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Abstract

We address the problem of scheduling customers in a multiclass G/G/1 queue so as to min-
imize a weighted sum of the workloads of the different classes. We establish that the nonidling,
preemptive, fixed priority policy that schedules customers belonging to the class having the
maximum weight minimizes the cost function pathwise at any point in time. This result is
based on the application of elementary forward induction arguments and is shown to hold for
a very general class of policies. A new proof for the optimality of the pc-rule in the multiclass

G/M/1 queue is then obtained as an easy corollary of the first result.

Keywords: Stochastic scheduling; Pathwise argument; Stochastic ordering; puc-rule;
Optimal control of queues.

1 Introduction

Consider a G/G/1 queue with K classes of customers where the K arrival processes and K service
processes may be arbitrary. We consider the problem of scheduling customers so as to minimize a
weighted sum of the workloads of the different classes. We establish that the nonidling, preemptive,
fixed priority policy that schedules customers belonging to the class having the maximum weight
minimizes the cost function at any point in time pathwise. This result is based on the application
of elementary forward induction arguments and is shown to hold for a very general class of policies.
Last, the classical result (Baras et al. [4], Buyukkoc et al. [6], Nain [5]; see also Hirayama et al.
(3] for further results on the multiclass G/DFR/1 queue that are not covered in the present paper)
regarding the optimality of the pc rule for the G/M/1 queue is established as a simple consequence
of this sample path property.
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2 The Model

In this section we construct a model that captures the behavior of the multiclass G/G/1 queue
loosely described in the introduction. An equivalent and somewhat more convenient way to view
this queueing system is to assume that there are X queues attended by a single server and that
customers of class 7, i = 1,2,..., K, are routed to queue z upon arrival.

For notational convenience, we shall assume from now on that within each queue customers are
served in the first-in-first-out order (see remark 2.1) and that the customer in position 1 in any
queue is the oldest one among customers in that queue (i.e., the customer in position 1 is either
the next eligible customer for service if the server is not attending the queue, or the customer in
service if the server is serving that queue).

Let IN be the set of all nonnegative integers and let IR := (-00,400), Ry := [0,00) and R, :=
[0, ). Define S := {0} U {(z1,-..,2n),2i>0,i=1,2...,0,n > 1} to be the set that contains all
vectors with strictly positive components as well as the scalar number 0.

To describe this model, one starts with a probability triple (2, F, P), where the state space 2
defined as

N
Q:=IN¥ x 8¥ x {R2 x {1,2,..,K}} x[0,1™ x [0, 1%, (2.1)

simultaneously carries

o an IN¥.valued random variable (RV) @ :=(Q1,Q3,...,QK), where Q; describes the number
of customers in queue ¢ at time ¢ = 0;

o an S¥.valued RV W := (W3, Wy, ..., Wx) with W; := (Wi1, Wia,...,W;0,) if Q; > 0 and
with W; = 0 if Q; = 0, where W; ; describes the service requirement of customer in position
J in queue i at time ¢ = 0;

* asequence {An, Sp,Ca}{ of RZ x {1,2,...,K}-valued RV’s such that 0 < 4; < A, < --- <
Ap < App1 <---as. and S, > 0a.s. foralln > 1, where A,,, S, and C, represent the arrival
time, service requirement and class, respectively, of the n-th customer to join the system;

* two sequences of [0,1]-valued RV’s {an}{° and {8,}$°. These sequences will be used to
construct randomized scheduling policies.

In the following, any sample path w € 0 will be written in the form
(> -] - -] [« -]
w = (wl,wz, {wz,u“’i,z""g#}l y {w:}l N {wi}l ) ) (22)

with w! € INX, o2 ¢ SK | wa1Whs € Ry, wds€{1,2,...,K},wd,wi €0, 1] foralln > 1.



