In Search of Acceptability Criteria:
Database Consistency Requirements and
Transaction Correctness Properties

K. Ramamritham and P.K. Chrysanthis

COINS Technical Report 92-54
Replaces COINS TR 91-92
July 1992



In "Distributed Object Management", Ozsu,
Dayal, Valduriez (editors), Morgan-Kaufmann,
Publishers, 1992.

In Search of Acceptability Criteria:
Database Consistency Requirements and
Transaction Correctness Properties

Krithi Ramamritham Panos K. Chrysanthis
Dept. of Computer Science Dept. of Computer Science
University of Massachusetts University of Pittsburgh

Ambherst, MA 01003 Pittsburgh, PA 15260
Abstract

Whereas serializability captures daiebese consistency requirements and
transaction correciness properties via a single notion, recent research has
attempted to come up with correctness criteria that view these two types of
requirements independently. In this paper, we develop a taxonomy of var-
ious correciness criteria that focus on database consistency requirements
and transaction correctness properties from the viewpoint of what the dif-
ferent dimensions of these two are. This taxonomy allows us to categorize
correctness criteria that have been proposed in the literature. To help
in this categorization, we have applied a uniform specification technique,
based on ACTA, to express the various criteria. Such a categorization helps
shed light on the similarities and differences between different criteria and
to place them in perspective.

1 INTRODUCTION

Deatabase consistency requirements capture correctness from the perspective of ob-
jects in the database - as transactions perform operations on the objects. On the
other hand, transaction correctness properties capture correctness from the perspec-
tive of the structure and behavior of transactions. That is, they deal, for example,
with the results of transactions and the interactions between transactions. Serializ-
ability [Eswaran, 1976] captures database consistency requirements and transaction
correctness properties via a single notion: (1) The state of the database at the end



of a set of concurrent transactions is the same as the one resulting from some serial
execution of the same set of transactions; (2) The results of transactions and the in-
teractions among the set of transactions are the same as the results and interactions,
had the transactions executed one after another in this serial order. As applications
using databases become more complex, the correctness criteria that are acceptable
to the application become more complex and hence harder to capture using a single
correctness notion.

Recent research has attempted to come up with correctness criteria, or acceptabil-
ity criteria, that view these two types of requirements independently. The search
for more flexible correctness requirements is also motivated by the introduction of
new transaction models that extend the traditional atomic transaction model. (See
[Elmagarmid, 1991] for a description of some of the eztended transaction models.)
These extensions came about because the atomic transaction model in conjunction
with serializability is found to be very constraining when applied in advanced ap-
plications such as design databases that function in distributed, cooperative, and
heterogeneous environments.

Proposed correctness criteria range from the standard serializability notion to even-
tual consistency [Sheth, 1990]). Quasi-serializability [Du, 1989], predicatewise se-
rializability [Korth, 1988b], etc., are points that lie within this range. Eventual
consistency can be viewed as a “catch-all” term with different connotations: For
example, requiring consistency “at a specific real-time”, “within some time” or
“after a certain amount of change to some data”, or enforcing consistency “after
a certain value of the data is reached”, etc. Whereas serializability and its re-
laxations are, in general, application and transaction model independent criteria,
eventual consistency, as the examples above show, are application and tramsaction
model specific. It is not difficult to see that these relaxed correctness requirements
are useful within a single database as well as in multi-database environments.

Whereas serializability works under the simple assumption that individual transac-
tions maintain the consistency of the database, proposed correctness criteria require
more from the transaction developers. In particular, a transaction may have to be
aware of the functionality of other transactions, especially in a cooperative environ-
ment. This makes transaction development as well as management more difficult.
Our goal in this paper is to understand the conceptual similarities and differences
between different correctness criteria without getting into the practical implications
of adopting them.

So, in this paper we examine database consistency constraints and transaction cor-
rectness properties from the viewpoint of what the different dimensions of these two
types of correctness are. This taxonomy allows us to categorize existing proposals
thereby shedding some light on the similarities and differences between the propos-
als and to place them in perspective. The categorization also helps us determine
whether or not a correctness notion is transaction model specific or application
specific. We will see that even though some of the correctness notions were mo-
tivated by specific transaction models or specific applications, they have broader
applicability.

To help in this categorization, we apply a uniform specification technique to express
the various correctness criteria that have been proposed. The technique is based



on the ACTA formalism [Chrysanthis, 1990, 1991] which heretofore has been used
for the specification of and for reasoning about extended transactions. One of the
key ingredients of ACTA is the idea of constraining the occurrence of significent
events associated with transactions, Begin, Abort, and Split, for example. These
constraints are expressed in terms of necessary and sufficient conditions for events
to occur. These, in turn, relate to the ordering of events and the validity of relevant
conditions. Such constraints can also facilitate the specification of database consis-
tency requirements and transaction correctness properties. The ACTA formalism
is introduced in Section 3.

The rest of the paper is structured as follows: Subsection 2.1 provides a taxonomy
of database consistency requirements while 2.2 provides a taxonomy of transaction
correctness properties. A specification of existing proposals as well as their catego-
rization (based on the taxonomy) is the subject of Section 4. Section 5 concludes
the paper with some discussions of the next step in this work.

2 A TAXONOMY OF CORRECTNESS CRITERIA

We study different dimensions of the two aspects of correctness, namely, consistency
of database state and correctness of transactions, in order to develop a taxonomy
of correctness criteria. For concreteness, we give examples as the taxonomy is
developed.

2.1 DATABASE CONSISTENCY REQUIREMENTS

Database consistency requirements can be examined with respect to two issues with
further divisions of each as discussed below.

e Consistency Unit:

— Complete Database:
All the objects in the database have to be consistent locally as well as
mutually consistent, i.e., they should satisfy all the database integrity
constraints typically specified in the form of predicates on the state of the
objects. ’
Ezample: Traditional serializability (SR) applied to atomic transactions
[Bernstein, 1987).

— Subsets of the objects in the database:

* Location-independent subsets:
The database is viewed as being made up of subsets of objects. The
subsets are not necessarily disjoint and are specified as part of the
database definition. Each object in the database is expected to be
consistent locally but mutual consistency is required only for objects
that are within the same subset.
Ezample: Setwise serializability (SSR) applied to compound transac-
tions (Sha, 1985] and Predicatewise serializability (PSR) applied to
cooperative transactions [Korth, 1988].

