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Abstract

Plans fail for many reasons. During planner development, failure can often be traced to
actions of the planner itself. Failure recovery analysis is a procedure for analyzing execution
traces of failure recovery to discover how the planner’s actions may be causing failures. The four
step procedure involves statistically analyzing execution data for dependencies between actions
and failures, mapping those dependencies to plan structures, explaining how the structures
might produce the observed dependencies, and recommending modifications. The procedure is
demonstrated by applying it to explain how a particular recovery action may lead to a particular
failure in the Phoenix planner. The planner is modified based on the recommendations of the
analysis, and the modifcations are shown to improve the planner’s performance by removing a
source of failure and so reducing the overall incidence of failure.
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dation under an Issues in Real-Time Computing grant, CDA-8922572, and by a grant from the Texas Instruments
Corporation.



1 Introduction

Plans fail for perfectly good reasons: the environment changes unpredictably, sensors return flaky
data [10], and effectors do not work as expected [6]. During planner development, plans fail for not
so good reasons: the effects of actions are not adequately specified [1], apparently unrelated actions
interact [13], and the domain model is incomplete and incorrect [2]. Planners should not cause their
own failures, but figuring out what went wrong and preventing it later is not easy. Failures tell us
what went wrong, but not why. The failure repair alleviates the immediate problem, but does not
tell us how to fix the cause or even whether the repair itself might not cause failures later. This
paper presents a procedure, called failure recovery analysis (FRA), for analyzing execution traces
of failure recovery to discover when and how the planner’s actions may be causing failures [7].

Most approaches to debugging planners are knowledge intensive. Sussman’s HACKER [13] de-
tects, classifies and repairs bugs in blocks world plans, but it requires considerable knowledge about
its domain. Hammond’s CHEF [4] backchains from failure to the states that caused it, applying
causal rules that describe the effects of actions. Simmons’s GORDIUS [12] debugs faulty plans by
regressing desired effects through a causal dependency structure constructed during plan generation
from a causal model of the domain. Kambhampati’s approach [9] requires the planner to generate
validation structures, explanations of correctness for the plan. His theory of plan modification
compares the validation structure to the planning situation, detects inconsistencies, and uses the
validation structure to guide the repair of the plan.

These approaches assume that the planner or debugger has a strong model of the domain. The
approach presented in this paper, FRA, requires little knowledge to identify contributors to failures
and only a weak model to explain how the planner might have caused failures. Complementary to
the more knowledge intensive approaches, this approach is most appropriate when a rich domain
model is not available or when the existing model might be incorrect or buggy, as when the system
is under development.

The consequence of relying on a weak model is that while FRA can detect possible causes of the
failure, it cannot identify the cause precisely enough to implement a repair. Debugging a planner
requires judgment about what would be the best modification and whether the failure is worth
avoiding at all. In repairing one failure, others might be introduced. In FRA, the designer decides
how best to repair the failures.

1.1 The Planner and its Environment

Previous experiments and analyses of failure recovery in the Phoenix system (introduced below)
showed that changing how the planner recovers from failures changed the type and frequency of
failures encountered [8]. In these experiments, seemingly minor changes to the design of Phoenix’s
failure recovery component, such as adding two new failure recovery actions with limited applica-
bility, had unexpected consequences. Failure recovery analysis of these experiments should explain
why a well-justified modification to the planner produced such havoc.

The Phoenix system is a simulator of forest fire fighting in Yellowstone National Park and an
agent architecture [3]. A single agent, the fireboss, coordinates the efforts of field agents who build
fireline to contain the spread of the fire. Its spread is influenced by weather and terrain, but even
when these factors remain constant, the fire’s spread is unpredictable. Plan failures are a natural
result of this unpredictability of the environment, but they may also result from flaws in Phoenix’s
plans.

A plan failure is detected when a plan cannot execute to completion. Failures may be detected
during plan generation or execution and are classified into 11 domain-specific types. For example, a
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violation-insufficient-time failure (abbreviated vit) is detected through execution monitoring when
a plan will take longer to complete than it has been allotted.

To repair a failure, the planner applies one of a set of actions — usually six, but in one version
of the system, eight. Most of the actions can be applied to any failure, but the scope and nature
of their repairs varies. For example, replan-parent (abbreviated rp) is applicable to any failure
and recomputes the plan from the last major decision point; while substitute-projection-action
(abbreviated sp) repairs only two types of failures by replacing the failed action with another.