Further notations are needed at this point. Let H; := Q, K; := Q x {0,1,...,K}, Hpyy :=
H, x {0,1,...,K} x R} x NK x §¥, K,4; := K, x B2 x NX x SK x {0,1,...,K} for n > 2.
Any element h,, € H,, will be written in the form

hi = w; (2.3)

h‘ﬂ = (w; ul:i11t1$Q2;v2)u2vi2)t21'"7Qﬂsvﬂ.)) n _>. 27 (24)

withw € Q, u; € {0,1,...,K}, i;,t; €€ Ry for j > 1 and g; := (q},qf,...,qf) € INK, v; € SK
for all j > 2. Similarly, any element k, € K,, will be written in the form

by = (wjwm); (2.5)

kn = (W;ulgil:tla qz2, Y2, uZ:ihtZ) e :Qnavn’u‘n)) n Z 2. (2'6)

A scheduling policy 7 is defined to be any sequence {x},#2}, of mappings

7l H, - {0,1,...,K};

1r,2, : K,.—»ﬁ.,.,

such that w3 (hn) #iif g} =0for 1 <i < K and 7l(h,) = 0if g, = 0, foralln > 1 (by convention
q1 := w!). Let II be the collection of all scheduling policies.

Let us briefly comment on the definition of a scheduling policy. Given the information hy, available
at the n-th decision epoch (see below) to the decision-maker, (ky,) gives the class of customers that
is elected to receive the server’s attention until the next decision epoch if wi(hn) € {1,2,...,K};

if #3(hn) = 0, then the decision is to idle the server until the next decision epoch. The mapping

x2 is used to determine the time of the (n + 1)-th decision (see below).

For every scheduling policy = € II, we generate five sequences {@7(t), t > 0} {W~(¢t),t > 0},
{U7}°, {T7}° and {I7}{° of RV’s such that foralln > 1, ¢ > 0,

o Q™(t) == (Q7(t),Q3(2),...,Q%(t)) € INK, where QT(t) gives the number of customers in
queue ¢ under policy = at time ¢, including the customer in service, if any, for all i €
{1,2,...,K};

o W7(¢t) := (W (t), Wi (¢),..., WE(t)) € SK, where WF(t) := (WL(2), Wry(e), .. .,W‘.’,’Q?(t)(t))
if QF(t) > 0 and W[ (t):=0if QT(t) = 0,1 < i < K, with the interpretation that W[;(t) is

the service requirement of the customer in position j in queue i under policy 7 at time ¢ if
QT(t)>0forall j = 1,2,...,Q7(¢);

* U7 gives the n-th action taken when policy 7 is used;

e I gives the occurrence time of the n-th decision when the policy = is used. We shall assume
that 77" = 0 for all 7 € II (i.e., the first decision is always made at time 0);



o I7 is used to generate the RV T, , (see below).

These RV’s are recursively defined as follows:

UF = 7}(Q, W, {Am, Sm,Cr}, {am}, {Bm}T) s (2.7)
Up = ma(Q,W,{Am, Sm, Cm}T: {am}, (B}
U I T3, Q(TE ), WH(TT), -y Uiy, Ty T, Q7(TR), WT(TT)), m 223 (28)
7 = 0;
Ty = min{inf{dm,m>1 : 4> T3},
TT +1(UF = 0)IT + Z WUF = WH(TD), Te + [T}, n2 1 (2.9)
i=1
I: = Wi(Q,W, {Am, Sm: {am}l 1{ﬂm} Ul; ;)

QT ), WH(TEL), Uy, By TS, QF(TD), WHIE),UZ), n2 1 (2.10)

The (n + 1)-th decision epoch occurs either at the time of an arrival, a service completion, or after
I7 time units beyond the n-th decision epoch, whichever occurs first. Here I7 is the length of time
that the scheduling policy allows the server to idle (if UT = 0) or after which it may preempt the
customer in service (if UT € {1,2,..., K}). This definition of the decision epochs will allow one to
consider arbitrary (possibly randomized) preemptive and idling policies. Last, it is worth observing
from the above definitions that scheduling policies that may know (in particular) future arrival
times and future service times — usually referred to as anticipative policies — are also allowed
here.

