The Integration of Scheduling and Fault Tolerance
in Real-Time Systems *

Prof. John A. Stankovic

Fuxing Wang

Department of Computer Science
University of Massachusetts

Ambherst, MA 01003

1 Introduction

Next generation, mission critical systems will require
greater flexibility, predictability, and reliability than is
commonly found in today’s systems [17]. While many
advances are required to achieve the cost-effective en-
gineering of these systems, one important research
topic is the integration of schedulability and fault tol-
erance. In the past this topic has been approached by
engineering expensive and highly static solutions, de-
pendent on special purpose interconnection networks
and architectures and static scheduling. This approach
is not suitable for most next generation systems. Two
promising approaches for more dynamic situations are
the use of imprecise computations and the use of plan-
ning mode schedulers [12]. What is especially attrac-
tive is that these two approaches are not competing
but rather can be used in conjunction with each other.
In Section 2 we first discuss some background material
on the interaction of scheduling and fault tolerance.
In Section 3, we present the imprecise computation
model and discuss its advantages and disadvantages.
In Section 4 we present the planning mode scheduling
approach with its advantages and disadvantages and
suggest how planning can be combined with imprecise
computation. In Section 5 we summarize key points
and present a list of outstanding issues.

2 Background

Many solutions used today for scheduling real-time
tasks are centralized and static. They are centralized
in that the solutions are for single processor systems,
or are simply applied in distributed systems ignor-
ing system-wide requirements. They are static in the
sense that they assume complete and prior knowledge
of alltasks and make a priori scheduling and allocation
decisions for the tasks. These static solutions suffer
from inflexibility and are not feasible for dynamic, de-
centralized, complex real-time systems. On the other

*This work is part of the Spring Project at the Univer-
sity of Massachusetts and is funded in part by the Office
of Naval Research under contract N00014-92-J-1048 and
by the National Science Foundation under grant CDA-
8922572.

extreme one usually finds solutions for dynamic real-
time systems based on assigning priorities to tasks and
then using preemptive priority-based scheduling. This
approach suffers from a number of problems: First, a
single value, namely a task’s priority, has to reflect
a number of characteristics of the task including its
deadline and level of importance. This assignment
is error-prone and causes several well known anoma-
lies because deadline and importance are not always
compatible. Second, using this approach it is only
known that a task has missed its deadline at or af-
ter the deadline occurs. This does not allow time for
any corrective actions and is not suitable for many
systems. Third, priority scheduling (as commonly de-
fined) only addresses the cpu resource. This is a mis-
take. What value is there to immediately scheduling
a task with a close deadline if the first action that the
task takes is to ask for a locked resource and therefore
must wait? What is required is an integrated approach
to cpu scheduling and general resource allocation (i.e.,
resources other than the cpu such as data structures)
[21]. In other words, the scheduling problem is NOT
just a cpu scheduling problem, it is a combination of
cpu scheduling and resource allocation. It is this com-
bined problem which must be integrated with fault
tolerance. For example, as we shall see later, while im-
precise computation has tremendous potential, some
scheduling solutions associated with imprecise com-
putation advocate using earliest deadline scheduling
without considering resource requirements. While this
is a valuable first step in developing the theory, it is
highly unlikely that complex systems will be composed
of all independent tasks. Fourth, priority scheduling
by itself provides little direct support for quantita-
tively assessing the performance of the system with
respect to timing requirements.

Many fault tolerant mechanisms can be applied to
real-time applications [2,3,9]. Each has different ad-
vantages and disadvantages based on different fault as-
sumptions. Some fault tolerant mechanisms are based
on temporal redundancy. Retry repeatedly executes
the same software module. This tolerates transient
errors. If a different copy of the same software mod-
ule is used in each retry, this is a form of Recov-

ery Block (RB). In general, RBs may use a differ-
ent software version for each retry block. This idea
has been extended to Distributed Recovery Blocks [6].
Other fault tolerant mechanisms are based on spatial
redundancy. N-Modular-Redundancy is used to by-
pass hardware faults, and a similar idea is used in
N Version Programming (NVP) to tolerate software
design faults. In this case, the outputs of the N ver-
sions are voted upon. Note that none of these tech-
niques necessarily deal with timing constraints (al-
though that is also not precluded). Some fault tol-
erant mechanisms are based on the timing proper-
ties of software modules. For example, a Deadline
Mechanism can be used to select the proper version
of a software module which meets a known deadline.
The imprecise computation approach is based on an
iterative method so that system scheduling can trade
off time and precision of a software module with a
deadline constraint. This same idea is used in the
Mandaiory- Optionals work [14] which does not require
iteration and can be considered a discrete form of im-
precise computation. Many systems contain fault tol-
erant mechanisms which are based on a combination
of the above. Multi- Primary- Voting and Multi-Ghost-
Backup is used in [8]. N Self-Checking Programming
combines both temporal and spatial redundancy [9].
Mulii-Language Versions combines NVP and RB [11].
A more complicated and flexible fault tolerant scheme,
called Resourceful System, is reported in [1].

