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ABSTRACT

The surface contacts between solids are always associated with a set of sym-
metries of the contacting surfaces. These symmetries form a group, the symmetry
group of the surface.

In this paper we develop a group theoretic formalization for describing surface
contact between solids. In particular we define:

¢ Primitive and compound features of a solid;
e A topological characterization of these features;
o The symmetry groups of primitive features and compound features;

The symmetry group of a feature is a descriptor of the feature that is at once
both abstract and quantitative. We show how to use group theory to capture the
symmetries relevant to surface contacts between solids as well as the symmetries of
solids. The central result of this paper is to prove:

o when primitive features of a solid are mutually distinct, 1-congruent or 2-
congruent, the symmetry group of a compound feature can be expressed in
terms of the intersection of the symmetry groups of its primitive features;

o when two solids have surface contact, their relative positions can be expressed
as a coset of their common symmetry group, which in turn can be expressed
as an intersection of the symmetry groups of the primitive features involved
in this contact.



These results show that using group theory to formalize surface contacts be-
tween solids is a general approach for specifying spatial relationships, and forms a
sound basis for the automation of robotic task planning. In a companion paper,
a geometric representation for symmetry groups and an efficient group intersection
algorithm using characteristic invariants is presented, which makes this approach
computationally tractable as well.



1 Introduction

Human beings readily appreciate symmetries of objects. A symmetry of a subset S
in Euclidean space is a rotation, reflection and/or translation, including the trivial
symmetry (identity mapping), which brings S into coincidence with itself. Here S
can be a discrete point set, a curve, a surface or a solid. The term proper symmeiry
is often used to exclude mirror symmetries (reflections), which, although useful for
describing the appearance of objects, cannot in general be realized by any physical
movement and are thus of limited relevance for describing the effect of manipula-
tions. In the rest of this paper the term ‘symmetry’ will be used to mean proper
symmetry, and the term ‘solid’ to mean a three-dimensional, connected and closed
subset of Euclidean space.

In the early nineteenth century, Galois introduced a powerful mathematical tool
for describing symmetry, namely group theory [12, 14]. Typically, elements in a
group are invertible mappings over some domain. The composition and inverse of
the mappings determine the algebraic structure of the group. In particular, all the
distance and handedness preserving mappings in Euclidean space, i.e. the proper
1sometries, form a group. This group is called the Proper Euclidean group £t. It
can easily be proven that the set of all the symmetries of a set S in R has a
group structure and is thus a subgroup of £+. This group is called the symmetry
group of S. Symmetry groups can be either finite or infinite, discrete or continuous.
Examples of finite groups are the symmetry groups of the platonic solids (See Figure
1). Examples of continuous groups are illustrated in Figure 2 (from [13]) where the
symmetry groups for all six mechanical lower pair joints, joints that have surface
(areal) contacts, are shown.

An assembly is a set of solids physically related to each other via point, edge
and/or surface contacts. Each pair of contacting solids in an assembly can be seen
as part of a kinematic chain (Figure 2). Among the three kinds of contacts between
solids, surface contacts are the most common and stable![2]. In order to describe an
assembly, one needs a basic vocabulary to address such contacts. A primitive feature
of a solid is defined as the algebraic surface which locally coincides with a bounded
face of the solid. The primitive features of a cube, for example, are the six infinite
planes which bound the solid volume. Each primitive feature has a symmetry group
which keeps the feature, although not necessarily the corresponding bounded face
of the solid, setwise invariant. It has to be made clear that the coincidence of a
pair of primitive features, each belonging to a different solid, does not necessarily
imply a physical contact of the solids (See Figure 3). This is not a weakness of
the primitive feature definition, on the contrary this is ezactly what one means by
specifying a surface contact between only one pair of planar primitive features. In

'In terms of control, surface contacts are desirable because: (1) there are less degrees of freedom
left than for point or line contacts, so less motion specifications are needed. (2) if you change
the contact force and/or moment a little bit, the relative position of the two contacting bodies
remains unchanged, IF there is a compliance in the system which can “absorb” the force/moment
differences. If you do the same thing with a line or point contact, the relative position of both
bodies will change easily.
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Figure 3: Two solids share a planar primitive feature

order to guarantee a physical contact additional constraints have to be present.
For example, using the primitive feature concept just defined, we can uniquely and
completely describe three different surface contacts shown in Figure 4, where block
A has one primitive feature in contact with the environment, block B has two and
block C has three. The union of several such primitive features is called a compound
feature. '

Describing the interactions among objects is a central issue for roboticists. One
obvious approach towards a user-friendly human-robot interface is to give commands
not in terms of how and how much a robot arm should move, but rather, in terms
of how objects are to be moved. These latter kind of instructions are called fask
specifications.

Feature symmetry groups are useful in the support of systems for task-level
planning. Robotic task-level planning [5, 10] refers to the study of translating such
a set of task specifications, automatically, into a plan which can be executed by a
robot(s). .