It remains to construct the queue-length process {Q™(t), ¢ > 0} and the workload process {W™(t), t >
0}. The RV Q™(¢) is defined as follows:

Q"(0) = Q;
Qi (Tay) = QI(Ty)+ Z 1((Am,Cm) = (T, +1,z))
m2>1
-1(Un =i, WL (T7)=Th -T7), n>1,i=1,2,...,K; (2.11)
Q7(t) = Y QUINL(Ty St<Tny), t20. (2.12)
n>1

On the other hand, the RV W™(t) is defined as follows:
wT(0) = W;
Wi(Tr) = (WE(TE) = 1UT = i) (T2 = TZ) , WE(TD), - ., Wigeqr)(TH),



> 5m1((Am,Cm) = (T3e1,d))), n2L,i=1,2,..,K; (2.13)

m2>1
Wr) = (WE(TT) - WUT = i) (¢ - TT), Win(TZ),
o rVV:Q:'(T,’.")(T:)) if T: St< T:+1:n 21li= L2,.. -:K’ (2'14)

for all ¢ > 0, where (2.13) and (2.14) must read with the abuse of notation (0,24,...,2%) =
(21,...,2,0) = (0,2,...,24,0) = (21,...,2¢) for all k > 1 and (0) = (0,0) = 0, so as to be
consistent with the definition of the set S.

Observe that, by construction, the sample paths of both the queue-length and the workload pro-
cesses are right-continuous with left limits. It is also worth noticing from (2.12) and (2.14) that
Q™(t) and W (t) are well defined for all ¢ > 0 if and only if the nondecreasing sequence {77}, of
decision epochs satisfies

Jim T7 = +o0 a.s. (2.15)
We conclude this section by commenting on the role of the sequences {a,}{° and {B,}{°. As
already mentioned, these sequences may be used to generate randomized policies. For the sake of
illustration, let us consider the following example.

Let = be a policy such that if all queues are non-empty at the n-th decision epoch, then the server is
allocated to queue i with probability Pniforalli=1,2,..., K and is kept idle till the next decision
epoch with probability 1 — E£1 Pni, n 2 1 (observe that the above description only partially
defines 7 since nothing is said as to the behavior of this policy when at least one queue is empty).
Let us show how this behavior can be captured within the setting developed in this section.

Fix w € ) and assume that the sequence {an}{° is a renewal sequence of uniformly distributed
RV’s, further independent of the RV’s Q, W, {4n, Sn) Cr}{° and {B,}5°. Then, it suffices to set

B 4 i )
Wn(hn) - { (3 lfZ:j:l Pnj Sw, < E}:l Pn,j; (2.16)

0, f1-Y pi<wi<i,

for all h, € H, so as to reflect the (partial) behavior of the policy . Indeed, by construction of
the RV U (see (2.7)-(2.8)) it is seen that for i = 1,2,. K

P(U:;zuq;r(T;:)>o,j=1,z,...,K)

= P(ri(Ha)=ilQY(TT)>0,j=1,2,.. LK), (2.17)
i-1 i

= P|Y prj<an< D pnj|, from (2.16)
i=1 Jj=1

= DPni,

where in (2.17) the RV H,, denotes the argument of the mapping =, in (2.7)-(2.8). Similarly, it is
seen that P (U7 = 0| QF(T7) > 0,j = L,2,..,K)=1- 5K, p...



The sequence {8,}{° may be used in the definition of the mappings {72}$° to construct random
idle periods (see (2.9), (2.10)).

Remark 2.1 The assumption that the order of service within each queue is first-in-first-out is only
used in the construction of the queue length process (see (2.11)-(2.12)) and of the workload process
(see (2.13)-(2.14)). In particular, it will not affect the generality of the results in sections 3 and 4
since only the total workload in each queue is considered in these sections. If one wants to relax
this assumption, then the scheduling policy must also specify which customer should be served in
the queue (if any) that has been elected to receive the server’s attention. This can be achieved, for

instance, by introducing a third component, 73, in the definition of a scheduling policy =, for all
n>1.

3 Scheduling in the G/G/1 Queue

In this section we consider a cost function corresponding to the weighted sum of the workloads
of the different classes. We show that the preemptive fixed priority policy that assigns priority in
decreasing order of the weights minimizes the cost function pathwise at every point in time.