* Location-dependent subsets:
Each subset corresponds to one of the sites of a (distributed / heteroge-



neous) database. In addition to mutual consistency among objects in a
subset (i.e., site), consistency among subsets is also required depending
on which parts of a database are accessed by a transaction.

Ezample: Quasi-serializability (QSR) [Du, 1989] and its generalization
[Mehrotra, 1991] applied to distributed transactions.

— Individual Objects:
Each object in the database is expected to be consistent locally.
Ezample: Linearigability [Herlihy, 1987) applied to objects accessed by con-
current processes.

o Consistency Maintenance:
This is related to the issues of when a consistency requirement is expected to
hold and kow consistency is restored if it does not hold.

— When is a consistency requirement ezpected to hold?

* At activity boundaries: (An activity denotes a unit of work)
- When an operation completes:
When an operation on an object completes, the necessary consistency
specifications must hold.
Ezample: Concurrent processes accessing shared objects.
- When a set of operations completes:
When a set of operations performed by a transaction completes, the
necessary consistency is expected to hold.
Ezample: Semantic atomicity [Garcia-Molina, 1983] and multilevel
atomicity [Lynch, 1983]
- When a transaction completes:
Consistency is expected to hold upon a transaction’s completion.
Ezample: Atomic transactions.
. When a set of iransactions completes:
Consistency is expected to hold not when individual transactions
complete but when a set of transactions completes.
Ezample: Cooperative transactions [Korth, 1988b], sagas [Garcia-
Molina, 1987].
* At specific poinis of time:
Consistency is required only at/after specific points in time. This is an
example of temporal consistency [Sheth, 1990).
Ezample: A bank account is expected to be made consistent, with re-
spect to the debits and credits that occur on a given day, upon closing
of business.
* At specific states:
Objects may be required to be mutually consistent only when a certain
number of updates have been made to one of the objects or a state
satisfying a certain predicate is reached.
Ezample: A centralized database of a department store chain may re-
quire updates only upon the completion of 100 sales at a particular
store. Such requirements are referred to as spatial consistencyin [Sheth,
1990].
— If a consistency requirement does not hold at a point it is supposed to, how
13 it restored?



* Restored immediately:
This applies when the consistency requirement is required to hold at
activity boundaries. The activity is allowed to complete only if the
requirement holds, i.e., completion is delayed until consistency holds.
Ezample: SR, PSR, QSR, and cooperative serializability (CoSR), ap-
plied to atomic, nested, and distributed transactions.
* Reslored in a deferred manner:
This typically applies when consistency is expected in certain states or
at certain times. When it is applied to consistency that is expected at
an activity boundary, the activity is allowed to complete and restora-
tion is begun subsequently.
- Bventually:
Consistency between objects must be restored eventually.
Ezample: If mutual consistency is required between two objects and
one is changed by a transaction, another can be triggered to make
changes in the other object.
- By a certain time:
A deadline may be imposed on the time by which consistency is
restored.
Ezample: In real-time systems, the state of the controlled environ-
ment should be reflected in the internal state of the controlling sys-
tem within a certain time so that appropriate and timely control can
be exercised.

2.2 TRANSACTION CORRECTNESS PROPERTIES

As was mentioned in the introduction, serializability suffices as a correctness crite-
rion for traditional atomic transactions since once individual transactions are guar-
anteed to take one consistent database state to another consistent state, serializabil-
ity guarantees that a set of concurrent transactions when started in a comsistent
state take the database to another consistent state. So the only transaction correct-
ness property of interest is: Each transaction when executed by itself must maintain
database consistency. From this it follows that, under serializability, the output of
a transaction reflects a consistent database state. However, more elaborate correct-
ness properties have been proposed in the context of additional application require-
ments and newer transaction models. These transaction correctness properties can
be discussed with respect to three criteria:

e Correciness of transaction results:

— Absolute:
The output of transactions must reflect a consistent database state.
Ezample: SR applied to atomic transactions, QSR applied to distributed
transactions.

— Relative:
Outputs of a transaction are considered correct even if they do not reflect
a consistent state of the object, as long as they are within a certain bound
of the result that corresponds to the consistent state.
Ezample: Epsilon-serializability (ESR) [Pu, 1991} applied to Epsilon-
transactions, approximate query processing [Hou, 1989].



e Correciness of transaction siructure:
Correctness depends on the (structural) relationship between transactions.
This typically translates into commit, abort, begin, and other types of depen-
dencies [Chrysanthis, 1991] between transactions.

Ezample: Sagas [Garcia-Molina, 1987], multi-level serializability [Korth, 1990c].
e Correctness of transaction behavior:

— Data access related behavior:
Transactions are required to perform operations on objects in a certain
manner to be considered correct.
Ezample: patterns [Skarra, 1991].

— Temporal behavior:
Transactions have start time and completion time (deadline) constraints.

Ezample: Transactions in real-time systems.

The taxonomy just presented shows how the various weakened versions of serializ-
ability can be viewed from the perspectives of database consistency and transaction
correctness. We revisit these notions in Section 4.1 where they are formally spec-
ified and categorized along the different dimensions of the taxonomy. Sections 4.2
and 4.3 deal with the formal specification of more general correctness criteria that
are not directly related to serializability but deal, for example, with transaction
structure and behavior, specific states of objects, or specific times.

3 A QUICK INTRODUCTION TO THE ACTA
FORMALISM

ACTA is a first-order logic based formalism. As mentioned earlier, the idea of sig-
nificant events underlies ACTA’s specifications. Section 3.1 discusses these events.
Specifications involve constraints on the occurrence of individual significant events
as well as on the history of occurrence of these events. Hence the notion of history
and the necessary and sufficient conditions for the occurrence of significant events
are introduced in Section 3.2. Finally, Section 3.3 shows how sharing of objects
leads to transaction inter-relationships which in turn induces certain dependencies
between concurrent transactions.

3.1 SIGNIFICANT EVENTS ASSOCIATED WITH
TRANSACTIONS

During the course of their execution, transactions invoke operations on objects.
Also, they invoke transaction management primitives. For example, atomic trans-
actions are associated with three transaction management primitives: Begin, Com-
mit and Abort. The specific primitives and their semantics depend on the specifics
of a transaction model [Chrysanthis, 1991]. For instance, whereas the Commit by
an atomic transaction implies that it is terminating successfully and that all of its
effects on the objects should be made permanent in the database, the Commit of
a subtransaction of a nested transaction implies that all of its effects on the ob-
jects should be made persistent and visible with respect to its parent and sibling
subtransactions. Other transaction management primitives include Spawn, found



in the nested transaction model [Moss, 1981], Split, found in the split transaction
model [Pu, 1988], and Join, a transaction termination event also found in the split
transaction model.