Since many real-time applications also require a high
degree of fault tolerance, many systems must deal with
both fault tolerance and timing issues. However, it
is surprising that there are very few approaches that
explicitly address real-time scheduling to meet tim-
ing and fault tolerance requirements. For example,
much scheduling work attempts to produce a single
safe schedule rather than validating all possible error
recovery schedules.

3 Imprecise Computation Model

There are many different ways to address fault tol-
erance. Some techniques create redundancy in time.
For example, task A and one (or more) backups(s)
are scheduled so that if A fails, then there is still
enough time to detect this failure and still execute
the backup(s) before the deadline. It is important to
note that the backup may or may not produce the full
accuracy of computation, but that, in general, it is
assumed that the answer is available only at the end
of the computation. Other techniques create redun-
dancy in space. For example, n copies are scheduled
on different nodes and synchronized so that they can
vote on outputs and complete by a deadline. Failures
are masked. For each of these two techniques many
variations have been used.

Both of these models require significant redundancy.
Another fault tolerance model without redundancy is

to schedule tasks so that as many high value tasks as
possible make their deadlines. If, because of overload
or processor failures, it is impossible for all tasks to
make their deadlines, then the scheduler is responsible
for omitting the least important work. While this
approach is cheaper than those using redundancy, it
suffers from the fact that some tasks may not execute
at all (in the case of host failures this may be very
important tasks and in the case of overload it should
be the least important ones if the system is designed
properly).

Recently, another model has emerged called the im-
precise computation model [14,10,5]. This model pre-
vents timing faults by reducing the accuracy of results
in a graceful manner. In other words, an answer is
available before task completion, but after a manda-
tory part completes execution (the mandatory part
could be very small or zero), and its accuracy im-
proves as more execution is consumed (considered the
optional part). Note that this approach deals with a
single task with the above features. Consequently, a
failure such as the processor stops during the manda-
tory part, is not handled. Rather, the type of failure
that is handled is running out of time. On the other
hand, the approach is not precluded from being com-
bined with other fault tolerant approaches (based on
redundancy) in order to handle processor failures.

Let us now see how the imprecise computation model
interacts with scheduling. In this model consider that
each task is composed of a mandatory part (can be
zero) and an optional part. If the entire task exe-
cutes (mandatory plus the entire optional part) we
consider the answer to be precise (error of zero). The
scheduling algorithm must guarantee that all manda-
tory parts will meet their deadlines. This provides
a minimum level of guaranteed performance even in
overloads that would otherwise possibly cause an im-
portant computation to be late missed. The schedul-
ing algorithm also attempts to execute as much of the
optional parts as possible to minimize error. Many
variations and extensions are possible. For example,
different metrics can be used by the scheduler includ-
ing minimizing the total error, minimizing the num-
ber of discarded optional tasks, and minimizing the
maximum or average error. Extensions to combine
this approach with another new approach called the
planning mode approach! (see Section 4) are possible;
extensions that combine imprecise computation with
space redundancy are possible; extensions for dealing
with the case where the set of tasks to be scheduled
have different weights, where the tasks are periodic,
and where tasks can be parallelized have been devel-
oped to some extent.

In all of the scheduling solutions developed so far
in the imprecise computation model, tasks are pre-

! Actually, depending on how the imprecise computa-
tion model is used it can already be a planning mode
scheduler.

