/3 3 .

—s 3 % & 73

DISTRIBUTED DEADLOCK DETECTION AND
ITS APPLICATION TO REAL-TIME SYSTEMS

Chia-Shiang Shih

COINS Technical Report 92-60
September 1992

DISTRIBUTED DEADLOCK DETECTION AND
ITS APPLICATION TO REAL-TIME SYSTEMS

A Dissertation Presented
by
CHIA-SHIANG SHIH

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1992

Department of Electrical and Computer Engineering

© Copyright by Chia-Shiang Shih 1992
All Rights Reserved

. This work was supported, in part, by the Charles Stark Draper Laboratory, Inc.,
and by NSF under grants IRI-8908693, CDA-8922572, and IRI-9114197.

| G| I |

i

t
/,

| 3 _ A

DISTRIBUTED DEADLOCK DETECTION AND
ITS APPLICATION TO REAL-TIME SYSTEMS

A Dissertation Presented
by
CHIA-SHIANG SHIH

Approved as to style and content by:

Sh doant

F n A. Stankovic, Chair

DS\M@

Donald F. Towsley, Memper

ez Vg

F Dinir i K.}Pradhain, Member

e Manf’Kfmﬁa, Member

Y]

Aura GAnz, Member

s Bypnor

Lewis E. Franks, Department Head
Department of E_lectncal and
Computer Engineering

ACKNOWLEDGMENTS

It has been my privilege and good fortune to work with my advisor Professor
John A. Stankovic. He has been extraordinarily patient and supportive, having
been always available for discussion and responding speedily to research reports. I
would like to take this opportunity to thank him for his continuous support and

guidance during the course of this research.

Thanks are also due to Professors Donald F. Towsley and Krithi Ramamritham
for working together in carrying out this research and for their constructive com-
ments and suggestions. Comments from my other committee members, Professors
Dhiraj K. Pradhan, C. Mani Krishna, and Aura Ganz, have greatly benefited the
dissertation. Also, my special thanks go to Dr. Walter H. Kohler for introducing
me to the area of distributed computing and gave me an opportunity to do research

in the CARAT group.

I would like to acknowledge my colleagues in the RT-CARAT research group
(at one time or another) Dr. Asit Dan, Dr. Jiandong Huang, Bhaskar Purimetla,

and Rajendran M. Sivasankaran for helpful discussions during this research.

Many thanks go to my officemates in the Distributed Computing Systems Lab-
oratory for making the long hours of working pleasant. I greatly appreciate the

assistance of the secretaries of the department, in particular of Betty Hardy, and

the staff of RCF and ECS.

Finally, and most importantly, I would like to express my gratitude to my
parents who have always believed in me and have been patiently Wa.iti'ng.for me
to complete this long study. Also, I would like to share this work with my wife,
Yuan-Chuan, and my son, Kevin, who have suffered as much as I have while making

this dissertation complete.

v

-3

ABSTRACT

DISTRIBUTED DEADLOCK DETECTION AND
ITS APPLICATION TO REAL-TIME SYSTEMS

SEPTEMBER 1992
CHIA-SHIANG SHIH

B.S., NATIONAL TAIWAN UNIVERSITY, TAIWAN, R.O.C.
M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS
Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor John A. Stankovic

Deadlock is one of the most serious problems in multitasking concurrent pro-
gramming systems. The problem is further complicated when the underlying system
is distributed and when tasks have timing constraints. Although deadlock detection
has been studied to some extent in database systems and timesharing operating
systems, it has not been widely used in real-time systems. In this dissertation,
we analyze, develop, and formally validate deadlock detection algorithms in dis-
tﬁbuted environments. The results are then extended to real-time applications by
considering timing constraints in the algorithms. Also, attempts are made to apply
these algorithms to real systems such as Ada environments. The Ada runtime
environment is used as a system model to address problems and issues related to

distributed deadlock detection in real-time applications.

One of the major achievements of this dissertation study is the development
of a systematic method for the design and the verification of distributed deadlock
detection algorithms. This novel methodology is applied to a variety of deadlock

models ranging from simple (resource) deadlock models (e.g., the Single-Resource

request model) to complex (communication) deadlock models (e.g., the OR request
model). The developed algorithms are then extended for real-time applications.
For verification and performance evaluation, these algorithms are implemented in a
distributed real-time database testbed called RT-CARAT (Real-Time Concurrency
And Recovery Algorithm Testbed) where transaction timing constraints and soft
real-time scheduling protocols are supported. Various experiments are conducted

to study and evaluate these algorithms.

Our experimental results show that distributed deadlock detection can be very
efficient. Compared to a baseline scheme “break deadlocks by deadline,” any of
these deadlock detection algorithms can significantly improve the overall system
performance. Also, the deadlock defection/resolution approach outperforms an-
other class of baseline schemes “timeout from waiting state and retry” when the
deadlocks are simple and short (e.g., the simple resource deadlocks). However, the
former approach performs worse than the latter when the average deadlock length is
long (e.g., the complex communication deadlocks). The results also suggest that in
real-time applications when the average wait-for path is long, an integrated solution

is necessary to detect and resolve both the deadlocks and the long wait-for paths.

vi

A

—3 13

TABLE OF CONTENTS

Page
ACKNOWLEDGMEN TS t vttt ittt ittt oeeeneeensneneeeeees iv
ABSTRACT -« - o oot ttttte ettt ettt e et v
LIST OF TABLES - - -ttt ittt ettt e et ooeeesaenoenssssees x1
LIST OF FIGURES « - cvceenunensnnnnunenenenaninee.., xii
Chapter
1. INTRODUCTION -+ v vttt ettt ettt et e et e e e 1
1.1 Motivation ¢ ¢ v« « v ot o v v v e e e e e e e e e s e e e e e 1
1.2 Contributions of the Dissertation - -.- ...+ 3
1.3 Plan of the Dissertation - - = = « ¢ o o o o o o o o o oo o v e v v st o nenss 7
9. THE DEADLOCK PROBLEM -+« t v vt vt eeeete e e 9
2.1 Wait-For Graphs 9
2.2 Concepts from Graph Theory -+ oo, 13
2.3 Models of Distributed Concurrent Programming Systems ... -- .. 15
2.3.1 CSP - Communicating Sequential Processes - .- .- 15
2.3.2 DP - Distributed Processes - -+« v 16
2.3.3 Ada - A Distributed Concurrent Programming
Environment 17
24 Deadlock Models - - <« -« c v o v o vt i it it ettt ittt e e 22
2.4.1 Resource and Communication Deadlock Models 23
2.4.2 General Resource System Model -+ .- covvvvevinnnt 25
2.4.3 A Hierarchy of Deadlock Models + -« - - cvvevvnnn.. 27
2.43.1 Single-Resource Model « -« « -+ oo 27
2432 AND Model =« cvvvvvvvmenrmmmneneennnn 28
9433 ORModel «« - vvvvvmemmnenneenennnennn 28
9434 AND-OR Model v v vvvmmmnneennnennn. 30
2.4.3.5 C(n,k) Model -+ -« v v v v vt vttt i et e e e 30
2.4.3.6 Unrestricted Model .-+« .cccoovvn.. 31
2.5 Deadlock Detection in Different Deadlock Models - - - - - -+ 32
2.6 Distributed Deadlock Detection and Resolution in
Real-Time Systems 36
2.6.1 Deadlock Problems in Distributed Real-Time Systems - 37

Vi

2.6.2 Criteria in Designing Distributed Deadlock Detection
and Resolution Algorithms for Real-Time Systems - --- 38

_3 _1 .3

A SURVEY OF THE DISTRIBUTED DEADLOCK

DETECTION AND RESOLUTION ALGORITHMS - ---------- 44 j

3.1 Centralized Algorithms for Distributed Deadlock Detection - - - - - 44
3.2 Distributed Algorithms for Distributed Deadlock Detection - - - - - - 47
3.2.1 Path-Pushing Algorithms - -« cvv vl 49 D}

3.2.2 Edge-Chasing Algorithms « oo v v 54
3.2.3 Diffusing Computations -« oo 56 “
3.2.4 Global State Detection -+ -+« cvve e 60 |
3.3 Hierarchical Algorithms for Distributed Deadlock Detection .- - - - 62 “1

3.4 Summary of the Distributed Deadlock Detection Algorithms - .- - . 63
A METHODOLOGY FOR THE DEVELOPMENT OF .-,]
DISTRIBUTED DEADLOCK DETECTION ALGORITHMS - ... 67 |
4.1 Characterizations and Assumptions of Distributed -
. Deadlock Detection <« ¢« ¢ ¢ o o v s e oo v et v o v v et o oo enann 68 '—l

4.2 Overview of the Methodology « -« -+ v v v v v et 75
4.3 Distributed Deadlock Detection in Static Systems =+« o e v v e 78 j

4.3.1 Local View Definition for Distributed Deadlock Detection .- 79
4.3.2 Deadlock Core Set =« --. . R R N N T S 80 .
4.3.3 Probe-Based Static Deadlock Detection Computation - .- - 81 I—‘

4.4 Distributed Deadlock Detection in Dynamic Systems ««. .- .- ... 83
441 From Global View -+« ¢t et ittt ittt esens 84 ﬂx}
44.1.1 The Snapshot Approach - -« v 84 —
4.4.1.2 The Synchronization Mechanism Approach - .. -. 88 ‘—!,

4.42 TFrom Local VIEW -« « v v v evenmnneneeennnneeenneenns 04

4.4.2.1 Safety Concern of Dynamic Algorithms -.-....-.. 94
4.4.2.2 Derivation and Verification of Dynamic

Algorithms -« -+ e v vvven v 100 ”‘7

4.4.2.3 Progress Concern of Dynamic Algorithms - - - - - 104
4.5 Concluding Remarks - v v v v oo v e ottt e et v o oot ooononennn 108

viil

_3

5.

