Performance Characteristics of Epsilon Serializability

with Hierarchical Inconsistency Boundst

Mohan Kamath and Krithi Ramamritham
Department of Computer Science
University of Massachusetts

Ambherst, MA 01003, USA

Abstract

Epsilon serializability (ESR) is a weaker form of correctness designed to provide more concurrency
than classic serializability (SR) by allowing, for example, query transactions to view inconsistent
data in a controlled fashion i.e. limiting the inconsistency within the specified bounds. In the
previous literature on ESR, inconsistency bounds have been specified with respect to transactions
or with respect to objects. In this paper, we introduce the notion of hierarchical inconsistency
bounds that allows inconsistency to be specified at different granularities. The motivation for
this comes from the way data is usually organized, in hierarchical groups, based on some common
features and interrelationships. Bounds on transactions are specified at the top of the hierarchy,
while bounds on the objects are specified at the bottom and on groups in between. We also discuss
mechanisms needed to control the inconsistency so that it lies within the specified bounds. While
executing a transaction, the system checks for possible violation of inconsistency bounds bottom
up, starting with the object level and ending with the transaction level.

Thus far, to our knowledge, no work has been done to determine the quantitative performance
improvement resulting from ESR. Hence in this paper we report on an evaluation of the perfor-
mance improvement due to ESR incorporating hierarchical inconsistency bounds. The tests were
performed on a prototype transaction processing system that uses timestamp based concurrency
control. For simplicity, our implementation uses a two level hierarchy for inconsistency specifi-
cation - the transaction level and the object level. We present the results of our performance
tests and discuss how the behavior of the system is influenced by the transaction and object level
inconsistency bounds. We make two important observations from the tests. First, the thrash-
ing point shifts to a higher multiprogramming level when transaction inconsistency bounds are
increased. Further, for a particular multiprogramming level and a particular transaction inconsis-
tency bound, the throughput does not increase with increasing object inconsistency bounds but
peaks at some intermediate value.

T This material is based upon work supported by the National Science Foundation under grant IRI - 9109210

Contents
1 Introduction
2 Review of Epsilon Serializability

3 Specifying Inconsistency

3.1 Hierarchical Inconsistency Bounds
3.2 Two Level Specification used in our System

3.2.1 Transaction Level
3.2.2 Object Level

4 Time Stamp based ESR

5 Controlling Inconsistency

5.1 Import Inconsistency
5.2 Export Inconsistency L Lo o L.
5.3 OtherlIssues o o

5.3.1 Controlling Inconsistency in a Multi-level Hierarchy . .

5.3.2 Controlling Inconsistency in Different Types of Queries
6 Details of the Prototype System
7 Objectives of the Performance Tests
8 Results and Discussion

9 Conclusion

10
10
12
13
13
13

14

15

16

20

1 Introduction

Epsilon Serializability (ESR) is a weaker form of correctness that allows transactions to view
inconsistent data in a limited fashion. ESR does this by permitting some non-SR execution
schedules, thereby enhancing concurrency. Potential benefits from ESR include increased system
availability and greater autonomy [16,17,21]. A transaction can be classified as a query transaction
or an update transaction, depending upon the types of operations involved. In typical scenarios,
lengthy epsilon transactions (ETs) that just perform queries may execute in spite of ongoing
concurrent update transactions. In such a situation, query ETs may view inconsistent data. Thus
an update ET may ezport some inconsistency when it updates a data item while query ETs are
in progress; a query ET may import some inconsistency when it reads possibly inconsistent data
items while update ETs are in progress. The correctness notion in ESR is based on limiting the
amount of imported and exported inconsistency within the specified bounds. If the bounds are
set to zero, ESR reduces to SR. We review some key aspects of ESR further in section 2, where

we also describe the various notations used in this paper.

We first introduce the notion of hierarchical inconsistency bounds which allows inconsistency
specification at different levels. From a data organization point of view, data objects can be
grouped hierarchically based on some common features and interrelationships. Depending upon
the relative importance of the groups, there could be a limit on the inconsistency resulting from
update to each of the groups. This forms the motivation for the concept of hierarchical incon-
sistency bounds. Bounds on transactions are specified at the top of the hierarchy, while bounds
on the objects are specified at the bottom and groups in between. It is also necessary to look at
ways of specifying these hierarchical inconsistency bounds. Section 3 discusses these aspects in
more detail using a practical example. It also discusses the two-level inconsistency bounds used

in our implementation — the transaction level and the object level.

Though update ETs can view inconsistent data the same way query ETs do, in this paper we
focus our attention on the situation where query ETs run concurrently with consistent update

ETs in a centralized system.

Just like SR, ESR can be implemented using one of the many concurrency control mechanisms
available. In this paper, we discuss the various control aspects of ESR based on timestamp ordering
as it forms the basis of concurrency control in our experiments. Section 4 gives further details
of time stamp based ESR where we identify the situations where inconsistent operations will be

allowed to execute, provided they do not violate the inconsistency bounds.

We present detailed mechanisms for controlling the inconsistency seen by the queries within
the specified bounds at different levels of a hierarchy in section 5. Wu et. al [21] suggest some
general ways by which the amount of inconsistency can be controlled in ETs. However our notion
of hierarchical inconsistency control attempts to provide a finer-grained approach to controlling

inconsistencies in ETs.

ESR is relatively a new concept and its performance has been predicted in the literature [16,21]
but never evaluated. So another contribution of our work is the evaluation of the quantitative
performance improvement resulting from ESR by changing the various settings of the inconsistency

bounds.

There has been considerable work in the area of performance evaluation of concurrency control
protocols. Notably, Agrawal et. al [1] discuss the performance of concurrency control protocols
and present results from exhaustive performance tests conducted on various cases. Cordon and
Garcia-Molina [6] have studied the performance of a concurrency control mechanism, based on
semantic knowledge about transactions. Badrinath and Ramamritham [2] evaluated the per-
formance of multilevel concurrency control protocols to enhance concurrency by exploiting the
synchronization properties and structure of operations. While most of these use simulation models
in evaluating the performance, we have actually built a prototype system, to do a more realistic
appraisal of ESR. Our prototype transaction processing system is based on the client-server model
and uses timestamp ordering for concurrency control as mentioned earlier. Further details of our

prototype system are presented in Section 6.