Current existing robot task-level assembly planners require, as part of their input,
the final assembly configuration to be described [8, 11, 21]. Such task specifications
include the relative positions and orientations of the solids to be assembled, and
the possible nominal interactions between solids during an assembly process. Even
at the abstract level, planning the sequence of assembly requires the relationships
among assembly components to be specified [4, 7, 20]. However, from a mechanical
design, it is not always trivial to derive an assembly configuration specification that
is complete and unambiguous.

The difficulty of generating a complete and unambiguous task specification often
arises from the symmetries of assembly components:

e The discrete symmelries cause the unnecessary consideration of redundant
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Figure 4: Block A has one contacting primitive feature pair, block B has two and
block C has three

configurations. For instance, when using a socket wrench to turn a hexagonal
bolt-head, there are six different but spatially equivalent positions for the
socket wrench to be in. The explicit enumeration of such possibilities can lead
to a computational complexity in assembly planning exponential in number of
operations.

o On the other hand, continuous symmeiries may cause underconstrained task
specifications. For example, a shaft has to be cylindrical for revolute motions.
In this case, the set of relative locations of the shaft with respect to its bearing
is infinite. This cannot be represented satisfactorily in current CAD systems.
Typically, one chooses to ignore the distinction of one position over the other.

There are two kinds of relevant symmetries in describing interactions among
solids:

¢ Body symmetries: For example, each solid in Figure 1 has a non trivial
body symmetry group.

¢ Feature symmetries: These may or may not map the whole body (solid)
into itself (Figure 2).

For example, in Figure 4, Block C’s location is unambiguously determined up
to a finite number of equivalent states since block C' as a whole has a non-trivial
symmetry group. This simple example shows that the relative position(s) of two



solids is determined firstly by the symmetries of the contacting feature pairs, and
secondly by the symmetries of each solid as a whole. Even when a solid as a whole has
a trivial symmetry (its symmetry group is the identity group), each primitive feature
which is in surface contact with another solid often has a non-trivial symmetry group
(Figure 2).

The aforementioned problems and facts call for an explicit treatment of the
symmetries of a solid and its features. It is the objective of this paper to explore
how the algebraic concept of groups and the geometric entities, solids and features,
are intertwined, especially when surface contact occurs between solids.

To outline this paper:

1) Section 2 reviews work related to using group theory in spatial reasoning.

2) Section 3 gives a formal definition of set primitive features, compound features
and their symmetry groups. Several propositions are proved to show how the
symmetry group of a compound feature is related to the symmetry groups of
its primitive features.

3) Section 4 gives a formal definition of oriented features. This provides a more
precise description of surface contacts.

4) Section 5 shows how the relative positions of two solids can be expressed in
terms of the intersection of contacting feature symmetry groups, and their
cosets.

5) Section 6 concludes this paper by discussing several relevant issues.

2 Related Work

While kinematic and geometric problems are common in robotics, very few papers
can be found in the literature that use group theory as an analytical tool.

2.1 Group Theory and Mechanisms

In [6]Hervé introduced a rational classification of mechanisms by applying the theory
of continuous groups[6]. Since each lower-pair allows a set of relative motions of
the two coupled bodies, these motions can be regarded as subgroups of £. The
independent variables required to define the relative position of two coupled links
are referred to as their degrees of freedom. The concept of degree of freedom of a
kinematic pair can be extended to a subgroup of £ in 3-space, the corresponding
concept being that of dimension.

Hervé represented the intersection and composition of constraints in terms of
groups. If there are two relations R;, R; between bodies B; and B, then the con-
joined relation of By, B; is R; N R;. When relations are composed one has the
following relationship between the dimensions:

dim(R(i, k)) = dim(R(i, j)) + dim(R(j, k)) — dim(R(i,5) N R(,k)) (1)



where i, j,k refer to three distinct bodies. Equation (1) shows the usefulness of
subgroup intersections.

A recent paper by Tchoi [18] also investigated the relationship of subgroups of
Lie groups and the inverse kinematic problem for redundant robot manipulators.

2.2 Group Theory and Robotics
A paper by one of us [16] relates robotics and group theory by pointing out:

e The symmetry group of a feature is a useful descriptor, more important for
manipulation and assembly than the symmetry group of a body.

e Not only continuous groups (as previously used in describing kinematic joints)
but also finite and discrete groups should be handled.

o Spatial relations can be described in terms of cosets of symmetry groups,
conjoining relations requires the intersection of cosets which is either a coset
or null.

e One advantage of this formulation is to avoid combinatorics arising from mul-
tiple relationships.

Our current work extends many of these ideas. In particular, the representation
of a well-defined family of subgroups of Euclidean group £*, namely the TR groups,
has been realized which makes efficient group intersection possible[9].