emptable and independent. This enables the use of
a rate monotonic or earliest deadline foundation for
the basic guarantees. However, communicating tasks
(in both multiprocessors and distributed systems) and
those that share resources such as data will, in prin-
ciple, void the basic assumptions behind these tech-
niques. Future work must address these more compli-
cated types of programs. Other practical problems are
actually being able to implement tasks with manda-
tory and optional parts and knowing the error func-
tion associated with the optional part. In a dynamic
system this can be quite complicated because the er-
ror function may be dependent on the current system
state and, even worse, may be correlated to past exe-
cutions of the task, e.g., the error may be cumulative
over the past n execution of the task. This will require
much more sophisticated scheduling algorithms whose
execution time may grow too large. Also, in a complex
system many types of tasks will be co-resident: those
whose errors accumulate and those which do not, pe-
riodic and non-periodic, communicating and indepen-
dent, sets of tasks with precedence (more than just
precedence between the mandatory and optional parts
of a single task), preemptive and non-preemptive, etc.
How to develop scheduling heuristics for this set which
provides the basic guarantees that the imprecise com-
putation model provides is difficult and subject to fu-
ture research. On the other hand, before we appear
too negative, we believe that the imprecise computa-
tion model has great potential and all other methods
also have similar problems.

4 Planning Mode Schedulers

One must recognize that there are different types of
real-time systems with respect to timing constraints,
granularities of time requirements, synchronization con-
straints, and of particular interest, fault tolerance re-
quirements [18]. A real-time kernel must be reason-
ably generic so that it can be used in many different
applications with differing requirements. Here we fo-
cus on how support for certain types of fault tolerance
can be achieved by using on-line scheduling in a plan-
ning mode, and how on-line scheduling, together with
some basic language support, can provide the flexibil-
ity required so that the same basic approach can be
used in many types of applications. Some advantages
of using scheduling in a planning mode include fore-
casting timing errors, carefully planning the activities
of error recovery, planning fault masking for redun-
dant application modules, planning system reconfigu-
rations, managing the processing of exceptions, sup-
porting graceful degradation in several ways includ-
ing the use of imprecise computations, and allowing
the dynamic adaptability of fault tolerance techniques.
We also discuss how various fault tolerant models can
be supported by three basic mechanisms plus an on-
line scheduler.

The Spring system is currently being designed to
be able to represent many fault tolerant mechanisms
by three basic fault tolerant structures. These struc-
tures are then dynamically supported via the Spring
planning mode scheduler. This approach allows the
support of basic fault tolerance mechanisms as well
as innovative combinations of planning and impre-
cise computation. The basic structures are the Voting
Scheme (VS), Primary-Backups (PB), and Alternative
Set (AS). While these three structures are straightfor-
ward, dynamic support for them is not common. The
schemes work as follows.

VS is the typical voting technique where n copies
of tasks vote. This is represented to the scheduling
algorithm as the need to schedule n task copies and 1
or up to n voter tasks. There are location constraints
on the n task copies and precedence constraints be-
tween the n copies and the voters. There is a single
deadline on the voters. PB works by requesting the
scheduling of one active task and n — 1 backups with
location constraints and one deadline which is the time
by which exactly one of these tasks must complete.
The scheduler plans the execution of the tasks so that
these semantics are achieved. AS selects an execution
time limit from a predetermined set of computation
times among one or more software modules so that
the selected module can be guaranteed to meet its
deadline. This supports a discrete form of imprecise
computation. However, if full computation time re-
quired for the selected task can be guaranteed, then it
is guaranteed, else it receives an execution time that
can be guaranteed for it. If this is less than a min-
imum amount of time required, then the task is not
guaranteed. Note that the process of guaranteeing is
the important part of scheduling and in Spring this in-
cludes addressing resource requirements. To use these
three fault tolerance structures to represent a large
class of fault models, the notions of task and task
group are used. Each VS, PB, or AS mechanism is
implemented as a task group which consists of a set of
tasks with certain fault semantics. A task group may
include other task groups. Using this type of recur-
sive definition, many complex fault tolerant structures
can be represented. For example, the AS mechanism
can be used to implement imprecise computation to
support running out of time errors, and embedding
this AS structure in a PB mechanism can provide the
redundancy necessary to support processor failures.

Tasks have different fault semantics. Because of
the planning approach faults can be categorized into
pre-run time faults and run-time faults. The pre-run
time faults happen when the system load is relatively
high and a scheduling algorithm can not find a feasi-
ble schedule. Thus, the algorithm predicts that some
tasks will miss their deadlines. This type of fault can
be handled by the imprecise computation model (AS
task groups) such that the scheduler can avoid the
faults by selecting an appropriate level of imprecise

computation. Run-time faults are mainly detected by
the validation process embedded in the tasks or by the
synchronization among redundant modules of a task,
or after a task misses a deadline. The ultimate goal is
to design a fault tolerant real-time system which can
tolerate both pre-run time faults and run-time faults.
This can be done by combining the structure of impre-
cise computation with other fault tolerant structures,
e.g., VS and PB.