Section 7 discusses the objectives of the performance tests. We look at some of the performance
metrics and the various settings for the tests. Results of the performance tests are presented
in Section 8. Here, we also discuss the behavior of the system and the effects of the various

inconsistency bounds on system performance. Section 9 concludes with a summary of the paper.

2 Review of Epsilon Serializability

In this section we just touch upon some of the key aspects of ESR that are necessary for our
discussion. While [21] gives the details of ESR, a more detailed and formal description can be
found in [19].

To an application designer and transaction programmer, an ET is a classic transaction with
the addition of inconsistency limits. A query ET has an import-limit, which specifies the maximum
amount of inconsistency that can be imported by it. Similarly an update ET has an ezport-limit
that specifies the maximum amount of inconsistency that can be exported by it. These notions
have been used widely in [16,17,19,21]. Henceforth these will be referred to as TIL (transaction-
import-limit) and TEL (transaction-export-limit) respectively. For a query ET @; and an update
ET U; they are denoted as TI Lg, and T E Ly j respectively. In addition to the overall inconsistency
experienced by a transaction, bounds could be placed, for example on inconsistency due to each
object. These are called OIL (object-import-limit) and OEL (object-export-limit). Given a query @,
for an object z they are denoted as OTL? and O ELSQ respectively. OILY specifies the maximum
amount of inconsistency the reads of query () can view with respect to object # and similarly
OELY specifies the maximum amount of inconsistency the writes of an update transaction T’ can
export with respect to object z. OIL? is represented as import limit? in [19]. In the rest of
this paper OIL? will be assumed to be the same for all Q and is denoted by OIL,. Similarly
OELT will be assumed to be the same for all T and will be denoted by O EL,. The notations just
introduced will be used in the rest of the paper to denote the various bounds. A more detailed
discussion on the bounds appears in sections 3 and 5. An application designer specifies the limits

for each ET and the system ensures that these limits are not exceeded during execution.

A database state is a set of data values. A database state space is a set of all database states.

ESR is applicable to a database state space Spp if it is a metric space i.e. it has the following

properties :

e A distance function distance(u,v) is defined over every pair of states u, v in the state space

Spp. This gives the absolute value of the difference between two states of data items.
e Has symmetry: V u,v ¢ Spp, distance(u,v) = distance(v,u)

e Satisfies the triangle inequality. V u,v € Spp, distance(u,v)+distance(v,w) > distance(u,w).

Many database state spaces have such a regular geometry and examples of this includes dollar
amount of bank account and airplane seats in airline reservation systems. Hence the distance can
be measured from any database state ‘a’ to any database state ‘b’. During the execution of each
ET, the system needs to maintain the amount of inconsistency the ET has imported so far. The
amount of inconsistency is given by the distance function and the incremental accumulation of
inconsistency depends upon the triangle inequality property of metric spaces. Without triangle
inequality, we would have to recompute the distance function for the entire history each time a
change occurs. The system should ensure that all the inconsistencies viewed while ETs execute

are within the limits. As mentioned earlier, when these limits are set to zero ESR reduces to SR.

3 Specifying Inconsistency

Inconsistency in a data item z with respect to a query ¢ is defined as the difference between the
current value of z and the value of z if no updates on were allowed to execute concurrently. We
will denote this by Inconsistency,. When an inconsistency bound, Limit,, is specified for a data
item z with respect to query ¢ then Inconsistency, should be less than or equal to Limit,. In
the previous literature on ESR, inconsistencies have been specified with respect to transactions
[21] or with respect to objects [19]. Here we first present the concept of hierarchical inconsistency
bounds and then focus on specifying inconsistency in a two level system - i.e. at the root and the

leaf levels (as we have done in our tests using the prototype system).

3.1 Hierarchical Inconsistency Bounds

In a banking system or an airline reservation system, data can be grouped hierarchically based
on some commonality. Hence while executing a transaction by reading objects, apart from spec-
ifying a bound on the overall inconsistency experienced by the transaction, bounds can also be
specified on the inconsistency arising from groups and data items. Essentially the constraints are
hierarchically ordered, the inconsistency limits being associated with the nodes! of the tree. It
should be noted that, the data items (objects) which are accessed are actually present only at
the leaf level and the intermediate nodes just represent groups. Using the transitive relationship
between the nodes and its children, it can be seen that, if a node m has a inconsistency limit L,
then the sum of the inconsistencies viewed by all the leaves (data items) of the subtree rooted at

node m is less than or equal to £. The inconsistency limit on a node at level ¢, places a bound on

'a node could represent a data item (object) or a group of data items.

the inconsistencies viewed by nodes at level ¢ + 1. Also at a particular level j, the inconsistency
limit on a node places bounds on the inconsistency tolerable by its siblings. The information flow
is top-down during the inconsistency specification stage and bottom-up during the control stage.
During the control stage if the inconsistency bounds are violated at any level of the tree, then the

transaction has to be aborted.

To motivate the need for hierarchical inconsistency bounds we look at a practical situation.
Figure 1 pertains to a banking system. For accounting purposes, the bank categorizes the ac-
counts broadly into some classes such as company, preferred customer, personal accounts etc..
Let us consider the case when the bank needs to estimate the overall amount held by the bank.
Apart from specifying the inconsistency bound on the overall estimate (Limitoyeranr), it can
specify inconsistency bounds for each of the categories (Limitcompany,LiMitpre ferred,LiMitpersonal
etc..). Further, each category could be subclassified and can be assigned an inconsistency bound
(Limiteom,Limiteoma etc..). This will proceed till the inconsistency is specified at the leaf level
(Limitgi1,Limitgs,s, etc..). It should be noted that all these bounds are with respect to an indi-

vidual transaction (query).