CYCLE DETECTION - -ttt ittt te et e e e e e e

111
5.1 Assumptions of the Algorithms Concerning the Real-Time
Constraints =« v v vt vttt e e e, 112
5.2 The Principles of Cycle Detection « «+ -+« v v vvevvennannn... 113
5.3 Algorithm for the Single-Resource Model + «++ v vvvvvnrn. .. 116
5.3.1 Static Algorithms for the Single-Resource Model - - - - - - . 116
5.3.2 Dynamic Algorithm for the Single-Resource Model - - - - - 117
5.3.3 Real-Time Constraints in the Single-Resource Algorithm - 120
5.3.4 The Single-Resource Algorithm - 120
5.4 Algorithm for the AND Model - .-+ -ccvvviiii... 125
5.4.1 Static Algorithm for the AND Model - --:.:...von... 125
5.4.2 Dynamic Algorithm for the AND Model - ::-........ 128
5.4.3 Real-Time Constraints in the AND Algorithm 130
544 The AND Algor]thm 131
5.5 Concluding Remarks]_37
KNOT DETECTION + e v v vevemnennn. e 139
6.1 Formal Definition of the OR Model Deadlocks -« -+ 140
6.2 Knot Detection in Static Systems - .- .- ..o il 142
6.2.1 The Principles of Knot Detection -+« « =+ «svnvevnnn 143
6.2.2 Knot Detection in Finite Time - - «-«-.coovvevn.n 149
6.2.3 Single Detection of Knots - - - -+ -+ -cccoveicii 155
6.3 Knot Detection in Dynamic Systems - - - -« cccovveienn 166
6.3.1 A Guaranteed Knot Detection Algorithm for Dynamic
Systems -------------- AL L L L N S S S 167
6.3.2 Single Detection of Knots in Dynamic Systems - ---...- 176
6.4 Knot Detection with Timing Constraints «« -« o e v vv e 183
6.5 Application to Ada Environments =« .o oo - 187
6.5.1 Ada Rendezvous and Task Termination -+« cc0cv... 188
6.5.2 Design Assumptions Concerning the Ada Runtime
Environments 189
6.5.3 Algorithm for the Detection of Ada Rendezvous
Deadlocks and Task Terminations -« -« ccovv v 191
6‘6 Comparison to Other Work --------------------------- 200
6.6.1 The OR Deadlock and Knot Detection Algorithms .- .- - 201

ix

6.6.2 Deadlock Detection Algorithms in Ada Applications
6.7 Concluding Remarks
7. IMPLEMENTATION AND PERFORMANCE EVALUATION-

71 The Real-Time Database Testbed RT-CARAT - -----cvvv e
7.2 The Schemes for the Experiments < -+« v v e oo vevemmemerees
7.3 Parameters and Performance Metrics -« -« v e oo e e ee s e es
7.4 Experimenta,l Results «+ v vcvveveveecnntanenecenecens

7.4.1 Experiment 0: Algorithm Verification -« -+« ovvveenn

7.4.2 Experiment 1: The AND Deadlock Model - -------..-.

7.4.3 Experiment 2: The CPU Scheduling and the Deadlock
Detection -« v ¢ v v vt v e v ot e c i ottt vce oo s

7.4.4 Experiment 3: The Single-Resource Deadlock Model

7.4.5 Experiment 4: The OR Deadlock Model -« --:«-:--.. ..

7.5 Summary of Results and Conclusions «« ¢+ v oo v v vcveeean ..

8. SUMMARY AND FUTURE DIRECTIONS -« ccvvevnannnnn

8.1 Summary Of ConcluSions « « + v v+ v v v oot o v asanonosnesns
8.2 Future Directlons « «+ « « + ¢ o o o v o o st e e v oo v eenaoeasanosas

APPENDICES

A. LISTOF ABBREVIATIONS « ¢ ¢ vttt ittt iti et anononas
B. LISTOF NOTATIONS « -ttt ittt ittt tonotesassonossnasan

BIBLIOGRAPHY - -« -t nentnttttanatanananeananennn..

1

3

-3 3 3 __v _1

Table
3.1
7.1
7.2
7.3
7.4
7.5

LIST OF TABLES

Page
Performance of the Surveyed Algorithms - .- ...+ o v 66
Experiment 1 Parameter Settings -« -« -.c:covvviLL 219
Experiment 2 Parameter Settings -« - --. ..o 222
Experiment 3 Parameter Settings - -« --«---- . i 224
Experiment 4 Parameter Settings - - .- -.«-c.coviiiiiiL 226
Mean Cyclic Wait Length - -« -+« v ovvve .. 297

x1

Figure
2.1
4.1
4.2
5.1
5.2
5.3
5.4
5.5

5.6

5.7
5.8
5.9
5.10
5.11

5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7

LIST OF FIGURES

Page
Examples of the system state graph - -----«c-v vl 10
Example of a deadlock set « « « e v v v v e e e 80
Example of the inconsistencies ina DGRG -+ -« -« ovvvn 98
Data structure for probes in the Single-Resource Algorithm - 121
Data structure for tasks in the Single-Resource Algorithm . -..... 121
Data structure for resources in the Single-Resource Algorithm - - . - - 122
Procedure for theprobe initiation in the Single-Resource Algorithm - 123

Procedure for tasks handling received probes in the

Single-Resource Algorithm - -« -« cv v oo 124
Procedure for resources handling received probes in the

Single-Resource Algorithm + «« e vvvveeenennnennon.. 124
Data structure for probes in the AND Algorithm - .+ -.+........ 132
Data structure for tasks in the AND Algorithm -« 132
Data structure for resources in the AND Algorithm - -.......... 133
Procedure for the probe initiation in the AND Algorithm - 134
Procedure for tasks handling received probes in the AND

AlGOTIERIIL + + v v v v e e vt e 135
Procedure for resources handling received probes in the AND

Algorithm 136
An example of ties, stable ties, and knots - - ... oo oL 142
Example of an infinite loopinaknoto i 147
Data structure for probes in the OR Algorithm 192
Data structure for tasks in the OR Algorithm .- -............. 193
Data structure for resources in the OR Algorithm .- 193
Procedure for the probe initiation in the OR Algorithm - .- 195
Procedure for tasks handling received B-probes in the OR

Algorithm - - .-« o e, 196

xXii

-3 3 1

6.8 Procedure for tasks handling received F-probes in the OR

Algorlthm 197
6.9 Procedure for resources handling received B-probes in the OR

Algorithm 198
6.10 Procedure for resources handling received F-probes in the OR

Algorithm 199
7.1 RT-CARAT processes and message structure « -« coccevvvveen 207

7.2 Deadline Guarantee Ratio, AND Model System, DB Size 1667 Pages - 230
7.3 Deadline Guarantee Ratio, AND Model System, DL Window

[40-160,12-48] -+ ot 230
7.4 Record Throughput, AND Model System, DB Size 1667 Pages - -.- 231
7.5 Record Throughput, AND Model System, DL Window [40-160,12-48] - 231
7.6 Locking Statistics, AND Model System, DB Size 1667 Pages - - - - - - 232
7.7 Locking Statistics, AND Model System, DL Window [40-160,12-48] - 232
7.8 CPU Utilization, AND Model System, DB Size 1667 Pages - .- :-- - 233
7.9 CPU Utilization, AND Model System, DL Window [40-160,12-48] - - 233
7.10 Probe Statistics, AND Model System, DB Size 1667 Pages - .- .- - 234
7.11 Probe Statistics, AND Model System, DL Window [40-160,12-48] .. 234
7.12 Deadline Guarantee Ratio, AND Model System,

Non-Real-Time Scheduling, DB Size 1000 Pages - -« .. -- 235
7.13 Deadline Guarantee Ratio, AND Model System, EDF

Scheduling, DB Size 1000 Pages -« -« -« cccov oo 235
7.14 Deadline Guarantee Ratio, AND Model System,

Non-Real-Time Scheduling, DL Window [20-80,8-32] .- 236
7.15 Deadline Guarantee Ratio, AND Model System, EDF

Scheduling, DL Window [20-80,8-32] - - - - ccvvvevee v 236
7.16 Record Throughput, AND Model System, Non-Real-Time _ '

Scheduling, DB Size 1000 Pages -« -« « ¢ o v vver oo 237
7.17 Record Throughput, AND Model System, EDF Scheduling,

DB Size 1000 Pa_ges 237
7.18 Record Throughput, AND Model System, Non-Real-Time

Scheduling, DL Window [20-80,8-32] - - -+« vv e 238

xiil

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

1.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

Record Throughput, AND Model System, EDF Scheduling,

DL Window [20-80,8-32] « ««vverrerrrrerieeienn 238
Probe Statistics, AND Model System, Non-Real-Time