Let v := {¥1,72}$° € II be the nonidling and preemptive policy that always allocates the server to
class 7 customers when there are no longer class j < i customers in the system,:=1,2,...,K. In
other words, y1(hn) = ¢ for all A, € H, such that g, j =0for j =1,2,...,i— 1 and gni # 0, for
alli=1,2,...,K,n> 1. Let

Q7 ()
Vi) = D, W),
i=1
be the total workload due to class i customers at time ¢ >0,1=1,2,...,K.

Let r;, ¢ = 1,2,..., K be given real numbers such that rL 27322 -2 rg > 0. We shall show the
following result:

Proposition 3.1 Assume that condition (2.15) holds. Then, for every sample path w € 2,
k k
PIEAAGESIEA AL (3.1)
=1 i=1

forallk=1,2,...,K,t>0, n eIl

Recall that a real-valued RV X is smaller than a real-valued RV Y in the sense of stochastic ordering
(written X <, Y) if E[f(X)] < E[f(Y)] for all nondecreasing mappings f : R — IR such that the
expectations exist. Proposition 3.1 yields the following result:



Corollary 3.1 Forallt > 0, # €11,

K K
PRAACEFDIEAAOF

i=1 =1
Proposition 3.1 follows from the following two lemmas:

Lemma 3.1 Let N > 0 be an arbitrary integer and let (X1,...,Xn) € RN and (13,...,Yy) € RV
be two vectors such that 3 5y X; <Y, Y foralln=1,2...,N. Then,

N N
E ¢ X; < Z ¢ Y, (3.2)
1=1

i=1

for any sequence {¢;}, such thatc; > ¢; > --->¢eny > 0.

Proof. The proof is by induction in N. Inequality (3.2) is trivially true when N = 1. Assume that
it is true for N =1,2,...,m — 1 and let us show that it is still true for N = m.

We have
m m-1 m
Z(Yi -Xi)ei= Y (Yi—Xi)(ci—cm)+cm 3 (Y- Xi),
=1 i=1 i=1

which is nonnegative from the induction hypothesis, which concludes the proof. g

Lemma 3.2 Assume that (2.15) holds. Then, for every sample path w € Q,

k k
PRAOES I AN (3.3)

i=1 i=1

forallk=1,2,...,K,t>0, v eIl

Proof. Let 7 be an arbitrary policy in II.

Let {tn}i°, 0 =t < t3 < -, be the sequence resulting from the superposition of both sequences
{T7}5° and {T;}}{°. The proof is by induction on the times of events t; < t; < - - - < tn <tpnp1 < ---

Basis step. Trivially true for ¢ = 0 (since by definition of the model V;7(0) = V;"(0) for all
i1=12,...,K).

Induction step. Assume that the (3.3) holds for 0 < ¢ < ¢,, and let us show that it is still true for
tn <t < thy1. There are two steps.

Step 1: t, < t < tpyq.



If K, V7(t,) = 0 then (3.3) clearly holds for t, < ¢t < t,41. Consider the case that X, U7(t,) >
0. By the definition of v there exists an ! € {1,2,..., K} such that

(VT ()s- - VR = (01,0, 17(8) = (£ — ta), Vi (ta), -, VEE(ER)) - (3.4)
For 1 < k <!-1,it is seen from (3.4) that

0= VI <3 V).
=1 i=1

On the other hand, we have for | < k < K|, cf. (3.4),

k k

V) = 3 V(ta) - (t-ta),

i=1 =1
k

Z V;w(tn) - (t - tn)a (35)

i=1
k

< Y. (3.6)

=1

IA

Inequality (3.5) follows from the induction hypothesis. Equality takes place in (3.6) if and only if
the server does not idle in (t,,%,41) under = and is allocated to a customer from one of the classes
1,2,...,k during this period of time.

Step 2: t = tpq;.
Consider different events. If ¢+, is not an arrival epoch, then V;"(tn41) = V'(t;,,) and V" (tay1) =

Vi (t ) foralli =1,2,..., K. Inequality (3.3) at time ¢, then follows from step 1.

