AUTOMATED FORMAL ANALYSIS METHODS
FOR
CONCURRENT AND REAL-TIME SOFTWARE

James C. Corbett

COINS Technical Report 92-48
September 1992

Computer Science Department
University of Massachusetts
Amberst, MA 01003

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of
DocToRr oF PHILOSOPHY

September 1992

Computer Science

This work was supported by the National Science Foundation under grants CCR-8806970 and CCR-9106645 and

the Office of Naval Research under grant N00014-89-J-1064.

r'—"g y—*hg r“‘—lg r———g

T3

3 — 3 —3 —3 T3 —13

ACKNOWLEDGEMENTS

Most of all, I would like to thank my advisors George Avrunin and Jack Wileden
for the support and instruction they have given me during my graduate career. They
encouraged me when I needed it, showed me how to express my ideas clearly, and
gave me a sense of what is important in research. I have learned a lot from both of
them.

I would also like to thank the other members of my committee, David Mix-
Barrington and Krithi Ramamritham, for a careful reading of this document and
helpful suggestions for its improvement. I would especially like to thank Dave, who
was my advisor for the first two years of my graduate study and first inspired me
with an enthusiasm for research.

Finally, I would like to thank Allyn Polk, who introduced me to constrained
expressions, and Ugo Buy, who spent a lot of time bringing me up to speed on the

project.

ABSTRACT

AUTOMATED FORMAL ANALYSIS METHODS

FOR CONCURRENT AND REAL-TIME SOFTWARE
SEPTEMBER 1992
JAMES C. CORBETT, B.S., RENSSELAER POLYTECHNIC INSTITUTE
M.S., UNIVERSITY OF MASSACHUSETTS

PH.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor George S. Avrunin

Professor Jack C. Wileden

As the use of concurrent and concurrent real-time software systems in safety-
critical applications becomes widespread, the verification of their correctness has
become an important concern. Unfortunately, analysis of these systems has been
stymied by the explosive number of states they possess. The constrained expres-
sion approach; which uses an inequality-based technique to avoid the enumeration
of these states, showed promise for analyzing large systems, but was incapable of
verifying many important properties of interest to designers. For example, properties
involving the order of the events in a concurrent system (e.g., mutual exclusion)
could not be verified since the inequalities did not capture this information, nor could
the technique verify liveness properties, since these require reasoning about infinite
executions. | have developed extensions to this inequality-based technique that allow
the verification of these more complex properties. In addition, I have completely
automated an earlier extension of this technique for deriving bounds in concurrent
real-time systems run on a uniprocessor and I h:cwe extended this technique to the
maximally-parallel multiprocessor setting. Most importantly, I have demonstrated
the feasibility of these extensions by implementing them in an automated tool and

using this tool to analyze several sample systems.

-1 _ 3

1

— 13

A

~—3 —3 T3 ~—3 "3 —3% —3 ~—3 —% —3 —3 3 —3

Page

ACKNOWLEDGEMENTS . .« v ot ot v e e e e e e e e e s, v

LIST OF TABLESttt ittt et e e e s s, X

LIST OF FIGURESottt ettt e e e e e e e e e xi
CHAPTERS

1. INTRODUCTION ottt e e e e e e e e e s, 1

1.1 Propertiesof Interest 2

1.2 Contributions of this Dissertation 6

2. RELATED WORKot e e 11

2.1 General Approaches 11

211 Testing e 11

2.1.2 Analysis 13

2.1.3 Verification 15

2.2 Concurrency Analysis 17

2.2.1 State Space Reduction Approaches 18

2.2.2 Necessary Condition Approaches 22

2.2.3 Sufficient Condition Approaches 23

2.2.4 Compositional Approaches 24

3. CONSTRAINED EXPRESSIONS . . o o v vttt et e et e e e e e e e e e 27

3.1 Formalism 27

3.2 Analysis Technique 29

3.3 Toolset 36

331 TheDerniver 37

3.3.2 The Constraint Eliminator 42

3.3.3 The Inequality Generator 45

3.3.4 IMINOS 48

3.3.5 The Behavior Generator 48

TABLE OF CONTENTS

vii

m
4. VERIFYING LARGER SYSTEMS v vttt it 51 |
4.1 Representing Identical Tasks 51 e\’
4.2 Counter Variables, 57 _
4.2.1 Comparison with Constraint Elimination 66 -
4.3 Summary e e e e e e e e e e e e 70
5. VERIFYING MORE COMPLEX PROPERTIES. 71 ™
5.1 Patternsof Events 71 !
5.1.1 SequenceofEvents 72 e
5.1.2 Disjunctions of Sequences 81 |
5.2 Infinite Traces 83 -
521 Fairmess. 92 .
5.3 w-star-less Queries e 94 _
5.4 Regular and w-Regular Queries 97 F‘
55 Crtical Races, 112 :
5.5.1 Basic Technique e e e e e e 112 ™)
552 Multi-Way Races 120 "
56 Summary e e e e 121 j
6. DERIVING BOUNDS FOR REAL-TIME SYSTEMS 123 !
6.1 Uniprocessor Setting 123 =y
6.1.1 Basic Techniqueo oo vii e, 124 |
6.1.2 CyclicFlows 125
6.1.3 Omitting the Initial Interval 126 j
6.14 PeriodicTasks 129 o
6.1.5 Comparison with the Earlier Technique 130 -
6.2 Multiprocessor Setting 131 ’
6.2.1 Calculating Parallel Execution Time 131
6.2.2 Obtaining a Bound Over All Executions 132 rj
6.2.3 Finding An Upper Bound on the Time Between Events . . . 142 :
6.2.4 Tighteningthe Bound 143 -
6.3 Summary e 148 .
7. EXPERIMENTAL EVALUATIONttt 149 -
7.1 Implementation 149 |
7.1.1 Modifications to the Toolset 150 ~
7.1.2 Marking Algorithm 152 {
713 Sharing e 157 '
7.1.4 Other Optimizations 160

—3

3

~3 3 ~—1 3 T3 3

7.2 Experiments e 161

7.2.1 Experiments with Identical Tasks and Counter Variables. . . 162

7.2.2 Experiments with w-star-less Queries 166

7.2.3 Experiments Detecting Critical Races 186

7.2.4 [Experiments Deriving Uniprocessor Bounds 190

7.2.5 Experiments Deriving Multiprocessor Bounds 199

7.3 Summary e e e 207

8. CONCLUSION . . .t ittt e et e e e e e et e e e e 208
APPENDICES

AL ABBREVIATIONS . . .o ittt ittt e et e e 211

B. QUERY LANGUAGE SYNTAX . .ottt ittt ittt it e it e i 212

BIBLIOGRAPHYc.o..... B 214

ix

Table
3.1
4.1
7.1
7.2
7.3
7.4

7.5

LisT OF TABLES

Page
Interpretation of Event Symbols 41
Inequality Added to Enforce End Condition 60
Toolset Performance on Coupled Resource Allocator 165
Toolset Performance on Coterie Mutual Exclusion 185
Toolset Performance on Race Detection 189
Toolset Performance on Uniprocessor Bounds 198
Toolset Performance on Multiprocessor Bounds 205

.3

3

3 —3 3

—3

T3 T3 T3 73 73

~3 T3 T3 T3 3

Figure
1.1
3.1
3.2
3.3
3.4
3.5

3.6

3.7
3.8
3.9
3.10
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10

LisT oF FIGURES

Page
Example to Illustrate Properties of Interest 3
Example and its Inequality System 32
Basic Algorithm 35
Diagram of Constrained Expression Toolset 37
Fork and Philosopher Tasks from Dining Philosophers in CEDL . .. 39

Two Task Expressions Derived From the Dining Philosophers Problem 40

Some Constraints Generated by the Toolset from the Dining Philoso-

phers System 41
Segmentoftask T 43
Part of the Task Expression for Task T 43
Dataflow Constraint for Local Variable flag 44
Part of Task Expression After Elimination of Dataflow Constraint . . 44
CEDL for Example with Identical Tasks 53
FSAs for Example with Identical Tasks 53
Inequality System for Example with R Identical Tasks 54
Algorithm for Identical Tasks 55
Select Statement for End Condition Example. 60
Ada for Coupled Resource Allocator Example 62
FSAs for Coupled Resource Allocator Example 63
Inequality System for Coupled Resource Allocator Example 65
Algorithm for Counter Variables 67
Example Where Counter Variable Technique Fails 69
xi

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
6.1
6.2
6.3
6.4
6.5
6.6

Example for Sequence Queryo 72
Inequality System to Find Trace 73
Inequality System for Query ba 7
Algorithm for Sequence o oL 78
Example for Infinite Traces. 86
Inequality System for a Potentially Infinite Trace 89
Algorithm for Finite and Perpetual Intervals 90
CEDL Code for M3 o v e e e s e e e et 94
Visualizing the Flowgraph 99
Algorithm for FSA Query (Part1) 101
Algorithm for FSA Query (Part2) 102
Algorithm for Biichi Automaton Query (Part1) 108
Algorithm for Biichi Automaton Query (Part2) 109
Algorithm for Biichi Automaton Query (Part 3) 110
Alternation Example (Incorrect Version) 114
Inequality System for Alternation Example (Incorrect Version) 115
Alternation Example (Correct Version) 117
Inequality System for Alternation Example (Correct Version) 118
Algorithm for Critical Race 119
Example with Unreachable Segment 127
Inequality System to Find Segment from Afteratod 128
Wait Graph Showing Critical Path 133
Resource Contention Example 136
Potential Wait Graph for Resource Contention Example 137
Inequality System for Resource Contention Example 138

~~3 —3 1.