DEFINITION 3.1: Invocation of a transaction management primitive is termed
a significant event. A transaction model defines the significant events that
transactions adhering to that model can invoke.

The set of events invoked by a transaction ¢ is a partial order with ordering relation
<¢ where <; denotes the temporal order in which the related events occur.

ts(e) gives the time of occurrence of event € according to a globally synchronized
clock!. Clearly, ts(8) will be larger than ts(c) if o appears earlier in the partial
order. Further, no two significant events that relate to the same transaction can
occur with the same ts value.

3.2 HISTORY, PROJECTION OF THE HISTORY, AND
CONSTRAINTS ON EVENT OCCURRENCES

The concurrent execution of a set of transactions T is represented by the history
[Bernstein, 1987) of the events invoked by the transactions in the set T and indicates
the (partial) order in which these events occur. The partial order of the operations
in a history is conmsistent with the partial order of the events of each individual
transaction ¢ in T.

The projection of a history H is a subhistory that satisfies a given criterion. For
instance,

o The projection of a history H with respect to a specific transaction ¢ yields a
subhistory with just the events invoked by ¢. This is denoted by H,.

e The projection of a history H with respect to a specific time interval (i, j] yields
the subhistory with the the events which occurred between i and j (inclusive)
and is denoted by H{J],

When i = system initiation time, we drop the first element of the pair. Thus
HI = Hlsystem-inittime,j] denotes all the events that occur until time j.

Consistency requirements imposed on concurrent transactions executing on a
database can be expressed in terms of the properties of the resulting histories.

The occurrence of an event in a history can be constrained in one of three ways:
(1) An event € can be constrained to occur only afier another event ¢’; (2) An
event € can occur only if a condition c is true; and (3) a condition ¢ can require the
occurrence of an event e.

DEFINITION 3.2: The predicate ¢ — ¢ is true if event ¢ precedes event ¢ in
history H. It is false, otherwise. (Thus, ¢ — ¢’ implies that <« € H and ¢’ € H.)

1This is obviously as abstraction - the effects of realizing this by a set of closely syn-
chronized clocks on individual nodes in a distributed system will not be discussed here.



DerFINITION 3.3: (¢ € H) = Conditionyg, where => denotes implication,
specifies that the event € can belong to history H only if Conditiony is satisfied.
In other words, Conditiony is necessary for ¢ to be in H. Conditiony is a
predicate involving the events in H.

Consider (¢ € H) = (¢ — ¢'). This states that the event ¢ can belong to the
history H only if event ¢ occurs before €.

DEFINITION 3.4: Conditiony = (¢ € H) specifies that if Conditiong holds,
€ should be in the history H. In other words, Conditiony is sufficient for € to
be in H.

We now describe some common types of constraints.

1. (Commity; € H) = ((Commit,, € H) = (Commit,;, — Commit,;)). This says
that if both transactions ¢; and ¢; commit then the commitment of ¢; precedes
the commitment of ¢;. This Commit-Dependency is indicated by (¢; CD t;).
In general, ((Commit,, € H) = condition) specifies that condition should hold
for t; to commit.

2. (Abort,, € H) = (Abort,; € H) i.e., if {; aborts then t; aborts, states the Abort-
Dependency of t; on i; (t; AD t;). In general, (condition = (Aborty; € H))
specifies that if condition holds ¢; aborts.

3. (Begine; € H) = (Begin,, — Begin,,) states that transaction ¢; cannot begin
executing until transaction t; has begun.

3.3 OBJECTS, OPERATIONS, AND CONFLICTS

A transaction accesses and manipulates the objects in the database by invoking
operations specific to individual objects. It is assumed that an operation always
produces an output (return value), that is, it has an outcome (condition code) or a
result. The result of an operation on an object depends on the current state of the
object. For a given state s of an object, we use return(s,p) to denote the output
produced by operation p, and state(s,p) to denote the state produced after the
execution of p.

DEFINITION 3.5: Invocation of an operation on an object is termed an object
eveni. The type of an object defines the object events that pertain to it. We
use p;[ob] to denote the object event corresponding to the invocation of the
operation p on object ob by transaction t. Object events are also part of the
history H.

DEFINITION 3.6: Let H(°) denote the projection of the history with respect

to the operations on ob. Two o?era.tions p and g conflict in a state produced
by H(°®), denoted by conflict(H(*®), p, q), iff

(state(H“M o p, q) # state(H"™ oq, p) v
(return(H®), q) # (return(HMop, q)) v
(return(H (”"), p) # (return(H (o0 o a0, p))



Two operations that do not conflict are compatible.

(o denotes functional composition; H o p appends pto history H.) Thus, two
operations conflict if their effects on the state of an object are not independent of
their execution order (first clause) or their return values are not independent of
their execution order (second and third clauses). From now on, we drop the first
parameter of conflict, namely, H(%),

4 SPECIFICATION AND CATEGORIZATION OF
CORRECTNESS CRITERIA

In this section, we study various database consistency requirements and transac-
tion correctness properties that have been proposed and place them in perspective,
given the taxonomy of the previous section. Broadly speaking, Section 4.1 deals with
transaction model and application independent correctness criteria (even though, as
we will see, those who proposed them may have had a specific transaction model or
application in mind), Section 4.2 discusses transaction model dependent but appli-
cation independent criteria, and Section 4.3 examines transaction and application
‘dependent consistency requirements. (For a complete axiomatic semantics of the
various extended transaction models, the reader is referred to [Chrysanthis, 1991].)

4.1 TRANSACTION AND APPLICATION INDEPENDENT
CRITERIA

In general, transaction and application independent correctness criteria are exten-
sions to serializability. In this section, we first specify some of these extensions using
the formalism described in the previous section and then use the specifications to
show how the different extensions relate to each other. All of these criteria are based
on the notion of conflicts and their preservation in equivalent histories. Thus, we do
not discuss correctness criteria such as view serializability [Yannakakis, 1984] that
are not as easy to realize.

DEFINITION 4.7: Let R be a binary relation on a set of transactions T, ¢;,
tr €T, t; # tr. R" is the transitive-closure of R; i.e.,
(t‘ rR* tk) if [(t, R tk) \ 3tj eT ((t,' R tj) A (tj R tk))].