Figure 1: Hierarchy of objects in banking systems

Thus the inconsistency limits specified in the above hierarchy imply the following :

Inconsistencycompany + Inconsistencypreterred + ... + Inconsistencypersonal < Limitoyerali
n

E Inconsistencycom; < Limitcompany

=1
n

ZInconsistencydivj < Limitcompany, €lc...
j=1
There are a many different ways of specifying inconsistency limits at multiple levels. Incon-
sistency bounds could also be specified using relative weights for the nodes in the tree and thus
the inconsistency viewed at a level will be the weighted sum of the inconsistency of the nodes
at that level. Examples of hierarchical data organization also occur in other environments where

transactions are commonly used, for e.g., airline reservation.

Having introduced the concept of hierarchical inconsistency bounds, we outline a method to

specify it. One such generic specification is shown in Figure 2. Here a transaction accesses objects,

some of which may be independent and some could be part of a group.

O O
O O

Figure 2: Specifying inconsistency at multiple levels.

GIL; specifies the total inconsistency that can be contributed from operations that access
objects within a particular group ¢. Groups in turn can contain subgroups. Thus the total
inconsistency that is viewed by the transaction is the sum of the inconsistencies from the operations
that access the independent objects and objects that are parts of groups. Here is a query specifying
hierarchical inconsistency bounds (the syntax of Begin, Read etc.. are explained in later sections).

BEGIN Query TIL 10000
LIMIT company 4000
LIMIT preferred 3000
LIMIT personal 3000
LIMIT coml 200

t1=Read com2745
t2=Read com4639

END

Thus each transaction could have an inconsistency specification part at the beginning before
the actual operations are submitted. It should be mentioned that hierarchical specification and
control does not come free of charge and a small price is to be paid for it as we discuss in section

5. We now discuss a two level system used in our implementation.

3.2 Two Level Specification used in our System
3.2.1 Transaction Level

Let us first consider inconsistency at the transaction level. A large bank may wish to know
how many dollars, in millions, are there in the corporate accounts of its clients. If this query is
executed directly on the accounts during banking hours, there would be substantial interference
from the ongoing updates. Most of the interference is irrelevant, however, since typical updates

refer to small amounts compared to the query’s results, which is in millions of dollars. This can

be exploited using ESR, to execute the query during banking hours with the desired accuracy.
Specifically, under ESR, if we specify a TIL for the query ET, for example, of § 100,000, for this
query, the result also would be guaranteed to be within § 100,000 of a consistent value (produced
by the serial execution of the same transactions). For example, if the ET returns the value $
450,500,000 then at least one of the serial transaction executions would have yielded a serializable
query result in the $ 450,500,000 £+ $ 100,000 interval.

Throughout our discussion, for simplicity, we assume that an object is read or written once
within a transaction and that the transaction calculates the sum of the read values. To allow
multiple operations on the same object in a transaction, a simple extension to the control mech-
anism should suffice. This would calculate the inconsistency based on the values maintained for
the minimum and maximum seen thus far by reads on an object from a query transaction (writes,
in the case of an update transaction). This will take care of the worst case where, two reads would
see the positive and negative extremes of the bound and hence could violate the inconsistency
bounds. We discuss this further in section 5, where we also discuss the effect of inconsistency on

transactions that compute results other than the sum.
Import Inconsistency:

Bounds on imported inconsistency is specified for query ETs. If a query ET @; has k read opera-
tions, we define its total inconsistency to be Zle Inconsistency_from_Read;. Since TIL denotes

the total inconsistency that can be tolerated for a query,

k

Z Inconsistency_from_Read; < TILg,

i=1
We define the proper value of an object that is being read by a query ET as the value that would
have been seen by the read if no concurrent update ETs were allowed.
Inconsistency_from_Read is defined as the difference between the present value of the object
and the proper value of the object. This definition is applicable only when there are concurrent
update ETs. The concept of proper and present value of an object is discussed in more detail in
the section on controlling inconsistency. In this section, wherever appropriate, we have included
examples of the query/update ETs used in the evaluation. The following is a query ET. The Read
operation takes the id of the object whose value is to be read. The BEGIN operation takes the
type of the transaction and the corresponding inconsistency bound as the arguments.

BEGIN Query TIL = 100000
t1 = Read 1863
t2 = Read 1427
t3 = Read 1912
t4 = Read 1543
t5 = Read 1657
t6 = Read 1138
t7 = Read 1729
t8 = Read 1336
output(‘‘Sum is : ’’,t1+t2+t3+t4+t5+t6+t7+t8)
COMMIT

Export Inconsistency:

Bounds on exported inconsistency is specified for update ETs. TEL denotes the total inconsis-

tency that can be tolerated for an update ET. If an update ET U; has k write operations, we

define its total inconsistency to be 2?21 Inconsistency_from_Write;. Since TEL denotes the

total inconsistency that can be tolerated for a update,

k

Z Inconsistency_from Write; < TE Ly,

j=1
We define new value as the value that would be written by a write if it is allowed to execute.
Inconsistency_from _Write is defined as the difference between the new value of the object and
the proper value of the object. Our notion of this is slightly different from the one mentioned in
[21] and we discuss this further in section 5. This definition is applicable when there are concurrent
query ETs. An update ET submitted to the system for processing is shown below. Note that in
this, the value of the writes are dependent upon the reads and hence reads from update ETs must
be consistent. The argument for the Write operations are the id of the object and the value to

be written.

BEGIN Update TEL = 10000
t1 = Read 1923
t2 = Read 1644
Write 1078 , t2+3000
t3 = Read 1066
t4 = Read 1213
Write 1727 , t3-t4+4230
Write 1501 , t1+t4+79356
COMMIT

3.2.2 Object Level

We just saw how inconsistency limit can be specified at the transaction level. Now we go to a
finer granularity by specifying the inconsistency limits on objects. We use a client-server model
for our implementation and usually transaction limits are specified at the client side and object
limits at the server side, but this could be overriden by explicitly specifying the object limits in

the specification stage at the beginning of the transaction.
Import Inconsistency:

OIL is defined as the maximum amount of inconsistency that can be viewed (imported) by read

operations of a query ET on an object.
Inconsistency_from_Read(z) < OIL,

Export Inconsistency:
OEL is defined as the maximum amount of inconsistency that can be exported by the write

operations from an update ET on an object.