~~3 3

6.7
6.8

6.9

7.1
7.2
7.3
74
7.5
7.6
.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22

Algorithm for Multiprocessor Bound (Part 1) 139
Algorithm for Multiprocessor Bound (Part 2) 140
Example of Cycle in Potential Wait Graph Created by Cross Arcs . . 144
Example for Marking Algorithm 153
Algorithm to Markan FSA 154
Markings of FSAs During Marking Algorithm 156
FSAs After Marking Algorithm 156
Example for Interval System Sharing 159
Inequality System for Interval Sharing 160
CEDL for Coupled Resource Allocator Example 164
CEDL for Customer and Guard in Version One 169
Query for Violation of Mutual Exclusion in Version One 170
Query for Deadlock in Version One 172
Query for Starvation in Version One (No Fairness) 172
Query for Starvation in Version One (Fairness Enforced) 173
CEDL for Customer in Version Two 174
CEDL for Guard in Version Two 175
Query for Queuing Violation in Version Two 177
CEDL for Customer in Version Three 178
CEDL for Guard in Version Three 179
Query for Violation of Mutual Exclusion in Version Three 180

Simplified Query for Violation of Mutual Exclusion in Version Three. 180

Query for Starvation in Version Three 181
CEDL for Guard in Version Four 182
Simplified Query for Starvation in Version Four 184

7.23 Query for Deadlock in Version Four
7.24 Query for Race in Coterie Mutual Exclusion System
7.25 CEDL for Two Customer Gas Station (Part 1)
7.26 CEDL for Two Customer Gas Station (Part 2)

7.27 Query for Longest Interval Between Customer One Prepaying and
Receiving Change

7.28 Query for Shortest Interval Between Successive Pump Activations . .
7.29 CEDL for Resource Pool Example (Part 1)

7.30 CEDL for Resource Pool Example (Part 2)

7.31 Query for Longest Interval Between Customer One Entering and Ex-
iting Resource Pool L o L oL,

7.32 Prefix of Trace of Resource Pool Example Produced by Query max-2

7.33 Query for Longest Interval Between Customer a Requesting its Second
Key and Using the Resource

7.34 Prefix of Trace of Coterie Mutual Exclusion Example Produced by
Querymax=1. e e e

7.35 Query for Longest Execution in Maximally-Parallel Setting
7.36 Remote Server Example

7.37 Reactor Monitor Example

195

196

198

o3 13

I

3

3

21

3

3 3 3

CHAPTER 1

INTRODUCTION

As the use of concurrent and concurrent real-time software systems in safety-
critical applications becomes widespread, the verification of their correctness has
become an important concern. Unfortunately, assessing the correctness of these
programs is difficult. Establishing the correctness of sequential programs, even in
the weakest sense of proving conformance to specifications, is hard enough without
the complexity added by concurrency. Manual reasoning about the many possible
orderings of events that can occur in concurrent systems is error-prone and existing
techniques overwhelm the analyst with detail when applied to systems of realistic
size.

Therefore, to build larger and more reliable concurrent systems, future software
developers will need automated tools that facilitate this reasoning. Such tools should
aid the software developer in establishing that an implementation of a piece of software
meets its specification. The specification of a concurrent program will contain different
types of requirements. Some will specify the required input/output behavior of the
program. Others will specify concurrency properties, such as freedom from deadlock.
Still others might specify timing requirements.

The work presented here focuses on the validation of concurrency and timing
properties of concurrent software by automated analysis tools. My goal is to build
practical tools that can help software developers establish whether a concurrent
system has a certain concurrency or timing property. Practicality requirgs that these
tools have reasonable running times on realistically-sized programs and be largely

automatic (i.e., not require extensive user assistance).

2

The constrained ezpression approach [8, 10] to the analysis of concurrent systems
shows promise as a practical analysis technique. Unlike most, this analysis technique
does not require the enumeration of a potentially explosive number of system states,
and, unlike logic-based proof techniques, it can be feasibly automated with current
technology. My thesis significantly extends this approach, mainly in terms of the
range of properties that these systems can be shown to possess.

The rest of this chapter gives an overview of the concurrency and timing properties
of interest to system designers, together with a high-level description of the contribu-
tions that this dissertation makes toward the practical verification of these properties.
Chapter 2 outlines general methods for validating software and discusses closely
related work, while Chapter 3 gives a detailed review of the constrained expression
approach, which this thesis extends. The next four chapters compose the body of the
dissertation. Chapter 4 describes two techniques that allow larger concurrent systems
to be analyzed. Chapter 5 describes several techniques for verifying a range of more
complex concurrency properties. Chapter 6 describes techniques for deriving bounds
on the time between events in concurrent real-time systems. In Chapter 7, I describe
the implementation of a prototype tool automating many of the techniques developed
in Chapters 4, 5 and 6 and present the results of experiments in which this tool is
applied to several sample systems. Finally, Chapter 8 concludes by discussing the

limitations and future extensions of the work.

1.1 Properties of Interest

Before delving into analysis techniques for concurrent and real-time software, I
first review the properties of such software that these techniques seek to establish. I
divide these properties into concurrency properties and timing properties.

Concurrency properties involve the possible sequences of interactions between
the tasks, or processes, composing the concurrent program. Each property is either

desirable or undesirable. Further, each property is classified as a safety property

3% ~—3 ~§ T3 7% —3 Y73 T3 73 T3 —3 T3

—3 T3 T3 T3 713

—3 "3

3
task body one is task body two is task body three is
begin got_b:boolean:=false; begin

loop begin two.B;
two.A; while not got_b loop -- Critical
== Critical select -- Section
-- Section accept A; end three;

end loop; -- Critical

end one; -- Section
or
accept B;

got_b := true;
end select;
end loop;
end two;

Figure 1.1. Example to Illustrate Properties of Interest

or a liveness property. Informally, safety properties are statements of the form
“Something bad will never happen” whereas liveness properties are statements of
the form “Something good will eventually happen.” An execution of the concurrent
program up to some point (where the “bad thing” has happened) can show the
violation of a safety property, but only a full execution can show the violation of
a liveness property. Some concurrency properties are quite specific; these include
deadlock, starvation, critical races, and mutual exclusion. More general properties
concern the reachable states of the system or possible patterns of events. The following
paragraphs will discuss each of these properties in turn, using the small concurrent
system in Figure 1.1 as an example. The system is coded in an Ada-like specification
language used by the constrained expression tools. For those not familiar with Ada,
statements such as two.A and accept A are matching synchronous communication
statements for entry A of task two. A task reaching one of these statements must
wait for the other task to reach a matching statement before both can then proceed.
The select statement allows a nondeterministic choice between the communication
statements it contains.

In the context of communicating tasks, deadlock is the situation in which one

or more tasks become permanently blocked waiting for communication that cannot

4

occur. Typically, several tasks are involved in a deadlock, each task waiting to
communicate with another in some way that is not currently possible. A single
task can be said to deadlock if it waits for communication with a task that will
never be willing to engage in that communication. In the example of Figure 1.1,
once the B communication has taken place, task one is deadlocked waiting for an A
communication that is no longer possible since task two has terminated. Freedom
from deadlock is generally a desirable safety property.

Related to deadlock is the concept of starvation. A task is said to starve waiting
for a communication in an infinite execution if it never makes progress. In this
case, it is not that the communication cannot occur, it is simply the case that the
communication never does occur because of the way communication partners are
selected whenever there is a choice. In the example of Figure 1.1, it is possible for
task three to starve waiting for the B communication if task two chooses to engage
in the A communication forever. Absence of starvation is usually a desirable liveness
property.

A critical race is a situation in which either of two statements from different
tasks can execute before the other, but the behavior of the concurrent program will
be affected by the outcome of this “race”. Sometimes critical races are a natural part
of a system, as would be the case if the two statements were allocations of a resource
to competing customers. They are frequently the source of errors, however, when the
programmer assumes that one specific task always wins the race. For example, one
task may pass data to another by writing it to a global variable that the other then
reads. If nothing prevents the read from executing before the write, then the critical
race between these two statements could result in incorrect data being passed. Even

without global data, critical races can be present in the communication protocol used
by tasks in a concurrent program when two tasks race to communicate with a third
task. In the example of Figure 1.1, tasks one and three race to communicate with

task two. Absence of unintended critical races is a desirable safety property.

-

.y 3

-3

o

3 T3 7 3

vf“g r——-—g r"“g

5

Mutual exclusion requires that two tasks never execute certain sections of their
code, called critical sections, at the same time. In the example of Figure 1.1, mutual
exclusion is not enforced between the critical sections of tasks one and three, but
is enforced between the critical sections of tasks two and three. Usually used to
guarantee the integrity of a shared resource, mutual exclusion is a desirable safety
property.

More general properties, subsuming all of the above, can be expressed in terms
of the possible states or sequences of events of the system. Detection of properties
like deadlock or violation of mutual exclusion are specific instances of the reachability
problem, which asks whether the system can reach a state having some property (e.g.,
all tasks are blocked, two tasks are both in their critical sections, etc.). Properties
involving sequences of events are usually expressed in temporal logic [62], but can also
be expressed using regular expressions or automata. For example, a liveness property,
such as absence of starvation, might be expressed by a formula that requires that a
request for a resource eventually be followed by the granting of that resource to the
requesting task.

The second group of properties to review are those relating to timing require-
ments. Interest in formal verification of real-time systems is more recent than interest
in verification of concurrent systems and perhaps as a result there are fewer standardly
assessed timing properties. The most common timing information gathered from
analysis is upper and lower bounds on the time that can elapse between events in
a program [26]. This information can be used to determine bounds on the execu-
tion time of program segments, which in turn can be used to guarantee that tasks
complete before their deadlines. More complex timing requirements can be expressed
in a real-time logic, which has predicates, variables, and quantifiers over relative or
absolute time. A typical requirement is that a particular action be performed once

in every period of time p.

1.2 Contributions of this Dissertation

This section summarizes the contributions of this dissertation. These are pri-
marily extensions to the constrained expression analysis technique that allow the
verification of many important properties that the original technique was unable to
address. Like the work with the original technique described in [8], my extensions fo-
cus on concurrent systems that use synchronous communication, but can be adjusted
for use on systems with an asynchronous communication mechanism (though I have
not yet experimented with the techniques on such systems).

Since most concurrent systems can be modeled as finite state machines, the
main obstacle to verifying the correctness of these systems is not undecidability but
intractability. By enumerating the possible states of a concurrent system, all of the
properties in Section 1.1 are decidable. This enumeration is usually intractable in
practice, however, due to a state explosion: the number of system states is typically
exponential in the number of tasks in the system.

A variety of techniques have been proposed to overcome this state explosion (many
of these are outlined in Section 2.2). Among them is the constrained expression
approach, described in Chapter 3, which has been successfully applied to a variety of
concurrent systems, some having as many as 10*” reachable states [7, 8]. By generating
a system of linear inequalities that represent necessary conditions for the existence
of an execution with certain properties, the approach avoids the enumeration of the
system states altogether.

The approach described in (8] was limited, however, to the verification of proper-
ties expressible in terms of the total numbers of various events occurring in a finite
execution. Although freedom from deadlock can be so expressed, many important
properties of interest cannot be. Since the inequalities do not capture the order of the
events speciﬂed, properties involving the order of events, such as mutual exclusion,
could not be directly verified. Also, since a violation of a liveness property is an

entire execution, liveness properties could not be verified for concurrent systems

7

having infinite executions, as most (conceptually) do. Critical races, perhaps the
most common source of errors in concurrent software, could not be detected by the
technique since the presence of a race must be shown by displaying two executions in
which different tasks win the race.