Scheduling, DB Size 1000 Pages -+« - v oo v veerceeeeeenn 239
Probe Statistics, AND Model System, EDF Scheduling,

DB Size 1000 Pages ++«cvvcecerrtt e in e 239
Probe Statistics, AND Model System, Non-Real-Time

Scheduling, DL Window [20-80,8-32] «+ -« v coeveveen s 240
Probe Statistics, AND Model System, EDF Scheduling,

DL Window [20-80,8-32] +« v vvvrrrtrnaaia 240
Deadline Guarantee Ratio, Single-Resource System, 2 Slave

Sites, DB Size 1667 Pages =« «« ¢« v v v v v 241
Deadline Guarantee Ratio, Single-Resource System, 1 Slave

Site’ DB Size 1667 Pages 241
Deadline Guarantee Ratio, Single-Resource System, 2 Slave

Sites, DL Window [40-160,12-48] - .. --. ... R I 242
Deadline Guarantee Ratio, Single-Resource_System; 1 Slave

Site, DL Window [40-160,12-48] -« « -« cccvvvvennenn 242
Record Throughput, Single-Resource System, 2 Slave :Sites,

DB Size 1667 Pages -« -+ v cvvresete i, 243
Record Throughput, Single-Resource System, 1 Slave Site,

DB Size 1667 Pages - - «cccverererereerea e 243
Record Throughput, Single-Resource System, 2 Slave Sites,

DL Window [40-160,12-48] + «+«+ v« vt evvvnnereennnennn 244
Record Throughput, Single-Resource System, 1 Slave Site,

DL Window [40-160,12-48] + -+ v v vttt 244
Locking Statistics, Single-Resource System, 2 Slave Sites,

DB Size 1667 Pages -« -« -cvcocmrnentactntaee 245
Locking Statistics, Single-Resource System, 1 Slave Site, _ '

DB Size 1667 Pages -« -« vrvvererreennnneniin.. 245
Locking Statistics, Single-Resource System, 2 Slave Sites,

DL Window [40-]_60,]_2.48] 246
Locking Statistics, Single-Resource System, 1 Slave Site,

DL Window [40-160’12-48] 246

Xiv

3

3 d

3

~) -3 3 3 3 _3 3 _3 _31 _3

—3

7.36

7.37

7.38

7.39

7.40

741

7.42

7.43

7.44

7.45

7.46

747

7.48

7.49

7.50

7.51

Probe Initiations, Single-Resource System, 2 Slave Sites,
DB Size 1667 Pages « «««+vvvveenernnnnennaae e

Probe Initiations, Single-Resource System, 1 Slave Site,
DB Size 1667 Pages

Probe Initiations, Single-Resource System, 2 Slave Sites,
DL Window [40-160,12-48] - -« =+ s v v vvvvenneereeunnnn

Probe Initiations, Single-Resource System, 1 Slave Site,
DL Window [40-160,12-48] +« -« c v vvorennen et

Probe Message Statistics, Single-Resource System, 2 Slave
Sites, DB Size 1667 Pages « <« v v cvrrretetat

Probe Message Statistics, Single-Resource System, 1 Slave
Site, DB Size 1667 Pages - =+ + v vvvr vt

Probe Message Statistics, Single-Resource System, 2 Slave
Sites, DL Window [40-160,12-48] -« - -« v vv vt

Probe Message Statistics, Single-Resource System, 1 Slave
Site, DL Window [40_160’12-48]

Deadline Guarantee Ratio, OR Model System, Random

Accessing Pattern, DB Size 50 Pages - -« oo »

Deadline Guarantee Ratio, OR Model System, Contiguous
Accessing Pattern, DB Size 50 Pages - - -« v oo v

Deadline Guarantee Ratio, OR Model System, Random
Accessing Pattern, DL Window [40-160,12-48] -« .-« .- v oot

Deadline Guarantee Ratio, OR Model System, Contiguous
Accessing Pattern, DL Window [40-160,12-48] - - -« ... --. .

Record Throughput, OR Model System, Random Accessing
Pattern’ DB Size 50 Pages

Record Throughput, OR Model System, Contiguous Accessing
Pattern, DB Size 50 Pages

Record Throughput, OR Model System, Random Accessing
Pattern, DL Window [40-160,12-48] - - -« cveveeevevnn

Record Throughput, OR Model System, Contiguous Accessing
Pattern, DL Window [40-160,12-48] - - - -« oo vviv e

Xv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Deadlock is one of the most serious problems encountered in multitasking con-
current programming systems. As early as the 1960’s the deadlock problem was
recognized and analyzed (Dijkstra [40] described it as the problem of the deadly
embrace). Deadlock occurs when one or more tasks in a system are blocked by each
other forever and their requirements can never be satisfied. A deadlock situation
may arise if and only if the following four resource competition conditions hold in a
system simultaneously: (1) mutual exclusion, (2) hold and wait, (3) no preemption,
and (4) circular wait. To some degree the last condition implies the other three.
However, it is quite useful to consider each condition separately in analyzing and

designing a deadlock free system.
Principally, there are three strategies for dealing with the deadlock problem:

1. Deadlock Prevention - by ensuring that at lease one of the deadlock conditions

cannot hold,

2. Deadlock Avoidance — by providing a priori information so that the system

can predict and avoid deadlock situations, and

3. Deadlock Detection — by detecting and recovering from deadlock states.

The first two strategies ensure that the system will never enter a deadlock
state. Deadlock prevention is commonly achieved either by guaranteeing that tasks
do not have to hold and wait on resources (e.g., by forcing all tasks to acquire
resources a priori), or by allowing preemption (e.g., a task that holds the needed
resource might be preempted by another task with a higher priority). For deadlock
avoidance, a task proceeds if the resulting global state is checked and proved to be
safe from deadlock. These methods carry the following drawbacks [124]:

e They are usually inefficient when applied in complex distributed systems.
Deadlock prevention is inefficient because it decreases system concurrency by
restricting the execution of the tasks to avoid at least one of the deadlock
conditions. For deadlock avoidance, checking for a safe state is computation-
ally expensive and inefficient. This inefliciency is especially significant in a

complex distributed system due to the large numbers of tasks and resources.

. They.a.re apt to fail in complex distributed systems. For example, if the
tasks are required to acquire resources a priori, a group of tasks may become
deadlocked in the resource-acquiring phase due to lack of a perfect global
synchronization mechanism. Similarly, in the deadlock avoidance case, due to
inconsistent local views caused by the imperfect synchronization mechanism,
different sites may all find the states safe and grant the requests concurrently,

although the final global state may turn out to be deadlocked.

o The requirements for deadlock prevention or avoidance may not be fulfilled.
For instance, in many systems future resource requests are unpredictable

which makes “a priori resource acquiring” deadlock prevention impossible.

Alternatively, by applying a deadlock detection strategy, the system is allowed
to enter a deadlock state which is then detected and recovered from. The detec-
tion of deadlocks requires the examination of the system state (principally, the
task/resource interactions) for the presence of cyclic waits. Once a deadlock is
formed, it persists until it is detected and broken (the so called stable property
of the deadlock problem). The deadlock detection computation can be performed
in parallel with the other normal system activities, therefore, it may not have a
serious impact on the system performance. Also, since certain deadlock detection
algorithms can be embedded in the underlying operating system, they are able to
extend the fault tolerance of software design faults even if a deadlock prevention or

avoidance approach is used in the user application.

Yet another potential benefit of the “detection” strategy for deadlocks is that

it may be integrated with other related problems. For example, many problems

3

—3

3 _1

appear in multitasking systems, such as livelock (a.k.a. effective deadlnck or starva-
tion), task termination, and orphan tasks, which must be detected dynamically at
runtime. Some of these problems, e.g. task termination and orphan task problems,
carry the same stable property as the deadlock problem. The detection of these
system faulty states requires the examination of task/resource interactions which is
similar to certain techniques used in deadlock detection. Certain deadlock detection
algorithms, therefore, can be tailored for the detection of these problems and vice

versa, without too much additional effort and overhead.

Considering distributed deadlock detection as part of global state detection is
another example where deadlock detection could be integrated in the resolution of
a related problem. For instance, if a global state detection algorithm is adopted to
facilitate applications such as distributed debugging and distributed system mon-
itoring, it can be extended to the detection of distributed deadlocks with little
additional overhead.

In real-time systems, deadlock prevention and avoidance methods have received
most of the attention and are the current “best” strategies. However, because
of the drawbacks pointed out above these strategies might work successfully in
relatively simple systems, but may be inefficient and very difficult to design and
verify .in more complex systems such as multiprocessors or distributed systems.
Distributed deadlock detection, which is the focus of this research, has been studied
in distributed database systems and distributed timesharing operating systems, but
has not been widely used in real-time systems. In the rest of this dissertation, we
will survey the related research work in conventional non-real-time environments,

and propose extensions for distributed real-time systems.