Inconsistency_from_Write(z) < OEL,

Thus a system that implements ESR should ensure that the various inconsistencies are within

the bounds. In our system which implements a two-level hierarchy, for an operation to succeed,

at the object level

object _import_inconsistency object_import limit (Read from Query)

IN A

object_export_inconsistency object_export_limit (Write from Update)
and at the transaction level

transaction_import_inconsistency transaction_import_limit (Read from Query)

IN A

transaction_export_inconsistency transaction_export_limit (Write from Update)

We had a fairly detailed look at specifying hierarchical inconsistency which will be usually done
by the application programmer/user. The control mechanisms which ensures that the inconsis-
tency limits are not violated are built into the system and are not accessible to the application

programimer.

4 Time Stamp based ESR

Our goal was to build a simple prototype system to measure the performance of ESR — especially
its impact on concurrency. Hence we chose timestamp ordering for concurrency control to avoid
the problem of deadlock detection and recovery that is present in the case of 2PL. To simplify
recovery, we enforce strict ordering [5] by using a wait based protocol for concurrent operations
that are not able to execute. For late operations that are not able to execute we do aborts
with immediate restarts. Hence we don’t have the need to maintain detailed histories/logs since
recovery is simple and rollbacks are not necessary. Recall that timestamps are assigned when

transactions begin.

We do not go into the details of timestamp based SR, but all standard terminologies and tech-
niques are applicable here. The algorithm used is an enhanced version of the regular time stamp
ordering algorithm used to implement SR. The enhancements come in places where the algorithm
would normally abort the transaction because the operation was late or some other conflicting
operation is running concurrently that prevents the current operation from being executed. The
detailed algorithm for implementing ESR using time stamp ordering is shown in Figure 3. The
enhancements that have been incorporated to implement ESR have been highlighted. In the ESR
case (highlighted), the operations are allowed to take place, provided the inconsistency is within
the inconsistency (epsilon) bounds. In Section 5 we discuss in detail how to check whether the
inconsistency viewed by an ET has crossed the inconsistency bounds. Referring to Figure 3, it
can be seen that there are three cases where operations that will normally be rejected in SR, will
be given a chance to perform under ESR. The first two cases correspond to reads from query ETs

and the last one corresponds to a write from update ETs, as mentioned below:

1. A query read views committed data but the query ET’s timestamp is older than the object’s

last-write timestamp.

2. A query read views uncommitted data from a concurrent update ET.

3. A write from an update ET arrives with a timestamp that is older than the object last-read

timestamp and the last read was from a query ET

Case 1 can also be considered to occur due to a concurrent update because if the read operation
has an older time-stamp and it read a committed value with a newer timestamp then the two
transactions must have been concurrent at some point of time. A similar argument applies to
case 3 where the last read is required to be from a query ET because we allow only consistent
update transactions and hence, reads from one update transaction will conflict with writes from

another update transaction.

Figure 3: Algorithm for Time Stamp based ESR.

Figure j gives some examples of the three cases of concurrent updates discussed above. The

first occurs when Rgi(z) (read from query Q1) comes after the value written by Wy(z) has
committed, the second when Rgs(z) views uncommitted data written by Wys(z) and the third

when Wya(2) needs to write when Rgs(z) has already read it.

Figure 4: Time Stamp ordering for ESR - ETs with conflicts on object

In all these cases the reads from query ETs view inconsistent data states because of out of order
timestamps. The magnitude of this inconsistency must be controlled within the specifications.
In the previous section we discussed ways to specify the allowable inconsistency. The following

section deals with the mechanisms to meet these specifications.

5 Controlling Inconsistency

Throughout this discussion we have seen that in the ESR case, for an operation to succeed,
the inconsistency should be controlled within the specified bounds. In this section we describe
the timestamp based mechanisms we have used to control the inconsistencies. Some methods
suggested in the literature [21], where the total inconsistency of a query ET is determined by
multiplying the bound of an operation and the number of operations in the ET may result in
the overestimation of the accumulated errors. We present detailed mechanisms for controlling the

inconsistency at fine grain levels.

In keeping the prototype system simple and to perform controlled experiments, we have a
two level specification and we look at only one type of query, those that compute the sum. At
the end of the section, we address the issues related to controlling inconsistency when there is a

hierarchical specification and when there are queries of different types.

5.1 Import Inconsistency

Let us consider the scenario shown in Figure 5. We will focus on the read operation Rgq(z). We
defined earlier the proper value of an object that is being read by a query ET as the value it would
have seen had there been no concurrent update transactions. For Rgi(z), the proper value is the

value written by Wy1() as that was the last write on & before Q1 started (which we will call P1).
In [19] the proper value of object z is denoted by 29 U2, U3 and U4 are the update ETs

initial’

10

that run concurrently with Q1. If Rg () is successful it will read the value written by Wy4(z)
which is the present value (which we will call N'4).

Figure 5: ESR: Check for Read (from Query ET) to go through

In the figure, d> (= N4 — P1) denotes the difference between the present and the proper

values and hence is the magnitude of the inconsistency in the data that is being read by Rgi(z)
(Inconsistency_from_read). Recall that the distance function gives the difference between any

two states (between states 1 and 2, 2 and 3, 1 and 3, etc.). If the magnitude of the total
inconsistency imported by Q1 before Rgi(z) is denoted by Z then for Rgi(z) to succeed the

following needs to be satisfied in our two level system:

d
T+ d

< OIL, (object-level)
< TILg, (transaction-level)
If these conditions are satisfied then Rgq(z) is successful and 7 is incremented by the value d and

Q1 proceeds, else it fails and has to be aborted.

If changes made by W4 were negative, and U4 aborts then we could have a problem. The
current value would then correspond to the one written by Wys(z) which could violate the
inconsistency bound. One solution to this would be to always add the maximum change by an
update transaction [19] while determining the inconsistency seen by an operation. The probability
of aborts from update transactions in our case is small and hence in our implementation we do

not consider this.