4.1.1 Serializability

In traditional databases, serializability and, in particular, conflict serializability, is
the well-accepted criterion for concurrency control.

Let C be a binary relation on transactions in T.
Let H be the history of events relating to committed transactions in T
DEFINITION 4.8: Vit t; € T, # ¢4,

(t" C tj) if
Job 3p, q (conflict(pe;[ob], ge;[0b]) A (pe;[0b] — g:;[0b]))-



DEFINITION 4.9: H is (conflict) serializable iff
vt € T,~(t C* t).

To illustrate the practical implications of these definitions, note that the C relation
captures the fact that two transactions have invoked conflicting operations on the
same object and the order in which they have invoked the conflicting operations.
Consequently, the C relation captures direct conflicts between transactions in a
history as well as their serialization order. The fact that a serialization order is
acyclic is stated by requiring that there be no cycles in the C relation.

Note also that the above definitions do not involve any significant events. This
reflects the fact that serializability per se does not constrain the occurrence of any
significant event, e.g., a Commit event to happen only after another Commit event.
(If the C relationship between transactions is acyclic, transactions in H can com-
mit in any order.) That is, the commit order of transactions is not necessarily the
same as their serialization order and hence, the commit order cannot be used to
induce the serialization order. However, a commit order induced by a C relation is
consistent with the serialization order. For example, consider the case of rigorous
histories [Breitbart, 1991] such as the ones produced by the strict two-phase locking
protocol [Eswaran, 1976]. In this case, if transactions ¢; and ¢; have a C relationship,
i.e., they have invoked conflicting operations, a commit dependency [Chrysanthis,
1991} forms between ¢; and ¢;. (Conflicting operations may also produce abort
dependencies between the invoking transactions; but an abort dependency implies
a commit dependency.) By requiring that the C relation be acyclic, commit de-
pendencies must also be acyclic. By inducing a commit dependency between every
pair of transactions invoking conflict operations, the commit order specified by the
commit dependencies is the same as the serialization order. .

With respect to the taxonomy of Section 2, for serializability, the consistency unit
is the complete database, consistency is required at transaction boundaries, and
immediate consistency restoration is required. Absolute correctness of transaction
results is expected. Atomic transactions and top-level transactions of nested trans-
actions, for example, behave according to the serializability correctness criterion.

The semantics of the operations on the objects (for example, see [Badrinath,
1990][Herlihy, 1987][O’Neil, 1986]) can be used to define the conflict relationship
between operations. Furthermore, different degrees of consistency [Gray, 1975] can
be ensured by ignoring some of the conflicts. The resulting inconsistencies can
be accommodated in applications that can cope with such inconsistencies or when
these are masked by the structuring of the objects used by the applications. The
former is the case in [Gray, 1975] and with ESR [Pu, 1991] (see [Ramamritham,
1991b] for a formal characterization of ESR). The latter is the case with abstract
serializability — used in the context of multi-level transactions [Beeri, 1989][Moss,
1986][Martin, 1988][Badrinath, 1990].

4.1.2 Predicatewise Serializability

Predicatewise serializability has been proposed in [Korth, 1988, 198&h] as the cor-
rectness criterion for concurrency control in databases in which consistency con-
straints are in a conjunctive normal form. In such cases, consistency constraints
can be maintained by requiring serializability only with respect to objects which

-10-



relate to a disjunctive clause.

Let P=(PLAP,...A P,) be the database consistency constraint. Suppose the
disjunctive clause Py relates to objects in Dy C DB, where DB is the database.

Yk € {1 ... n}, let Cx be a binary relation on transactions in 7.

Let H be the history of events relating to committed transactions in 7.

DEFINITION 4.10: Yee{l ... n},Vi,t; € T, t: £,
(tg Cx tj), if
3ob € Dy, 3p, q (conflict(pe;[0b], ge;[0b]) A (pe;[0b) — q¢;[0b])).

DEFINITION 4.11: H is predicatewise serializable iff
VEeTVD1<k<n-(tCt)

In [Sha, 1985], each Dy is said to be an atomic data set. With respect to the
taxonomy, for predicatewise serializability, an atomic data set [Sha, 1985] forms a
consistency unit, consistency is required at transaction boundaries, and immediate
consistency restoration is required. Absolute correctness of transaction results is ex-
pected. Compound transactions [Sha, 1985] behave according to the predicatewise
serializability correctness criterion.

4.1.3 Cooperative Serializability

We define cooperative serializability (CoSR) with respect to a set of transactions
which maintain some consistency properties. Transactions form cooperative trans-
action sets. A cooperative transaction set could be formed by the components of an
extended transaction or transactions collaborating over some objects while main-
taining the consistency of the objects. In such cases, consistency can be maintained
if other transactions which do not belong to the set are serialized with respect to
all the transactions in the set. In other words, the set of cooperative transactions
becomes the unit of serializability.

Let T, be a set of cooperative transactions, T, C T.
Let C. be a binary relation on transactions in T'.

Let H be the history of events relating to committed transactions in T'.

DEFINITION 4.12: Vi, t;, tx € T\l #tj,ti F g tj £t VI CT
(t: Cc t5), if
Job ép, q ((t:i & T, t; & T. (conflict(pe;[0b], qe;[0b]) A (pe;[0b] — q:,[0b]))) Vv
(t: ¢ Te,tj € Te b € Te (conflict(pe,[ob), gt,[0b]) A (pe. (0] — g, [0b]))) v
(t: € Te, tj & Tey t € Te (conflict(pe, [0b], gi;[0b]) A (pes [0b] — g¢;[0b])))))

In this definition, the first clause expresses how a dependency between two transac-
tions which do not belong to the same set is directly established when they invoke
conflicting operations on a shared object. This is similar to the clause in the clas-
sical definition of (conflict) serializability. The other two clauses reflect the fact
that when a transaction establishes a dependency with another transaction, the
same dependency is established between all the transactions in their corresponding

-11-



cooperative transactions sets. These clauses can be viewed as expressions of the
development of dependencies between transaction sets.

DEFINITION 4.13: H is cooperative serializable iff
VteT -(t C: t)

With respect to the taxonomy of the previous section, for cooperative serializabil-
ity, the consistency unit is the complete database, consistency is required when
an ordinary transaction (not a member of a T.) completes or a set of cooperating
transactions complete, and immediate consistency restoration is required. Abso-
lute correctness of transaction results is expected. The correctness requirement
expressed informally in [Martin, 1990] corresponds to CoSR.

