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Abstract

In this paper we consider the problem of routing customers to identical servers, each
with its own infinite capacity queue. Under the assumptions that ¢) the service times form
a sequence of independent and identically distributed random variables with increasing
failure rate distribution and i) state information is not available, we establish that the
round robin policy minimizes, in the sense of a separable increasing convex ordering, the

customer response times and the numbers of customers in the queues.
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1 Introduction

Consider a stream of customers arriving to a controller which immediately routes them to one of
several identical infinite capacity single server queues. We establish the optimality of the round
robin (RR) routing policy when the service times are independent and identically distributed
(ii.d.) random variables (r.v.’s) having an increasing failure rate (IFR) distribution, provided
the controller has available to it the past routing decisions but no queue length information.
More precisely, we prove that the RR policy minimizes the customer response times and the
numbers of customers in the queues in the sense of separable increasing convex ordering (see

definition below).

When the controller has available to it the vector of workloads of the queues, it has been
established by various authors (see Kingman [12], Vasicek [23], Foss [6, 7], Wolff [28, 29] and
Daley [4]) that the Smallest Workload (SW) policy, which routes the arriving customer to the
queue with lowest workload, minimizes the stationary waiting times in the sense of increasing
convex ordering. Transient optimality results of the SW policy were obtained by Foss [6, 7],
Wolff [28, 29] and Daley [4] for the (e.g. Kiefer-Wolfowitz) workload vector, and by Liu and

Towsley [13, 14] for customer response times.

When the controller has available to it the vector of queue lengths, it has been shown by
Winston [27], Weber [25] and Menich [16] (see also Walrand [24]) that the shortest queue (SQ)
policy minimizes the number of customers in system when the service times are exponentially
distributed. When the service times have an increasing likelihood ratio distribution, Towsley
and Sparaggis [22] have shown that the SQ policy is still optimal provided that the server whose
customer has been in service the longest is chosen in the case of a tie. Whitt [26] provided
counterexamples showing that SQ is not optimal in general. Several studies [10, 21, 19] have
established the optimality of the SQ policy for finite buffer queues, under the assumption that
service times are exponential random variables. Menich and Serfozo [17] have considered the
joint routing/scheduling problem when there is an additional (movable) server. They established
the optimality of the SQ/LQ (LQ stands for the policy serving longest queue). In the case of
finite buffers, the duality between various routing and scheduling problems where queue lengths

are available to the controller has been established in [18].

When the controller has available to it only the past routing decisions but no queue length
information, it has been proved by Ephremides et al. [5] (see also Hajek [9] and Walrand [24])
that the RR policy is optimal when service times are exponentially distributed. When the



service times have general distribution, Stoyan [20] and Jean-Marie and Liu [11] have shown
that the RR policy yields smaller (in the sense of increasing convex ordering) stationary and
transient, respectively, customer waiting times than the Bernoulli policy with equal routing
probability for each queue. This last Bernoulli routing policy has been shown to be optimal
among all the Bernoulli routing policies [2, 3, 8]. Our results can be considered to be extensions

of the results in [5, 11, 20].

The paper is organized as follows. In the next section, we provide a detailed description of the
model and state the main result. The proof of this result is found in Section 3. Comments on

the result are given in Section 4.

2 Formal Model and Main Result

2.1 Model Description

There are s > 1 parallel queues, each with its own infinite capacity waiting buffer and a single
server. The servers are identical and have the same speed, say 1. Customers arrive at a
controller which immediately routes them to one of the s queues. The service discipline of each
queue is FCFS. The system is initially empty. (Note that our results actually hold in the case

where the initial queue lengths are i.i.d. r.v.’s).

The controller has available to it the past routing decisions and all arrival times, but no queue

length information. We denote the class of such routing policies as X.

Denote by a,, and o, the arrival time and the service time of customer n, respectively, n > 1,
with a; =0 < a2 < --- < ap < ---. The sequence of service times {0}, consists of i.i.d.
r.v.’s having an IFR distribution. The sequence of arrival times {a,}2° , is independent of the

service times, but is otherwise arbitrary. In particular, it can be a deterministic sequence.