1.2 Contributions of the Dissertation

Deadlock detection requires knowledge of a system’s global state. In distributed

environments, the global system states are usually not maintained at a centralized

place and, hence, deadlock detection in a distributed environment is far more com-
plicated than that in a centralized systerﬁ. In this dissertation, we analyze, develop,
and formally validate deadlock detection algorithms in distributed environments.
The results are then extended to real-time systems by considering timing constraints
in the algorithms. Also, we attempt to apply our algorithms to real systems such
as Ada environments. We use the Ada runtime environment as a system model to
address problems and issues related to distributed real-time deadlock detections.
To evaluate our proposed algorithms, they are implemented in a real-time database
testbed called RT-CARAT* where transaction timing constraints and soft real-time
scheduling protocols a.reA supported. Various experiments are conducted to study
and evaluate these algorithms. The major contributions of this dissertation study

are summarized below:

e Identify the problems and the issues of the deadlock detection in

real-time systems

In the non-real-time systems, the “stable property” is an important charac-
teristic of the deadlock problem. This property means a deadlock situation
persists once it is formed. Many algorithms proposed in the literature as-
sumed and utilized this property. In real-time systems, timing constraints
are attached to the tasks. A task may be timed out from a state ifl which
it is waiting. Deadlocks may not be stable if timing constraints are consid-
ered. In this dissertation, we describe the deadlock problems for real-time
systems in which timing constraints are considered. Three types of problems:
“Stable Deadlock,” “Temporal Deadlock,” and “Non-deadlocked Blocking”

are identified and discussed.

We adopt Knapp’s [77] hierarchy of deadlock models for the analysis of the
problem complexity. Based on the sufficient conditions for deadlock detection,
we roughly divide the problem into four levels of complexity: (1) the Single-
Resource model, (2) the AND model, (3) the OR model, and (4) the AND-OR
and the C(n,k) models. We address how the deadlock problems can be solved

!Real-Time Concurrency And Recovery Algorithm Testbed [67].

—3 3 _3

in each of the four levels of problem complexity and how the timing constraints

are considered in the possible solutions.

e A methodology for the development of distributed deadlock detec-

tion algorithms

Deadlock detection requires knowledge of a system’s global state. Deadlock
detection in a distributed environment (the global system states are composed
of locally recorded system states at different sites across the network) is far
more complicated than that in a centralized system (where .a. global system
state can be kept in a centralized place) due to the lack of a physical common
global clock? and unpredictable message delays. A good distributed deadlock
detection algorithm should confine its knowledge about the global system state
to local views that é.ny individual site can manage to acquire and assumes
no physical common global clock. Failure to recognize these limitations may
account for the fact that many algorithms proposed in the literature are prone

to error.

The problems stated above can be divided into two parts, i.e., (1) how to
correctly recognize a deadlock structure and (2) how to synchronize a dead-
lock detection computation with the underlying dynamically changing system.
First, to deal with the problem (1), the. underlying system is assumed to be
static when a deadlock detection computation is performed. In such a assumed
static environment, we can then focus on the principles of the deadlock de-
tection based on the graph theory. Since it is difficult to have a global view
in a distributed system, a “local view of a deadlock” is recommended for the
definition of deadlocks and is suggested to be used in the development of

“static” algorithms.

To deal with problem (2), a systematic method is developed to guide the

design of a “synchronization mechanism” which can be coupled with a known

2In distributed real-time systems, there might be well synchronized system clocks at different
sites; however, as long as there is no physical common global clock, it is difficult to capture a
global system state.

“gtatic” deadlock detection algorithm to produce a “dynamic” algorithm.
Two consistency criteria must be fulfilled when developing a synchronizatién
mechanism for a dynamic algorithm. These criteria require that the synchro-
nization mechanism of a derived dynamic algorithm should keep a deadlock
detection computation in a dynamic system “meaningful” such that the state
of the computation can correctly reflect the underlying system state. One
interesting property of this meaningfulness requirement is that the meaning-
ful part of a computation can be “projected” to a static system state. Such
a projected computation should be equivalent to a computation which is di-
rectly generated in that system sfate by the dynamic algorithm. Also, in
the development of a synchronization mechanism we need to ensure a certain
level of “equivalence” between a static algorithm and its derived dynamic
algorithm such that both algorithms utilize the same principles in deadlock
detection and they should function the same when they are applied to a static
system state. Consequently, if a dynamic algorithm is derived from a correct
static algorithm following the guidelines described in the methodology, its
correctness is guaranteed. The methodology can also be used “reversely” in

the verification of a dynamic algorithm.
Algorithms based on cycle detection technique

A cycle in a wait-for graph is a necessary and sufficient condition for dead-
locks in the Single-Resource and the AND deadlock models. Based on the
definition of a local view of a cycle, principles of cycle detection are discussed.
Static algorithms are developed for the Single-Resource and the AND deadlock
models. Dynamic cycle detection algorithms are then derived from the static
algorithms step by step following our methodology. The final algorithms are

extended for real-time applications where timing constraints are considered.
Algorithms based on knot detection technique

A knot in a wait-for graph is a necessary and sufficient condition for deadlocks
in the OR deadlock model. Based on a local definition of knots, simple static

knot detection algorithms are developed. Dynamic knot detection algorithms

3

3

3y 3 __3

—3

are then derived following our methodology. A final algorithm is developed for
the detection of both the Ada rendezvous deadlocks and the task termination

conditions in .distributed environments.
e Testbed implementation and performance evaluation

We have implemented three proposed algorithms for the Single-Resource,
the AND, and the OR deadlock models in the RT-CARAT system where
transaction timing constraints and soft real-time scheduling protocols are sup-
ported [67]. Together with a previously implemented algorithm (proposed by
Chandy, Misra, and Haas [27]) for the AND deadlocks, a real-time scheduling
protocol, and several timeout schemes, we conduct various experiments to
study and evaluate the algorithms developed in this dissertation. Since these
are real implementations, the actual protocol overheads can be measured. Our
results show that distributed deadlock detection'can be very efficient. From
the results, we can also identify situations where simple timeouts are better
than performing deadlock detections/resolutions while in other situations it

is the other way around.

1.3 Plan of the Dissertation

The dissertation is organized as follows. Chapter 2 formally describes the
deadlock problem in terms of graph theory. In this chapter, we also summarize the
underlying system models and deadlock models. These deadlock models combined
with the system model are used to serve both as a framework in the survey and as a
basis for the analysis of the distributed deadlock detection and resolution algorithms
given in the following chapters. Finally, this chapter ends with a discussion of the
issues of deadlock detection and resolution in distributed real-time systems. In
Chapter 3, we survey various approaches for the distributed deadlock detection
and resolution algorithms proposed in the literature. Following the survey of the
related work, we present our solutions in the next three chapters. In Chapter 4, a

methodology is developed. Based on this methodology, we are able to systematically

design deadlock detection algorithms for the distributed environments as well as to
formally prove their correctness. The algorithms based on cycle and knot detection
are then preseﬁted in Chapters 5 and 6, respectively. One unique feature of our
proposed algorithms is that they are able to address timing constraints in real-time
applications. In Chapter 7, we report on a performance study of our proposed
algorithms. Finally, a summary of this dissertation and directions for future research
are found in Chapter 8. Throughout the dissertation, exafnples and algorithms are

given in Ada-like syntax.

3

3

3 1

)

)

3

—3

CHAPTER 2

THE DEADLOCK PROBLEM

In this chapter, we formally describe the deadlock problem in terms of wait-for
graphs and concepts from graph theory. Also, we attempt to relate the formal
properties of deadlock algorithms directly to the actual languages and systems such
as Ada environments. Section 2.1 introduces the concept of wait-for graphs which
have been used to model system states in describing deadlock related problems. Sec-
tion 2.2 briefly summarizes a few terms and results from graph theory. Section 2.3
presents the underlying system model. In Section 2.4, we discuss several deadlock
models. General strategies of finding solutions for different deadlock models are
then discussed in Section 2.5. These deadlock models combine with the system
model to serve both as a framework in the survey (Chapter 3) and as a basis for
the analysis and development of the distributed deadlock detection and resolution
algorithms in this dissertation. Section 2.6 describes some new concerns regarding
deadlock in real-time systems, and shows how the deadlock problem can be divided

into four levels of complexity. We also indicate that to fully support Ada semantics

it is necessary to develop solutions for the most complex level.

2.1 Wait-For Graphs

A wait-for graph is a mathematical tool which has been used to model the
system state in describing deadlock related problems. A wait-for graph is a digraph
(directed graph). A digraph is a pair (V, E), where V is a nonempty set of vertices
(which represent tasks or resources) and E is a set of directed edges (which represent
“wait-for” dependencies). Each directed edge in E is an ordered pair (a,b) which
means that a is waiting for b, where a and b are vertices in V. Also, the notation
(a — b) will be used to visualize a directed edge. If both task vertices and resource

vertices coexist in a graph, a wait-for graph becomes a bipartite digraph. A bipartite

graph is one in which all the vertices in V are partitioned into two disjoint subsets
(a subset of tasks T' and a subset of resources R in the case of wait-for graphs) such

that there are no edges connecting vertices from the same subset.

Figure 2.1-(a) illustrates a bipartite digraph. The set of vertices V =
{a,b,c,d} is partitioned into two subsets {a,d} and {b,c}. The set of edges
E = {(a,b),(a,b),(a,c),(c,d),(d,c)} connects the two subsets of vertices. Vertex b
is a sink, path “c — d — ¢” is a cycle, and set {c,d} is a knot. Sink, path, cycle,

knot and other concepts from graph theory will be formally defined in Section 2.2.