If t,,+1 is an arrival epoch, then clearly

Vi(tne1) = V(to) + Z Sm1(Am = tay1,Cm = 1);
m2>1

Viw(tn+1) = Viw(tr_z-i-l) + Z Sm1(Am = tnt1,Cm = i)r

m>1

fori=1,2,...,K. Again, inequality (3.3) at time ¢,,; follows from step 1, which concludes the
proof. g

4 Optimality of the pc-Rule

In this section we establish the optimality of the uc rule for the G/M/1 queue as a simple conse-
quence of Corollary 3.1.



Let St denote the service requirement of the n-th customer of class i, n > 1, i = 1,2,..., K.
Observe that S: = Xe>1 Skl (C;e = i, {:11 1(Ci=i)=n- 1) . We shall assume throughout this

section that

A1l The sequences {S;}{°,...,{SX}$ form K mutually independent renewal sequences, further
independent of the arrival sequence {4,,C,}$°;

A2 P(Si< zg)=1-e**forallz>0,n>1,i=1,2,..., K.
Without loss of generality, we shall also assume that the system is empty at time 0 (i.e., @ = 0 and
W =0 as.).

Let II" C II be the set of all scheduling policies that do not know future service times of the
customers. Formally speaking, this means that for any policy = € II* there exist two collections of

mappings {f;}° and {f3}{°
fi: Hy-{0,1,.., K}
f: : K:I - ﬁ-f-v
where @* := IN¥ x{R+ x {1,2,..., K}}" x[0,1/Nx[0, 1]V, H := 0, H,, := H3x{0,1,..., K}x

n

R, x NX, K := 0" x {0,1,..., K}, K5, = K5 x B2 x INK x {0,1,..., K}, such that

mi(h) = fi(w")

Wyli(hn) = fyl; (w‘;ulsilntl’Q27u2’i21tZ’-*'»Qn)y nZ 2;
(k1) = f(@wm);
Wyzg(kn) = f: (wt; U, il)tly g2, U2, iZytb ceoyqn, u‘n) y 1 2 2’

for all h, € Hy (cf. (2.3), (2.4)), kn € K, (cf. (2.5), (2.6)), w € Q (cf. (2.2)), where
* (1 f.,3 .3 1% 41*® 51%
woi= (w ’{w"'l’w"'s}l ’{w“}1 ’{w"}l ) )
The following lemma holds:

Lemma 4.1 Assume that A1 and A2 holds. Then, for everyt >0,i=1,2,...,K, = € II*,

E[QT(8)] = mi B[V (2)). (4.1)

Proof. Fixt>0,i€ {1,2,...,K} and = € II*.

Let N; := {Ni(t),t > 0} be a Poisson process with intensity y;, where N;(t) denotes the number
of jumps in [0, ¢]. We assume that N; is independent of the RV’s {A4n,Cn, Sn,an, Bn}n. Because of



assumptions A1l and A2 and because the policy m does not know future service times, it is seen
that

t
QF(t) = Ai(t) - / 1(57(s) = i) dNi(s) a.s., (4.2)
0
where Ai(s) := ¥,51 1(An < 3,C, = i) gives the number of class i arrivals in [0, s], and where
S™(s):=) UTUTT<s<T7,,) (4.3)
n>1

reports the state of the server at time s. In other words, the Poisson process N; may be seen as
the virtual departure process of queue i in the sense that if a jump occurs in N; (say at time t)

while the server is serving queue %, then a departure will occur in queue i at time ¢; otherwise, no
departure will occur in queue i.

Define F[(t) to be the o-field generated by the RV’s {Ni(s),57(s) 0 < s < t}. Let us assume that
the Poisson process Ni(t) has the F7(t)-intensity p; for all ¢ > 0, that is (Brémaud, [1])

E[Ni(t) - Ni(s)| F'(s)] = pilt - 9), (4.4)
forall0<s <t
Then, since S™(t) is 7 (t)-adapted and left-continuous (cf. (4.3)), it follows from Brémaud [1, T5,
Chapter 1]) that S7(¢) is F7(t)- predictable, which, in turn, implies that formula (2.3) in Brémaud
(1, p. 24] applies to yield
t ¢
E [ [ 157 =4 ng(s)] = wE [ [ 157 = 4 ds] . (4.5)
0 0