Thomas and Torras [19] dealt with the problem of finding configurations of a set
of rigid bodies from a given set of d.o.f. constraints on the bodies. A constraint
between two bodies is the chain product of a symbolic 4 X 4 matrix which is pre-
or post-multiplied by constant displacements, i.e. a two sided coset. Therefore the
problem of finding values for the variables (d.o.f.) associated with constraints can be
reduced to the problem of obtaining the cycles appearing in a directed graph whose
nodes are bodies and whose arcs are constraints, and solving their corresponding
matrix equations. Thomas and Torras tabulate the outcomes of intersection and
multiplication of certain continuous subgroups of £t (based on tables from Hervé
(6]). In their algorithm, the tables are used to simplify certain algebraic equations.
This approach is simpler than using a large number of rewriting rules [1] and permits
a uniform treatment of some special cases.

The work of Thomas and Torras is a useful contribution in combining the group
theoretic formulation of continuous groups developed by Hervé with the RAPT
[1, 17] formation of constraints and equation solving approach. As in RAPT, they
still need to use symbolic manipulations, which can be very slow. They do not treat
discrete or finite symmetry groups.



3 Set Features and Their Symmetry Groups

In this section we provide the basic vocabulary for describing surface contacts among
solids. We formally define features of a solid, the symmetries of a feature, and then
show that they form a group, called the symmetry group of the feature. This
provides the basic justification for the use of group theory in describing surface
contact.

3.1 Primitive Set Features and Their Symmetry Groups

Here primitive features are treated as subsets in 2. We shall define oriented features
in Section 4. This section provides several propositions stating the relationship be-
tween the symmetry group of a single feature and that of a set of features. We write
the composition of the group elements gy, g2 as g1g2. With a matrix representation
of isometries, this is just a matrix product.

Definition 3.1 A primitive feature F' is a connected, irreducible and non-trivial
algebraic surface of 3.

By definition, a primitive feature is a closed algebraic surface. A primitive feature
may contain one or more bounded faces of a solid.
For a set of points S in Euclidean space we define a symmetry of S as:

Definition 3.2 An isometry g € £t is a proper symmetry of a set S if and
only if g(S)=S.

Proposition 3.3 The proper symmetries of a set S C R2 form a subgroup of E*.

Proof :

Let G denote the set of the symmetries of S C R3. Obviously, 1(S) = S, so
1€ G. f g € G then g(S) = S, multiplying by g~* we have g~'g(S5) = g7*(5)
therefore g~'(S§) = S and so g~ € G. Finally, if g1,9. € G then (g14:)(S) =
91(92(S)) = 91(S) = S therefore g1g; € G. By the definition of a subgroup G is a
subgroup of £*. o

Definition 3.4 When S is a feature, the above group G associated with S is called
the symmetry group of the feature S.

Definition 3.5 Two primitive features Fy, F, are said to be

¢ Distinct: if for all the open subsets? S} C Fy, S5 C F3, no g € £ exists such
that g(S;) C F3 or g(S;) C Fy. See Figure 5 for an example of two distinct
. features.

e 1-congruent: (weakly-congruent) if there exists at least one g € £t such
that g(F1) = F3, but for all such g, g(F;) # F; simultaneously. For an example
see Figure 6.

2They are open with respect to the induced topology from ®3
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Figure 5: A pair of distinct features Fi, F>

Figure 6: Two conic features Fy, F; which are weakly congruent to each other
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Figure 7: Two cylindrical features Fi, F, which are strongly congruent to each
other '

o 2-congruent (strongly-congruent) via g, if there exists g. € £ such that
ge(F1) = F, and g.(F;) = F;. For an example see Figure 7.

The following proposition shows how features and their symmetry groups are
related.

Proposition 3.8 IfG is the symmelry group of S then for any rigid transformation
a in £¥,aGa! is the symmetry group of a(S).

Proof :

Let H = aGa™! and let H, be the symmetry group of a(S) C R%. If h € H
then there exists a ¢ € G such that A = aga~!, and moreover g(S) = S. Then
h(a(S)) = aga='(a(S)) = ag(S) = a(S). Thus h is a symmetry of a(S5), and so
h € H,. Thus we can conclude H C H,.

Conversely, if h, € H, then ho(a(S)) = a(S) and s0 a *hea(S) = S, ie. itis a
symmetry of S. Thus a~*h,a = g € G and h, = aga~! € H therefore H, C H.

Thus we conclude H = H,. a

By Proposition 3.6, when a feature is relocated by a transformation a, the sym-
metry group of the relocated feature will be the conjugation by e of the symmetry
group of the original feature. This suggests that a conjugation class of a subgroup
can be represented in a compact way, that is to represent any feature symmetry
group by making it a conjugate of a canonical symmetry group. There is one
canonical symmetry group in each conjugation class of a symmetry group in £*.
These canonical groups are chosen in a systematic way — if they have a single axis
of rotation it is chosen to be the Z-axis, if they leave a single point of 3-space fixed,