Our scheduler consists of two components: a task
configuration module and a guarantee routine. The
task configuration module dynamically configures the
current task set by balancing the redundancy level of
fault tolerance tasks and the load of the system, while
the guarantee routine finds a feasible schedule for the
task set determined by the task configuration module.

For the purpose of easy management, all user appli-
cations are divided into jobs. Each job has one or more
versions of actual implementation, which is called as
alternatives. Each alternative could be a general task
group (non fault tolerant), a VS group, a PB group, a
AS group, or a more complex task group. The differ-
ent alternatives of jobs represent the different levels of
fault tolerance requirements.

When a job arrives at the system, the new job and
all unfinished jobs become candidates to be scheduled.
The task configuration module determines an alterna-
tive for each candidate. All the selected alternatives
constitute the tasks to be scheduled by the guarantee
routine. If the guarantee routine fails to find a feasi-
ble schedule, the task configuration module must work
out a new set of alternatives to permit the guarantee
routine make another try. The process stops when a
feasible schedule is found by the guarantee routine.

Figure 1 shows the effect of the task configuration
module. The performance data are generated from the
Spring Simulation Testbed. More simulation results
can be found in [19], which compares the performance
resulting from various combinations of task configura-
tion and guarantee algorithms.

5 Summary

Real-time scheduling is very complicated, fraught with
anomalies and misconceptions. Fault tolerance is also
very difficult. Needing to simultaneously support both
is even more difficult. What is required is a strong un-
derlying theory, proper system level support (such as
real-time languages [7], on-line scheduling algorithms,
synchronization mechanisms, agreement protocols, re-
covery algorithms, mechanisms to support adaptive
fault tolerance, architecture support [15,20]), and use-
ful design and analysis tools — all developed by experts
to insulate users from the complexity and to avoid
mistakes. Each of these areas must focus on the inte-
gration of scheduling and fault tolerance and not treat
them independently. While new approaches that arise
from considering scheduling and fault tolerance to-

% of Total Value Guaranteed

% of Jobs Guaranteed

gether are to be highly encouraged (such as imprecise
computation and planning mode scheduling), other
more incremental solutions should also prove valuable.
For example, beginning with some basic scheduling
theory results and extending them to address the fault
tolerance nature of tasks may prove very important.
Extensions to the rate monotonic theory fall into this
category. Similarly, beginning with basic fault tol-
erance results and explicitly trying to extend those
results to consider the timing requirements in a flex-
ible manner may also prove valuable. Results where
replicas and voting tasks are dynamically scheduled
fall into this category.

1.0 —

09— &

0.8 / —

0.7 -

0.6 - A——A Without Configuration Module

O——"0 With Configuration Module

0.5 —

0.4

0.3 !—/r/a/—ﬁ/d

0.2

0.1

0.0 | | | |

200 250 300 350 400

Mean Interarrival Time

1.0 (a)

09

0.8 W

0.7 -

0.6 — A——A Without Configuration Module

O——-"0 With Configuration Module

0.5

04—

0.3 w

0.2

0.1

0.0 | | | |

200 250 300 350 400

Mean Interarrival Time

Figure 1: The performance with/without the configu-
ration module.

#cpu=5, H#resource=8, Use_P=0.1, Share_ P=0.7,
heuristic function : h = dl + w1l * est, wl = 6.0,
job_value in uniform distribution (3000, 4000), each
job has 2 alternatives, the first alternative has, #pro-
cess in uniform distribution (4, 6), the second alterna-
tive has one process, each process has 1 task, task_wcct
in uniform distribution (100, 150), task_avrg in uni-
form distribution (70%, 90%) of task_wcct, latest fin-
ish time as task’s deadline, job laxity in two uniform
distributions (300, 500) of 60% and (700, 1000) of 40%.