(a) a bipartite digraph (b) an example of TWFG

o 6 '
Ry —<? RR, (n
o?c

| Q
' @— R, | | T2 p--------- CR,

(c) an example of TRG (d) an example of GRG

Figure 2.1: Examples of the system state graph

The state of a system is in general dynamic; that is, tasks continuously ac-

quire and release resources and communicate with each other. Characterization of

10

3 3 '3 __3

-3 _3 '3 __3 __3

3

deadlocks requires a representatinn of the system state in terms of task-task and/or
task-resource interactions. Depending upon the complexity of the model, a system .

state can be depicted by one of the three types of wait-for graph:

TWFG: The TWFG (Task Wait-For Graph) is the simplest graph among
the three types of graph. Only the task-task wait-for relations are depicted in
the TWFG. A TWFG is a digraph in which vertices represent tasks. A directed
edge (T, T:) represents that a task T; is waiting for another task T, either due
to a resource conflict or due to a synchronized communication attempt between
them. In the database literature, a TWFG is referred to as a Transaction-Wait-For
Graph in which vertices are transactions. A transaction can be viewed as a task
that performs a sequence of database operations. In general, depending on the
type of the underlying system, either tasks or transactions can represent the unit
of computation in deadlock problems. The terms task and transaction are used

interchangeably hereafter.

Figure 2.1-(b) is an example of TWFG with four tasks Ty, T3, T3, and Ty. Path
Ty, —» T3 = Ty — T, is a cycle, and tasks T3, T3, T3, and Ty are deadlocked.

TRG: A TRG (Task-Resource Graph or, as referred to in the database lit-
erature, Transaction-Resource Graph) is a bipartite digraph in which vertices
are partitioned into two subsets: a subset of all the task vertices in the sys-
tem T = {T1,Ts,...,Tn} and a subset of all the resource vertices in the system
R = {Ry,R,,...,R.}. Edges of a TRG depict assignments or pending resource
requests. A pending request is represented by a request edge (T;, R;) directed from
a requesting task T; to the requested resource R;. A resource assignment is repre-
sented by an assignment edge (R, Ti) directed from an assigned resource Ry to its

holder task T;.

Figure 2.1-(c) is an example of TRG with two tasks T; and T3, and two re-
sources R; and R,. Notice that resources are depicted by squares “O” to distinguish

resources from tasks which appear as circles “0”. The edges Ry — Ty and R; — T;

11

are assignment edges and edges T, — R, and T} — R are request edges. Path

T, - Ry —» Ty — Ry — T is a cycle; Ty and T, are deadlocked.

GRG: A GRG (General Resource Graph [66]) is a generalized TRG which is
used to describe Holt’s General Resource System [66]. The resource vertices in a
GRG are partitioned into two disjoint subsets: a reusable resource subset RR =
{RRy, RR,,..., RR.} and a consumable resource subset CR = {CR;,CR,, ..., CR,}.
For each reusable resource RR;, its total units is a.strictly positive integer r¢;. For
each consumable resource, its producers are a nonempty subset of the task set T

Edges are of three types:

Request edge: A request edge (T}, RR;) or (T;, C Ri) is directed from a requesting

task T; to the requested resource RR; or C Ry. It represents a pending request.

Assignment edge: An assignment edge (RR;,T;) is directed from a reusable re-
source RR; to its assigned holder T;. The total number of assignment edges

directed from RR; can not exceed rt;.

Producer edge: A producer edge (CR;, T;) is directed from a consumable resource
C R; to one of its producers T;. Edge (C'R;, T;) exists if and only if T; produces
CR;.

Figure 2.1-(d) is an example of GRG with two tasks T} and' T,, and two re-
sources RR; and CR;. Task T) holds two units of reusable resource RR; and
requests one unit of consumable resource C R,. Task T, also holds one unit of RR;,
and is the only producer of CR;. The total inventory of RR; is rt; = 5. Notice
that the graph is bipartite. Reusable resources are permanent and are depicted by
small circles “o”. Consumable resources are temporary and are depicted by dotted
circles “©”. Request and assignment edges may appear and disappear with state
changes; they are depicted by solid arrows. Producer edges are permanent and are

depicted by dashed arrows.

In the following discussions we use the concept of a GRG to merge the problems

of the deadlocks due to both inter-task communication and resource competition.

12

1 _3 3 X __3 3

13

3

-1

3

The GRG was proposed by Holt to describe his General Resource System (GRS) [66].
More detailed discussions of the GRG and the GRS are given in Section 2.4.2.

2.2 Concepts from Graph Theory

In this section, some of the graph theory concepts are summarized and related
to real systems. We then formally define the deadlock problem based on these graph

theory concepts

In a GRG (V, E), a vertex v has a set of reachable neighbors RN(v) = {w |
(v,w) € E}. Also, v has a set of neighbors which can reach v, that is, TN(v) =
{v | (u,v) € E}. The state of a task in a system can be either “active” (i.e.,
executing) or “blocked” (i.e., idle and waiting for something). If a task vertex v
in a GRG has outgoing edges, i.e., |[RN(v)| > 0, its corresponding task is blocked;
otherwise, it is active. The state of a resource in a system may be “available” (i.e.,
at least one unit is available if it is a reusable resource, or at least one unit has
been produced if it is a consumable resource) and/or “held” (i.e., there are units of
a reusable resource assigned to tasks, or a consumable resource to be produced is
“held” by the producer). Similarly, if a resource vertex v has outgoing edges, i.e.,
|RN(v)| > 0, its corresponding resource is held. A held reusable resource might

still be available if there are units not assigned.

A directed path is a sequence (a,b,c,...,y,2) of at least two vertices, where
(a,b),(b,¢),.--,(y, z) are directed edges. Also, the notation (a b — .-+ =y — z)
will be used to visualize a directed path. A directed path represents the “wait-
for” dependency relations among the vertices in the path. Each blocked task or
held resource has a set of tasks and resources, for which it is “waiting,” called its
dependent set or termed as reachable set in graph theory. The reachability relations
R defined on a GRG is a set of ordered vertex pairs (v,w), such that, (v,w) € R
(i.e., v can reach w) if and only if there is a directed path from v to w. In other
words, R is the transitive closure of E. For a vertex v € V its reachable set RS(v)

is the set of all vertices w € V such that there is a path directed from v to w.

13

Therefore, RS(v) can be defined as the set {w | (v,w) € R}. On the other hand,
T'S(v) is the set of all vertices u € V such that there is a path directed from u to
v. Likewise, T'S(v) can be defined as the set {u | (u,v) € R}.

A cycle is a path with the same start and end vertex. A vertex v is in a cycle
if and only if v € RS(v). Two cycles C; and C, are nested if C; N C; # 0 and
C, # Ca.

A knot K is a nonempty set of vertices such that the reachable set of each
vertex v in K is exactly the knot K. That is, K is a knot if and only if Vv €
K, the reachable set RS(v) = K.

The concept of a strongly connected digraph, which is similar to a knot, is also
widely used in the deadlock detection literature. A digraph is said to be strongly
connected if for every two vertices u and v in the graph there exists a directed path
from u to v. A knot is a strongly connected aigraph with no path which is directed

from a vertex in the knot to a vertex outside of that knot.

A vertex i is an isolated vertez if it has no incoming edges (i.e., |TN(3)| = 0)
and has no outgoing edges (i.e., |RN(7)| = 0). A non-isolated vertex s is a sink if
it has no outgoing edges (i.e., |[RN(s)| = 0 and |TN(s)| > 0) . If the end vertex
of a directed path has no outgoing edges, it is a sink and represents an active task.
Many systems use an “expedient” resource allocation strategy in which all requests
for available units are granted immediately. In such systems, a resource vertex may
have incoming edges (i.e., unavailable) only if it has outgoing edges (i.e., it has been
held by some tasks). Therefore, we do not need to consider that a resource vertex

may become a sink.

In Section 2.4 we will see that in the simple deadlock models, such as the
Single-Resource model and the AND model, a system is in deadlock state if and
only if there are cycles in the system state &igraph. In the OR model, the existence of
a knot in a system state graph is a necessary and sufficient condition for deadlock.
However, in more complex models, such as the AND-OR model and the C(n,k)

model, there is no simple construct of graph theory to describe the condition of

14

3

3

l"‘_“_g f g f 3 f 2!

deadlock. Many deadlock detection algorithms are designed for simple models,

therefore, their major functions are detecting cycles or knots.

2.3 Models of Distributed Concurrent Programming Systevms

Deadlock can be formally studied in isolation by using graph theory. However,
in this work we are interested in explicitly tying the formal properties of deadlock
algorithms directly to the actual languages and systems that need to use the theory.
In particular, we are interested in Ada and its run time system. We believe that
there is an important gap that exists between the theory and its application that
has not been addressed very well to date. To bridge this gap we must understand
Ada’s concurrency, synchronization, and resource allocation models and show how
they relate to the theory. Hére we identify Ada’s concurrency model, but since it
is based on notions of Hoare’s “Communicating Sequential Processes” (CSP) (65],
and Brinch Hansen’s “Distributed Processes” (DP) [15], we first say a few words

about CSP and DP.

2.3.1 CSP - Communicating Sequential Processes

Hoare’s CSP recognized that synchronous input and output can be the basic
primitives of concurrent programming. In CSP, tasks synchronize and communicate
by means of input and output commands. An input/output command is delayed in
one task until a matching output/input command is executed by another task. Mes-
sages are transferred using input and output commands, therefore, CSP is based on
message-passing synchronization requiring no shared memory (variables). Messages

are not buffered and their one-to-one transfers are synchronously performed.