As for timing analysis, the approach had been extended to derive upper and
lower bounds on the time that can elapse between the occurrence of two events in
a concurrent real-time program [11], but the bounds derived by this technique were
good only in a uniprocessor setting. Also, the analysis required significant assistance
from the analyst and was therefore not practical on systems of significant size.

My contributions extend the original constrained expression analysis technique in
several ways, removing many of its limitations and extending the size of the systems
that can be analyzed. These contributions can be grouped into three categories: ex-
tensions allowing larger systems to be analyzed, extensions allowing new concurrency
properties to be verified, and extensions of the timing analysis. I discuss each of these
in turn.

I have developed two techniques that allow larger systems to be analyzed. The
first technique allows efficient reasoning about systems with many identical tasks.
The second technique allows efficient reasoning about tasks with a certain common
type of variable (a counter) having a large range.

Many concurrent systems have a large number of identical tasks. Researchers
using reachability analysis have already noticed that the size of the state space of
such a system can be significantly reduced using this symmetry. I have developed
a way to represent an essentially arbitrary number of identical tasks using only one
task in the context of a constrained expression analysis. I say “arbitrary” because
only some coefficients in the inequality system change as the number of copies of a
task increases—the size of the inequality system and, it appears, the time to solve
the system, remain constant (the limits here are imposed by numerical stability in

solving the inequality system).

8

I have also developed a way to represent the value of a program variable that
represents a counter (i.e., a variable that is only incremented and decremented) using
an integer linear programming variable. Typically, the size of a task’s representation
(as an automaton or regular expression) increases with the number of values its
program variables can take on. With this technique, the size is independent of the
ranges of the task’s counter variables. I have conducted an experiment with these
two techniques for analyzing larger systems on a resource allocator problem that has
a deadlock only if there are at least n customer tasks, where n can be very large. The
toolset correctly determined if deadlock was possible in versions with 500 and 1000
identical customer tasks. Furthermore, the analysis times for these two versions were
very small, and exactly the same.

The second set of extensions to the original analysis technique allows new con-
currency properties to be verified. Three new types of properties can now be verified:
safety properties involving the order of events, liveness properties, and critical races.
I briefly describe each of these extensions.

I have extended the constrained expression approach to reason about executions
in which events occur in a specific order. The original analysis technique can verify
properties that can be expressed in terms of the total numbers of different events in
an execution, but cannot verify properties involving only the order of those events.
For example, it can determine whether there exists an execution in which two specific
events occur, but it cannot determine whether there exists an execution in which
a particular one of these events occurs before the other. Since properties such as
mutual exclusion involve the order of events (e.g., user 2 may not gain access to a
shared resource after user 1 has gained access, but before user 1 has relinquished

access), they cannot be addressed directly by the original technique. By dividing the
execution into segments, generating an inequality system for each segment, and then
connecting these systems together, I can determine whether there exist executions in

which certain events occur in a specific order.

3 3

I SR

3

3 T3 T3 773

3 ~ 3 T3 T3 73

"3

3 1

9

The constrained expression formalism uses finite strings to represent the behavior

" of a concurrent system, thus the original analysis technique, based on this formalism,

could not reason about infinite executions. As a result, the technique could not ad-
dress liveness properties since an execution violating such a property may be infinite.
By using perpetual symbols, symbols that represent the infinitely repeated occurrence

of an event, I have developed a way to represent an infinite execution approximately

using a finite string, allowing the technique to verify liveness properties.

Another extension to the original technique can aid in the detection of critical
races. The new technique can determine whether two tasks can race to communicate
with a third task. While the original technique generated an inequality system
representing necessary conditions for the existence of a single execution, this new
technique generates two inequality systems, connected appropriately, as necessary
conditions for the existence of two closely related executions in which different tasks
win the race.

The third set of extensions to the original technique improve its application for
timing analysis of concurrent real-time systems. The two major extensions here
are automating a technique for deriving bounds on concurrent programs run in a
uniprocessor setting, and extending this technique to derive bounds when the program
is run in a maximally-parallel multiprocessor setting.

While the constrained expression analysis technique has primarily been applied
to analyze logical properties of concurrent programs, it can also be used to analyze
certain timing properties of concurrent real-time systems. Previously, the constrained
expression formalism and analysis technique had been extended to derive upper and
lower bounds on the execution time between two events of a concurrent program run
in a uniprocessor setting. Much of the analysis had to be done manually by the
analyst, however, so the approach was limited to use on systems small enough for

this to be manageable. By using additional integer programming variables and a

10

graph marking algorithm, I have completely automated this analysis and improved
the quality of the bounds obtained.

I have also extended this work to a multiprocessor model. As a first step towards
analysis in a general multiprocessor setting, I have developed a technique for the
simplest case where each task has its own processor (i.e., mazimal parallelism).
The technique involves generating another set of equations that find the parallel
execution time of an execution by finding the critical path through that execution.
The equations from the uniprocessor analysis technique, which find the execution
itself, are then combined with these new equations so that a bound on the parallel
execution time of any execution is found by obtaining the optimal integral solution
to a linear system.

Believing that the value of formal methods for software engineering lies in their
practical application, I have built a prototype tool implementing these techniques as
part of the constrained expression toolset (8] and empirically validated the feasibility
of these techniques as the basis for automated analysis tools. Further experiments in
which the system size is scaled up, like those done with the original technique in [8],
are needed to assess fully the practicality of these techniques. Nevertheless, the great
success of the constrained expression approach in analyzing a variety of types and
sizes of concurrent systems, along with my preliminary experience with these new
techniques, leaves me optimistic that practical analysis tools that can automatically

verify complex properties of large software systems are not long in coming.

3 3 T3 73

CHAPTER 2

RELATED WORK

This chapter summarizes related work. Section 2.1 presents a general overview
of approaches for assessing the correctness of software, while Section 2.2 focuses on

techniques for concurrency analysis, the work most closely related to my own.

2.1 General Approaches

I divide techniques for assessing the correctness of software into three categories:
testing, analysis, and verification. Testing involves repeatedly running the program
under varying circumstances in the hope that, if the program has an anomalous
property, then some behavior of the program in which this is manifest will be observed.
Analysis determines whether a program has a certain property by reasoning about its
possible executions. Verification involves constructing a proof in a formal system that
the system has a certain property. The boundaries between these three categories
are fuzzy and the terminology, reflecting a lack of consensus in the field, is not
completely standard. Another common categorization divides the approaches into
two groups: dynamic techniques that involve running the program (i.e., testing),
and static techniques that do not (i.e., verification, most analysis techniques). I will
use the former categories and briefly summarize each in the following sections. This
discussion is not an exhaustive survey of these areas; it is intended only to describe

some representative work in each category.

2.1.1 Testing

Testing is the most commonly used approach to validating software. The program
is run with a variety of inputs and its outputs and behavior are checked for confor-

mance with the specifications. Dijkstra’s now famous saying asserts that testing can

12
only prove the presence of errors, not their absence. In fact, exhaustive testing (testing
all possible inputs) can prove the absence of errors, but is too often intractable due
to the huge number of possible inputs. Testing focuses on selecting input data that
will expose faults. Methods for selecting data could depend on the problem domain
(e.g., a statistical selection of typical input), the function the program computes (e-g,
test boundary values), or the structure of the program (e.g., exercise all statements,
branches, paths, etc.). A survey of testing techniques is given in [1] and more recent
results in [46, 59].

For concurrent programs, exhaustive testing would have to consider all possible
schedules for the actions of the tasks. Since the number of schedules is usually
exponential in the number of tasks, this is almost always intractable. Instead,
concurrent programs are run over and over in the hopes that any anomalies will
surface. The work on concurrent debugging has focussed on helping the tester to
determine when an anomaly has occurred and aiding in the reproduction of that
anomaly. Helmbold and Luckham [38] have a run time monitoring system for Ada
tasking programs that can detect communications deadlock and show the tester at
what statement each task is blocked. Bates and Wileden [13] use an approach called
behavioral abstraction to reduce the amount of information recorded in a trace of
a concurrent system by detecting and recording higher level events. The Instant
Replay system of Leblanc and Mellor-Crummey [49] models all process interaction as
a shared resource with a version number. This allows the behavior of a concurrent
system to be efficiently recorded during an execution and reproduced if desired. Tai
and Obaid [70] have a procedure to convert an Ada tasking program into an equivalent
one which takes as additional input the sequence of rendezvous recorded in a trace
of the program’s execution. This new program forces that sequence of rendezvous
to occur again, allowing a human debugger to reproduce and examine the execution

sequence leading to an anomaly.

3

~3 ~3% T3 ¥ T3 T3 3% T3 Ty T3 —3

3 "3 T3

—3 ~ 3 3 ~3 T3

13

Real-time systems are most often validated using testing due to the lack of good
verification and analysis techniques. Typically, the program is run many times and
the maximum observed execution time is used as an approximation of the actual
longest execution time. Razouk and Gorlick [66] have a real-time interval logic that
allows complex timing properties to be expressed. Given a specific trace of a real-
time system, it is possible to automatically check whether the execution satisfies the
real-time specification expressed in the logic. An example specification might require

that interrupts be serviced within a specific time interval when they are enabled.

2.1.2 Analysis

Analysis of programs can range from manual inspections or walkthroughs to the
use of automated tools that detect errors or anomalies from program text. Analysis
focuses on detecting faults or possible faults in a program by reasoning about certain
elements of its possible executions. Unlike testing, the program is not actually run,
and unlike what I am calling verification, only certain properties of the program are
established (i.e., not conformance to a complete specification).

Several powerful techniques have been developed for automatically deriving useful
information about a program without running it. Dataflow analysis [57] was devel-
oped for optimization of compiled code but can also detect anomalies involving the
definition and use of variables. For example, some of these techniques can detect the
erroneous possibility that a variable value is used before it has been defined, or the
anomalous possibility that a variable value is assigned but never used. The program
dependence graph [31] incorporates information on both data and control dependence
between statements. It has been used for compiler optimization to determine when
pieces of code can be moved within a program in a way that preserves the meaning
of the program. Symbolic execution [57] of a program to a specific point generates
a boolean expression over the symbolic input values, called the path condition, that

can be used for documentation, error detection, or test data generation. To detect

14

errors with symbolic execution, the programmer would add assertions to points in the
program expressing what he/she believes to be necessary conditions on the variable
values upon reaching these points. When the symbolic executer reaches one of these
points, it verifies that the negation of the assertion at that point is inconsistent with
the path condition at that point, thus verifying that the assertion will always hold
there.