In our implementation we store the values of the last 20 writes on each object with the
corresponding time stamps. The proper value of an object is found by indexing backwards through
this list until a older timestamp (than the query) is found. 20 is an empirical figure derived by

dividing the measured values of the average duration of query ETs by that of update ETs.

It should be noted however that this is not the same as multi-version timestamp ordering
(MVTO). In the MVTO case, timestamped versions are maintained so that if a read operation
arrives late, based on the versions, the value written by the last write with a timestamp lesser

than this read is returned. However in our case, the value read is the value of the current instance

?In [19] d is defined as distance(zwwemziqnitial).

11

of the object which is the present value. The value written by the last write with a timestamp
lesser than this read, the proper value, is only used in determining the amount of inconsistency

viewed by the read operation.

5.2 Export Inconsistency

We now move to Figure 6, focusing our attention on Wys(z). Q1, Q2 and @3 are three query
ETs that are running concurrently with update ET U5. If Wys(z) is executed, it exports some

amount of inconsistency to those concurrent query ETs that have accessed .

Figure 6: ESR: Check for Write to go through

The proper values of z for Rgi(x) is the value written by Wy1(z), for Rga(z) and Ros(z)
it is the value written by Wya(2). For each object #, we maintain a list of uncommitted query

ETs which have read its value, along with the respective proper values (in practical environments,
a better mechanism could be used). Let us denote these values as P1, P2 and P3 for object z
corresponding to Q1, @2 and Q3 respectively. Let A'5 denote the new value that will be written by
Wuys(z) if it is allowed to execute. It should be noted that in this particular example, P1 and P2
happen to be the same. Since there are many concurrent query ETs, Wys(z) would export some
inconsistency to each of these. Hence the inconsistency that will be exported by Wys(z) denoted
by d is chosen as the maximum of the inconsistencies that will be exported to the concurrent
query ETs (Inconsistency_from_ write). In this case, it is the higher of |d1| and |d2| whose
values are (N5 — P1) and (M5 — P2) respectively. Our notion of Inconsistency_from_write
differs from [21] at this point. In [21] d is determined by adding the inconsistencies exported to
all the concurrent query ETs. We chose to do it this way, as we only have a maximum of one read
on an object per transaction as mentioned earlier. If the magnitude of the total inconsistency
exported by Q1 before Wys(z) is denoted by &£ then for Wys(z) to succeed, the following should

to be satisfied in our two level system:

d
&+ d

OEL, (object-level)

<
< TELys (transaction-level)

If these conditions are satisfied then Wys(z) is executed and £ is incremented by the value d and
U5 proceeds, else it fails and U5 is aborted.

12

5.3 Other Issues
5.3.1 Controlling Inconsistency in a Multi-level Hierarchy

To determine the inconsistency from an operation, the mechanisms explained earlier are to be
used. However additional checks are required to determine if an operation can execute without

violating the hierarchical inconsistency bounds.

As we mentioned earlier, in a multi-level hierarchy, during the control stage the information
flows bottom-up i.e. the inconsistency viewed by an object at the leaf level percolates to the root
level through intermediate levels. As it percolates, the inconsistency is checked at the various
nodes it passes through. Revisiting the banking system shown in Figure 1, the following set of
checks are required to maintain the inconsistency within the bounds (if the inconsistency in the

value read for a division k of company j is d).

d < Limitg,, (leaf level)
Inconsistencycom; + d < Limiteom,; (level 3)
Inconsistencycompany + d < Limitcompany (level 2)
Inconsistencyoperati + d < Limitoyerann (root level)

If there is no violation at any of the above checks, then the total inconsistency accumulated at each
of the levels have to be incremented (by making another pass through the hierarchy or some other
means) by a value that corresponds to the inconsistency of the operation under consideration. If
the bounds are violated at any stage, the operation is unsuccessful and the transaction has to be
aborted.

5.3.2 Controlling Inconsistency in Different Types of Queries

So far the mechanism we have explained is sufficient if all the queries perform sum operation on
the object read. This is not going to work however if the queries required for example is the
average of the values read. In the case of average, the inconsistency in the result will actually
depend upon the maximum and minimum values viewed by the reads of the transaction. Though
it is not easy to specify general mechanisms for all kinds of queries we show how this can be done
for a specific case. In this discussion we will be concerned only with query inconsistency limits
and not with object limits as the criterion for object inconsistency is going to remain unchanged.
We also assume that an object could be read any number of times during a transaction. We have
not implemented this in our system as we were only working with the sum operation and hence

the performance results hold.

The mechanism would work as follows. For every transaction, we maintain the maximum
and minimum values viewed, for each object it accesses. When an aggregate operation is en-
countered, the actual inconsistency is calculated based on the object’s maximum and minimum
values viewed. i.e. if the operation is avg(01,..,0,) then the min_result is determined by summing

up the minimum values of 0;..0, and dividing it by » and the maz _result is obtained similarly.

13

Then the result_inconsistency® is half the difference between maz_result and min_result. The
result_inconsistency is compared with the TIL. It is at this point a decision is made whether
to reject or execute the operation as opposed to dynamically doing it when objects are read, as
was done in the previous discussion. This is a viable solution to this problem as predeclaration

of objects to be accessed or number of operations in a query, is not practicable.

As we saw above, there are some overheads in maintaining the various data structures and
moving information around for hierarchical inconsistency control. However paying a small cost,
the user gets some flexibility in deciding the precision with which the data items are to be esti-

mated.

6 Details of the Prototype System

We used the client server model for our implementation. Multiple transaction clients submit
transactions to a central transaction server. The server and each of the clients run on different
DECstation 5000’s running Unix, all connected in the same LAN. Since the environment sup-
ported threads and RPC library routines, the implementation of the prototype system was much
simplified. We have about 10 workstations in the LAN and because of the synchronous nature of

our RPC, the maximum multiprogramming level is limited to 10.