We are interested in one member of %, namely the round robin policy which will be referred
to as p. Let m, denote the identity of the server that customer n is routed to by policy = € X.
Then the round robin policy is defined to be the policy that selects servers cyclically beginning

with server 1,i.e., pp =n—s|(n—1)/s],n=1,2,---, where |z| denotes the integer part of .

Let m € ¥ be an arbitrary routing policy. Let ¢} be the completion time of customer n under
m, and d]. be the n-th departure time in the s queues under w. Denote by N[ (t) the number

of customers at server ¢ = 1,---,s including the one in service at time £ > 0 under policy
w and N™(t) = (N{(¢),---,NJ(t)). Similarly, denote by U (t) the unfinished work at server



i =1,---,5 at time ¢ > 0 under policy 7 and U"(t) = (UT(t),---,UJ(t)). Last, denote by
R} the response time of the n-th customer in the system under = and R"(m) = (RT,---, R},
m=1,2,--.. Here

R =c —an, n=12---.

2.2 Stochastic Ordering

Let X and Y be two random vectors in JR™. Following the notation of [15], we define C; to
be the class of functions: f: IR™ — IR of the form f(X) = Y1, g(X;), where g : IR — IR is

increasing and convex. We say that X < gl Y if
3

E[f(X) < E[f(Y)], Vfec],

provided the expectations exist. The ordering < .1 is referred to as separable increasing convex
3
ordering in this paper. When dimension m = 1, <, coincides with the increasing convex
3

ordering <;., between random variables.

The proof of our results uses the notion of majorization. Let ®,y € IR™ be two real vectors.

Vector # is said to be weakly majorized by vector y (written & <,, y) iff

k k

Do <Dy, k=1,,m,
7=1

J=1

where the notation z[; is taken to be the j-th largest element of z. Various properties concerning
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these notions can be found in [15].

2.3 Optimality of the Round Robin Routing Policy

The main result of the paper can be stated as follows.

Theorem 1 Assume the system is empty at time t = 0. Assume that service times form a

sequence of i.1.d. r.v.’s with IFR distribution. Then for all # € X

N°(t) <p N7(t), t>0, (1)

R"(m), m=1,2,---. (2)



3 Proof of the Optimality of the Round Robin Routing Policy

In order to prove Theorem 1, we construct the queue lengths under policies p and 7 on the same
probability space. Under this construction, the joint queue length statistics will not be preserved
under either policy. However, the marginal behavior of every queue will be statistically correct.
It turns out that such a construction collapses to the one used in [5] when service times are

exponentially distributed r.v.’s.

Let { be such probability space and S(7, p) be the system composed of s queues controlled by
policy m and s queues controlled by policy p. We assume that the initial queue lengths are zero
under both policies. The arrival times are a{,as,---. At an, n =1,2,---, a customer is routed
to one of the first s queues according to policy #, and another customer is routed to one of the

other s queues according to policy p.

Let {ur}>, be a sequence of i.i.d. r.v.’s uniformly distributed in the interval [0,1). We shall

refer to these as the service parameters associated with S.

Let F(z) = Pr[o < ] denote the cumulative distribution of the service time. Let o; denote the

remaining time of o given that it exceeds ¢t and

Ft(m) - PI'[O't < m] = F(t]?l_—m;’Et)F’(t)7

z>0; t>0. (3)

An event in §(, p) corresponds to an arrival or a service completion under either 7 or p. Let e,
k=1,2, - be the time epoch of the k-th event in S(=, p). The system S(, p) is constructed in
such a way that at event time eg, k = 1,2, - - -, all customers in service under both policies have
their service times recomputed according to u and the remaining service time distributions. A
customer having been already in service for v units of time will receive a new remaining service

time F, !(uy).

To be more precise, we define the following notation and provide a set of recursive equations.