12



Table 1: Some important subgroups of £*

Canonical Definition of
Groups Canonical Group Members
Gid {1}
T! {trans(0,0, z)|z € R}
T’ {trans(z,y,0)[z,y € R}
VS {trans(z, y, z)|z,y,z € R}
50(3) {rot(i, f)rot(j, o)rot(k, 4)|6, 0, 4 € R}
S0(2) {rot(k,8)|0 € R}
0(2) {rot(k, 8)rot(i,n7)|0 € R,n e N'}
[ {trans(0, 0, z)rot(k, )rot(i,nw)|n € N,0,z € R}
Gir oyl {trans(0,0, z)rot(k, 8)|z,0 € R}
Gplane {trans(z,y,0)rot(k, 8)|z,y,0 € R}
Gicrew(D) {trans(0,0, z)rot(k, 2z7/p)|z € R}
Gr.c, {trans(0,0, z)rot(i,n7)|n € N,z € R}
D,,, {rot(k, 27 /n)rot(i,mn)|m,n € N'}
Cn {rot(k,2w/n)|n € N'}
et {trans(z, y, z)rot(i, §)rot(j, o )rot(k, ¢)|z, v, 2,0, 0, ¢ € R}

that point is chosen to be the origin. If they leave a plane set-wise invariant the
plane is chosen as the X-Y plane. A list of some important canonical subgroups of
&+ with their definitions is given in Table 1 where i, j, k are unit vectors along axes
X, Y, Z.. Table 2 gives some of the correspondences between subsets of R* and their
canonical symmetry groups.

3.2 Compound Set Features and Their Symmetry Groups

Now let us formally define a compound feature.

Table 2: Correspondence between shapes and their symmetry groups

Subset S C R® | surface name | Symmetry group
H half plane Gplane
Cyl(r) cylinder Geyl
Sph(r) sphere S0(3)
Screw(p, r) screw Gicren(P)
Gear(p,, Pa, n) gear D2n
Cone(6) cone S0(2)

13




Definition 3.1 A compound feature F is a set union of n primitive features
F,.,F,te F=FU..UF,n>1.

In the next few propositions we shall explore how the symmetry group of a
compound feature is related to the symmetry groups of its component primitive
features.

Proposition 3.2 Let F,..., F,, be pairwise distinct primilive features with symme-
try groups Gy, ...G, respectively and F = F, U ... U F, be a compound feature with
symmetry group G. Then G =G, N ...NG,.

Proof :

Let g € G, then g(F) = F. Thus g(F1U...UF,) = g(F1)U...Ug(F,) = F{U...UF,.
Then g(F;) C F1U...UF,. Suppose g(F;) € F;. Then there exists a point y € g(F;)
and for some j # 1,y € F; — F;.

Now let € be the distance between y and F;. Since F; is closed, € > 0. Since
y € g(F;), there must exist z € F; such that y = g(z) (Figure 8).

Let O, C F; be a neighborhood of z with radius equal to e. There must exist
a point z; such that z; € O, and z; ¢ F, for some g # 1, since if no such point
z; exists then F; and F; share the open set O, and thus are not distinct. Now
take a neighborhood O, of z, and repeat the same argument. Since there are
a finite number of features, F, ..., F,, we shall eventually find a point z, and its
neighborhood O contained only in F;,ie. O C O, C F;and O ¢ F; for j # 1
(Figure 8).

Since g is an isometry (a distance preserving map), every point of O must be
mapped by g to another point within distance € of the point g(z) = y € Fj; but
the point is not necessarily mapped to Fj. Clearly, g(O) N F; = 0. Suppose a point
P € O has a neighborhood in O with radius €. Then p is mapped by g to some
feature Fi,k # i, i.e. g(p) € Fi. Then g(p) is contained in a neighborhood O of
Fy, let the radius of O be less than €/2. Since g is an isometry, every point of
O must be mapped by g~! to a point within distance /2 of point p thus it has
to be contained in O C F;. Hence g7}(O:) C F:. So F; and F}, are not distinct, a
contradiction.

Therefore g(F;) C F;. Since g is a bijection, g(F;) = F; = g€ G;fori =1,...,n.
Thus g€ GiN..NG,=>GC G N..NGy.

Forall g € G1N...NGp,g(F) = g(F1U...UF,) = g(F1)U...Ug(F,) = F{U...UF, =
F=geG=>GiN...NG, CG.

Therefore G = G N ...N G,. 4 o

Lemma 3.3 Let a compound feature F = F; U F; have symmetry group G, where
R\, F, are primitive features with symmetry groups G,, Gy respectively. Let Fy, F,
be separated and 1-congruent. Then for all g € G,g(F,) = Fy and g(F3) = F.

Proof :
For all g € G’,g(F) = F, i.e. g(F1 U Fz) = g(F1) Ug(Fz) = F1 U Fz. g(Fl) is
a connected subset of F; U F; (Theorem 7.2). By Theorem 7.3 (see Appendix 7),

14
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g(Fy) C F or g(Fi) C F;. Because F; is connected g(F1) C Fy = g(F,) = F; and
g(Fy) C F; = g(Fy) = F,. However if g(F1) = F; then g(F;) = Fi. That is to
say that Fy, F; are 2-congruent by definition, a contradiction. Therefore g(F1) = F1
and g(F;) = F;.