The notation

[G1—>CL1 a Gz—*CLz a ... d Gn—VCLn]

defines an alternative command, where G;—CL; is a guarded command with the

guard G; and its corresponding command list CL;. The alternative command is

15

executed by evaluating each guard G; for success or failure. One of the command
lists associated with a successful guard is chosen nondeterministically if more than
one guard succeeds. If a guard contains an input/output command, it succeeds only

when the preceding elements of the guard indicate success and the corresponding

output/input command is executed.

The alternative command given above specifies the execution of exactly one of
its constituent guarded command. An error results if no guard succeeds. On the

other hand, a repetitive command

*[G1—>CL1 0 Gz—*C’Lz a ... g Gn—*CLn]

specifies as many iterations as possible of its constituent alternative command. In
a repetitive command the failure of all guards terminates the repetition instead of

resulting in an error.

2.3.2 DP - Distributed Processes

Another mechanism based on synchronous message passing is Brinch Hansen’s
DP. In DP, a task performs two kind of operations: the initial statement defined
within itself and the ezternal requests made by other tasks. A task starts by execut-
ing its initial statement until the statement either terminates or waits for a condition
to become true. Meanwhile, another pending operation (external request), if any, is
started and continues until it either terminates or waits for a condition to become
true. Therefore, this interleaving of the initial statement and the external requests
is controlled by the program instead of the system clock interruption at the machine

level.

The common procedure is the only form of task communication in DP. A task
may call common procedures defined within itself or within other tasks. These
procedures are the external requests to the called task. A task T; calls a procedure
OP defined within another task T}, by:

call T;.0 P(expressions, variables)

Before the procedure OP is executed, the ezpressions are evaluated and their values

16

-

3 3

g

3)])

—3a ~— 3 "~ 3

are assigned to the input parameters of OP. When OP completes, the values of
its output parameters are assigned to the variables of the call. Parameter passing
between tasks may be implemented either by shared memory or by one-to-one
message passing without shared memory. In addition to CSP’s guarded command,
a guarded region in DP enables a task to wait until a choice among several guarded

statements can be made.

2.3.3 Ada - A Distributed Concurrent Programming Environment

Ada’s concurrent programming mechanisms are generalized from many aspects
of CSP and DP. A task is the unit of computation in Ada environments. A task is
a program module that is executed asynchronously. Tasks may communicate and

synchronize their actions through:

e the entry calls and accept statements, which are a combination of procedure

calls and message transfers, and

o the select statement, which is a non-deterministic control structure similar to

the alternative guarded command in CSP and DP.

Entry declarations and calls are syntactically similar to procedure declarations
and calls. Entry declarations can occur only in the specification of a task. The
corresponding accept statements are given in the body of the task, which have the
following form*:

accept <eniry—name> [parameters|
[do {statement} end];

The {statement} part of an accept statement can be executed only if another task
invokes the <entry—name>. Invoking an <entry—name> (an entry call) is syntac-
tically the same as a procedure call in DP. First, parameters are passed before
the execution of the {statement}. After the execution reaches the end statement,

parameters may be passed back. Both tasks are free to continue from this point.

1Square brackets [] denote an optional part, while braces { } denote a repetition of zero or
more times.

17

The accept statement and the corresponding entry call are executed synchronously
similar to the input and output commands in CSP. This synchronization performed
between two tasks is the Ada’s rendezvous concept. Thus the entry call and accept

statement serve both as a communication mechanism and a synchronization tool.

Choices among several entry calls is accomplished by the select statement,
which is similar to the guarded region in DP. There are three kinds of select state-

ments: the selective wait, the conditional entry call, and the timed entry call

The selective wait statement allows a task to accept an entry call from more
than one task non-deterministically. A selective wait statement has the form
select
select—alternative
{or
select— alternative}
[else
{statement}]
end select;

in which select—alternative is of the form
[when <boolean—ezpression> =>| selective—wait— alternative

and a selective —wait— alternative can be one of

accept—statement [{statement}]
| delay—statement [{statement}]
| terminate;

A select—alternative statement is said to be open if there is no prefixed guard
(when clause) before it or if the <boolean—ezpressions> in the prefixed guard is
true; otherwise, it is said to be closed. A selective wait statement can have at most
one terminate alternative. The delay—statement and terminate alternatives cannot
coexist in a selective wait statement. The else part is not allowed when either a

delay—statement or a terminate alternative is present.

According to the Ade Reference Manual [86] the following rules define the

execution of a select—alternative statement:

18

3 3 _ 3 3

3

&)

3

1. Determine all the open alternatives and start counting time for the open

delay— statements (if any).

2. If there are open alternatives that can be selected, the execution follows the

steps:

(a)

An open accept-statement alternative may be selected for execution only
if a corresponding rendezvous is possible. The subsequent statements, if

any, are then executed.

The subsequent statements following an open delay— statement will be se-
lected for execution if no other alternative is selected before the specified

delay duration has elapsed.

A terminate alternative may be selected if all the sibling tasks and their
dependent tasks which belong to the same root creator have terminated
or are waiting at a terminate alternative. A task terminates if it reaches
the end of its code sequence or if a terminate alternative is selected.
The termination of a task is subject to the condition that there are no

calls pending to any entry of the task.

3. If the else part is present, it is executed under the condition that no open

alternative can be selected immediately or all alternatives are closed. If no else

part is present and open alternatives exist, the execution is delayed until an

open alternative can be selected. If no else part is present and all alternatives

are closed, an error exception is raised.

19

When attempting to perform an immediate rendezvous, a conditional entry call
is used. A conditional entry call has the form .
select
entry—call [{statement})
else

[{ statement}]
end select;

If an immediate rendezvous is possible, then rendezvous takes place and the subse-
quent statements following the entry—call are executed; otherwise, the alternative

sequence of statements specified in the else alternative is executed.

When attempting to establish a rendezvous within some specified time period,
a timed entry call is used. A timed entry call has the form
select
entry—call [{statement}]
or

delay—statement [{statement}]
end select;

If a rendezvous can be established within the specified period then rendezvous
takes place and the statements following the entry—call are executed; otherwise, the

statements following the specified delay—statement are executed. .

As in most of the concurrent programming environments, deadlocks may occur
due to tasks that are competing for shared resources in Ada’s environment both
at the underlying system level, and at the language level. For example, consider
a program with two tasks 77 and T, executing on a system with two disk drives.
Each of T} and T, needs both disk drives together, say for copying a file from one
disk to the other. Deadlock will occur if each task is holding the permission to use
one disk drive and is waiting for the permission to use the other drive. Deadlocks
may also occur due to tasks that are waiting for each other in Ada’s rendezvous.

For example, two tasks T} and T, each want to call the other task before accepting

20

3

1

an entry call from the other. Portions of the code of tasks T and T3 are illustrated

as follows:

task body T is
begin

T2.READ(---); }
accept READ --- end READ;

end Ti;
and

task body T, is
begin

T1.READ(.--);
accept READ --- end READ;

end Ty;

Tasks T; and T, are deadlocked at the entry calls T3.READ and T),.READ, respec-

tively. A more detailed discussion of deadlocks will be given in the Section 2.4.

Some aspects of real-time processing is supported by the select statement. The
else alternative and the delay statement in the selective wait both provide ready
escapes in the event that no open alternatives exist or that open alternatives are
unduly delayed in their selection. Using the conditional or timed entry calls, the
calling task can ensure that it will not be blocked due to the inability of the called
task to complete a rendezvous. However, as discussed in Section 2.6.1, temporal

deadlock is still a problem in such a real-time system.

Livelock occurs when interacting tasks cannot finish their work in a limited
period of time. For example, if a task Ty (T3) is unable to rendezvous immediately

with another task T (7)), it performs some secondary activity, so that it does not

21

waste time being blocked for a rendezvous, and then tries to rendezvous again.
Livelock may occur if every time Ty (T;) attempts to rendezvous with T3 (T}),
T, (T}) is performing some secondary activity and is not ready for a rendezvous.

Eventually T} and T, will miss their deadlines.

Also, task termination and orphan task problems may arise when using Ada’s

concurrent programming facilities in distributed environments:

o Task termination — In Ada, the termination of tasks, whether it is normal
termination or abnormal termination, is well defined not to affect other ex-
ecuting tasks. It is not difficult to realize a task termination mechanism
correctly in a single site system. However, task termination becomes complex
and difficult when implemented in distributed environments due to intersite

task interaction.

e Orphan task - In a distributed system, a task may create several subtasks at
different sites. Due to site failure or network partitioning, a subtask might
become an orphan which has lost connection to its parent task. Similarly,
if site failure or network partitioning takes place when tasks from different
sites are in a rendezvous, the tasks waiting for the rendezvous might become

orphans.

The stable property of task termination and orphan tasks are similar to that of
deadlock problem. These problems are all caused by task interaction and once they
occur will remain until they are detected and resolved. Therefore, techniques such
as diffusing computations and global state detection discussed in Chapter 3, can be

extended and applied to solve these problems.