2 Failure Recovery Analysis

Failure recovery analysis involves four steps. First, execution traces are searched for statistically
significant dependencies between recovery efforts and subsequent failures. Second, dependencies are
mapped to structures in the planner’s knowledge base known to be susceptible to failure. Third, the
interactions and vulnerable plan structures are used to generate explanations of why the failures
occur. Finally, the explanations serve to separate occasional, acceptable failures from chronic,
unacceptable failures, and recommend redesigns of the planner and recovery component. The first
step is fully automated, and the second step is partially automated. The entire process will be
illustrated with an example of how one of the recovery actions, sp, can influence vit failures.

2.1 Step 1: Isolating Dependencies

The first step in FRA is to search failure recovery data for statistical dependencies between recovery
efforts and failures. One failure, Fy, is dependent on another, F%, if Fj is observed to occur more
often following Fy than after any other failure. In general, the precursor, Fy, can be replaced with
anything observable during execution — recovery actions, planning actions, events in the environ-
ment or some combination. For example, if F; denotes a failure and R; denotes the recovery action
that repaired Fy, then Fy — R; — Fy is an ezecution trace leading to failure Fy, and F¢R; is the
precursor. For any precursor, the question is the same: Does a failure depend on some action or
event that preceded it?

Dependencies can be isolated by statistically analyzing execution traces. Execution traces can be
viewed as transitions between failure types and actions, and then these transitions can be analyzed
for dependencies. The statistical analysis is a two-step process: Combinations of failures and
actions are first tested for whether they are more or less likely to be followed by each of the possible
failures. Then the significant combinations are compared to remove overlapping combinations.

To determine whether failures are more or less likely after particular precursors, contingency
tables are constructed for each precursor P, and each failure F; by counting: 1) instances of F}
that follow instances of P,, 2) instances of Fy that follow instances of all precursors other than
P, (abbreviated Fy), 3) failures other than Fy (abbreviated F%) that follow P, and 4) failures F
that follow Pz. These four frequencies are arranged in a 2x2 contingency table like the one in
figure 1: the precursor in this table is Fje, R,p, a failure and a recovery action. Fp, is the failure



not-enough-resources, which is detected when the fire cannot be fought with the available resources.
R,y is the recovery action sp. The targeted failure is F;;. In this case we see a strong dependence
or association between the precursor, Fye, R,p, and the failure, Fy;;: 42 cases of F,;; follow Fioer R,p
and only 21 failures other than F,; follow F.. R,,. But while F,., R, leads most frequently to
failure F,;;, precursors other than F,.,.R,, lead to F,; relatively infrequently (250 instances in
905). A G-test on this table will detect a dependency between the failure and its precursor; in this
case, G = 41.4,p < .001, which means that the contingency table in figure 1 is extremely unlikely
to have arisen by chance if Fp..R,, and F,;; are independent. So we conclude that F,;; depends
on Fre, Ryp (abbreviated [Frep Rop, Fuit])-

Failure recovery analysis requires contingency tables for three types of precursors: failures (F%),
recovery actions (R,) and pairs of a failure and the recovery action that repaired it (F¢R,). Because
these precursors are strongly related (recovery actions repair failures), any dependency could be due
to Fy itself, R, itself, or FyR, together. A statistical technique based on the G-test differentiates
the three hypotheses by comparing the sum of the effects due to the pairs (e.g., FyR, for all
possible R,s) to the effect due to just the grouped effect (e.g., Ft). The intuition behind the test
is that if the pairs do not add much information about the effect then they can be disregarded;
conversely, if the grouped effect, Fy or R,, masks differences between the pairs, then the grouped
effect should be disregarded as misleading. For example, by comparing the example dependency,
[Frer Rop, Fyit], and related pairs to the grouped effect, [R,p, Fyi:] using a variant of the G-test,
we find that [FrerRsp, Fyit] adds little information over knowing [R,p, Fyit], s0 [Fper Rep, Fuit] is
disregarded.

2.2 Step 2: Mapping to Suggestive Plan Structures

Step 1 tells us whether a failure depends on what precedes it, but not how the dependency relates
to the planner’s actions. The next step is to determine how the constituents of the dependencies
(the recovery actions and failures) interact with each other in plans. This step has two parts:
associating each dependency with actions in plans and finding structures in the plans that might
lead to failures.