Some of the main research questions are: What are
good sets of integrated scheduling policies that span
cpu scheduling, I/0 scheduling, communication needs,
resource allocation, and fault tolerance requirements;
What new scheduling theory is required to support the
above integration of issues; How can dynamic schedul-
ing contribute to the tradeoff between time and space
redundancy; Can a single sophisticated scheduling al-
gorithm cost effectively handle complex task sets, or
will tasks be partitioned into equivalence classes with
algorithms tailored to each class; How would such a
set of algorithms interact; What type of predictabil-
ity, including fault tolerance guarantees, is possible for
distributed real-time computation and can a compre-
hensive scheduling approach that supports predictable
and analyzable distributed real-time systems be de-
veloped; How can task importance, computation time,
tightness of deadline, and fault requirements be traded
off to maximize value in the system; what are the roles
of the scheduling algorithms in this analysis; What is
the impact of off-line allocation policies and fault tol-
erance policies on dynamic on-line scheduling; How to
deal with overloads and what should be the expecta-
tions with respect to performance and predictability in
overload situations; How can we make scheduling and
fault tolerance cost effective; How can we determine
the impact when fault hypotheses and load hypotheses
are wrong; What is the role of run time monitoring in
supporting scheduling under fault assumptions;, and
How can fault tolerance policies be adapted as sys-
tems react in the short and long term to changing
environment and system conditions, objectives, and
requirements.

References

[1] R. J. Abbott. Resourceful systems for fault tol-
erance, reliability, and safety. ACM Computing
Surveys, 22(1):35-68, 1990.

[2] T. Anderson and P. A. Lee. Fauli-Tolerance -
Principles and Practice. Prentice Hall, Interna-
tional, London, 1981.

. Avizienis and J. Laprie, eds, Dependable Com-

3] A. Avizieni d J. Laprie, eds, D dable C
puting for Critical Applications. Vol. 4, Springer-
Verlag, 1991.

[4] J. Bannister and K. Trivedi. Task allocation in
fault tolerant distributed systems. ACTA Infor-
matica, 20:261-81, 1983.

[5] J. Chung, J. Liu, and K. Lin. Scheduling periodic
tasks that allow imprecise results. IEEE Trans.
Computers, Vol. 19, No. 9, Sept. 1990.

[6] K. H. Kim and H. O. Welch. Distributed exe-
cution of recovery blocks: An approach for uni-
form treatment of hardware and software faults in

real-time applications. IEEE Trans. Computers,
38(5):626-36, May 1989.

[7] E. Klingerman and A. D. Stoyenko. Real-time
Euclid: A language for reliable real-time sys-
tems. IEEE Transactions on Software Engineer-
ing, September 1986.

[8] C. M. Krishna and K. G. Shin. On scheduling
tasks with a quick recovery from failures. IEFE
Trans. Computers, 35(5):448-55, May 1986.

[9] J. C. Laprie et al. Hardware- and software-fault
tolerance: Definition and analysis of architectural
solutions. In Digest of Papers FTCS-17, pages
116-21, 1987.

[10] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and
W. Zhao, Algorithms for Scheduling Imprecise
Computation. IEEE Computer, May 1991.

[11] J. M. Purtilo and P. Jolote. A system for sup-
porting multi-language versions for software fault
tolerance. In Digest of Papers FTCS-19, pages
268-74, 1989.

[12] K. Ramamritham, J. Stankovic, and P. Shiah. Ef-
ficient scheduling algorithms for real-time multi-
processor systems. IEEE Transactions on Paral-
lel and Distributed Systems, Vol. 1, No. 2, April
1990, pp. 184-194.

[13] K. Ramamritham. Scheduling complex periodic
tasks. Intl. Conference on Distributed Computing
Systems, June 1990.

[14] W.-K. Shih, J. W. Liu, and J.-Y. Chung. Fast al-
gorithms for scheduling imprecise computations.
Real-Time System Symposium, pages 12-19, De-
cember 1989.

[15] K. Shin. HARTS: A distributed real-time archi-
tecture. IEEE Computer, Vol. 24, No. 5, May
1991.

[16] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic
task scheduling for hard real-time systems. Real-
Time Systems, Vol. 1, pp. 27-60, 1989.

[17] J. A. Stankovic. Misconceptions about real-time
computing. IEFE Computer, October 1988.

[18] J. A. Stankovic and K. Ramamritham. The
Spring Kernel: A new paradigm for real-time op-
erating systems. A CM Operating Systems Review,
Vol. 23, No. 3, July, 1989, pp. 54-71.

[19] F. Wang. Dynamic Scheduling in Real-Time Sys-
tems — Algorithms and Analysis . PhD Thesis,
University of Massachusetts, in preparation.

[20] Wensley, et. al., SIFT: Design and analysis
of a fault-tolerant computer for aircraft con-
trol. Procs. of the IEEE, 66(11), October 1978,
pp. 1240-1255.

[21] W. Zhao, K. Ramamritham and J. A. Stankovic.
Scheduling tasks with resource requirements in
hard real-time systems. IEEE Trans. on Software
Engineering, SE-12(5), May 1987.