Let ¢ € {m, p} be an arbitrary policy.

. ﬁf(t) denotes the queue length (including the customer in service) of queue 7 at time

t > 0 under ¢. The process JVf(t) will be assumed to be right-continuous in ¢.

° r?(t) denotes the remaining service time of the customer in service, if any, at queue ¢ at

time ¢ under ¢. If Jst(t) =0, then r?(t) =0.



e wl(t) denotes the time at which the customer in service (if any) commenced its service.
i

(
If N?(t) = 0, then wl(t) = ¢.

o 3%, (i;’z denote, respectively, the times of the of the n-th service commencement and the

n-th departure in the s queues controlled by ¢.

o I%(n), jj(n) denote the identities of the n-th customer that starts service and finishes

service, respectively, in the s queues controlled by ¢.

o i identifies the k-th event. If x; = 0, then the k-th event is an arrival. Otherwise,

xr = 1 indicates that the k-th event is a service completion under either or both policies.

e A} denotes the number of arrivals in the interval [0, e].

These variables are defined by the recursive equations as follows, where 1(-) is the indicator

function.
exr1 = min (aAk_H, { min min r?(ek)}) ,
deimpl  {1<i<s, NP(ex)>0}
Nf(ert1) = NP(en)+1(xx=0Adagt1 =)~ 1 (Xk = 1A 7P(er) = epy1 — ek) ,
w?(ekﬂ) =1 (]Vf(ek) >0Aepr1 —ex < r?(ek)) w?(ek)
+1 (ek_|_1 — e = r?(ek) \Y; ﬁf(ek) = 0) ekt1,
Plert) = Fol (i)l (F2(exsa) > 0),

Xer1 = 1 ({ min min r?(ekﬂ)} < @41 — ek) ,

¢€{7"7P} {1§i§s, ﬁ,~¢(ek+1)>0}

A1 = Ap+ 1(Xk1 = 0).

Note that the construction couples the remaining service times of all of the customers in service
in such a way that the remaining service times are determined by the distribution functions of
their remaining service times and a common uniformly distributed random variable. Since the
service times have the same IFR distribution, the resulting virtual service completion times are

in the same order as the service commencement times. To be more precise,



Lemma 1 For any ¢,¢’ € {m,p}, and for any m,n=1,2,---,

(i) if i);’; < I;;’z’, then &%, < é;’z’, where i);’z s the service commencement time of customer n

under policy ¢;

(ii) 13(n) = I¢(n).

8

Proof. As the distribution function F is IFR, we know that
Fue) < F(z), 0<u<wv, 23>0

Therefore, from the monotonicity of the functions F, and F,,, we get
F'(z)> F, ' (=), 0<u<w, 0<z<l.

Using the above relation, it is easy to prove property (i) by induction on the event epochs e,

k=1,2,---. The detailed proof is omitted for the sake of brevity.

Property (i) is an immediate consequence of property (). [ |
The construction of system S(m, p) also exhibits the following important properties.
Lemma 2 The following properties hold for S(x, p),

(a) for allm > 1, be = §0, & = (i,’;;
(b) foralln>1, & < 3T (i,’; < (iﬁ,

n — “n’

(c) INP(t) - NP()| <1, 4,5=1,---,5, t>0.

Proof. The key to establishing the first two properties is the following relation:
5> max(an,(iﬁ_s), pe{n,p}, n=1,2,---. (4)

(Here it is understood that d? = 0 for n < 0.) This relation is established by induction.

The basis step is easy as .§‘f = a; > (i‘f_s = 0. Consider the inductive step. Assume that

for some m > 1, the relation holds for all n < m. We establish it for n = m + 1. There



are two cases depending on whether or not a1 > (if;_s_l_l. If amyr > (if;_s_l_l then clearly
.§;’;+1 > Umy1 > (if;_s_l_l, which establishes the relation. Assume instead that (if;_s_l_l > Gt
and that the relation is false, so that .§f;_|_1 < (if;_s_l_l. According to Lemma 1, the s customers
fj(m —s5+1),---, fj(m) are served by at most s — 1 distinct servers. This implies the existence
of some customer, say j, that started at time E?S where .§f > (if;_s_l_l > .§;’;+1 and completed
at time J?S where (ifil_l_l > (if > .§f This contradicts property (i) of Lemma 1. Therefore the

relation holds and the inductive step is complete.