Analysis of concurrent systems has focussed on a variety of properties, such as
those mentioned in the introduction. These properties can usually be determined by
examining the full reachability graph of the concurrent system. The full reachability
graph contains all possible global states of the system, where a global state consists
of a tuple of local states of all the component processes. The local state of a process
includes both its program counter and the values of its variables. There is an edge
from one global state to another in the reachability graph if there is some single action
the system can take in the first state that leaves it in the second state. An action may
change the states of more than one process (e.g., a synchronous communication). The
full reachability graph will not be finite if one of the processes has a variable with an
infinite domain and thus is not finite state. Also, the full reachability graph contains
all possible interleavings of the actions of the component processes and as such its size
is almost always exponential in the number of processes. For these reasons, almost
all concurrency analysis techniques assume that their component processes are finite
and most do not comstruct the full reachability graph (since this is as intractable
as exhaustive testing) but rather one with only a representative set of interleavings
sufficient to verify the properties. of interest. Since this work is the most closely related
to my own, it is outlined in depth in Section 2.2.

Analysis of real-time systems has essentially consisted of bounding everything
and adding up the times. Representative work has been done by Shaw [69]. Each
atomic statement is assigned an upper and lower bound on its execution time based

on the hardware and machine code used to realize it. The bounds for a composite

3 3

.4 3

R

—3 ~ 3 T3 T3

15

statement can be derived from the the semantics of the statement and the bounds on
the statements of which it is composed. All loops, communication delays, frequencies
of interrupts, etc. must be bounded as well. Often, the upper bounds derived could
be very much larger than the actual upper bounds given the environment in which
the real-time system will operate. Puschner and Koza [64] have introduced language
constructs that allow the programmer to build into the program assumptions about

the environment and input values that allow the timing bounds to be tightened.

2.1.3 Verification

One approach to validating the correctness of programs is to prove in formal
logic that the implementation of the program satisfies its specification. For sequential
programs, the computation is usually considered as a function that takes input values
and produces output values. There are two kinds of correctness one can prove for
such programs. A proof of partial correctness of a program guarantees that if the
program halts it will produce the right answer, but does not guarantee that the
program will halt. A proof of total correctness guarantees both eventual termination
of the program and partial correctness.

Our current notion of how to construct these proofs originated with Floyd (33]
and similar proof systems for sequential programs have been proposed by Hoare [40],
Dijkstra [28], Gries [37], and Backhouse [12], among others. The notation {P}S5{Q}
denotes that if execution of statement S is started in a program state in which
predicate P is true, then the predicate @ will be true in the state after S executes.
For example, {z > 0}z := z + 1{z > 1} is true. Proofs involve finding the weakest
precondition on the input values of a program P that will guarantee that if the
program terminates it will be in a state that satisfies some predicate expressing
correctness. For example, the weakest precondition of the trivial program z := z + 1
to guarantee z > 1is z > 0. All of the above proof systems have means to derive

the weakest precondition of a primitive statement in isolation, as well as rules for

16

deriving the weakest precondition of structured compositions of other statements. If
the specification of acceptable inputs to the program logically implies the weakest
precondition under which it will execute correctly, then we may conclude that the
program is partially correct. Proofs of total correctness in sequential programs involve
proving that progress is made in each loop toward its completion.

Several approaches to verifying concurrent systems have been proposed. Owicki
and Gries [61] extended Hoare’s proof system to reason about concurrent programs
by introducing the idea of non-interfering proofs. The problem with Hoare’s proof
system when applied to concurrent programs is that almost no predicate can be guar-
anteed to hold upon a statement’s completion if another statement could be executing
concurrently. For example, if the statement =z := 0 was executed concurrently with
z := ¢ + 1 then we could not conclude {z > 0}z := ¢ + 1{z > 1}. To allow the
partial correctness proofs for each task in a concurrent program to be combined into a
partial correctness proof of the whole program, Owicki and Gries defined a condition
for proofs of concurrently executing tasks to be non-interfering, essentially that a
statement of one task cannot change the truth value of a precondition or postcondition
of a statement of another task. Lamport [47] proposed an approach for proving
the correctness of concurrent programs that introduces a notation for describing
when actions precede or can influence other actions. Dillon [30] has a method for
verifying general safety properties of concurrent Ada programs that combines partial
correctness proofs for each of the tasks and a global proof of cooperation to account
for intertask communication.

Verification of real-time systems has recently received much attention. Shaw [69]
has extended Hoare logic to reason about execution times by adding a variable to
represent the current time. The execution of an atomic statement increments this
variable by the duration of the statement, and the proof system has been augmented
to calculate the execution time of a composite statement from the execution times of

the statements it comprises. Jahanian and Mok [44] use a decision procedure based

_.3

3 .3 113

3

f_ 3

3 T3 38 T3

3 ~—48 3 38 3 73 73 73 3% T3 T3 T3 73

17

on Pressburger arithmetic to verify safety properties of a real-time system. Ghezzi,
Mandriolli, and Morzenti [35] use a real-time logic called Trio to specify and verify
properties of real-time systems. Ljnch and Attiya [52] specify both real-time systems
and their timing requirements as timed I/0O-automata and prove the system satisfies
its requirements by constructing a mapping from the requirement automaton to the
implementation automaton. Davies et al [27] add time to CSP and present restrictions

of these timed processes that make them well behaved under composition.

2.2 Concurrency Analysis

In this section, I focus on work most closely related to my own, namely analysis
methods for concurrent software. All of these methods use some type of reachability
search of the kind described by Taylor [72], but they vary in the way they reduce the
complexity of the search. All approaches are likely to be intractable in the worst case
since the most basic concurrency questions for finite state processes with synchronous
communication (e.g., does the system deadlock, does a particular rendezvous occur)
are NP-complete [71]. If processes communicate via unbounded FIFO buffers, then
most of the interesting questions are undecidable [67].

Though its size is generally exponential in the number of processes, the full reach-
ability graph of a concurrent system contains all the information needed to answer
most concurrency questions about the system. If this graph can be constructed,
many interesting properties of the system it represents can be decided easily. Clarke,
Emerson, and Sistla [16] give an algorithm for deciding whether a concurrent system
satisfies an arbitrary assertion of branching-time temporal logic. The running time
of this algorithm is linear in the size of the reachability graph of the system and
linear in the size of the logic formula. Lichtenstein and Pnueli [50] give an analogous
model-checking procedure for linear time temporal logic. Their algorithm has running
time linear in the size of the reachability graph of the system but exponential in the

size of the logic formula. Aggarwal, Courcoubetis, and Wolper [2] present a method

18

for specifying and verifying liveness properties of a concurrent system in the context
of a reachability graph analysis. For example, one might want to verify that a message
is received infinitely often given that the specification requires that infinitely many
messages are sent and a message can be lost only a finite number of times. This
work extends the work of Clarke, Emerson, and Sistla by allowing more sophisticated
fairness requirements for legal computation paths. Karam and Buhr [45] show how a
modified reachability graph that they call a PSA-tree can be used to detect deadlock,
critical races, and starvation in an Ada program. Ostroff [60] analyzes concurrent
real-time systems by encoding enough timing information in the states to enforce the
time bounds on the transitions of his t2zmed transition systems.

I have divided the analysis methods into four categories based on how they
attempt to reduce the complexity of searching the reachability graph of the con-
current system. The methods in each of these four categories are described in the
following sections. The first collection of methods attempts to reduce the size of

the reachability graph by eliminating redundant interleavings. The second set of

methods uses necessary conditions to find all potential executions that could have a

property and restricts further search to these executions. The third set of methods
uses sufficient conditions to find some of the executions that have a property. The
fourth set of methods attempts to reduce the complexity of the analysis by building
the reachability graph compositionally.

2.2.1 State Space Reduction Approaches

The full reachability graph of a concurrent system represents all legal interleavings
of the actions of the component processes. Many of these interleavings might have
the same concurrency properties. For example, suppose that one interleaving contains
two consecutive reads of a global variable from different processes. Exchanging the
order of these two actions cannot change the behavior of the system, thus this new

interleaving is equivalent to the original. On the other hand, if a read and a write of a

.3 3

2

3

3

o

~—43 3 ~ 383 73 3 3 T3 3% T3 733 73 73 73 T3 73 T3

3 T3 T3

19

global variable are transposed, the behavior of the concurrent system could change, so
exchanging these two actions would not produce an equivalent interleaving. A notion
of equivalence is used to partition the set of interleavings into equivalence classes that
preserve the concurrency properties of interest (i.e., either all the interleavings in a
class have a certain property, or none do). The techniques in this section attempt
to reduce the size of the reachability graph by considering only one interleaving from
each equivalence class. The state space of a reachability graph that contains only a
subset of the legal interleavings is usually smaller than the original and is called a
reduced state space.

The simplest state space reduction technique is known as virtual coarsening and
was first used in [4]. The idea is based on the classification of a process’s actions as
internal or external such that only the relative order of external actions is significant
in determining the behavior of the concurrent system. For example, in an Ada
tasking program, assignments to local variables would be internal actions, whereas
assignments to global variables and rendezvous would be external actions. Two
interleavings are considered equivalent if the relative order of their external actions
is the same. Interleavings that differ only in the order of two internal actions must
have the same concurrency properties. One way to generate only one interleaving in
an equivalence class is to use coarser actions that consist of sequences of the original
actions that contain exactly one external action. For example, suppose we have
two tasks, each of which has ten actions executed in sequence, only one of which is

external. Assuming the external actions are nonblocking, the full reachability graph

20!

would contain Toti6i

= 184,756 interleavings, but by coarsening the actions of each

2!
!

157 = 2 interleavings (one

task into one virtual action, we would need to examine only
for each order in which the external actions could occur). Long and Clarke [51] have
developed such a coarsened representation of Ada programs called task interaction

graphs. In addition, many other state space generators use this as an optimization

(e-g., [8], [54]). In most systems I have examined, this technique significantly reduces

20

the number of interleavings that must be examined, but still leaves exponentially
many. It has the effect of reducing the base of the exponential function (e.g., instead
of examining ~ 10" interleavings of n tasks, we must examine ~ 4"). The reduced
reachability graph generated with this technique preserves all concurrency properties
of interest.