Proposition 3.4 Let a compound feature F = F, U F; have symmetry group G,
where Fy, Fy are primitive features with symmetry groups G., G, respectively, and
Fy, Fy are separated and 1-congruent. Then G = G, N Ga.

Proof :

By Lemma 3.3, for all g € G,g(F1) = Fl,g(Fz) = F;. Then g € G1 N G;. So
we have G C G1 N G,. For all g € G1 N Gy, g(F) = g(F1 U F3) = g(F) U g(F;) =
FyU Fy = F. Therefore g € G = G, NGz C G. We conclude G = G; N G,. a

Lemma 3.5 Let a compound feature F = F; U F3 have symmetry group G, where
F\, Fy are primitive features with symmetry groups G1, G, respectively, and Fy, F;
are separated and 2-congruent by g € £*. Then for all g € G, either g(F,) = F;
and g(F3) = F; or g(F,) = F; and g(F;) = F.

Proof :

Forall g € G,g(F) = F,ie. g(F,UFR,) = g(F1)Ug(F;) = F1U F;. By Theorem
7.3 (Appendix 7), g(F1) C F; or g(F,) C F,. Because of the connectivity of F; and
F,, if g(F) C F; then g(F1) = F, and g(F2) = F; if g(F,) C F; then g(F) = Fz
and Q(Fz) = .

Proposition 3.8 Let a compound feature F = F; U F; have symmetry group G,
where F, F, are primitive features with symmetry groups G,, G, respectively, and
F\, F; are separated and 2-congruent by g. € £* i.e. g(F) = F; and g.(F;) = F;.
Then G =< g. > (G1 N G;) where < g. > denotes the subgroup of EY generated by
9e-

Proof

If g € G then by Lemma 3.5 either g(F;) = F; and g(F;) = F, then g € G; and
geEG =>ge€eGin Gz; or g(F1) = F; and g(F;) = F; then g can be written as
9= 999 Let go = g;'g then g(F1) = g.go(F1) = F3 = go(F1) = g7 (F2) = P
therefore go € G, and s1m.11a.rly, 9o € Ga. Thus go € G1N G3. Then g = g.go €
< ge > (G1 n Gz)

If g €< g. > (G1NG,) then g = ¢'gy; where ¢’ €< g. > and g12 € G1NGs. Then
9(F) = g(F1 U F3) = g(F1) U g(F3) = ¢'g1a(F1) U g'q12(F2) = g'(F1) U ¢'(F2). Since
< g. > is generated from g, for all the members g’ in < g. > either ¢'(F1)Ug'(F2) =
FLUF, = For g(F,)Ug'(F;) = F;UF, = F. In either case g € G =< g. >
(G1N G;) C G. Thus we conclude G =< g. > (G, N G,). a
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4 Oriented Features and their Symmetry
Groups

In our treatment of features in this paper so far we have ignored one aspect of the
faces of real world bodies, namely that faces are boundaries between solid matter
and air: the surfaces which we have treated mathematically as subsets of R have
no intrinsic inside and outside. In this section we introduce the concept of oriented
features which remedy this by defining a set of outward-pointing normal vectors for
each surface point. The polynomial which we use to express an algebraic surface
does define implicitly such normal vectors.

In general, whether a feature has orientations or not, or which orientation it
has, does not make a difference in regards to the symmetries of the feature. The
only exception is the plane surface: when it is treated as a set there are flipping
symmetries which do not exist for oriented planes. A spherical surface, on the other
hand, treated as a set, or with orientation vectors pointing inward, has the same
symmetries as the spherical surface with orientation vectors pointing outward.This
is why the treatment of primitive features as sets (given planer surface being the
only special case) is sufficient as far as their symmetries are concerned. This is also
why same symmelry group is a necessary condition for two solids at the the surface
contact.

Let S; be the unit sphere at the origin, each point of which corresponds to a unit
vector in R3. Thus Definition 3.1 for primitive features can be extended as follows:

Definition 4.1 An oriented primitive feature F = (S, p) is an oriented surface
where

1) S C R3 is a connected, irreducible and non-trivial algebraic surface of R°.

2) p C S X S, is a relation such that for all s € S, (s,v) € p where v € S; is one
of the normal vectors of surface S at point s.

Intuitively speaking, a feature is composed of both “skin”, § , and “hair”, the set
of normal vectors which correspond to the points on S,. Note, there may be more
than one ‘normal vector’ at one point of a surface. For example, at the extreme
point of a conic shaped surface.

We now define how an isometry acts on the relation p:

Definition 4.2 Any isomeiry g = tr of £*,t € T3,r € SO(3) acts on p in such a
way that g * p 3 (gs,™) & (8,v) € p where s € 5,v € Sa.

Next we prove the associativity of isometries when they act on the relation p.
Lemma 4.3 For all g1,9, € £*,(9192) * p = 91 * (92 * p).