4.1.4 Quasi Serializability

Quasi Serializability has been proposed in [Du, 1989] as a correctness criterion
for maintaining transaction consistency in multidatabases, e.g., heterogeneous dis-
tributed databases. In these systems, transactions can either execute on a single
site (called local transactions), or can execute on multiple sites (called global trans-
actions).

In QSR, the correciness of the execution of a set of global and local transactions is
based on the notion of a gquast sertal history which, unlike a serial history, specifies
that only global transactions are executed serially. A history is quasi serial if (1)
all local histories are (conflict) serialisable, and (2) there exists a total order of
all global transactions g,, and g, where g,, precedes g, in the order and all g,,’s
operations precede g,’s operations in all local histories in which they both appear.
A quasi serializable history is equivalent to a quasi serial history.

Let G be the set of global transactions and g be a (sub)transaction of a global
transaction g, (gn € G) executing all the operations of g, on site 2.

Let T; be the set of transactions, both local transactions and global
(sub)transactions, executing on site i. T' = (U; T;).

Let H be the history of events relating to committed transactions in T'.
Let R be a binary relation on a set of global transactions G.
DEFPINITION 4.14: YV g, gn € G,0m % Gn,
(9m R i")’kif koo ok k
3k, gmi g (9 C gn) V IPito = gp,tp = g5 Vi, 0<i<p—2
30b 3p.g ((conflct(pe,[ob], gty [08]) A (Bec[ob] = ey [0b])) A
Job’ 3p',q (¢-‘¢mfh'ct(p¢,-,,,1 [0b'], i, [06]) A (PL,,, [08] — gz, [0b])) A
(2e:44 [0 — Bt [06]))
where C is the binary relation defined in Definition 4.8.

The C relation captures the fact that two global transactions directly conflict in
a local history when they invoked conflicting operations on a share object. Two

, *That is, at most one (sub)transaction of a global transaction can execute on a partic-
ular site.

-12-



global transactions might also indirectly conflict in a local history even if they don’t
access any share objects. Indirect conflicts are introduced by other transactions
that directly conflict with each other and with the global transactions. These,
indirect conflicts between two transactions, particularly those introduced by local
transactions, are captured by the second clause of the definition of R. Note that
this clause, and consequently R, is not equivalent to the tramsitive-closure of C
which does not place any restriction on the execution ordering of the conflicting
operations, but R C C*.

DEFINITION 4.15: H is quast serializable iff

1. ViVteT; =(tC" t), and
2. Vg€G (gR" g)

It should be pointed that since the R relation captures both direct and indirect
conflicts between two global transactions in a history, the serializable execution of
global transactions is in terms of both direct and indirect conflicts. Indirect conflicts
between local transactions induced by conflicts of global transactions that execute
on multiple sites are not captured by either clause, the reason being that QSR
assumes no data dependency across sites.

With respect to the taxonomy of the previous section, for Quasi serializability, (site-
based) subsets of the database objects form the consistency units (i.e., objects in
each site form a subset) and consistency should hold when a transaction completes.
Absolute correctness of transactions’ results is expected. Quasi serializability has
been proposed in the context of distributed (multi-database) transactions.

4.1.5 Relationship between different Serializability-based Correctness
Criteria

Thus far in this section, we have specified four serializability-based correctness cri-
teria using the ACTA formalism and classified them with respect to our taxonomy
in Section 2. Here, we will use the formal definitions of the various criteria to relate
them to each other.

According to predicatewise serializability, each Dy is associated with a C; and hence
conflicting transactions can be serialized differently with respect to different Dj.
This is contrary to serializability which permits only a single system-wide serial-
ization order involving conflicting transactions based on C. However, if Dy is the
complete database, then C = Ci, and consequently, predicatewise serializability is
equivalent to serializability.

In the case of cooperative serializability, transactions in different cooperative trans-
action sets may be related by the C, relation (individual transactions not belonging
to any cooperative set can be viewed as singleton cooperative transaction sets).
Hence, if each cooperative transaction set has just one member, then C. = C and,
in this case, cooperative serializability is equivalent to serializability.

In the case of quasi-serializability, there are two distinct conditions under which
QSR is equivalent to serializability. These correspond to the situations in which
one of the two clauses of the definition of QSR is trivially true: (1) In the absence
of global transactions, transactions in 7; are serialized based only on C. (2) In the

-13~



absence of local transactions, transactions in T} are serialized based only on R, i.e.,
here R = C. Indirect conflicts due to local transactions are not possible whereas
indirect conflicts due to global transactions are considered by C*.

Finally, we would like to point out that these different correctness criteria can be
combined and/or adopted within a single database. For instance, it is easy to pic-
ture how cooperatively serializability can be used in conjunction with predicatewise
serializability and how cooperatively serializability can be used in conjunction with
even quasi-serializability.

4.2 TRANSACTION MODEL DEPENDENT AND APPLICATION
INDEPENDENT CRITERIA

Transaction model dependent but application independent correctness criteria are
typically related to the structure of transactions that conform to a particular model.
(Note that specific transaction models may be more suited to specific applications.)
As was mentioned earlier, different transaction models produce different transac-
tion structures where the structure of an extended transaction defines its compo-
nent transactions and the relationships between them. Dependencies can express
these relationships and thus, can specify the links in the structure. For example,
in hierarchically-structured nested transactions, the parent/child relationship is es-
tablished at the time the child is spawned. This is expressed by a child transaction
t. establishing a weak-abort dependency (defined below) on its parent t, ((¢. WD
tp)) and by a parent establishing a commit dependency on its child ((t, CD t.)).
The weak-abort dependency guarantees the abortion of an uncommitted child if its
parent aborts whereas the commit dependency prevents a child from committing
after its parent has committed. -

We now formally specify some of the dependencies that can occur in addition to
the Commit Dependency, Abort Dependency, and Begin Dependency specified
in Section 3.2.

Let #; and ¢; be two transactions and H be a finite history which contains all the
events pertaining to ¢; and t;.

Weak-Abort Dependency (t; WD t;): if t; aborts and ; has not yet committed,
then ¢; aborts. In other words, if ; commits and ¢; aborts then the commitment
of t; precedes the abortion of ¢; in a history; i.e.,
(Abort,; € H) = (—~(Commit,; — Abort,,) = (Abort,; € H)).