Associating Dependencies with Plans: The constituents of a dependency are associated with
plan actions. The association is motivated by the following two relationships: Failures are detected
by plan actions, and recovery actions transform failed plans by adding or replacing plan actions.
So each dependency can be represented as sets of actions specifying all the ways the failures in
the dependency are detected, and all the ways the recovery action in the dependency adds actions
to plans. For example, to associate the dependency identified in step 1, [R,p, Fyit], with plan
actions, we determine what actions are added by R,, and what actions detect F;, as displayed in
Figure 1. R,, transforms a failed indirect attack plan (abbreviated P,,) into a repaired plan P,
by substituting a different type of fireline projection calculation action for the failed one. Fireline
projections are the planner’s blueprint for the placement of fireline to contain a forest fire; the
Phoenix plan library includes three different actions for calculating projections: multiple-fized-shell
(Ap—mpys), tight-shell (A,_ts), and model-based (Ap_mp). Rsp replaces one of these with another;
so we know that R,, adds one of these three projection actions. Failure F,;; is detected when
plan monitoring indicates that progress against the fire has been insufficient and not enough time
remains to complete the plan. Fy; is detected by an envelope action (a structure for comparing
expected to actual progress [5]) called indirect-attack-envelope (Aeny).

Identifying Structures that Lead to Failure: The plan library is searched for plan structures
that govern the interaction between the actions of the dependency. These structures, called sugges-
tive structures, are idioms in the plans that suggest causes of failure or that tend to be vulnerable
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Figure 1: Mapping a dependency to two suggestive structures.

to failure; they coordinate actions within plans and describe shared commitments to a course of
action or shared expectations about the world. Suggestive structures can improve plan efficiency,
but make the related actions sensitive to changes in the environment or intolerant of variations in
the plan. Designers make trade-offs by using such structures; they intend that the efficiency gained
from them outweighs the cost of occasional failure.

One example of a suggestive structure is a shared variable in a plan: as long as every action
that uses the variable agrees about how it is set and used, shared variables can be invaluable for
coordinating actions. But if some of these assumptions are implicit or under-specified, the variable
might be a source of failures; for example, one action might assume that the variable’s units are
minutes and another might assume seconds. Some suggestive structures from the Phoenix plan
language are:

Shared Variables One action sets some variable and another uses it.

Shared Resources Two actions allocate and use the same resource.

Assuming Stability in the Environment One action senses the environment and passes the
result onto another or two actions share assumptions about the state of the environment.

Sequential Actions One is guaranteed to follow another in some plan.

Iteration Constructs Multiple actions are added to the plan by the same decision action. For
example, Phoenix supports a rescheduling construct that duplicates actions until some con-
dition is met.

To find suggestive structures, the plan library is searched for all plans that contain one of the
possible combinations of the actions in the dependency. Each such plan is checked for suggestive
structures involving the dependency actions. In the example, the projection calculation actions
(Ap—mfs, Ap—ts and Ap_ ) and the envelope action (Aen,) appear together in three different



indirect attack plans. All three indirect attack plans include the same suggestive structures: shared
variable and sequential ordering. Figure 1 shows how the projection calculation actions and the
envelope action are related in the indirect attack plans. All projection calculation actions set the
variable attack-projection which is used by the envelope action. The envelope action always
follows the projection calculation action in the indirect attack plans.

2.3 Step 3: Explaining Dependencies

Steps 1 and 2 determine what actions of the planner’s might lead to the observed failures. Step
3 completes the story of how the planner causes failures by constructing explanations of how the
suggestive structures might have produced the observed dependencies. For example, the suggestive
structure, shared variables, can cause failures when two actions in a plan use the variable differently,
each making its own implicit assumptions about the value of the shared variable. Combinations of
suggestive structures lead to many explanations; the two suggestive structures found in Step 2 for
the dependency [R,p, Fyit] underlie two different explanations:

Implicit Assumptions Two actions make different assumptions about the value of a plan variable
to the extent that the later action’s requirements for successful execution are violated.
Band-aid Solutions A recovery action may repair the immediate failure, but that failure may be

symptomatic of a deeper problem, which leads to subsequent failures.

