi-
ence TLB hits. This eliminates unpredictability due to TLB misses.

When a context switch occurs, the mappings for all the used pages in the logical address
space of a process are loaded into the TLB. The TLB always contains the mappings for
the portion of the operating system space required to support process execution; they are
never flushed. This solution implies that we never make use of the main memory process
maps during execution, again contibuting towards predictability. Of course, this approach
increases the cost of a context switch. But, the cost is constrained to occur at the context
switch time and is completely predictable. It should be noted that while our context switch
time might be higher than is commonly expected, other approaches still pay for loading the
TLB, however, that cost is not attributed to the context switch time but rather accumulated
in a more dynamic fashion as pages are accessed.

Some of the other logical address space primitives are similar to those found in non real-
time systems. This includes configuring the MMU which occurs at system initialization time,
and initializing maps and setting page attributes which occur at process creation time. Page
attributes can also be dynamically changed.

4.1.3 Interprocess Communication

In conventional systems, IPC can be unpredictable due to the potentially unlimited blocking
time of applications synchronizing or waiting for messages. Complemented by our process
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to task mapping techniques and the scheduling approach, our IPC subsystem is distinct in
that it provides predictable and bounded synchronous communication in a hard real-time
environment. The Spring IPC mechanism provides a relatively conventional interface with
message-passing using ports, but a significantly unconventional implementation that sup-
ports predictable real-time communication. Ports are kernel-protected memory objects (and
their associated control information) that hold units of data called messages. Processes can
communicate with each other by placing messages into ports and removing messages from
ports. Ports have bounded capacity for predictability, and programmer-specifiable overflow
and queueing policies. Messages have fixed sizes, and strict copy-by-value semantics. Mes-
sages can have deadlines that determine when they must be delivered to a port.

Ports and messages are typed in two ways, both based on the kind of communication
employed. The components of the type are:

1. Task Type. This mirrors the types available to tasks: critical, essential, soft real-
time, or non real-time. This is in order to prevent non-guaranteed tasks from affecting
guaranteed tasks’ timing properties.

2. Semantic Type. This describes how messages in a port are to be used. These types are
asynchronous, synchronous, request, and reply.

In distributed communication, a connection must be established between the sender and
receiver, in order for two processes to communicate. The connection is the network bandwidth
required to send to the port. Thus, it is the sending side that must provide the connection.
We have identified two types of communication abstractions [2] to cater to the needs of the
system.

Real-time virtual circuits (RTVC'’s) are dedicated channels that guarantee network access
within a bounded amount of time. RTVC’s are generally used by hard real-time tasks, and
are allocated appropriately. Critical tasks have their RTVC’s pre-allocated at system boot
time; essential tasks have their RTVC’s allocated at guarantee time.

Real-time dategrams (RTDG’s) are communication channels that provide network access
on a best efforts basis. RTDG’s attempt to deliver a message within its deadlines, but no
guarantee is made. RTDG’s are used by soft and non real-time tasks, and are allocated at
run time.

The primitives we provide to the programmer are the following:

o Asynchronous Send and Receive. The sender does not wait for the receiver, and also
does not wait to see if the message can be queued at the destination port; a receiver
does not wait if no messages are available. Messages sent have a deadline that they
should be delivered by.

o Synchronous Send and Receive. The source process suspends after a send until the
destination process performs a receive on the port and dequeues the message. The
message sent has a deadline that it must be delivered by.

11



The sender of a message specifies a deadline — this is the time by which the IPC system
should deliver the message. The delivery is guaranteed to arrive on time for synchronous
communication involving hard real-time tasks. For asynchronous communication the system
does its best to deliver the message on time. However, note that the deadlines of the individual
hard real-time tasks are still guaranteed.

We also provide request-response primitives, but do not describe them here due to space
limitations. It should suffice to say that request-response is a higher-level abstraction that
can typically be constructed using synchronous send and receive.

Mapping Processes to Tasks The issue of mapping processes to tasks arises in inter-
process communication. Synchronous communication conventionally implies that a task can
be blocked for an indefinite period. For hard real-time tasks, unpredictable blocking can
obviously not be allowed. To overcome this, we take advantage of the semantics of commu-
nication and the Spring system paradigm, mapping processes to tasks. To review, processes
are the conventional process model abstraction seen by the programmer. Tasks are the units
of execution that are scheduled and run by the Spring system. Synchronous communication
in hard real-time tasks require recognition by the compiler and support in the scheduler.

A group of programs that cooperate and communicate among themselves form a process
group. Each process is be decomposed into tasks that have precedence constraints attached to
them. The precedence constraints allow the scheduler to construct a schedule that, if feasible,
will guarantee that the entire process group will complete on time. In the distributed case,
before any task of a process group is run, the local scheduler knows the execution plan of
each task in the entire process group and their allocated communication channels.

Thus, at run-time, if a guaranteed task performs a synchronous receive, the scheduler
knows when to schedule that task such that the message is guaranteed to be present. Thus,
suspending a process defines a boundary between two tasks. The duration of the suspension
time is determined by the scheduler when the process group as a whole is guaranteed.