Strong-Commit Dependency (t; SCD t;): if transaction ¢; commits then ¢; com-
mits; i.e., (Commit,; € H) = (Commit,; € H).

Termination Dependency (¢; 7D #;): t; cannot commit or abort until ¢; either
commits or aborts; i.e., (¢’ € H) = (e — ¢')
where ¢ € {Commilt,,, Abort.}, and ¢’ € {Commit,;, Abort,;}.

Exclusion Dependency (t; €D t;): if t; commits and ¢; has begun executing, then
t; aborts (both ¢; and ¢; cannot commit); i.e.,
(Commit,; € H) = ((Begin.; € H) = (Abort,; € H)).

Force-Commit-on-Abort Dependency (t; CAD t;): if ¢; aborts, t; commits; i.e.,
(Abort,; € H) = (Commit,; € H).

14~



Serial Dependency (t; SD t;): transaction ¢; cannot begin executing until ¢; either
commits or aborts; i.e.,

(Begin.; € H) = (¢ — Begin,;) where ¢ € {Commit,;, Abort,,}.

Begin-on-Commit Dependency (t; BCD t;): transaction ¢; cannot begin execut-
ing until ¢; commits; i.e., (Begin,; € H) = (Commit,, — Begin,,).

Begin-on-Abort Dependency (t; BAD t;): transaction t; cannot begin executing
until ¢; aborts; i.e., (Begin:; € H) = (Abort:, — Begin,,).

Weak-begin-on-Commit Dependency (t; WCD t;): if ¢; commits, ¢; can begin
executing after £; commits; i.e.,
(Beginy; € H) = ((Commit,; € H) = (Commit,;, — Begin,,)).

Let us look at further examples of structure-related transaction correctness proper-
ties. In the transaction model proposed in [Buchmann, 1990, Garcia-Molina, 1991]
a parent can commit only if its vital children commit, i.e., a parent transaction has
an abort dependency on its vital children ¢, (¢, AD t,). Child transactions may
also have different dependencies with their parents if the transaction model supports
various spawning or coupling modes [Dayal, 1990]. Sibling transactions may also
be interrelated in several ways. For example, components of a saga [Garcia-Molina,
1987) can be paired according to a compensated-for/compensating relationship [Ko-
rth, 1990]. Relations between a compensated-for and compensating transactions as
well as those between them and the saga can be specified via begin-on-commit
dependency BCD, begin-on-abort dependency BAD, force-commit-on-abort depen-
dency CAD and strong-commit dependency SCD [Chrysanthis, 1992]. In a similar
fashion, dependencies that occur in the presence of alternative transactions and con-
tingency transactions [Buchmann, 1990] can also be specified [Chrysanthis, 1992].

4.3 TRANSACTION AND APPLICATION DEPENDENT
CRITERIA

We now focus on the required behavior of a transaction and hence on the require-
ments imposed by the application that employs that specific transaction. We dis-
tinguish between two types of behavior related properties:

1. Those that relate to constraints on a transaction’s access to objects — beyond
those mandated by the concurrency properties of the objects.

2. Those that relate to properties that deal with its other behavioral properties,
such as, when a transaction can/must begin and when it can/must end. Spatial
and temporal requirements are related to this type.

We elaborate upon the first type through an example. Consider a pege object with
the standard read and write operations, where read and write operations conflict. A
read’s return-value is dependent on a previous write, whereas a write’s return-value
is independent of a read or another write. In addition, consider transactions which
have the ability to reconcile potential read-write conflicts: When a transaction ¢;
reads a page z and another transaction t; subsequently writes z, ¢; and ¢; can
commit in any order. However, if t; commits before t; commits, t; must reread =
in order to commit. This is captured by the following requirement:

-15-



(ready;[z) — write;[z]) = ((Commity; — Commity;) = (Commity; — ready;[z]))).

In this example, ¢; has to reread the page z when, subsequent to the first read,
the page is written and committed by ¢;. In general, {; may need to invoke an
operation on the same or a different object. For instance, instead of z, ¢; may
have to read a scraich-pad object which ¢; and ¢; use to determine and reconcile
potential conflicts. In general, the specification of cotrect transaction behavior can
include the specification of operations that need to be controlled to produce correct
histories as well as the specification of operations that have to occur in correct
histories. These correspond to conflicts and patierns in [Skarra, 1991].

Let us now turn to other behavioral specifications, for example, those that con-
cern the beginning and termination of transactions. Consider the following simple
requirement which states that if condition is true then transaction ¢; must begin.

condition = (Begin,; € H)

condition can depend on the occurrence of an event, on the state of the database,
and on time. As we will see, the above requirement can be used for the flexible
enforcement of consistency, to trigger the propagation of changes, to react to con-
sistency violations, and to notify changes. Thus, the above specification can be
considered to be a specification for the automatic triggering of sitnation-dependent
actions, e.g., for expressing the rules that govern the triggering of actions in an
active database [Dittrich, 1991).

Suppose condition is related to the occurrence of some significant event within a
transaction ¢;. In this case, the additional structural relationships (for instance, the
different coupling modes [Dayal, 1990]) between ¢; and ¢; can be specified via the
dependencies discussed in Section 4.2.

If condition relates to the state of the database, what we have is related to spe-
tial consistency discussed in [Sheth, 1990]). For instance, consider the following
condition: “One hundred sales have occurred at this store since the master database
at the store’s headquarters was last updated.”

If condition relates to time, for instance, if condition is “time > 8pm”, we have a
temporal consistency requirement.

Now let us consider situations where consiraints are placed on the beginning of
transactions. For example, a transaction ¢; to compute daily interest can start after
midnight but only after the day’s withdrawals and deposits have been reflected in
the account (say by a transaction ¢;). This can be specified as

(ts(Begin, ) > 12am) A (t; BCD t;).

This is an example where a transaction has a time-based start-dependency as well
as a begin-on-commit dependency on another transaction.

~ Let us consider another example. If a deposit is made by time = then the transaction
that reflects it in the account should not be started until time y. This is specified
by

((Commit,; € H) A (ts(Commity;) < z)) = ((Begin:; € H) = (ts(Begin;) > y)).

-16-



T_hrough several examples, we now consider requirements and constraints associated
with the termination of transactions.