Proof:

17



Let gy = 172,92 = torz where 1,23 € T3, 71,72 € SO(3). Since g1g2 = tiritars =
t1t'rira (T2 is a normal subgroup of £+), for all (s,v) € p, (91928, T172v) € (9192) * p-
On the other hand, for all (s,v) € p, (g28,72v) € g2*p and (g1g28,T172v) € gl*(gz*p)
Therefore, (9192) * p = 61 * (g2 * p)-

For a feature defined in Definition 4.1, its symmetries are different from the
symmetries of a set:

Definition 4.4 An isomeiry g € £t is a proper symmetry of a feature F =
(S, p) if and only if g(S) =S and g*p = p.

There is, therefore, an extra demand on the symmetries for an oriented feature,
namely, these isometries not only keep the feature setwise invariant but also preserve
its orientations. Since orientations are points on S,, such symmetries keep two sets
of points setwise invariant simultaneously.

Proposition 4.5 The symmeiries of a feature F = (S, p) form a group, called the
symmetry group of feature F.

Proof :

Let G denote the set of the symmetries of F'. Since it has shown in Proposition
3.3 that the proposition is true for set S, here we only state about p.

Obviously, 1*p = p,so 1 € G. If g € G then (g * p) = p. Multiplying by g~ we
have g~!(g * p) = g~! * p. Using Lemma 4.3 we have g1 xp = p and so g! € G.
Finally, if g1, 9, € G then (g1g2) * p = g1 * (92 * p) = g1 * p = p therefore g1g: € G.
Hence G is a group. £*. O

Now we need to redefine our definition for distinct features, taking orientations
into consideration.

Definition 4.6 Two oriented primitive features Fy = (S, p1), F2 = (S2, p2) are said
to be

e Complement: if there exists a € £t such that a(S;) = 52 and V(s,v) €
a * p1,3(s, —v) € pa, and V(s,v) € pa, (s, —v) € a * p;.

¢ Distinct: if for all the open subsets S; C 51,53 C Sz, no g = tr € £t exists
such that g(S]) C S or g(S;) C S (same as for the set features).

o 1-congruent (weakly-congruent): if there exists at least one g € £* such
that g(S1) = S; and g * p; = p,, but for all such g,g(Sz2) # S1 or g * p2 #
g * py simultaneously. Once again the conic shape features shown in Figure 6
can serve as an example, or two parallel planar surfaces with normal vectors
pointing to the same direction.

¢ 2-congruent (strongly-congruent) via g.: if there exists g. € £+ such
that g.(S51) = S, 9:(52) = S1,9: * pr = pa and g. * p2 = p1. For example,
two parallel cylindrical surfaces with the same radius, or two parallel planar
surfaces with normal vectors pointing to the opposite directions.
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The definition for oriented features allows us to distinguish a feature from its
complement which we cannot do for set features (Definition 3.1). In general, com-
plement features are not 2-congruent features except for a pair of planar surfaces.
Nevertheless, complement features have the same symmetry group. When two solids
have a surface contact it implies that a pair of complement features is formed.

The following proposition proves that all the complement features have the same
symmetry group which justifies the necessary condition in surface contact of solids.

Proposition 4.7 If features Fy = (S1,p1), F2 = (S, p2) are complements of each
other, where a(S1) = Si, and G1,G, are the symmetry groups of Fy, F; respecta-
tively, then the two symmelry groups are conjugate via a i.e. aGia™! = G,. In

particular, if S; = S3 then G, = G;.

Proof :

For all ¢ € Gy,a9a7Y(S;) = ag(S1) = a(S1) = S2. Then for all g €
aGia71,9(S;) = Sa.

For all (s,v) € p2 by definition of complement features (s, —v) € a * p;. For
all g € G,a * py = (aga~'a) * p; = g'(a * p,), where ¢’ = aga™! = t'r'. Then
there must be (s', —v') € a * p; such that (¢'s’,—r'v') € a * p;. By definition of
complement features (s',v') € p;. Then (s,v) = (¢'¢,7'v') € ¢’ * p2 = aga™ * p,.
Then p; C aga™! * p,.

Forall ¢ = aga™! = t'r' € aG1a7},(s,v) € p2,(g's,7'v) € g'*p; and (g's, —7'v) €
g'a x py = agala * p; = a * p;. By the definition of complement features again,
(g's,*'v) € pa. Then aga™! * p; C ps.

Therefore forall g € aGya™, g * p; = p;. Hence aGra™? C G,.

Now we need to prove: For all G; C aGya™1.

If g = tr € G, then first consider how it acts on the set g(S,) = S2 = g(a(S51)) =
a(S1) = a~'ga(S;1) = Si. Now let us consider how g acts on the orientations. For
all (s,v) € pa,(s,—v) € a * py, then (gs,7v) € g *x p2 = p2 => (g8,—7v) € a * py,
but also (gs, —rv) € g(a * p1) s0 a * p; C g(a * p1). On the other hand, V(s,v) €
a*py,3(s,—v) € pz. (gs,mv) € g(a*|rho,) and (gs, —rv) € g* p2 = p2 = (gs,™v) €
axp; = g(a*p;) C a*p,. Then one can conclude g(a*p;) = axpy, or a~'gaxp, = p;.
Therefore a~'ga € G, = g € aG1a™! = G, C aGra~l.