2.4 Deadlock Models

The sufficient conditions for detecting deadlock vary depending on the partic-
ular deadlock situation. Modelling deadlocks is a way of understanding the prop-

erties of deadlocks as well as a way of finding methods to detect and resolve the

22

—3 _13

—

3

-3 3 _3

deadlocks. In this section we discuss three deadlock model approaches: (1) the
resources/communication deadlock model [27] used in most algorithms, (2) the
general resource system model presented by R. C. Holt [66], and (3) a hierarchy of
deadlock models presented by E. Knapp [77]. They are discussed in the following

subsections.

2.4.1 Resource and Communication Deadlock Models

Many deadlock detection and resolution algorithms are used either in solving
“resource” deadlocks [8, 23, 27, 35, 37, 44, 46, 54, 56, 57, 64, 76, 90, 93, 95, 100,
106, 114, 118, 126, 133, or used in communication based systems [27, 58, 97, 105],
or both [14, 63]. However, the distinction betwéen these two models is not always
clear since the messages could be treated as implied resources and may not be

distinguishable from physical or data resources.

In resource deadlocks, tasks access resources (for example, data items in
database systems or memory buffers in operating systems). A task acquires a
resource before accessing it and relinquishes it after using it. The accessed resource
is held by the accessing tasks and edges are, therefore, formed in the TRG from the
resource toward the accessing tasks. A task that requires resources which are not
available (held by other tasks or not yet created) can not proceed until the requests
are satisfied. The requesting task is waiting for the availability of the requested
resources and, therefore, edges are formed in the TRG from the task toward the
requested resources. A set of tasks is resource-deadlocked if and only if each task

in the set requests at least one resource held by another task in the set.

In communication deadlocks, messages, tokens, or “synchronization between
tasks” are the implied resources for which tasks wait. In Ada environments, tasks
communicate via synchronization and communication points called entries. A syn-
chronization or communication may involve two or more tasks. The waiting tasks
can proceed only after all the tasks involved in the synchronization or communica-

tion are ready to synchronize or exchange information (i.e., the rendezvous concept).

23

An edge is formed in the TWFG from a waiting task toward its waited task. Each
idle task has a set of tasks for which it is waiting, called its dependent set. A
nonerhpty set of tasks S is communication-deadlocked {27] if and only if (1) all
tasks in S are idle, (2) the dependent set of every task in S is a nonempty subset
of 5, and (3) there are no messages, tokens, or synchronization in transit between

tasks in S.

There are several differences between the resource model and the communica-
tion model. One major difference is that different request patterns are assumed in
the two models. In the resource model, a blocked task cannot proceed until it is
granted all the requested resources. A cycle detection algorithm is usually used in
the resource deadlock models. On the other hand, in a communication environment,
such as CSP, DP, or Ada, a task’s communication request may be satisfied by at
least one of its corresponding tasks. For instance, in the Ada environment, the
accept statement requires one of many potential calling tasks to be in rendezvous
with the accepting task. A cycle is no longer a sufficient condition for communica-
tion deadlocks. Knot detection algorithms are usually used for the communication
deadlock detection. A knot detection algorithm is more complicated than one which

detects cycles. More detailed discussions are given in Section 2.4.3.

A second difference is that the agent of deadlock detection in the two envi-
ronments is usually not the same. In the resource model, the wait-for dependency
among tasks may not be known by the tasks directly. A “controller” (a “controller”
could be a separate task or a shared data structure plus program code) at each site
keeps track of its resources, and only the controllers can deduce that one task is
waiting for another. On the other hand, in the early communication models, it is
assumed that a task always knows the identities of the tasks it is waiting for. Thus,
in the communication model the tasks have the necessary information to perform

deadlock detection if they act collectively.

24

|

:Z‘

—%r 4 -3 .23 i3 -3 3 _3 _3

2.4.2 General Resource System Model

A generalized resource system model was prqposed by R. C. Holt [66] which
unifies the resource and communication deadlock models (see Section 2.4.1) into a
general resource system (GRS) model. In Holt’s GRS model, the term “resource”
is used in a special sense to mean any object which may cause a task to become
blocked. A resource is either reusable or consumable. “Reusable resources” are
used to model competition for objects such as shared data and memory buffers.
“Consumable resources” are used to model explicit interactions among tasks such

as synchronization or exchange of signals or messages among tasks.

As an example of consumable resources, in Ada, synchronization between two
tasks occurs when the task issuing an entry call and the task accepting an entry
call are ready to establish a rendezvous. A rendezvous is a consumable resource.
Either one of the calling or called tasks arriving at the rendezvous first will wait,
and, hence, becomes the “consumer” of the “rendezvous.” The second task which
establishes a rendezvous is always the “producer” of the “rendezvous.” After a
rendezvous is established, the calling task becomes blocked while the called task
is executing corresponding statements following the accept statement. The called

task, therefore, is active and acts as the producer during the rendezvous period.

Both types of resources consist of a number of identical ﬂnits which can be
requested by tasks. The total number of units of a reusable resource is fixed, but it
is unlimited for any of the consumable resources. A task requesting units is blocked
until enough units are available to satisfy its request; then the task can acquire the
requested unit. A task can release units only when it is not idle (waiting). The
fundamental difference between reusable and consumable resources is that the units
of a reusable resource are never created or destroyed, but only transferred (requested
and acquired) from a pool of available units to a task and then transferred back
(released) to the pool. On the contrary, units of a consumable resource are created

(“produced,” or released) and destroyed (“consumed,” or requested and acquired).

25

The GRS model merges the commnnication deadlock model and the resource
deadlock model by distinguishing the set of resources into two disjoint subsets, a set
of reusable resources (resource deadlock modél) and a set of consumable resources
(communicafion deadlock model). A generalized TRG called the general resource
graph (see GRG in Section 2.1) is used to depict the system state. A GRG is a TRG
with each resource vertex explicitly labeled with a number of reusable/consumable

resource units.

Holt suggested a graph reduction technique [66] to test if tasks are deadlocked.
A GRG can be reduced by any task vertex T: which is neither isolated nor blocked

in the following manner:

e For each reusable resource vertex RR;, delete all request edges (T3, RR;) and '

assignment edges (RR;,T;). Increment its total inventory units rt; by the

number of deleted assignment edges.

e For each consumable resource vertex CR;, delete all request edges (T, CR;)
and producer edges (CR;,T;). Decrement its total inventory units ct; by the
number of deleted request edges (T;, CR;) . Set ct; = oo, if a producer edge
(CR;,T;) was deleted.

A reduction of a GRG by a task vertex T; may lead to the unblocking of
another task Tj, therefore, the task T; may be chosen as a candidate for the next
reduction. A GRG is said to be completely reducible if there exists a sequence of
graph reductions that deletes all edges in the GRG. A task T; is not deadlocked
in state S if and only if there exists a sequence of reductions in the corresponding
GRG that leaves T; unblocked. If a GRG is completely reducible, then the state it

represents is not deadlocked.

Many systems use an “expedient” resource allocation strategy in which all
requests for available units are granted immediately. In such systems, a new allo-
cation of resources can take place only immediately following a resource request or

a release. Holt [66] has proven that in a GRG, (1) a cycle is a necessary condition

26

—4

4 3 _13

—-a

43 13

N

for deadlock, and (2) if the graph is expedient, then a knot is a sufficient condition
for deadlock.

2.4.3 A Hierarchy of Deadlock Models

Edgar Knapp [77] proposed a hierarchical set of deadlock models to describe
the characteristics of deadlocks. Each model is characterized by the restrictions
that are imposed upon the form resource requests can assume. For example, a
task might need to acquire a combination of resources like (R, and R;) or Rjs.
The hierarchical set of deadlock models ranges from very restricted request forms
to models with no restrictions whatsoever. The hierarchy can expand the unified
GRS model (see Section 2.4.2) to further explore the conditions for deadlock. This
hierarchy can also be used to classify deadlock detection algorithms according to

the complexity of the resource requests they permit.

2.4.3.1 Single-Resource Model

The simplest possible model is one in which a task can have at most one
outstanding resource request at a time and none of the resources are sharable.
Hence the maximum number of edges from a task or a resource in a GRG is 1.
A cycle in a GRG is a necessary and sufficient condition for deadlock. A blocked
task T is said to be deadlocked if T is in a cycle or T can only reach deadlocked
tasks. Examples of_this model can be found in database systems [12, 108]. The
system can be formalized as a Single-Resource model in the Ada environment, if
the resources are non-shareable and only one outstanding request is allowed, and
no more than two tasks may be involved in either a rendezvous or task termination.
The Mitchell-Merritt algorithm [100] is a very simple and elegant algorithm based

on this Single-Resource model.

27

2.4.3.2 AND Model

In the AND model, tasks are permitted to request a set of resources and/or
resources are sharable. A task is blocked until it is granted all the resources it
has requested. A shared resource cannot be exclusively held until all of its shared
lock holders have released the lock. The requests of this type, therefore, are called
AND requests. This model was referred to as the resource deadlock model in the
literature (see Section 2.4.1). Examples of the AND model system can be found
in some distributed DBMS where subtransactions can be executed concurrently
on different sites. In the Ada environment, the shared resources and the task
termination mechanism can be formalized as the AND model. Again, a cycle in a
GRQG is the necessary and sufficient condition for the existence of deadlocks in the
AND model. And a blocked task T is said to be deadlocked if T is either in a cycle
or can only reach deadlocked tasks. The AND model is, therefore, strictly more

general than the Single-Resource model.