Sometimes, we may want to specify that some specific change of state (by one
transaction) triggers [Dayal, 1990] another transaction (that perhaps fixes the in-
consistency resulting from the first transaction). Clearly, this type of constraint is
related to deferred consistency restoration. This can occur, for example, if we had
two versions of a database, one which was complete and another (at perhaps a differ-
ent site) which only contained data required at that site. The two are not required
to be consistent at all times but changes done to the complete database are required
to percolate to the other within a specified delay. If the changes should be reflected
within d units of time, we have the following “temporal commit dependency”:

((Commity, € H) A (ts(Commit.,) = t)) = (Commit,; € H'*9).

This says that if ¢; commits at time ¢, ¢; should commit by time ¢ + d. For another
example, consider the following:

(temperature > threshold A time = t) = (Commit,; € H'”“"’"“""(“"""“"‘"))

Here ¢; could be a transaction that opens a valve to pass more coolant into the
reactor whose temperature is above threshold. The length of time available to com-
plete this transaction is a function of the current temperature. This is a form of
triggered transaction but with specific time constraints imposed on its completion
[Korth, 1990b]. Such time constrained activities occur in real-time databases [Ra-
mamritham, 1992].

In some situations, it may be desirable to specify an interval [/, u] such that ¢; does
not commit before ! (the lower bound) but definitely commits before u (the upper
bound). For example, consider deposits into a bank account. During the day, if
a deposit is made before 3pm, it is just “logged” into a file but is reflected in the
appropriate account between 10pm and 4am that night. Such constraints take the
form

((Commit,; € H) A (ts(Commity,) < t)) = (Commit,; € Hltsl)

The above conditions imposed on the initiation and termination of transactions
can be viewed as generalizations of the preconditions and postconditions associated
with specific transactions [Korth, 1988b).

For a final example of behavior related specifications, consider the situation in which
it may be desirable to prevent a transaction t; from aborting after a time ¢. This
corresponds to the assumption that a transaction is implicitly committed if it has
not aborted by a certain time [Rusinkiewicz, 1990]. For example, no bets can be
canceled after a race is started and a lottery ticket cannot be refunded after a given
time.

(Abort,, & H) = (Commit,, € H'*!)

Other examples of behavior related requirements appear in [Ramamritham, 1991).

-17-



5 CONCLUSIONS

In this paper, we have examined different types of acceptability criteria and have at-
tempted to provide a taxonomy with respect to database consistency requirements
and irensaction correciness properties. Given space limitations, we could exam-
ine, in detail, only a subset of the proposals that have been made to capture the
correctness properties applicable to extended transaction models as well as those
demanded by the newer database applications.

We have approached the problem of categorizing the different proposals by formally
specifying them using the framework of ACTA. This allows us to clearly see where
one proposal differs from another and what its relationship with serializability is.

We believe this taxonomy to be a good starting point in our endeavor to classify
proposed correctness criteria and to compare and contrast them. It can be viewed as
a common framework with respect to which one can study where a new correctness
criterion fits and how it relates to existing criteria. In this regard, we expect the
taxonomy to evolve as better understanding is gained about the correctness needs
of emerging database applications.

Let us now examine some of the other implications of this work. In the context of
a multi-database system, the specifications of database consistency and transaction
correctness can be viewed as requirements on the coordinator of the blackboxes
[Breitbart, 1990] that control individual databases. We would like to apply the
reasoning capabilities of the ACTA formalism to study the properties of mecha-
nisms, such as in [Sheth, 1991}, for maintaining relaxed correctness properties of
interdependent data. In the same context, we would like to investigate ways in
which the ACTA primitives themselves can be used as part of these mechanisms
(Rusinkiewicz, 1991, Sheth, 1992]. Similarly, in the context of active databases, we
can see how the semantics of the rules that govern the triggering of actions can
be formally specified. In addition, the relationships between the triggering action
and the triggered action can also be expressed precisely using dependencies. Just
as we were able to reason about extended transactions using ACTA [Chrysanthis,
1991}, we see the formalization of different aspects of active databases as the start-
ing point for addressing issues, such as, reasoning about the consequences of rule
firings, changes to rules, and coupling modes.

Acknowledgements

The authors thank Alex Buchmann for lively discussions about notions of consis-
tencies and correctness, and Nandit Soparkar, Amit Sheth and Greg Speegle for
their comments on previous versions of this paper.

This material is based upon work supported by the N.S.F. under grants IRI-9109210
and CDA-8922572 and a grant from the University of Pittsburgh.

References

Badrinath B. R. and K. Ramamritham. (1990) Performance Evaluation of
Semantics-based Multilevel Concurrency Control Protocols. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 163-172.

-18-



Beeri, 1989 Beeri C., P. A. Bernstein, and N. Goodman. (1989) A Model for
Concurrency in Nested Transaction Systems. Journal of the ACM, 36(2):230-269.

Bernstein P. A., V. Hadgzilacos, and N. Goodman. (1987) Concurrency Control and
Recovery in Database Systems. Addison-Wesley.

Breitbart Y. et al. (1990) Final Report of the Workshop on Multidatabases and
Semantic Interoperability.

Breitl?art Y., D. Georgakopoulos, M. Rusinkiewicz and A. Silberschatz. (1991)
On Rigorous Transaction Scheduling, IEEE Transactions on Software Engineering,
17(9):954-960.

Buchmann. A, M. Hornick, E. Markatos, and C. Chronaki. (1990) Specification of
a Transaction Mechanism for a Distributed Active Object System. In Proceedings
of the OOPSLA/ECOOP 90 Workshop on Transactions and Objects, pages 1-9.

Chrysanthis P. K. and K. Ramamritham. (1990) ACTA: A Framework for Specify-
ing and Reasoning about Transaction Structure and Behavior. In Proceedings of the
ACM SIGMOD Internetional Conference on Management of Data, pages 194-203.

Chrysanthis P. K. and K. Ramamritham. (1991) A Formalism for Extended Trans-
action Models. In Proceedings of the seventeenth International Conference on Very
Large Databases, pages 103-112.

Chrysanthis P. K. and K. Ramamritham. (1992) ACTA: The SAGA Continues. In
A. K. Elmagarmid, editor, Database Transaction Models for Advanced Applications.
Morgan Kaufmann, 1992,

Dayal U., M. Hsu, and R. Ladin. (1990) Organizing Long-Running Activities with
Triggers and Transactions. In Proceedings of the ACM SIGMOD International
Conference on Management of Datla, pages 204-214.

Dittrich K. R. and U. Dayal. (1991) Active Database Systems (Tutorial Notes). In
The Seventeenth International Conference on Very Large Databases.