Hence G; = aGya™ . O

Definition 4.8 A compound feature F = (S, p) of primitive features I, ..., Fy,
1s defined to be

] S=5'1U...US,.

o p=prU...Up,

The reason why a relation p instead of a function is chosen to denote the ori-
entation of a feature becomes more clear here. When two primitive features are
combined, there may be two distinct normal directions at one point of the feature,
such as the edge where two planes meet (even for primitive features the normal
vector at one point may not be unique, e.g. at the pointed end of a conic shape).
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Proposition 4.9 Given a compound feature F = (S,p) of primitive features
F, ..., F,, is defined to be

e S=5U..US,

[ P=p1U.-.Upn

Let Fy,..., F,, be pairwise distinct primitive features with symmetry groups G, ...Gn
respectively. Then the symmetry group G of F isG =G1 N ...N G,,.

Proof

Let g € G, then g(S) = S and g*p = p. Thus g(S5,U...US,) = g(51)U...Ug(S5s) =
51U ...US,. Then g(5;) C S1U...US,. Suppose g(S5;) € S:;. Then there exists a
point y € g(S5;) and for some j # i,y € S; — S;. Now the proof for the set features
(Proposition 3.2) can be applied to get a contradiction.

Since g p=g*(prU...Upy) =g*p1U...Ug%pp = p1 U...U pp, assume
g * p; € p; then there must a pair (gs,rv) = p € g * p; such that p ¢ p; and p € p;
where 1 # j. Then there are two possibilities, g(s) ¢ S; or g(s) € S;:

o For the first case the same proof as in (Proposition 3.2) can be given to derive
a contradiction.

o For the second case, g(s) € S; but (gs,rv) € p;. Since g(s) € S;, by Definition
4.1 there must be v' € S, such that (gs,v') € p;. Since the orientation at a
point of an algebraic surface is determined by the neighbourhood of the point,
and isometry g transforms the neighbourhood O, of s to be a neihgbourhood
around g(s). Now if v # v’ which is the orientation at g(s) determined by
the neighbourhood of g(s) of S; then there must exist a point y = g(z) €
9(0,),z € O, C S; but y ¢ S;. Then the same proof as in (Proposition 3.2)
can be given to derive a contradiction.

Therefore g(S;) C S; and g * p; C p;. Since g is a bijection, g(S;) = S; and
g*pi=pi=>g€G;fori=1,..,n. Thusge G;N..NG,=>GC G N..NG,.

Forall g € GiN...NGn, g(F) = g(F1U...UF,) = g(F1)U...Ug(F,) = F1U...UF, =
Fandgxp=g*(pU...Ups)=g*(p)U...Ug*(pn) =prU..pn=p=>9g€ECG=>
Gin..NG, CG.

Therefore G =Gy N ...N G,. O

5 Spatial Relationships among Solids

An assembly is a collection of bodies which are connected by their features. When
two bodies are connected, they do not make contact over their whole surface, rather
certain features of each body are in contact. Therefore, although the symmetries of
a body affect the final assembly configurations, the symmetries of the features in
contact play a much more crucial role.
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Let B, and B; be two bodies, with primitive features F; and F, which are in
contact and have symmetry groups sym(F}),sym(F3) respectively. Suppose Iy, [,
specify the locations of bodies B;, B; in the world coordinate system and f; and f,
specify the locations of features F;, F; in their respective body coordinates. Consider
what we can infer about the relative location of two bodies that have two features
in contact. There are three possible kinds of contacts between B; and B,, they are
point contact, line contact and surface or areal contact. Regardless of what kind
of contacts occur between F; and Fj, by the definition of symmetry groups, it is
clear that if we move B, or B; by a member of sym(F;) or sym(F3) respectively,
the relationship between the features is preserved. A spatial relation between two
bodies in contact is a binary relation r C £t x £+, where each pair (I;,l;) € T
specifies one pair of possible positions for B; and B,. In particular, when the two
bodies have an areal contact via Fj, F3, the contacting features coincide and thus
their symmetry groups are identical. The spatial relationship then can be expressed
as:

= {(h, L)'k € /1Gf2} (2)
where G = sym(F,) = sym(F2).
The relative location of body B; with respect to body Bz can be expressed as:

U, € f1GF. (3)

We can summarize this by saying that if a primitive feature of one body fits a
primitive feature of another body then the relative location of the two bodies belong
to a two-sided coset of the common symmetry group of the features. This coset is an
infinite set when the symmetry group is of infinite order.

Two bodies in an assembly are typically related to each other through multiple
primitive features. If the above two bodies are related by surface contact of two
pairs of features, i.e. Fi, fits F3; and Fy; fits Fy; with feature locations in their
body coordinate systems fi1, fa1, fi2, faz correspondingly, then the relative location
of body B; to body B; should be constrained by both relations expressed in the
form (3) simultaneously. That is:

7' € fuGifal() f12Ga2 33 (4)
ie. a member of the intersection of two two-sided cosets, where G; =
sym(F11), G2 = sym(Fy3).