A more sophisticated notion of equivalence is found in a set of similar techniques
that use partial orders. These techniques separate the state explosion due to choices
made by the tasks from the state explosion due to different equivalent interleavings
of one set of choices, and can largely elimina,te. the latter. All of these techniques
can establish equivalence between interleavings in which external actions occur in
different orders as long as these actions produce the same partial order of actions. The
technique of Valmari [75] uses the idea of a stubborn set of transitions, a subset of the
transitions currently enabled whose exploration will generate at least one interleaving
for each partial order of the actions. In the case of the dining philosophers problem,
this method reduces the size of the state space from exponential to quadratic, allowing
huge systems to be analyzed. The original technique focused on deadlock detection,
but Valmari has recently extended the work to allow the verification of linear temporal
logic assertions from the reduced graph [77). Godefroid and Wolper [36] have a similar
technique using sleep sets that they claim are easier to compute than stubborn sets
and still yield good reductions. Probst [63] seems to use partial orders for this purpose
as well. ‘

Shatz, Tu, and Murata [74] use Petri nets to analyze Ada tasking programs. They
translate an Ada program into a Petri net, construct the reachability graph of the
Petri net, and then use this graph to answer questions about the original program.
Before generating the reachability graph, they use reduction rules to transform the
Petri net into an equivalent one with fewer places and transitions. This simpler net
has a smaller reachability graph in which many interleavings of the original net’s

transitions have been eliminated. Like virtual coarsening, this technique seems to

R B

E

21

leave an exponential number of interleavings to examine, but there is insufficient
experimental data to evaluate the method at this time.

McDowell [54] considers the case where many of the tasks follow identical instrut-
tions and gives a state space reduction that takes advantage of this symmetry. The
basic idea of the technique is that if a concurrent program has n identical tasks each
of which could be in one of k states, then we need not keep track of which tasks are in
which states but only how many tasks are in each of the k states. This technique can
drastically reduce the size of the reachability graph for systems with a large number
of identical tasks.

A more general exploitation of symmetry is found in the work of Huber et
al [43] in which isomorphic subgraphs of a reachability graph are combined. In the
dining philosophers problem, for example, there is a rotational symmetry between
the philosophers: the subgraph reachable after philosopher 1 picks up his/her fork is
isomorphic to the subgraph reachable after philosopher 2 picks up his/her fork. Thus,
we could construct a compressed reachaBih'ty graph in which the first transition rep-
resents any one of the philosophers picking up his/her fork and successive transitions
represent, not an action of a specific philosopher, but rather an action of a philosopher
n steps to the right of the first philosopher to pick up his/her fork. Symmetries can
be verified automatically, but usually must be provided by the analyst. Since the
time to check if a state is symmetric to a previously generated state is significant,
this method usually does not result in large time savings over standard reachability
analysis, but the size of the compressed graph can be much smaller than the full
reachability graph and so space and further time spent processing the graph can be
saved [65].

Burch et al [15] have a technique called symbolic model checking for verifying that
a concurrent system meets a set of temporal logic specifications. Their technique uses
binary decision diagrams (BDDs) to represent the relations and formulas of the logic

compactly. This representation captures certain kinds of regularity in the state space

22

very well. They give an example of a pipelined adder in which the size of the BDD
grows linearly with the width of the registers, while the number of states grows
exponentially.

Clarke et al [17] have a technique they call abstraction that uses homomorphisms
to abstract away detail in the state space that is not important for the verification
of a specific property. Although these abstractions must be provided by the analyst
and vary with the property being verified, they allow certain properties of extremely

large systems to be verified with model checking.

2.2.2 Necessary Condition Approaches

The methods in this section use conditions that are necessary but not sufficient
for a concurrent system to possess some property (usually deadlock). As a result, if
the concurrent system under analysis does have the property, then these methods will
never report that it does not, but if the concurrent system does not have the property,
then these methods may give a spurious report that it does. Thus all reports that
the system has the property must be examined by other methods (possibly by hand)
to determine if they are spurious.

Young and Taylor analyze Ada tasking programs by ignoring the program vari-
ables and their effect on the flow of control. Whenever a task reaches a conditional
statement, it is assumed to nondeterministically choose which path to follow. Using
this assumption, each task becomes a finite state processes whose state represents
the statement to be executed next. Spurious deadlock can be reported if the ignored
variable values would have precluded one or more of the conditional branches leading
to the deadlock state. Once a suspected deadlock is discovered, symbolic execution
is used to determine if the deadlock state is reachable [80]. The reachability graph
generated can also be used to verify temporal logic assertions [81], but since this
graph contains a superset of the execution paths in the full reachability graph (that

reflects the effect of program variables on flow control), only statements about paths

3

3

.3

3 ~ 3 — 3 "3

23

not existing can be verified. This technique has been implemented as part of the
CATS toolset described in [81).

Murata, Shenker, and Shatz [58] use Petri nets to find deadlocks in Ada tasking
programs. They divide deadlocks into two categories: inconsistency deadlocks and
circular deadlocks. Their method for finding circular deadlocks is a necessary con-
dition approach. After translating the Ada tasking program into a Petri net, they
search for certain types of cycles in the net that are necessary for circular deadlock.
Once such a cycle is found, they use a reachability search to determine if the cycle,
and the deadlock it represents, can be reached. The T-invariants of the Petri net,
essentially transition counts for possible firing sequences of the net, are used to reduce
the complexity of this search.

Masticola and Ryder [53] have a similar categorization of deadlocks into those
that are circular, which they call deadlocks, and those that are not, which they
call stalls. They use a similar technique to find circular deadlocks by searching
the program’s synch graph for cycles that meet necessary conditions to represent
deadlocks. They have polynomial time algorithms for detecting these cycles and
claim that their conditions eliminate most non-deadlock cycles in the experiments
they have run, although they admit that most of the programs tested had a very
simple tasking structure. They do not address detection of stalls.

Constrained expressions (8], which will be described in Chapter 3, is also a

necessary condition approach.

2.2.3 Sufficient Condition Approaches

Whereas necessary condition approaches are overly conservative, not allowing any
executions possessing the property to escape detection, sufficient condition approaches
are reckless and may not detect all executions having the property. These approaches
use conditions that, if satisfied, guarantee the existence of an execution possessing

the property, but, if not satisfied, do not guarantee the absence of any executions

24

with the property. As in the case of the necessary condition approaches, the property
usually checked for is deadlock.

Murata, Shenker, and Shatz [58] use Petri net invariants to find certain types
of deadlocks in Ada tasking programs. Once the Ada tasking program has been
translated into a Petri net, a spanning set of T-invariants is found for the Petri
net. Every deadlock-free execution of the Ada tasking program has a corresponding
T-invariant, so if a statement does not occur in any T-invariant of the net, then that
statement cannot be executed in any deadlock-free execution of the Ada program.
Thus execution of that statement will cause deadlock. This is only a sufficient
condition for deadlock because not every T-invariant corresponds to a deadlock-free
execution of the Ada program. This technique only detects what they call incon-
sistency deadlocks. The remaining deadlocks, called circular deadlocks, are detected
using another method described in the previous section.

Holzmann [42] uses a technique that is very fast in practice. The slowest operation
in a reachability search, he maintains, is the check to see if a state has been generated
before. He uses hashing to perform this operation approximately, but very quickly.
Collisions in the hashing can result in a false report that a state has been visited
before. Since the state space is usually strongly connected, however, it is unlikely
that pruning some paths will make a deadlock state unreachable. He claims very good
coverage on spaces having 10° to 107 states, which can be searched on a minicomputer
in a matter of minutes. This technique amounts to searching part of the reachability

graph for an anomaly as quickly as possible.

2.2.4 Compositional Approaches

The approaches discussed in this section attempt to reduce the complexity of the
analysis by composing the components of a concurrent system in stages and hiding
internal details of the composed entity after each stage. These methods will perform

* well whenever there are subsets of system components whose interaction with the rest

.3

;3

.3 3

3 ~ 3 3

T3 38 73 3 T3 T3 T3 T3 T3

—3 ~ 3 T3 T3 T3 —3 7713

25

of the system is simple (i.e., the subsystem could be replaced by a small finite state
process that would be indistinguishable to the rest of the system).

Most compositional approaches are based on the notion of a process algebra,
a formal system in which the behavior of processes can be specified and in which
processes that are equivalent in some behavioral sense can be proven so with a set
of axioms. There have been many process algebras proposed including Milner’s
CCS [55, 56], Hoare's CSP [41], Bergstra and Klop’s ACP [14], and Hennessy’s
EPL [39].

As an example, a process that can either perform actions a and then b, or a and
then ¢ might be written ab+ ac. The choice operator + is always commutative, so we
would have an axiom z + y = y + = that would allow us to prove the above process
equivalent to ac + ab. Depending on the notion of equivalence, we ma.y'or may not
have a distributive law 2y +zz = z(y+z). The process a(b+ c) will perform the same
sequence of actions as ab+ ac, but since the choice is made before the a in ab+ ac, this
process can refuse to perform one of b or ¢ after doing an a, but the process a(b+ ¢)
must perform whichever of b or c is requested after an a.

Most process algebras have an internal, invisible, or silent step, usually repre-
sented by the symbol 7. After two processes are composed, any communication
involving these two processes is usually hidden by replacing the communication sym-
bols by 7. Axioms in the process algebra allow the resulting process to be simplified.
For example, ACP [14] does not distinguish between a process performing a visible
action and the process performing the same visible action followed by an invisible
action: az = arz.

Another important aspect of process algebras is their notion of process equiv-
alence. Several have been proposed, including trace equivalence [55], failure equiv-
alence [41], and observational equivalence [55]. The stronger equivalences, like ob-
servational equivalence, are based on the notion of a bisimulation: two processes

are equivalent if they can each simulate the other in some formal sense. Weaker

26

equivalences focus on the possible sequences of communications in which a process
could engage or refuse to engage.

Simulation also leads to the idea of a preorder among processes. If process
A can simulate process B but not vice versa, then process B is in some sense
more deterministic than process A. If process A is thought of as a specification of
a component’s behavior, and process B is the implementation of the component
(composed from other components), then we want to require that process A can
simulate process B (all behaviors of process B are allowed by the specification), but
not necessarily that process B can simulate process A.