Du W. and A. K. Elmagarmid. (1989) Quasi Serializability: a Correctness Crite-
rion for Global Concurrency Control in InterBase. In Proceedings of the Fifteenth
International Conference on Very Large Databases, pages 347-355.

Elmagarmid A. (Editor). (1991) Special Issue on Unconventional Transaction Man-
agement. Bulletin of the IEEE Technical Commitiee on Data Engineering, 14(1).

Eswaran K. P., J. N. Gray, R. A. Lorie, and 1. L. Traiger. (1976) The Notion of
Consistency and Predicate Locks in a Database System. Commaunications of the
ACM, 19(11):624-633.

Garcia-Molina H. (1983) Using semantic knowledge for transaction processing in a
distributed database. ACM Transactions on Database Systems, 8(2):186-213.

Garcia-Molina H., D. Gawlick, J. Klein, K. Kleissner, and K. Salem. (1991) Mod-
eling Long-Running Activities as Nested Sagas. Bulletin of the IEEE Technical
Committee on Data Engineering, 14(1):14-18.

-19-



Garcia-Molina H. and Kenneth Salem. (1987) SAGAS. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 249-259.

Gray J. N, R. A. Lorie, G. R. Putzulo, and L. L. Traiger. (1975) Granularity. of
locks and degrees of consistency in a shared database. In Proceedings of the First
International Conference on Very Large Databases, pages 25-33.

Herlihy M. P. and W. Weihl. (1988) Hybrid concurrency control for abstract data
types. In Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Sysiems, pages 201-210.

Herlihy M. P. and J. M. Wing. (1987) Axioms for Concurrent Objects. In Proceed-
ings of the Fourieenth ACM Symposium on Principles of Programming Languages.

Hou. W, G. Oszsoyoglu, and B. K. Taneja. (1989) Processing Aggregate Rela-
tional Queries with Hard Time Constraints. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 68-67.

Korth H. F., W. Kim, and F. Bancilhon. (1988) On Long-Duration CAD Transac-
tions. Information Sciences, 46(1-2):73-107.

Korth H. F. and G. Speegle. (1988b) Formal Models of Correctness without Se-
rializability. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 379-386.

Korth H. F., E. Levy, and A. Silberschatz. (1990) Compensating Transactions: A
New Recovery Paradigm. In Proceedings of the Sizteenth International Conference
on Very Large Databases, pages 95-106.

Korth H. F., N. Soparkar, and A. Silberschatz. (1990b) Triggered Real-Time
Databases with Consistency Constraints. In Proceedings of the Sizteenth Inter-
national Conference on Very Large Databases, pages 71-82

Korth H. F. and G. Speegle. (1990c) Encapsulation of Transaction Management
in Object Databases. In Proceedings of the OOPSLA/ECOOP’90 Workshop on
Transactions and Objects, pages 27-32.

Lynch N. A. (1983) Multilevel atomicity — A new correctness for database con-
currency control. ACM Transactions on Database Sysiems, 8(4):484-502.

Martin B. E. (1988) Scheduling protocols for nested objects. Technical Report CS-
094, Department of Computer Science and Engineering, University of California,
San Diego.

Martin, 1990 Martin B E. and C. Pedersen. (1990) Long-Lived Concurrent Activi-
ties. Technical Report HPL-90-178, HP Laboratories.

Mehrotra S., R. Rastogi, H. Korth, and A. Silberschatz. (1991) Non-serializable
Executions in Heterogeneous Distributed Database Systems. In Proccedings of the
First International Conference on Parallel and Distributed Information Sysiems.

Moss J. E. B. (1981) Nested Transactions: An approach to reliable distribuied com-
puting. PhD thesis, Massachusetts Institute of Technology.

-20-



Moss J. E. B., N. Griffeth, and M. Graham. (1986) Abstraction in recovery man-
agement. In Proceedings of the ACM SIGMOD Iniernational Conference on Man-
agement of Data, pages 72-83.

O’Neil P. E. (1986) The Escrow Transactional Method. ACM Transactions on
Database Systems, 11(4):405-430.

Pu C., G. Kaiser, and N. Hutchinson. (1988) Split-Transactions for Open-Ended
activities. In Proceedings of the Fourteenth Inlernational Conference on Very Large
Databases, pages 26-37.

Pu C. and A. Leff. (1991) Replica Control in Distributed Systems: An Asyn-
chronous Approach. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 377-386.

Ramamritham K., P. K. Chrysanthis, and A. Buchmann. (1991) Degrees of Con-
sistency - Specification and Maintenance. Technical report, Computer Science De-
partment, University of Massachusetts.

Ramamritham K. and C. Pu. (1991b) A Formal Characterization of Epsilon Seri-
alizability. (Submitted for publication).

Ramamritham K. (1992) Real-Time Databases. (To appear in) Int’l Journal of
Distributed and Parallel Databases.

Rusinkiewicz M., A. Elmagarmid, Y. Leu, and W. Litwin. (1990) Extending the
Transaction Model to Capture more meaning. ACM Sigmod Record, 19(1):3-7.

Rusinkiewicz M., A. Sheth, and G. Karabatis. (1991) Specification of Dependencies
for the Management of Interdependent Data. JEEE Computer, 12(12):46-54.

Sha L. (1985) Modular concurrency control and failure recovery— Consistency, Cor-
rectness and Optimality. PhD thesis, Carnegie-Mellon University.

Sheth A. and M. Rusinkiewicz. (1990) Management of Interdependent Data: Spec-
ifying Dependency and Consistency Requirements. In Proceedings of the Workshop
on the Management of Replicated Data, pages 133-136.

Sheth. A, Y. Leu, and A. Elmagarmid. (1991) Maintaining consistency of in-
terdependent data in multidatabase systems. Technical Report CSD-TR-91-016,
Computer Science Department, Purdue University.

Sheth A., M. Rusinkiewicz, and G. Karabatis. (1992) Polytransactions: A Mecha-
nism for Management of Interdependent Data. book chapter in Transaction Models
for Advanced Database Applications, Ed. A. Elmagarmid, Morgan-Kaufmann.

Skarra A. (1991) Localized Correctness Specifications for Cooperating Transactions
in an Object-Oriented Database. IEEE Bulletin on Office and Knowledge Eng:-
neering, 4(1):79-106.

Yannakakis M. (1984) Serializability by Locking. Journal of the ACM, 31(2):227-
244,

=21~