Since each two-sided coset can be rewritten as a one-sided coset as follows

g1Hgs = 91H91-1(9192) (5)

where H C G, g1,92 € G, we can modify (4) into the format of the intersection of
two one-sided cosets. '

I, € (fuGi fit) fufat ﬁ(.fmGz!ffil)fnfz-z1 = (G NG f" (6)
where G} = fuGifil, Gy = fu:Gafi, f' = fufn' fafi's ' = fufn'. Purther
from proposition 2 of [16] :
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Table 3: Continuous Group and Degree of Freedom

Dimension | Symmetry Group | Associated
(d.of.) (constraint) Lower pair

1 T! Prismatic
1 S02 Revolute
1 Gscrew Screw
2 Geylinder Cylindrical
3 Gplane Planar
3 S03 Spherical

If Hy and H, are subgroups of G and g € G, then Hy N Hag is either null or is
a coset of Hy N H,. '
we have

7' € (G1Go)g (7)

where g € (G} N G3f")f".

When the intersection is null, it implies that the specified spatial relationship is
impossible, i.e. no values for positions [;,l; can realize the required contacts. When
the intersection is not null, the relative position can be obtained by calculating a
group intersection and choosing a particular element g.

When the spatial relationship is realizable, the two primitive features of B, can
be viewed as one compound feature F; = Fy; U Fi; fitting with another compound
feature F3 = F3; U Fy3 of B;. The common symmetry group of these two compound
features can be obtained from sym(Fy;), sym(F1z) or sym(Fa), sym(Faz). Following
(3) we have:

Il € fisym(F)fa ) (8)
where f;, fo are the locations of the compound features F;, F; with respect to their

body coordinate systems. When the primitive features are distinct from each other,
by Proposition 3.2,

7Y, € fi(sym(Fu) N sym(Fy2)) fo. (9)
In the case where sym(Fy;) N sym(Fy,) is the identity group, {1}, we have
L' =ff7", (10)

and the relative position of B; to B, is uniquely determined. Interestingly, the most
asymmetrical case appears in the simplest form under this formulation.

Surface contact relationships are quite common in assembly and are of primary
concern in this paper. Table 3 exhibits all the kinematic joints that are formed by
surface contacts (lower pairs as shown in Figure 2) and the associated symmetry
groups of the contacting features.
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6 Conclusion

We have formalized the surface contacts between solids in terms of the contacting
feature symmetry group. The results show that this formalization is general, in that:

o all the surface contacts between primitive features can be represented by a
symmetry group;

¢ all the surface contacts between compound features can be expressed in terms
of the intersection of the symmetry groups of their primitive features;

o the relative positions of any pair of solids which have a surface contact can be
expressed as the coset of their common symmetry group, or as the coset of the
symmetry group intersection of their primitive features which are in contact.

These results also imply that that group theoretic formalization of surface contact
presented here will only be computationally attractive if symmetry group intersec-
tions can be carried out efficiently. Such a method for efficient group intersections
is the topic of a companion paper entitled “A Geometric Approach for Representing
and Intersecting TR Subgroups of the Euclidean Group”.
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7 Appendix

These are some topology definitions and theorems taken from (3, 15]. They are
listed here as a quick reference for the readers.

Definition 7.1 A topology for a set X is a family T of subsets of X satisfying
the following three properties:

o The set X and the empty set § are in T'. -
e The union of any family of members of T is in T'.
o The intersection of any finite family of members of T is in T'.

Definition 7.2 The members of T are called open sets.
Definition 7.3 A neighborhood of a point ¢ € X i3 an open set containing z.

Definition 7.4 A point z is a limit point of a subset A of X means that every
neighborhood of = contains a point of A distinct from z. A closure of a set A is
the set A, the union of A with its set of limit pomts The boundary of A is the
intersect of A with X\A.
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Definition 7.5 A function f : X —» Y from a space X to a space Y is continuous
provided that for each open set U inY the inverse image

[ (U)={=€ X|f(=) e U}
is open in X.

Definition 7.6 A one-to-one correspondence f : X — Y for which both f and the
inverse function f~! are continuous is called a homeomorphism; in this case X
and Y are said to be homeomorphic.

Definition 7.7 A function g: X — Y is open provided that g(O) is open in Y for
each open subset O of X. Closed function is defined analogously.

Definition 7.8 A path, is a space [X, O] is a mapping p : [a,b] — X, where [a,b]
is a closed interval in R. If p(a) = P and p(b) = Q, then p is a path from P to
Q.

Definition 7.9 Ann-manifold is a separable metric space M™ in which every point
has a neighborhood homeomorphic to R3.

Definition 7.10 Two sets H, K are separated if
AnK=HnK=0.

Theorem 7.1 A set M C X is connected if and only if M is not the union of
two nonempty separated sets.

Theorem 7.2 For sets, connectivity is preserved by surjective mappings.

Theorem 7.3 If H and K are separated, then every connected subset M of HU K
lies either in H orin K.
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