Valmari [76] describes a framework for compositional analysis that integrates state
reduction techniques with the composition. Zuidweg [82] describes an analysis tool
for ACP that supports composition, hiding, and testing for bisimilarity. Cleaveland’s
Concurrency Workbench tool [19], based on Milner’s CCS, supports these basic
operations plus preorder checking. Clarke et al [18] have extended their work on
model checking to take advantage of compositional analysis. Yeh and Young [79]

have constructed a tool for compositional analysis of Ada-like speciﬁca,tions..

]

i3

.3

3 ~3 3 T3 73

™3 T3 T3

—3 T3 ~ 3 ~ a8 383 73 T3 T3 "3

3 "3

CHAPTER 3

CONSTRAINED EXPRESSIONS

The contributions described in the sequel were done as part of the constrained
expression project. This chapter gives an overview of the constrained expression
project, presenting work done by the author together with George Avrunin, Ugo Buy,
Laura Dillon, and Jack Wileden. I will use “we” when describing work done jointly.
Constrained expressions is primarily an analysis technique for concurrent systems. It
is based on an expressive formalism and has been automated by a prototype toolset.
Section 3.1 describes the formalism, Section 3.2 presents the analysis technique, and

Section 3.3 gives an overview of the toolset that automates the technique.

3.1 Formalism

The constrained expression formalism models a concurrent system as a collection
of coupled finite state automata (FSAs) with additional constraints expressed as a set
of recursive languages on the alphabets of the FSAs. The acceptance of a symbol by an
automaton represents the occurrence of an event in the concurrent system. An event
may represent a normal action of a component, such as initiating a communication
with another component, or an error, such as waiting forever for a communication
that never takes place. An execution of the concurrent program is thus modeled by
a string of event symbols.

The following definitions are required to define a constrained expression repre-

sentation of a concurrent system. For any sets of symbols ¥ and S with § C X, let

28

ps : ¥* — S* be the homomorphism, called projection on S, defined by extending
the map ¥ — § given by:

a fac s
A otherwise

ps(a) = {

Let L(M) be the language recognized by machine M. The shuffle of the languages
L, and L,, written L, @ L,, is the language consisting of the strings 21112292 . .. Ta¥yn
formed by concatenating substrings such that z,2,...2, € L, and y1y2...yn € Ly
for some n (the substrings z; and y, may be empty). Finally,. let dagger (1) be the

closure of the shuffle operation:
Lt = {wlfor some n: w =w; Qw; ® ... wn,w; € L for all i}

A constrained expression representation of a concurrent system is a triple (M, C,T)
where M is a set of FSAs M;,..., M, with alphabets %,,...,Z,, ¥ = J; Z;, C is
a set of recursive constraint languages C,,...,Cy,, with alphabets A,,..., A, where
A; C X for all 4, and T C X is a terminal alphabet. A string ¢ € T represents a
legal behavior or trace of the concurrent system if there exists a string s € I~ with
pr(s) = t where pg,(s) € L(M;) for all i and py,(s) € Cj for all j. An augmented

trace is an alternating sequence of states and events sq, ey, 82, €3, . . . 8¢ where:

o Each s; is global state represented by an n-tuple < ;1,...,7;, > where r;; is a

state of M;.
o Forall j =1,...,n, ry; is the starting state of M;.
e Forall j =1,...,n, m; is an accepting state of M.

eForalli=1,...,k—1,andall j=1,...,n,if ¢; € T; then M; has a transition

from 7;; to 7i41,; on e; and otherwise r;; = ryq,;.

o Forall j=1,...,m, py;(ere2...ex-1) € C;.

3

3

_ 3

3 T4

3

~3 —3 3

—3 ~— &3 T3 T3 T3 " 4

~—3

29

An example of the use of this model to describe a system of two tasks communicating
by asynchronous message passing is given in the next section.

The constrained expression formalism originated in the doctoral thesis of Jack
Wileden (78], who defined the initial formulation of constrained expressions, wrote
translation rules for mapping system descriptions written in a subset of the modeling
language DYMOL into this representation, and showed how this representation could
be used for analysis. Later, Laura Dillon [29] extended the formalism to represent
prefixes of traces and also showed how different formalisms, such as CSP and Petri
nets, could be represented in constrained expressions. These earlier formulations
contained various restrictions which have been removed from the current formulation
for simplicity. For example, earlier formulations required the alphabets of the FSAs
to be disjoint and requiréd that the constraint languages be only those generated by
the standard regular operators (concatenation, union, and Kleene star) plus shuffle
and dagger. It follows from [3] that all recursively enumerable languages are given
by such a restricted formulation. Therefore, removing these restrictions to yield the

current formulation does not change the expressive power of the formalism.

3.2 Analysis Technique

The main constrained expression analysis technique uses integer linear program-
ming (ILP) to prove properties of concurrent systems. Given a concurrent program
represented in the above model, we generate a system of linear inequalities reflecting
much, but not all, of the semantics of the representation to determine if any executions
of the concurrent program exist that satisfy certain properties. Informally, the method
finds a possible execution of the concurrent program by finding traces of each task and
then enforcing a weaker consistency criterion between these traces than is specified
in the constraint languages.

When generating equations for the FSAs M, ..., M,, it is useful to picture each

FSA as a directed graph in the standard way. An execution of the concurrent program

30

will correspond to a path through each FSA from the start state to an accepting
state. We assign a transition variable, i, to each transition arc k in the FSAs of the
concurrent program. The variable associated with an arc will represent the number
of times that arc is crossed in the paths. We also assign an accept variable, f;, to
each accepting state j of the FSAs that will be one if and only if the path through
that FSA ends at this accepting state and will be zero otherwise. We then generate a
flow equation for each state j in an FSA stating that the flow into the state (i.e., the
total number of times the path enters the state) must equal the flow out of the state
(i.e., the total number of times the path leaves the state). The start state of each
FSA has an implicit flow in of one, and each accepting state has an extra flow out
represented by its accept variable. The flow equations imply that, in any nonnegative
integer solutibn, exactly one accept variable in each FSA will have the value one.
Suppose that a symbol a belongs to two alphabets ; and 2;. Then an occurrence
of a in a trace represents the occurrence of an event in the tasks corresponding to M;
and M;. In this case, we add an equation stating that the numbers of occurrences of
a in the traces of those tasks are the same. In other words, we equate the sum of the
transition variables for arcs of M; labeled by a with the corresponding sum for M;.
In addition to the equations generated in this fashion from the FSAs M,...,M,,
we generate equations and inequalities reflecting the restrictior.ls imposed by the C;. If
a constraint language Cj is regular, we can generate equa.ti‘ons from an FSA accepting
it, exactly as described above. Then, for each synibol a € Aj and each 7 such that
a € X;, we add an equation stating that the sum of the variables for arcs labeled
by a is the same in the FSA accepting C; as in M;, just as for symbols belonging
to two FSA alphabets. In practice, the constraint languages used by the tools are
simple enough that the additional inequalities can be expressed directly in terms of the
variables from the M;, avoiding the creation of many new variables and equations and
reducing the size of the ILP problems that must be solved. (An example of this is given

below.) There has been no attempt to formalize a procedure for efficiently generating

3 E|

3

3 T3

~3 3 T3 —3 T3 77

31

inequalities from arbitrary recursive languages, but we have devised methods to gen-
erate inequalities from constraint languages modeling synchronous and asynchronous
communication. Since most other communication mechanisms (e.g., global variables,
monitors) can be modeled with additional tasks and synchronous communication,
our current technique should be sufficient for analyzing a wide variety of concurrent
systems.

Figure 3.1 shows the equations for a simple concurrent program with two tasks
that use channels with unbounded message buffers to communicate. Here, +a rep-
resents the sending of a message to channel a and —a represents the reception of a
message from channel a. Consistent communication over a channel a is enforced by
the constraint language (+a — a)! ® (+a)* (this expression generates strings having
the property that, in any prefix, the number of —a’s never exceeds the number of
+a’s). From this we extract the relation that the number of +a event symbols must
be greater than or equal to the number of —a event symbols in any string representing
an execution.

Every trace will correspond to some solution to the inequality system. However,
not all solutions to the inequality system will correspond to traces. The conditions
represented by the inequality system are thus necessary, but not sufficient. There
are two reasons for this. First, information about the order of event symbols in the
constraint languages is ignored. In the example of Figure 3.1, there is no execution
in which task 1 executes —a,+b(z1 =23 = fo =1, 22 =24 = f3 = 0) and task
2 executes —b,+a (z5 = 2 = fs = 1, z7 = 0) since any interleaving of these two
strings violates the constraint for channel a or b, but since the number of events is
consistent with relations derived from the constraints, these flows are a solution to
the inequality system. The second reason that the conditions are not sufficient is
that the flow equations do not completely capture the semantics of the FSAs. In
a given execution, the events occurring in each task must lie along a single path

through that task’s automaton, but the presence of cycles in the FSA allows extra

32

+a
O
M 2
Flow: (state)

1 = 1+ @2 (1)
Ty+x3 = T3+ fo (2)
Tat+Ty = T4+ f3 (3)

l+zs = x5+ g (4)

zgt+zTr = T+ fs (5)
Communication: (channel)
z1+z4 < zg+ a7 (a)

zs < z2t+a3 (b)

Figure 3.1. Example and its Inequality System

cyclic flows. An example of this is the solution to the inequalities of Figure 3.1 in
which 2, = z4 = 2z = z7 = fo = f; = 1 and all other variables are zero.

The analyst searches for traces with certain properties by adding additional
inequalities to the system. For example, an analyst might ask whether there is an
execution in which more messages are sent to channel b than are received from that
channel by adding the inequality z; + z3 > z5. Similarly, if we added transitions
labeled with symbols representing permanent blocking of the task, the analyst could
seek executions in which a task waits forever to receive a message by adding an
inequality stating that the sum of the transition variables labeled with such a symbol
1s greater than or equal to one. This type of inequality, used to search for deadlock,
is the most commonly added inequality in the analyses described in [8].

I now describe how we model synchronous communication and how the above

analysis technique is applied to concurrent systems that use this type of communi-

3 73

3

—3 ~3a —3 —3 ~ 3 3

33

cation mechanism. From this point on, I will assume a synchronous communication
mechanism that allows pairs of tasks to synchronize on actions. This synchronization
is assumed to be the only means of inter-task communication. In the sequel, I
will present extensions to this technique by describing what inequalities would be
generated for this type of concurrent system. All of these extensions can also be
used with an asynchronous communication mechanism, but I will only sketch the
slight modifications needed to apply the new techniques to systems with asynchronous
communication.