Observe now that under the round robin policy,
i)?’;:max(an,éﬁ_s), n=1,2,---. (5)

We prove by induction that for alln = 1,2, .-,

b=, - ©)
and that
3¢ = max(ap, (iﬁ_s). (7)

Clearly, for n = 1, the above equations hold. Assume they are true for some m > 1. Consider

n = m + 1. By the inductive assumption,
aP 7p _ AP _ 7P
sm—l—l < bm—l—l - max(am+1, cm—l—l—s) - ma‘x(am+17dm+1—s)‘

It then follows from (4) that relation (7) holds for m + 1 and that &) ., = 57’;14-1- Using further

property (i) of Lemma 1 implies (i,’;_l_l = ¢ 1. Hence, (6) holds for m + 1. Therefore, by
induction, relations (6) and (7) hold for all n > 1, so that property (a) is valid.

We prove now property (b) by induction. The basis step in the induction proof is easy to
establish as 8/ = 87 = a;. Furthermore, according to Lemma 1, the first customer served

will be the first customer completed under both policies. According to the construction, they

receive the same service time under both policies; hence (i’l’ = (i’f
Assume that property (b) holds up to n = m. For n = m + 1, we have,

P
sm—l—l

max(am41,d5,_,,,), relation (7)
max(am+1, d;_s_l_l), by induction,
81 relation (4),

IAIA



so that, by Lemma 1, (i,’;_l_l < A;_I_l. By induction, property (b) holds for all n > 1.

Consider the third property. Let K;(t) and L;(t),7 =1,-- -, s, denote, respectively, the number
of arrivals and completions at queue ¢ under p by time ¢ in the system S(x, p). Consider queues

i and j where ¢ < j. We have, according to the definition of the round robin policy,
Kj(t) + 12> Ki(t) > Kj(t).
Furthermore, due to property (a),

Lj(t) +1> Li(t) > Lj(t).

Therefore,
NE(t) - N7(t) = (Ki(t) - K;(t) — (La(t) — Lj(2))
< 1= (La(t) = L(2))
< 17
and
NE(t) - N7(t) = (Ki(t) - K;(t) — (La(t) — Lj(2))
> —(Li(t) — Lj(t))
2 _17
so that property (c) holds.
This completes the proof of the lemma. |

Finally, we prove the claim we made previously about the preservation of the marginal distri-

bution of the queue lengths in S(7, p). In what follows, =4 denotes equality in distribution.

Lemma 3 For any ¢ € {x, p}, the following equalities are true,

NP(t) =4 NP(t), i=1,---,s; t>0. (8)

K]

& =4 % n=12, . (9)

Proof. Since ¢, depends on a, but not the service times, it suffices to establish that for ¢, the
service times in any queue ¢, 1 < i < s, in the system S(7, p) form a sequence of i.i.d. r.v.’s

with distribution function F(z).



The independence follows from the construction and the assumption that {u}$° ; is a sequence
of independent r.v.’s. Hence, it suffices to establish that each service time at queue ¢ has
distribution F(z). Consider a service period under ¢ at server ¢ that commences at time ej, for
some k > 1. Consider how the service time, o, for the customer commencing service at time

er, is constructed.