A null RPC call takes about 11 milliseconds to return while the average RPC call takes some-
where between 17 and 20 milliseconds. This along with the fact that the server is multithreaded,
allowed the prototype system to process about 50 to 60 transactions* per second, with each

transaction having an average of 10 operations.

In implementing a time stamp ordered mechanism, one of the important functions is the gen-
eration of timestamps. As there was a two minute range of variation between the local system
clocks of the different client sites, to ensure that the timestamps from all the sites are given a
fair treatment, a correction factor was applied to the local time to achieve virtual clock synchro-
nization. Also to ensure that the timestamps were unique, we used the standard technique of

appending the site-id’s to the timestamp.

The system supports the five basic operations Read, Write, Begin, Commit and Abort.
Read id reads the value of object id and Write id, val changes the value of object id to val. The
recovery part of the system is very simple and is just sufficient enough to recover from aborted
transactions. This is so because (i) we have strict ordering of operations and hence do not have
any commit/abort dependencies (ii) we use the shadow paging technique while updating the
value of the data items, so that if a transaction aborts, instead of rollbacks, all the data items are
restored to their previous values and the transaction is started with a new timestamp. However
we indirectly pay some price in the form of some delay in the strict ordering, but does not affect

the results of our performance tests.

The clients are supplied with data files consisting of a number of transactions that are ran-

domly generated, to serve as the load of transactions. The clients read transactions from the file

®This is explained in more detail in [19].

*The number of conflicting operations during these tests were small.

14

and submit operations to the server successively until all transactions have been processed. If
a transaction is aborted the client resubmits it with a new timestamp, and does so, until it is
successfully completed. The server primarily consists of a scheduler, a transaction manager and
a data manager. The scheduler which acts as the front-end, receives transaction requests from
the clients and schedules the operations based on timestamp ordering by submitting it to the
transaction manager. The transaction manager passes those operation to the data manager and
based on the return value the transaction manager takes the appropriate action. The transac-
tion manager uses many other data structures, like counters that are required for maintaining
inconsistency accumulated by transactions etc. The data manager deals with the maintenance
of object inconsistency. Objects are defined in a simple way, each has an id, a value associated
with it, and the respective OIL and OFEL. The database is maintained in the main memory
on the server side and hence writing an object is simulated by changing its value in memory.
This has been done to avoid overheads and complications in recovery if data is stored in files.
When the server is invoked, it initializes all the objects by reading the start-up data file. The
object limits are actually defined at the server side. These values can be set by the application
designer /programmer. The values of OIL and OEL are randomly generated within a specified
range, which is varied while the performance tests on object inconsistency limits are carried out.

All the data required for evaluating the performance are available at the server.

7 Objectives of the Performance Tests

The main focus of the first set of tests was on measuring the actual increase in concurrency,
resulting from the use of ESR over SR in terms of the throughputs of ESR and SR for various
MPL (multiprogramming levels) and different ranges of inconsistency bounds. We also studied
some related metrics like the number of retries(aborts), the total number of operations performed
(number of reads and writes) and the number of inconsistent operations that succeed (even after
viewing some inconsistency) at various MPL and inconsistency bounds. The tests were performed
for high, medium, low and zero values for the bounds. When we say high we mean high values
for both TIL and TEL. Note that the zero bound corresponds to the SR case. During these
tests we kept OIL and OFEL constant at high values so that they do not affect the results. As

the bounds on inconsistency increase, we would expect the throughput to increase.

The thrashing point (the MPL where the throughput begins to drop) is highly dependent
on the conflict ratio. For example, for the conflict ratios considered in [2], thrashing occurs
when the MPL is around 30 or 40. However in our case we had to use a higher conflict ratio
so that we could observe thrashing at a lower MPL (within 10 to be precise). This has a side
effect of producing reduced overall throughputs. Though we had about 1000 objects defined in
our database, most of our transactions accessed only about 20 objects to create a high conflict
ratio. In our implementation the object values range from 1000 to 9999. The following is the

approximate magnitude of the various bounds on inconsistency we used for the first set of tests.

15

| Level |t [TEL |

high-epsilon 100,000 | 10,000
medium-epsilon || 50,000 | 5,000
low-epsilon 10,000 | 1,000

Typical query ETs have about 20 operations per transaction while update ETs have around 6
operations per transaction. Hence the TEL values are on the lower side compared to the TIL

values.

We have also studied the affect of different TIL and OIL values, at a given MPL, on system
performance. In this study, first the throughput was measured by varying TIL while maintaining
the TEL at various constant levels. Next we studied the role of OIL in determining the throughput
of the system.

8 Results and Discussion

The performance curves for the various tests are included below. The tests were repeated a
few times to eliminate any disturbances caused by the workstation load and network traffic in
the LAN. Though we do not include any information about confidence intervals in our graphs,
the 90 percent confidence intervals lie within +3% percentage points of the mean value of the
performance metrics shown in the various graphs. The variation here maybe a bit higher compared
to the simulation models as there are factors like network load etc. that affect the performance
of the prototype system. In the graphs, epsilon refers to the inconsistency bounds.

40 | | T T

: : high epsilon —~<—

35 [R medium-epsilon =A==
5 5 low epsilon ¢

zero.epsilon. A—__|

30

25

20

15

10

Throughput (transactions/sec)

Multiprogramming Level

Figure 7: Throughput vs Multiprogramming Level

As expected, in Figure 7 we see that at higher bounds for inconsistency, the throughput with
ESR is much higher than that of SR. As the bounds decrease in value, ESR starts approaching SR.
However the key observation that we can make is the shift in thrashing point to higher MPL with
increase in inconsistency bounds. Thrashing occurs at a MPL of 3 in the case of lower bounds and
it shifts to a MPL of 5 at higher bounds. In all these tests, OIL and OEL were maintained at high
values so that they do not affect the throughputs. This significant shift of the thrashing point can

16

be attributed to some of the other performance metrics noted in the next three graphs. These

give us a picture of the dynamics that take place internally when the transactions are processed.