We model synchronous communication as follows. Conceptually, a communication
occurs through a channel that connects a pair of tasks. This communication is
represented in the FSAs of these tasks by either a single symbol appearing in the
alphabets of both FSAs (as is used in most of the examples in this dissertation), or
by a pair of matching symbols in each task (as is used in the toolset to model our
Ada-based design language). In the latter case, a communication over channel c is
represented in one task by the pair of events call(c) and resume(c) in sequence, and
in the other task by the pair of events beg rend(c) and end.rend(c) in sequence.

These two sequences are forced to overlap by the constraint language
(call(c)beg rend(c)end.rend(c)resume(c))”

Using a pair of symbols in each FSA allows nested synchronizations (e.g., rendezvous
within Ada accept bodies) to be modeled, though I will not use this feature of the
design language in this dissertation.

The asymmetry of the communication mechanism in the Ada-based design lan-
guage is mirrored in the automaton representation of the tasks. One of the tasks
connected by a channel is designated as the caller and the other as the acceptor. In
a given state, a task either acts as a caller or as an acceptor. As in Ada, a task may
be ready to act as a caller for one channel, but it may be ready to act as an acceptor

for any number of channels (representing multiple callers of a single entry or the Ada

34

select statement). If communication is represented by pairs of matching symbols
in the automata, then the automaton containing the call(c) symbol is the caller.
Either way the synchronous communication is modeled, for each task and channel,
there is a hang symbol that represents the “event” that the task waits forever for
a communication on that channel. For each channel ¢, there is a hang symbol for
the caller, denoted hang_c(c), and one for the acceptor, denoted hang_a(c). These
symbols will usually be abbreviated h_c(c) and h_a(c) when they appear in figures
showing automata. '

For systems with synchronous communication, the flow equations are generated
in the same way as in the example of Figure 3.1, but the communication inequalities

are different. For each channel ¢ connecting tasks A and B:

1. A synchronization equation requires that the number of times task A commu-
nicates over channel ¢ equals the number of times task B communicates over

channel c.

2. A hang inequality requires that at most one of the tasks A and B becomes

permanently blocked waiting for a communication on channel c.

The algorithm for generating inequalities from FSAs is shown in Figure 3.2. For a
state 7, in(j) is the set of transitions into the state and out(j) is the set of transitions
out of the state. For a channel ¢ connecting task A (the caller) to task B (the accep-
tor), call(c) is the set of transitions of task A labeled with synchronous communication
on ¢, while accept(c) is the set of transitions of task B labeled with synchronous
communication on c. Also, hang_c(c) is the set of transitions of task A labeled with a
hang symbol for communication on ¢, while hang_a(c) is the set of transitions of task B
labeled with a hang symbol for communication on ¢. The notation [ezpr]conq indicates
that the expression. ezpr should be added to the inequality only if the condition cond
is true, and otherwise zero should be added. The existence of every variable appearing

in ezpr is always implicitly conjoined to this condition, which defaults to true if not

3

1

3 E I |

-1 3 3 3 _3

_ 3

3 ~—3 "3 ~— 3@ ~—13

35

Input: A set M of FSAs
Output: A set of inequalities

For each transition k in an FSA of M:
Create transition variable z;

For each accepting state j of an FSA of M:
Create accept variable f;

For each state j of an FSA of M:

Generate flow equation: [1]uaresy + > T = Y. zx +[fi]
k€in(s) keout(s)
For each channel c:

Generate synchronization equation: Z T = Z Tp
. k€call(c) k€accept(c)

- Generate hang inequality:) =z + > oz <1
k€hang_c(c) k€hang_a(c)

Figure 3.2. Basic Algorithm

specified. This construct is useful to include accept variables in flow equations only
when they exist (i.e., for accepting states) by using [f;] in the flow equation for state
j. Also, the implicit flow of one into start states may be indicated by using [1] stare(s)
in the flow equation for state j where start(j) is a predicate that is true if j is a start
state of its automaton. A table of the abbreviations used in pseudo-code descriptions
of the inequality generation algorithms is given in Appendix A. In general, 7,7’ will
range over states, k, k' will range over transitions, and ¢ will range over channels.
We would generate inequalities for systems with an asynchronous communication
mechanism as follows. For a given channel c, let 7. be the number of message
receptions on that channel and s. be the number of message sends on that channel.
If the channels are unbounded buffers, then for each channel ¢ we generate the single
communication inequality: 7. < s.. If the channels are bounded buffers of length N,

then for each channel we generate the pair of communication inequalities: », < s,

and s, <r.+ N.

36

Finally, we note that the flow equations can also be generated from regular
expressions (REs) or from a hybrid representation of regular languages called reg-
ular expression deterministic finite automata (REDFAs), which are essentially finite
automata whose arcs are labeled with regular expressions. REDFAs yield particularly

compact systems of inequalities [20]. The generation of inequalities from REs and

REDFAs is described in [8].

3.3 Toolset

The aﬁé.lysis technique described in the last section has been implemented as
part of the constrained ezpression toolset. A version of the toolset is described in
detail in [8], along with an extensive series of experiments that were conducted with
it. That version was modified to conduct most of the experiments with the new
techniques described in this dissertation. This section gives an overview of the toolset
detailed in [8]. Section 7.1 describes how the toolset was modified for the experiments
described in the sequel.

There are five major components of the constrained expression toolset (see Fig-
ure 3.3). In normal use, an analyst first uses the deriver to produce a constrained
expression representation from a concurrent system design written in the CEDL
design language. This constrained expression is then used as input to the constraint
eliminator, which modifies the representation for reasons explained below. The
inequality generator takes the constrained expression produced by the eliminator as
its input, together with a query formulated by the analyst, and produces a system of
linear inequalities representing necessary conditions for the existence of a trace of the
concurrent system satisfying the query. The IMINOS integer programming package
is used to determine whether this system has any integral solutions and, if it does,
to find one with appropriate properties. If a solution is found, the behavior generator
uses heuristic search techniques to determine whether this solution corresponds to a

trace of the system, and to produce such a trace if it does.

13

3

3 13 i 3 __13 3

.2

37

CEDL design

Inequality
Generator

Deriver inequalities

constrained
expression

solution
R SEEEEEERIRORRE
Behavior ¢

Generator

constrained
expression

Constraint
Eliminator

Figure 3.3. Diagram of Constrained Expression Toolset

In the remainder of this section, I discuss each of the components of the toolset
in more detail. Note that the constraint eliminator tool and the behavior generator
tool process DFAs, while the inequality generator tool, like the analysis technique 1t
automates, can handle FSAs (NFAs and DFAs).

3.3.1 The Deriver

The deriver [5] provides a front-end for the constrained expression toolset. It
translates system designs into constrained expressions, which are then manipulated
and analyzed by various other tools.

The current deriver requires that designs be written in CEDL, an Ada-like design
language. CEDL focuses on the expression of communication and synchronization in
a concurrent system, and language features not related to concurrency are kept to a
minimum. The most important limitations of CEDL designs can be summarized as

follows:

38

¢ Boolean is the only predefined type; all other types are specified using enumer-

ation types.
¢ There are no global variables.

o There are no primitives for data encapsulation. Packages simply group together

type and variable declarations, all of which are exported.
e Design units may not be generic.
o There are no exception handling features.
¢ Design units may not be nested.
e There are no input (get) or output (put) statements.

Most of the Ada control-flow constructs have correspondents in CEDL. CEDL also
provides an ellipsis notation (written “...”) for expressing incompleteness in designs.
The use of this construct will be illustrated in an example below. The incompleteness
construct can be used to elide statements, expressions, declarations and types that
will be elaborated in later system descriptions.

The deriver produces a task expression for each of the tasks in a CEDL design
from the code for the task bodies. The deriver produces the constraints for the
constrained expression representation of a CEDL design by instantiating a fixed set
of constraint templates. Each task expression or constraint is a regular expression
over symbols representing events such as the calling of an entry, the assignment of a
value to a variable, etc.

To illustrate the translation performed by the deriver, consider a CEDL version
of the dining philosophers problem with three philosophers. Figure 3.4 shows the
CEDL code for one fork task and one philosopher task from this system. The fork
task loops repeatedly, accepting calls to its U0 and DO entries. The philosopher task

loops an indeterminate number of times (as indicated by the elided test in the while

3 __3

S B |

3

3 | 3 3

—2 —3 3 3 —3 —3 —3 —3 —1

3

39
== Fork 0 -~ Philosopher 0
task FO is task PO;
entry UO; -- pick up fork 0
entry DO; -- put down fork 0 task body PO is
end FO; begin
while ... loop
task body FO is oo 3 -- Think
begin F1.U31;
loop F0.UO;
accept U0; -- pick up oo 3 -- Eat
accept DO; -- put down F1.D1;
end loop; F0.DO;
end FO; end loop;
end PO;

Figure 3.4. Fork and Philosopher Tasks from Dining Philosophers in CEDL

statement), calling the U entries of the fork tasks on its “left” and “right” and then
calling the D entries of those tasks. There are two more fork tasks and two more
philosopher tasks in the system, with similar designs. Figure 3.5 gives the task
expressions produced by the deriver for these two tasks, and Figure 3.6 shows some of
the constraints produced by the deriver for this system. The expressions are given in
the LISP-like prefix notation used as input to several of the tools, which uses "NIL"
to denote the empty string, "SEQUENCE" for concatenation, "OR" for disjunction, and
"STAR" for Kleene star. Table 3.1 summarizes the interpretation of event symbols.
Note that the permanent blocking of a task indicated by the hang symbols does
not presuppose any particular cause for this blocking, which could be due to circular
deadlock, termination of other tasks, or other reasons. The synchronization constraint
in Figure 3.6 enforces proper synchronization of rendezvous for one of the entries of
a fork task. Similar synchronization constraints are required for all entries. The
hang constraint in Figure 3.6 ensures that the fork task does not wait forever for a
rendezvous with one of the philosophers if a philosopher task is also waiting for the
same rendezvous. Similar hang constraints would be generated for each entry. Other

types of constraints that do not occur in this example enforce the correct dependence