Combining (4.2) and (4.5) gives

BIQI(0) = BlAe) - wE [ [ 1(57(s) = i) do]. (4.5)
On the other hand, we have

E[VF(@e)] = E[AZ() s,i}-E[/o'l(s*(s)ﬂ)da],

uit E[A()] - B [ /0 “US(s) = 4) ds] , (4.7)

where (4.7) follows from Wald’s identity (which applies here since the arrival process and the service
time process for customers of class i are independent). Combining (4.6) and (4.7) yields formula
(4.1).

It remains to show that (4.4) holds for all 0 < s < t. Because the service times are mutually
independent, exponential and independent of the RV'’s {An, Cn, an,Br}n and because the policy

10



does not depend on future service times, it follows from (2.7)-(2.8) and (4.3) that Ni(t) — Ny(s) is
independent of §™(u) for all 0 < u < s < t. Therefore,

E[Ni(2) — Ni(s) | F7(s)] E[Ni(t) - Ni(s) | o(Ni(u) ,u < 3)],

= ui(t - 3)’

for all 0 < s < t, which completes the proof. g

We now turn to the main result of this section. Let {c:}¥ be nonnegative constants. Up to a
renumbering of the classes, we may assume that Hic; 2 piyiciqyy for 2 = 1,2,..., K — 1. Define
§ € II* to be the nonidling policy that gives preemptive priority to class ¢ customers over class j
customers if ¢ < j, 4,5 = 1,2,..., K. In other words, policy § := {61,62}5° is such that §1(hy) =1
for all h; € H such that ¢, ; =0forj =1,2,...,i—1 and ani>0,1=1,2,...,K,n>1. As
long as (2.15) holds, the mappings §2, n > 1, are arbitrary since § is not allowed to idle.

The following proposition holds:

Proposition 4.1 Assume A1 and A2 hold. Then, for everyt > 0,

K K
> wEQIN) < 3 e QI

i=1

for all m € IT* such that (2.15) holds.

Proof. The proof follows from Corollary 3.1 by letting r; := pic; for i = 1,2,..., K and by using
Lemma4.1. =

Proposition 4.1 says that the uc-rule is optimal out of the policies that may know future arrival
times but not future service times. This result can be seen as the continuous-time analog of the
result in Baras et al. (4] and in Buyukkoc et al. [6] (see remark (4.2)).

Remark 4.1 Because the service times are exponentially distributed, it is seen that condition
(2.15) is satisfied, in particular, if there is a finite number of arrivals in any finite interval of time
(.., the arrival process is non-explosive, see Brémaud (1]) and if 3,5, IT = oo a.s. for all 7 € II*.

Remark 4.2 The discrete-time version of the problem (see Baras et al. [4], Buyukkoc et al. (6])
can be addressed using the same approach. In the discrete-time setting, we assume that the service
times are geometrically distributed with queue dependent parameter u;, 1 < i < K. Given that
a decision is made at every time ¢ € IN, the objective is to find a policy # € II* that minimizes

E[E{F:l ¢;Q7(t) forallt e N, k=1,2,... K. FixmeIl*,t € IN,1<i< K. It is seen that

E[QF(t)] = ElAi(t)] - Y E[S™(s — 1) = i, By(s) = 1), (4.8)

=1

11



where {B;(s)}{° is a Bernoulli sequence of RV’s with parameter p;, independent of the RV’s
{An, Cn, Sn, an, Bn}{°. The sequence {B;(s)}$° characterizes the virtual departure process of queue
i and is the continuous-time analog of the Poisson process N; introduced in the proof of Lemma
4.1. Because the policy 7 does not know future service times, we observe that the RV’s $™(s — 1)
and B;(s) are independent for all s = 1,2,...,¢. Therefore, cf. (4.8),

E[Ai(t)] - 3 E[S™(s—1) = ],

=1

= pi B[VT(t)).

E[QT(2)]

The proof that the pc-rule is optimal again follows from Corollary 3.1.
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