3 3 ‘ high epsilon 2—
medium epsilon =--
: low epsilon -%--
1500 ;

1000

500

of Successful Inconsistent Operations

0 2 4 6 8 10
Multiprogramming Level

Figure 8: Successful Inconsistent Operations vs Multiprogramming Level

Referring to Figure 8, we see that the number of inconsistent operations that are successful
increases with an increase in the inconsistency bounds and the MPL. It should be noted that we
do not have the case of zero epsilon here as this corresponds to the SR case where inconsistent
operations are not permitted. We see a steady increase at each level of inconsistency bound, and

this leads us to the next graph.
4500

4000
3500
3000
2500
2000

1500

Number of Aborts (Retries)

1000
500

0

Multiprogramming Level

Figure 9: Number of Aborts vs Multiprogramming Level

The number of aborts (retries) that take place in the systems at various levels is shown in
Figure 9. A noteworthy observation here is that the number of aborts at high inconsistency
bounds is almost zero. As expected we see that at lower bounds the number of aborts shoots up

rapidly and for the case of zero epsilon (SR) the number is very high.

Another performance metric that goes still deeper into the system performance is the total
number of operations performed, which is the sum of the read and write operations. This is very
useful because it gives an indication of the effort that is wasted by the system, when transactions

abort, thereby affecting the throughput. Figure 10 gives the total number of operations executed

17

at various MPL values. Since we noted in the previous graph that the number of aborts is prac-
tically zero for the case of high inconsistency bounds, the total number of operations performed

in this case should be the same as the actual number of operations required by the transactions.

40000 T T T T
: high epéilon A
35000 = . “medium epsilon 3=
: : : low epsilon -x--
30000

25000

20000

15000

Total # of Operations

10000

5000

0

Multiprogramming Level

Figure 10: Number of Operations (R+ W) vs Multiprogramming Level

Anything that is above this figure gives a measure of the number of useless operations executed
by the system, causing a decrease in the throughput. Hence all these graphs give us some insight

into the quantitative performance improvement that can result from ESR.

Now we come to our next set of tests where we see how various inconsistency bounds indi-
vidually affect the performance of ESR. We have studied the affects of the import inconsistency
bounds i.e. TIL and OIL. All these tests have been performed at a constant MPL of 4.

First we look at the affects of TIL.

40 ! ! ! !
1 1 high TEL -2—

3 medium TEL ~@--
2 ‘ ‘ ‘ low TEL ->--
A I e A A .
= : : : :
K]
5 25
5]
2
s 20
2 15
<
2
o 10
e
|_

5

0 | | | |

0 20 40 60 80 100

Transaction Import Limit (x 1000)
Figure 11: Throughput vs Transaction Import Limit (TEL varies)

Figure 11 shows the variation of throughput with increase in TIL when TEL is held at various
constant levels. As expected, the throughput increases with increase in TIL. The slope is the
highest at smaller to medium values, since a lot of transactions fall into these categories. But
there are some other transactions which are a few in number but need high inconsistency bounds

to succeed. They are covered by the higher values of the inconsistency bounds.

18

The next set of tests study the affect of OIL on the throughput and we have some interesting
observations here. Apart from object and transaction inconsistency limits, the average change in
value due to a write also affects the throughput. Let the average change in value due to a write
be denoted by w. Hence in these graphs, instead of mentioning the absolute value of the bounds,
we parameterize it, and specify it in terms of w (we have only done an approximate evaluation

of this, as it is difficult to determine this precisely).
30 T T T T T T T T

' high TIL (20w) -a—
i | i medium TIL (10w) ‘3--
o L)

251
20
15

10

Throughput (transactions/sec)

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Object Import Limit (in units of w)

Figure 12: Throughput vs Object Import Limit (TIL varies)

Figure 12 shows the variation of throughput with respect to OIL. The interesting observation
here is that in the case of low to medium TIL, the throughput is low at both low and high values
of OIL but higher at medium values of OIL. At low OIL, very little inconsistency is tolerated and
the throughput is low. At zero OIL, no inconsistency is tolerated on any operation and hence the

throughput correspond to the SR case.
50 T T T T T T T T

45 . highTIL (20w) A
T medium TIL (Tow) -
low TIL (2w) x|

40
35
30
25
20
15

Avg. # of operations per transaction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Object Import Limit (in units of w)

Figure 13: Average number of operations per transaction (TIL varies)

Figure 13 goes into the details of the system that can possibly explain this observation. It
gives the average number of operations that are executed for a transaction to complete and this
includes the number of operations executed in aborted transactions (which is essentially a waste).
For a moment if we ignore TIL, as OIL increases, the number of operations per transaction should

keep decreasing and that is what we see in the case of high TIL. However if we consider TIL,

19

we see its effect slowly creeping in as OIL increases. In fact, for the low TIL case after a certain
value of OIL the number of operations per transaction increases. The drop in the throughput at
low TIL when the OIL is high can be attributed to the fact that more number of operations are
executed by an aborted transaction in this case before it is aborted. The reason is as follows -
some operations that cause high inconsistency are not allowed by medium OIL. As a result, the
operation fails and the transaction is aborted and resubmitted again. However in the case of high
OIL these operations which view high inconsistency are allowed to pass through. In most cases,
due to such high inconsistency operations, the total inconsistency viewed by the transaction is
drastically increased and because of the low TIL the transaction inconsistency bound is violated
and the transaction has to be aborted. Thus the throughput is lower because of the wasted efforts
in executing more operations per aborted transaction. Even though the curves indicate that this
happens only at low values of TIL, we conjecture that for high TIL also the same would have
been observed had we tested with even higher values of OIL. In practice, the object inconsistency
limits have to be selected by the application designer/programmer based on the range of values
the objects can take and the desired TILs.

We see from the various performance curves that the performance of ESR improves with
increases in the transaction inconsistency bounds. Most performance tests yielded the expected
results. Interesting observations include the shift in the thrashing point and affects of object
inconsistency bounds on performance at different TILs. The actual quantitative performance
improvement in an application environment would depend upon the nature of the applications,
the typical conflict ratio in those environments etc. In practice, there has to be a compromise

between the desired accuracy of the results and the throughput.