We show by induction on m that the service time o constructed in the time interval [eg, €gtm)
has distribution F(z). Clearly if m = 1, then ¢ = F~!(ug) and, since uy is uniformly distributed
in [0,1), o is distributed according to F(z). Assume that the assertion holds for some m > 1.
We consider the distribution of o constructed in the time interval [e, extm+1)- If 2 < epym — ek,
then clearly, by the inductive assumption, Prjo < z] = F(z). If, however, > egtm — ek, then

Pr[o < 2] = Pr[o < epim — ek + Prlegim —ex < 0 < z]. (10)
Using again the inductive assumption yields that

Prlo < ektm — €k] = F(ertm — €k). (11)

. . . . . -1
According to the construction of the service times, if ¢ exceeds egi,, —eg, then Fek+m—ek (Uktm)

will be given as the remaining service time. Therefore, cf. (3),

Priegim —er < 0 < z] = (1 — F(ertm — ek))Fek+m_ek(m — eptm t ex) = F(2) — F(ekym — €k)-

(12)
Combining relations (10)-(12) readily implies that when = > egim — ex, Prjo < 2] = F(z).

This completes the inductive proof. Hence the result. |

We are now in a position to prove Theorem 1.

Proof of Theorem 1.

We focus on (1) first. Consider system S(7, p) with fixed arrival times and service parameters.
Tt follows from property (b) of Lemma 2 that 3%, N?(t) < ¢, N7(t). This coupled with

property (c) of Lemma 2 is sufficient to ensure that
N? <, N™(t), t>0.

Due to the characterizations of the weak majorization [15, pp. 108-109, Propositions B.1 and

B.2], we have that for all increasing convex functions g : IR — IR,

ig(N{’(t)) < ig(zvzf(t)).



As a consequence of Lemma 3, we obtain that for all increasing convex functions g : IR — IR,

<E

P [iwvf(t)

igwf(t)]

i=1
provided the expectations exist, so that (1) holds.

N*(t) <py N7(), t>0.

We prove now (2). Consider system S(w, p). Fix the arrival times and the service time parame-
ters {ur}. Let customer n be the JT-th departure from the s queues controlled by the routing
policy 7 in system S(m,p). Let v be the permutation on the set {J7|1 < n < m} such that
¥(1) < 7(2) < -+ < y(m). It is easy to see that

(“?T ‘“1"“"13‘“"1) < (33(1) — g, Ay —“m) :
It follows from standard interchange argument (cf. e.g., [1]) that
(A7) — 01, B my = @) < (AT — ar, -+, A5y — @) = (6] — a1, +, &5, — ).
Hence, by combining the above two inequalities, we obtain
(47 — v,y d5 = am) < (& — a1, 85 — am). (13)
On the other hand, it follows from Lemma 2 that
(&7 — a1, -, —am) = ((i’l’—al,---,d,’;—am) < ((i’lr—al,---,d;—am).
This last relation together with (13) imply that

(67 — a1, -+, 0 —am) <w (€7 — a1, -+, Er — am).

Thus, for all increasing convex functions g : IR — IR,

ig(éﬁ' —a;) < ig(éf - a;). (14)

10



Taking the expectation and using Lemma 3 on both sides of (14) entail that for all increasing

convex functions g : IR — IR,

ingf)]

provided the expectations exist, so that (2) holds:

R?(m) <;1 R™(m).

3

4 Remarks

Theorem 1 still holds when the initial workloads at the s servers are i.i.d. random variables and
are independent of the arrival and service times. The proof can be carried out by constructing

system S(,p) in such a way that all the initial workloads are equal to G~*(ug), where G is

the distribution function of the workloads and ug is uniformly distributed in [0, 1).

If the sequences of customer response times {R?2}, and {RZT}, are uniformly integrable and
converge in distribution to the random variables R” and R™, respectively, then, it can be shown
(cf. [1]) from (2) that the customer response time in steady state is minimized in the sense of

increasing convex ordering by the round robin policy:

R? <iex R™.
It is interesting to conjecture that the optimality of the RR policy holds for more general service
time distributions. Unfortunately, the arguments presented in this paper do not extend beyond

the case of IFR distributions. The proof of Lemma 1 is based on this assumption. We have no

counterexample to this conjecture and believe that it is true.

Acknowledgments: The authors are grateful to the referee for the useful comments
on both the contents and the style of the paper.
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