—

—

I

E F

—

wa[qo1g siaydoso[ryq Suruiq syj woi] paaus(suotssardxy yse], omJ, ‘g'g aImSig

((((u(0d)doas, , (0P 0F¢0d)>Swey,
w(IP° 1Fi0d)eumsaz,, , (TP 13¢0d)TTE2, . (0N’ 0F!0d)eumssx,
w(on 0Ffod)TTRd, W(TN*T3{0d)eumsex, , (Tn°T1F{0d)TTR2, ,AONINDIS.)
(w(0d)doas, ., (P 1¥!0d)o~Suey, ,(on°03¢od)eumsex,
w(om 0Ff0d)TTRd, . (TN°TJ!0d)eumsex, , (TR T13{0d)TTES, ,AONINDIS.)
(. (od)doss, , (on’0z¢0d)o Bwey,
w(tn13i{0d)eumsez, , (tn°13!0d)TTeO. L IONINDAS.)
(u(od)doss,, ,(tn-13¢0d)o~8uey, ,IONINDES.)
(«(0d)uzes,, ,(00d)door pus,, ,IoNINbIS..)
-.HU..)
((u(0oP°0F¢0d)eumsex, ,(0P°0F¢0d)TTeO,,
w(TP* 13! 0d)oumsex,, , (TP 13! od)TTe>, .(OM'0OF! od)eumsez,,
w(on-0Ffod)TTR2, . (FN"TF!0d)eumsez, ,(In'T13¢0d)TT®, ,AONINDIAS.)
wHVIS.)
«(00d)dooT~8eq,, , FONINDAS..)
od ysejyop)

((((w(0F)do3s, ,(0P"0F)e Suey,
((u(on*0z¢od)puex~pus,, , (on'03¢0d)pusx~8eq, ,IoNINbIS.)
(u(on* 03¢ 1d)pusx~pue,, ,(on*0F!1d)pusx~8eq,, ,IONINDIS..)
quH)
wIONINbAS.)
(u(0F)doss, ,(on'0F)e~Suey, ,JoNInbIS.)
IIHOH)
((((u(oP*0F0d)pusx~pus, , (0P’ 0F¢0d)pusx~Seq, ,IONINDAS.)
(u(0P° 03¢ 1d)pusxTpus,, , (0P 03! rd)puex~Seq, ,IININDIS.)
quu)
((u(om*03¢od)puex~pue,, ,(on'0Fod)puex~Seq, ,IONINDIS.)
(u(on*03¢1d)pusxpus,, ,(on' 03! 1d)puex~Seq, ,AONIADES..)
uuou)
wIONINDIAS.)
u“VlSn)
w(003)dooT"8eq,, , IONINDIS..)
0F jise3jop)

0¥

(Arewraou) sajeunuiay J, ysel, (L)uzesy
(uoryeuruizsy feurzouqe) uorjndaxas sdoys J, YseL (1)doas
q K19us je J, Ys®) Y}M SNOAZAPUAI SIYSIUY S YSTL, (3°1¢s)oumsex
L ¥se3 Jo 4 A1jus Bumre> paydojq Ajjusuentiad st § yseL (3°18)> uey
g £13ua uo [red e 9dadde o} Sunyrem payoolq Appusuemwiad st J, yseL (3°1)e"Buey
q A13us ye G YS®))M SNOAZIPUAL saystuy J, Ysel | (F°1l!S)pusi”pue
1 dooj Jo uoyyndaxa pug (T1)dooT " pue
i A1jus ye I, yse) Yjlm snoazapual suidaq § YseL (3°1¢S)IT®D
o A13u3 je g YSB) YIM SNOAZApUAI suIBaq J, YsBL | (3" 1is)puex—deq
1 doof Jo uorynsxa uilag (1)dooT~8eq
[usng PavIdOSSy | “j0quifig |

sfoquI£g jusAqy jo uoryejaidiajul “1°g I[qe],

wa)s£g
stoydoso[iyq Surui 9y} wWoIj 33s[00], 3Y} £q PaJRISUSY) SJUTRIISUOY) SWOG "9°§ amS8rg

((((w(om*oxod)oBuey, ,(on-03!1d)oBwey, ,H0.)
WHVISW)
w(on*oF)e-3uey,
uHOH)
T"ONVH juTRI3SUODJIOP)

((((u (- T3¢0d)pusx~8eq, ,(In°TF!0d)TT®. AINIALIS.)
II'IIN“

u“Ou)

(G(TR TFS od) eumsex,, , (TN TF¢ od)pua.z‘pna,,

« (- 13¢0d)puex~8eq, ., (Tn*13¢0d)TTRD, ,IONINDIS.)

anI.SN)

WwIONINDIS)
T NOILVZINOUHONAS 3UTeI3sSuodjyoep)

87

E . E . E . E . E . E__

42

of control flow on the values of variables and handle the failure of nested rendezvous.
An example of the former type is presented in Figure 3.9.

The deriver is, of course, specific to CEDL. In principle, the other tools could be
constructed in a CEDL-independent fashion, and used with constrained expressions
produced from any design notation. In fact, as discussed below, the inequality
generator and behavior generator rely on certain features of CEDL in order to improve

efficiency.

3.3.2 The Constraint Eliminator

As discussed in Section 3.2, the inequalities generated do not express the full
semantics of constrained expressions, with the result that there may be solutions to
the inequalities that do not correspond to traces. In particular, the inequalities do
not express certain restrictions on traces that involve only the order in which certain
events occur, rather than the numbers of such events in the traces. In practice, the
most significant of these restrictions are those imposed by the constraints that ensure
the consistent use of variables in CEDL programs. Without taking such restrictions
into account, there would be solutions to the inequality system corresponding to
“traces” in which, for example, the else branch of an if statement is taken even
though the Boolean condition of the if statement evaluates to true. The constraint
eliminator [21] is used to modify the constrained expression representations in such a
way that the inequalities generated from them exclude such solutions.

To see how the constraint eliminator is used, consider the segment of a task T
shown in Figure 3.7. Figure 3.8 shows the portion of the task expression for task
T corresponding to this fragment. This segment should always call exactly one
of entries A or B of task S; however, the task expression produced by the deriver
permits traces in which both calls are made and traces in which neither call is made.
In the full constrained expression representation, the dataflow constraint shown in

Figure 3.9 filters out these erroneous strings. The constraint allows any number of

L3

|

1

3 3

3

43

flag := ...;
if flag then
S.A;
end if;
if not flag
then
S.B;
end if;

Figure 3.7. Segment of task T

("SEQUENCE"
("OR" "def(flag;true)"
"def (flag;false)")
("OR" ("SEQUENCE" "use(flag;true)" "call(T;S.A)" "resume(T;S.A)")
"use(flag;false)")

("OR" ("SEQUENCE" "use(flag;false)" "call(T;S.B)" "resume(T;S.B)")
"use(flag;true)"))

Figure 3.8. Part of the Task Expression for Task T

def (flag; val) symbols, each of which represents the assignment of the value val to
the variable £lag. It also allows each def (flag;wval) symbol to be followed by any
number of use (flag; val) symbols with that particular value, each representing a use
of the variable, before the next def(flag;val) symbol. Any string satisfying both
the task expression and the constraint will include exactly one of the entry calls.
The constraint eliminator modifies the constrained expression so that each of the
resulting task expressions incorporates any constraints involving only symbols from
that task (i.e., any string satisfying the new task expression satisfies both the old
task expression and the constraints). Figure 3.10 shows the result of incorporating
the dataflow constraint for the variable £lag into the task expression for task T. The
inequalities generated from the resulting task expression then reflect the restrictions

imposed by the constraint, and do not admit solutions corresponding to violations of

that constraint.

44

(defconstraint DATAFLOW_1
("STAR" ("OR" ("SEQUENCE" "def (flag;true) "
("STAR" "use(flag;true)"))
("SEQUENCE" "def (flag ;false)"
("STAR" "use (flag;false)")))))

Figure 3.9. Dataflow Constraint for Local Variable flag

("OR" ("SEQUENCE" "def(flag;true)" "use(flag;true)" "call(T;S.A)"
“resume(T;S.A)" "use(flag;true)")
("SEQUENCE" "def(flag;false)" "use(flag;false)" "use(flag;false)"
"call(T;S.B)" "resume(T;S.B)"))

Figure 3.10. Part of Task Expression After Elimination of Dataflow Constraint

The constraint eliminator takes a set of task expressions and constraints as input.
Each constraint whose alphabet involves only symbols from a single task alphabet
(an intra-task constraint) is incorporated into the task expression it constrains and
is then removed. The resulting set of task expressions and constraints is output. The
task expressions incorporating their intra-task constraints may be output either as
REs, DFAs, or REDFAs.

To incorporate a set of intra-task constraints into a task expression, all the REs
involved are converted to DFAs, which are then intersected pairwise. The intersection
differs from standard DFA intersection in the following way: At each state of a DFA,
implicit self-loops are assumed on all symbols not appearing in the alphabet of that
DFA. This allows the DFA representing a constraint to accept symbols not in its
alphabet without changing state. Assuming the constraint alphabet is a subset of
the task alphabet, the result of the intersection is a DFA that accepts exactly those
strings accepted by the original task DFA in which the symbols contained in the
intra-task constraints appear in the order required by those constraints. In the case
of a dataflow constraint for a local variable, this essentially encodes the value of the
variable into the DFA state (where before the state encoded only the syntactic location

within the task design), usually increasing the number of states in the task DFA, but

-

2

3

™

—3 3 3 — 31 3

45

guaranteeing consistent use of the variable. In CEDL, the intra-task constraints are
exactly the dataflow constraints since there are no global variables and all other
constraints involve more than one task.

Using the intersection procedure described above, the constraint eliminator could,
theoretically, intersect all the tasks and constraints, producing one large DFA whose
language is the set of legal traces of the concurrent system. While this would prevent
violation of all the constraints (not just the intra-task ones), the resulting DFA would
be similar to a reachability graph of the concurrent system, and equally large—in the
worst case exponential in the number of tasks. It is exactly this state explosion the
method seeks to avoid by considering the tasks separately and ignoring some of the

dependency between them.

3.3.3 The Inequality Generator

The analysis implemented by the constrained expression toolset involves the
generation of a system of linear inequalities expressing features of both the constrained
expression representation of the concurrent system being analyzed and a query posed
by the analyst. I now describe the inequality generator component of the toolset 6].

The input to the inequality generator consists of a list of tasks. The tasks may
be represented as REs, or, following constraint elimination, as DFAs or REDFAs.
For each task, the inequality generator produces a collection of equations. It then
generates additional inequalities reflecting part of the semantics of certain of the
constraints. The generation of equations for the tasks depends only on the basic
structure of REs and FSAs, but the generation of inequalities from constraints de-
pends on features of CEDL. In principle, since the CEDL constraints are all REs,
the generation of inequalities from tasks and constraints could be accomplished in a
uniform manner, as described in Section 3.2. While this would be more consistent with
the interpretation of the semantics of constrained expressions given in Section 3.1,

the separate proce<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>