9 Conclusion

Previous literature on ESR specified inconsistency bounds with respect to transactions [21] or
objects [19]. We have introduced the notion of hierarchical inconsistency bounds that allows
inconsistency to be specified at different levels. Using a practical example we demonstrated that
with this, a user could gain more flexibility in specifying the inconsistency viewed by ETs. We have
also presented detailed mechanisms to control the inconsistency seen by ETs within the specified
bounds at different levels of a hierarchy. Wu et. al [21] have suggested some general ways by
which the amount of inconsistency can be controlled in ETs. However our notion of hierarchical
inconsistency control attempts to provide a finer-grained approach to controlling inconsistencies
in ETs.

Several notions of correctness weaker than SR have been proposed previously and evaluated.
Ramamritham and Chrysanthis, present a review of these in [18]. Since no work has been done
to determine the performance gains from ESR, we have presented an evaluation of the quanti-
tative performance improvements resulting from ESR, obtained through a series of performance
tests on our prototype system. For simplicity, we used (i) a two-level hierarchy for inconsistency
specification and control i.e. the transaction level and the object level and (ii) queries that cal-
culate the sum of the values read. Apart from studying the throughput, we studied many other

performance metrics (like number of aborts, number of successful inconsistent operations etc.)

20

that gave us a picture of the dynamics that take place internally when the transactions are pro-
cessed. While studying the performance of ESR, we made a couple of important observations.
First, while studying the throughput of the system at various multiprogramming levels, we noted
that the thrashing point shifts to a higher multiprogramming level when inconsistency bounds
are raised. Another interesting observation is that, at a particular multiprogramming level, for
a given transaction inconsistency bound, the peak throughput occurs at some intermediate value

of the object inconsistency bound rather than at low or high values.

This shows that in practice, there has to be a compromise between the desired accuracy of
the results with respect to individual objects and the throughput. So far, we have focussed our
attention on a centralized server for the performance tests. It will be worthwhile to evaluate ESR

in the case of a distributed system with data replication.

Acknowledgements

The Digital Equipment Corporation sponsored Project Pilgrim at the University of Massachusetts
provided us the environment for conducting the performance tests.

References

1. R. Agrawal, M.J. Carey and M. Livny. Concurrency control performance modeling: Al-
ternatives and implications. ACM Transactions on Database Systems, 12(4): pp 605-654,
December 1987.

2. B. R. Badrinath and K. Ramamritham. Performance Evaluation of Semantics-based Mul-
tilevel Concurrency Control Protocols. In Proceedings of ACM SIGMOD Conference on
Management of Data, pp 163-172, May 1990.

3. D. Barbara and H. Garcia Molina. The case for controlled inconsistency in replicated data.
In Proceedings of the Workshop on Management of Replicated Data, pp 35-42, Houston,
November 1990.

4. D. Barbara and H. Garcia Molina. The demarcation protocol: A technique for maintaining
arithmetic constraints in distributed database systems. Technical Report CS-TR-320-91,
Computer Science Department, Princeton University, April 1991.

5. P.A. Bernstein, V. Hadzilacos and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison Wesley Publishing Company, first edition, 1987.

6. R. Cordon and H. Garcia-Molina. The Performance of a Concurrency Control mechanism
that exploits semantic knowledge. In Proceedings of the 5th International Conference on
Distributed Computing Systems, pp 350-358, March 1985.

7. W. Du and A. Elmagarmid. Quasi serializability: a correctness criterion for global concur-
rency control in Interbase. In Proceedings of the International Conference on Very Large
Data Bases, pp 347-35b, Amsterdam, The Netherlands, August 1989.

8. P. Franaszek and J.T. Robinson. Limitations of concurrency in transaction processing.
ACM Transactions on Database Systems, 10(1): pp 1-28, March 1985.

9. H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed
database. ACM Transactions on Database Systems, 8(2): pp 186-213, June 1983.

21

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM SIGMOD Conference on
Management of Data, pp 249-259, May 1987.

H. Garcia-Molina and G. Wiederhold. Read-only transactions in a distributed database.
ACM Transactions on Database Systems, 7(2): pp 209-234, June 1982.

T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM
Computing Surveys, 15(4); pp 287-317, December 1983.

H. Korth, E. Levy and A. Silberschatz. A formal approach to recovery by compensating
transactions. In Proceedings of the 16th International Conference on Very Large Data Bases,
Brisbane, Australia, August 1990.

H. Korth and G.D. Speegle. Formal model of correctness without serializability. In Pro-
ceedings of 1988 ACM SIGMOD Conference on Management of Data, pp 379-386, May
1988.

E.Levy, H. Korth and A. Silberschatz. A theory of relaxed atomicity. In Proceedings of the
1991 ACM Symposium on Principles of Distributed Computing, August 1991.

C. Pu and A. Leff. Replica Control in distributed systems: An asynchronous approach. In
Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data,
pp 377-386, Denver, May 1991.

C. Pu and A. Leff. Autonomous transaction execution with epsilon-serializability. In Pro-
ceedings of RIDE Workshop on Transaction and Query Processing, Phoenix, February 1992.

K. Ramamritham and P. K. Chrysanthis. In Search of Acceptability Criteria: Database
Consistency Requirements and Transaction Correctness Properties. (to appear in) Dis-

tributed Object Management, edited by Ozsu, Dayal, and Valduriez, Morgan Kaufmann,
1992.

K. Ramamritham and C. Pu. A Formal Characterization of Epsilon Serializability. Technical
Report 91-92, Department of Computer Science, University of Massachusetts, Dec. 1991.

A. Sheth and M. Rusinkiewicz. Management of interdependent data: Specifying dependency
and consistency requirements. In Proceedings of the Workshop on Management of Replicated
Data, pp 133-136, Houston, November 1990.

K.L. Wu, P.S. Yu and C. Pu. Divergence Control for Epsilon Serializability. In Proceedings
of Fighth International Conference on Data Engineering, pp 506-515, Phoenix, February
1992.

22