In addition to compiling code, the Spring Compiler Environment, called The Software
Generation System (SGS), identifies the correspondence between matching synchronous prim-
itives within a process group. Information is passed between the SGS and the scheduler so
that the scheduler can identify the precedence constraints between tasks.

Restrictions on Synchronous Communication Since synchronous communication af-
fects scheduling decisions made for guaranteed tasks, we must maintain some restrictions on
use of the synchronous IPC primitives. For example, we cannot allow a non-guaranteed task
to communicate synchronously with a guaranteed task, as it would make the guaranteed task
unpredictable. We cannot even allow a critical hard real-time task to synchronously commu-
nicate with an essential task. Because essential tasks are guaranteed dynamically, there is no
a priori guarantee that any essential task will ever execute.

Thus, we must restrict synchronous communication in hard real-time tasks such that
only tasks of the same type can synchronously communicate. In other words, critical tasks
can only use synchronous communication with other critical tasks. Essential tasks may
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communicate synchronously only with other essential tasks. We do not need to restrict
synchronous communication between soft and non real-time tasks, as they do not affect
scheduling decisions.

We have implemented the IPC primitives using Systran’s Scramnet distributed globally
shared memory architecture [21] as a platform for our distributed system. Scramnet is a
replicated global shared memory architecture that uses a fiber optic register insertion ring,
running at 150 Mbits/sec. Each node has 2 MB of shared common memory, and writes to
this memory are broadcast (circulated) about the ring by hardware. The main advantages
of using a global shared memory architecture are that implementation of IPC primitives is
easy (there are no levels of protocol stacks) and the resultant IPC is predictable. We are
currently trying to exploit the global replicated memory for distributed scheduling and fault
tolerance. It is also possible to scale the architecture for high performance computing by
creating a 2-dimensional grid of rings where each node is connected to two rings [20]. We will
not discuss this option here since our current configuration has only one fiber optic register
insertion ring with 2 Mbytes of replicated memory.

5 Summary

Most critical, real-time computing systems require that many competing requirements be
met including hard and soft real-time constraints, fault tolerance, protection, and security
requirements [19]. In this list of requirements, the real-time requirements have received the
least formal attention. We believe that it is necessary to raise the real-time requirements
to a central, focusing issue. This includes the need to formally state the metrics and timing
requirements (which are usually dynamic and depend on many factors including the state of
the system), and to subsequently be able to show that the system indeed meets the timing
requirements. Achieving this goal is non-trivial and will require research breakthroughs in
many aspects of system design and implementation. For example, good design rules and
constraints must be used to guide real-time system developers so that subsequent imple-
mentation and analysis can be facilitated. Programming language features must be tailored
to these rules and constraints, must limit its features to enhance predictability, and must
provide the ability to specify timing, fault tolerance and other information for subsequent
use at run time. Execution time of each primitive of the Kernel must be bounded, and the
operating system should provide explicit support for meeting application level requirements
including the real-time requirements. More work is required in many areas of real-time op-
erating systems including scheduling, I/0, predictable IPC, and robustness. The hardware
must also adhere to the rules and constraints and be simple enough so that predictable timing
information can be obtained, e.g., caching, memory refresh and wait states, pipelining, and
some complex instructions all contribute to timing analysis difficulties. An insidious aspect of
critical real-time systems, especially with respect to the real-time requirements, is that the
weakest link in the entire system can undermine careful design and analysis at other levels.
Research is required to address all of these issues in an integrated fashion.
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6 Appendix — A Partial List of Research Questions

Although there are many research projects on real-time operating systems many open ques-
tions remain. A partial list of such questions is as follows:

how deterministic can or should the OS be
how can the OS support predictable distributed communication

what support should be provided for end-to-end timing constraints, fault tolerance,
safety, security, etc.

how fault tolerant should the kernel itself be

can a timesharing interface to an OS be made suitable for hard real-time with proper
implementation

should a real-time OS be seamless (from a micro-kernel all the way up to a large OS)
what support is needed for monitoring, clock synchronization, etc.

is a local memory or shared memory model more suitable for multiprocessor architec-
tures

how can we exploit distributed shared memory and/or replicated global memory (some-
times called reflected memory)

what are the correct interfaces to robotics, RTAI, Vision, high speed networking, mul-
timedia, etc.

are standards appropriate for real-time OSs at this time

where is an OS (and architecture) impacted by the need to design for worst case rather
than average case

where is an OS (and architecture) impacted by the need to design for the most important
case rather than the most frequent [7)

what functionality should be in the OS level and what in the application level

is a microkernel a good idea and if so what mechanisms and functionality should be in
the microkernel

what abstractions should be supported by a real-time kernel (e.g., real-time POSIX
is considered unsuitable by many researchers, but what is missing? Do the correct
abstractions include deadlines explicitly, guarantee, reservation, and fault tolerance?)

where is the dividing line between policy and mechanism and should the notion of
separating policy and mechanism be applied to all functions in the kernel
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¢ what should be the unit(s) of execution (independent tasks versus groups of tasks all
at various granularities)

¢ can object oriented real-time OSs be effective; are they the next generation operating
system
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