The shared variable can cause a failure if the substituted projection calculation action sets the
variable differently than was expected by the envelope action; the projection may not be specified
well enough to be properly monitored or may violate monitoring assumptions about acceptable
progress. Alternatively, the recovery action R,, could lead to F; if the recovery action is repairing
only a symptom of a deeper failure; the fire may be raging out of control or the available resources
may really be inadequate for the task.

The explanations amount to sketches of what might have gone wrong. They do not precisely
determine the cause, but rather attempt to provide enough evidence of flaws in the recovery actions
or the planner to motivate a redesign.

2.4 Step 4: Recommending Redesigns

Step 4 determines whether and how to repair the causes of failure. Each failure explanation trans-
lates directly to a set of possible plan modifications. The modifications are based on experience
with repairing flaws of the types described by the explanations. In the example, the [R,p, Fyit)
dependency is explained as due to two possible mechanisms: implicit assumptions and band-aid
solutions. Each indicates a different problem with the plan library and each leads to a different
modification:

Implicit Assumptions Add new variables to the plan description to make the assumptions ex-
plicit or change the plans so that the incompatible actions are not used in the same plans.

Band-aid Solutions Limit the application of the suspect recovery action or add new recovery
actions to repair the failure.

The recommendation is not intended to be implemented by the system itself. Modifying a
planner requires judgment about what would be the best modification and whether the failure is
worth avoiding at all. In repairing one interaction effect, others might be introduced.



3 Utility of Failure Recovery Analysis

Failure recovery analysis is worthwhile only if it can tell us something about our planners that
we didn’t already know, and if the effort required to perform the analysis is commensurate with
the information gained. While the analysis of the Phoenix planner is ongoing, so far the results
are promising. As this section describes, the recommendations of the example analysis in this
paper have been tested in Phoenix and the modification has been shown to improve the planner’s
performance.

3.1 Diagnosing Failures in Phoenix

The example analysis recommended two modifications. One required limiting the application of
the suspect recovery action. In this case, the recovery action had been added to improve recovery
performance in two expensive failures, removing it would set performance back to previous levels.
The other modification, which was adopted, was to check how the projection calculations set and the
envelope action uses the variable attack-projection and make explicit the differing assumptions
of the three projection actions so that later actions could reason about the assumptions. The three
actions differ in how they search for projections and in how they assess the resources’ capabilities.
The envelope action uses summaries of the resources’ capabilities to construct expectations of
progress for the plan. By examining the code, it became obvious that the summaries set by the three
projection actions differed not only in how they were estimated but also in what capabilities were
included (e.g., rate of building fireline, rate of travel to the fire, startup times for new instructions,
and refueling overhead). Because the envelope assumed that the summaries reflected only the
rate of building fireline, the conditions for signaling failures effectively varied among the different
projection actions. To accommodate these differences, the projection actions were restructured to
set separate variables for each of the capabilities; the envelope action then combines the separate
variables to define expected progress.

The modified planner was tested in 87 trials of the same experiment setup used for the earlier
three experiments and analyzed for dependencies. If the recommended modification was appropri-
ate, the observed [R,p, Fy;:] dependency should have disappeared, as well as other dependencies
involving projection actions and the envelope action. In fact, all four of the dependencies involv-
ing projection actions and the envelope action previously observed — [R,p, Fyit], [Frer Rrp; Fuit],
[(FprjRrp, Fyit], and [FppjRpq, Fyit] — were missing from the modified planner’s execution traces.
Additionally, the restructuring of the actions led to a lower incidence of a general failure to cal-
culate projections (Fprj); Fprj accounted for 20.8% of the failures in the previous experiment and
only .3% in this experiment. By repairing a hypothesized cause of failure, one would also expect
the overall rate of failures to decline. The data showed a decrease in the mean failures per hour
from .41 in the previous experiment to .33 in this experiment.

Because the dependency sets reflect the interaction of the planner and failure recovery, similar
designs for the planner and failure recovery should result in similar dependency sets. We can test
this intuition by examining the dependency sets derived from execution of different versions of
the system and counting the number of significant dependencies shared by the different versions.
Table 2 shows the number shared between the most similar previous system and the modified
planner: about 30% (4 out of 15 total) of the [R, F] and [F, F] dependencies from the first set
appeared in the second.! The more we change the system, the more the dependency sets should

!Many more dependencies appeared in the first than the second set. The reduction in overall number of depen-
dencies between these sets was mostly due to the elimination of dependencies involving the failure Fpr;, which was
hardly ever observed in execution traces of the modified planner.



Dependencies | A Total | Shared | B Total
[R, F| 15 4 12
[F, F] 15 4 12
[FR, F) 16 0 0

Table 2: Overlap in dependency sets for original planner (A) and modified planner (B)

change. In fact, the dependency sets for these two planner and recovery configurations as well as
two others showed moderate overlap between similar systems, but negligible overlap across systems
that differed by more than one aspect of their design. Some of the implications of the overlap in
dependencies will be discussed in the last section.

Applying FRA to Phoenix improved the planner’s performance by removing the targeted de-
pendency and reducing the overall incidence of failure. The analysis showed how failures depend
on their immediate predecessors. The cost of this information is the effort required to perform the
analysis and the computation time required for the experiments. The computational effort required
for the analysis was minimal; calculating the first step and part of the second took less than five
minutes for the two data sets. Generating the execution traces for the two data sets required about
45 hours of CPU time or about two days per data set. Considering the possible repercussions of
even simple planner modifications, the turnaround time for results seems worth the information
gained.

3.2 Generalizing to Other Planners

The experience with Phoenix should generalize to other planners. The primary requirement for
FRA is lots of data about how the planner performs. Each experiment with Phoenix represents over
5000 hours of simulated time. Simulators expedite controlling the environment and gathering data;
controlled testing of planners in “real” environments increases the effort required to collect the data.
The consequence of getting too little data is that rare failures and their associated dependencies will
be missing. The technique does not guarantee that all dependencies will be found; the confidence
in the dependency relationship increases linearly with the amount of data.

Given the availability of the data, the first step in FRA is applicable to any planner and envi-
ronment. The remaining steps have been tailored to Phoenix, but conceptually could be expanded
for other planners. These three steps are based on explaining failures by matching patterns to
explanations and modifications (as in the “retrieve-and-apply” approach [11]). The previous ap-
plication of the “retrieve-and-apply” approach to debugging other planners (e.g., [13, 4]) suggests
that generalizing FRA involves expanding its model of the planner — the set of suggestive structures
and explanations — to include ones appropriate for other planners.

Beyond the need to expand the underlying knowledge, FRA will need to be extended in other
ways as well. The dependencies encompass only temporally adjacent failures and actions. The
combinatorial nature of the dependency analysis precludes arbitrarily long sequences of precursors,
but at least in the analyzed data sets, increasing the temporal separation between the precursor and
the failure decreases the size of the dependency sets, suggesting that the incidence of dependencies
over longer chains is small. A new experiment design is being developed to selectively eliminate
recovery actions from the available set to test whether each precipitates or avoids particular failures.
Rather than examining all possible chains of which some action is a member, the new analysis
removes the action from consideration which results in execution traces free from the interaction of



the missing action. By comparing the dependencies for each action removed, one can infer which
dependencies were due to interactions with the missing actions. For example, if an action, say R,p,
is removed from the set and the frequency of F; relative to other failures decreases, then one could
see whether dependencies in [FyR,p, Fy;t| triples explain all the surplus F,;; failures when R, is in
the set, or whether R,, affects F,;; over longer intervals.

3.3 Conclusion

Analyses of failure recovery can contribute in several ways to our understanding of planner per-
formance. As described, FRA can identify contributors to failure and assist in the debugging and
evaluation of planners with incomplete or incorrect domain models. Additionally, the dependen-
cies provide a measure of similarity between test situations. The more the environment and agent
changes, the more one expects observed effects to change; thus, dependencies can be a kind of
similarity measure across planners and environments.

The lesson from this analysis is that while design changes rarely have isolated effects, designers
do not have to give up hope of analyzing the effects. They can track the effects: They make minor
changes and havoc ensues, but they have a way to assess the havoc. Phoenix is an example of a
system that can interleave plans in arbitrary ways, as dictated by situation. Debugging its failures
by “watching the system” or by predicting all possible execution traces is simply not feasible, but
running Phoenix many times and analyzing the data is feasible. Failure recovery analysis isolates
indirect effects of design changes and proposes explanations and modifications based on a weak
model of the planner and its environment; its primary contribution is in helping us understand how
planning decisions and actions interact and assisting in debugging planners under development.
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