A number of algorithms have been proposed based on this AND model:
Chandy-Misra algorithm [23], Chandy-Misra-Haas algorithm {27], Gligor-Shattuck
algorithm [54], Haas-Mohan algorithm [57], Menasce-Muntz algorithm (95}, and the
Obermarck algorithm [106].

2.4.3.3 OR Model

In contrast to the AND model, an alternative way for making resource requests

is the OR model. In this model, a task is blocked until it is granted any of the

resources it has requested. For example, in replicated distributed database systems,
a read request for a replicated data item is satisfied by reading any copy of it. This
model was first referred to as communication deadlock model (see Section 2.4.1) by
Chandy et al. in [27]. In OR model, detecting a cycle in GRG is not a sufficient
condition for deadlock. As pointed out by Holt [66], a knot is a sufficient condition
for deadlock while a cycle is only a necessary condition. Hence, deadlock detection

in the OR model can be reduced to finding knots in the GRG. However, a task

28

-3 7 _ 31 '_3

3

2

can be deadlocked without being in a knot. Therefore, a necessary and sufficient
condition for a deadlocked task is: a blocked task T is deadlocked if T is in a knot
or T can only reach deadlocked tasks.

There are similarities between the detection of an OR model deadlock and
the detection of the termination of a group of cooperating tasks in a distributed
computation [5, 6, 39, 41, 42, 48, 50, 98]. In a distributed system, tasks cooperate
with each other in a computation by means of message exchange. A distributed
computation is said to be globally terminated if it reaches a final state which,
in turn, relies on its member tasks reaching their final states and being ready to
terminate. The termination problem arises when tasks are ready to terminate lo-
cally, but they still agree to communicate with other cooperating tasks. The global
termination condition is defined as the condition that each of the cooperating tasks
in a distributed computation is either terminated or ready to terminate. A global
termination condition is not satisfied if any of the cooperating tasks in a distributed
computation is not waiting for termination. For example, in Ada environments a
selective wait statement allows a task to terminate if all its sibling tasks and their
dependent tasks which belong to the same root creator have terminated or are
waiting at a terminate alternative. This is a pessimistic model of the termination
problem in that it assumes all the active sibling tasks may want to make an entry
call to the ones ﬁrhich are ready to terminate in a selective wait statement. The
distributed termination problem can be viewed as a special case of an OR dead-
lock where all the cooperating tasks in a distributed computation are involved in a
deadlock (waiting for others to terminate). Therefore, any knot detection algorithm
for the OR deadlocks can also be tailored for solving the distributed termination

problem and vice versa.

Francez (48| first brought the distributed termination problem int6 prominence
by defining global termination conditions in CSP environments, and proposing a
detection algorithm for them. Dijkstra and Scholten [42] introduced the notion of
a diffusing computation (See Section 3.2.3) and suggested an algorithm to detect

the termination of an arbitrary diffusing computation in any network environment.

29

Cohen and Lehmann [39] extended Francez’s CSP termination model and solution
to distributed systems where new cooperating tasks are created and terminated
‘dynamically. Misra and Chandy [98] discussed how a termination computation
algorithm can detect deadlock for the OR model. And then in [97] Misra and
Chandy presented an algorithm for distributed knot detection. Chandy, Misra and
Haas [27] presented an algorithm for the communication deadlock model which is
an OR model in GRG. Natarajan’s algorithm [105] is also based on the OR model.
Their work was followed and improved on by Huang [68].

2.4.3.4 AND-OR Model

The AND-OR model is a generalization of the two previous models. A task in
AND-OR model may specify resources in any combination of AND and OR requests.
For example, a task may request resources R; or (R; and (R3 or R4)) where R,,

R;, R3, and R4 may exist at different sites.

There is no simple construct of graph theory in terms of GRG to describe the
deadlock condition in the AND-OR model. In principle, deadlocks in the AND-OR
model can be detected by applying the test for OR model deadlock repeatedly, where
each invocation operates on a subgraph of the AND part of the model. However,
this stra.tegy.is not very efficient. Hermann and Chandy [63] proposed a more
efficient algorithm for AND-OR deadlock. Their algorithm is based on a hierarchy
of diffusing computations which they called a tree computation. The central idea of
their algorithm is that when a diffusing computation reaches a blocked task: (1) the
diffusing computation is propagated to its dependent set if it is an OR task, or (2) it

initiates a separate tree computation if it is an AND task.

2.4.3.5 C(n,k) Model

The C(n,k) model, which was first formulated by Bracha and Toueg [13] as a
k-out-of-n request model, is a generalization of the AND-OR model. Any AND-OR
request can be directly converted into a C(n,k) request. On the other hand, a C(n,k)

30

E| I é]

3 '3

3 '__3

—3 -3 _3

—A

— 3. 3 ___1

request may be transformed into a set of AND and OR requests in the AND-OR.
model. The length of the corresponding AND-OR formula for a C(n,k) request is
k- C(n,k). Both models can be used interéhangeably. However, in most cases,
the C(n,k) model allows one to express requests in a simpler form than that in the
AND-OR model. Again, the algorithm presented by Bracha and Toueg [13] suffers
from the same deficiencies as that of the AND-OR model. Although the AND-OR

model can describe the interaction mechanisms among tasks defined in Ada, in

general, we would like to categorize Ada runtime environment as the C(n,k) model

because it is easier to formalize specific situations such as a task requests k pages

of memory from a total of n pages.

2.4.3.6 Unrestricted Model

In the most general model, there is no assumed underlying structure for re-
source requests. The only assumption made is the stable property of deadlocks.
Since Ada real-time applications have timing constraints .which, if violated, may
actually break a deadlock thereby breaking the stable property, great care should
be taken in applying the techniques developed for this unrestricted model to the

Ada environment.

The motivation of using the Unrestricted model is to separate the problem
property (the stability of deadlocks) from the abstracted underlying system struc-
tures (e.g., the abstracted data structure and synchronization mechanisms provided
in many high level languages such as Ada). Hence, a generalized solution can be
developed. For example, in a general purpose system, one of the user applications
may be a database system written in Pascal in which the user provided lock man-
ager is of the complexity of the AND deadlock model. Yet another user written
application may be an Ada concurrent program in which the rendezvous is the OR
deadlock model. Both applications are written in high level languages with abstract
data structures. Therefore, in this example, a system provided deadlock detection

mechanism should be unrestricted and general enough to solve deadlocks of at least

31

the AND-OR model, regardless of what programming languages are used. How-
ever, the deadlock detection algorithms developed for the unrestricted model carry
additional overhead which can be avoided in the algorithms designed for previously
stated simpler models. This is due to the very fact that the underlying system
computation structure is not fully utilized in helping to factor out some unneces-
sary conditions for deadlock. For example, an algorithm for the Unrestricted model
usually needs to search the whole system to construct a GRG for deadlock detection.
In contrast, if the only application running in the system is a database system as
described above, an algorithm which sends probes to search part of the GRG for
cycles is enough for the deadlock detection, and it is even beneficial if most of the

deadlocks are two cycles.

All the algorithms designed for this Unrestricted model can be used to detect
other stable properties (a.k.a. gquiescence problem [26], examples are livelock or
starvation, task termination detection, and 6rpha.n detection problems) as well.
Also, the algorithms which use a global state detection techniqﬁe for the detec-
tion of deadlocks can also be applied to distributed system monitoring, distributed

debugging, etc.

Many algorithms related to this model have been studied theoretically such
as: (1) stable properties detection by Chandy and Misra [26] and Hélary et al. [59],
(2) global state detection by Chandy and Lamport [21], Spezialetti and Kearns [128],
and Li et al. [87], (3) termination detection by Mattern [94], and (4) orphan detec-
tion by Shrivastava [122].

2.5 Deadlock Detection in Different Deadlock Models

In Section 2.4.3, a hierarchical set of six deadlock models was used to describe
the characteristics of deadlocks. Except for the Unrestricted model, the problem
complexity of the other five models can be roughly divided into four levels based

on sufficient conditions for detecting deadlocks:

32

3

g 3§ 3

—s ~3 —™3 —3 ~™% —3 38 ~3§ ~¥ —3 —3 73 —3F —3 —3 1

1. the Single-Resource model (contains only simple cycles; simple cycle detection

is sufficient),
2. the AND model (contains nested cycles; nested cycle detection is sufficient),
3. the OR (cycle detection is not sufficient; knot detection is sufficient), and

4. the AND-OR and the C(n,k) models (both cycle and knot detections are not
sufficient; cycle detection may detect false deadlocks whereas knot detection
is not sufficient to detect all deadlocks; a correct detection algorithm requires

the recognition of AND, OR, AND-OR, and C(n,k) requests).

In the Single-Resource model no nested deadlock cycles can occur. This prop-
erty gives rise to an interesting solution. If deadlock detection probes are propagated
in the opposite direction along the edges of the GRG, only the in-cycle probes ini-
tiated by the tasks in a cycle will detect deadlock. It is possible that only one task
in a cycle will detect deadlock if a probe propaga.tion. rule is enforced. For example,
in the algorithm developed by Mitchell and Merritt [100], each of the blocked tasks
is assigned an unique identifier and a probe is propagated in the reverse direction
only when its initiator identifier is larger than that of the destination task. This
algorithm guarantees that only the probe with the largest initiator identifier is able
to travel through the whole cycle to detect the deadlock. Such an algorithm sim-
plifies the problem of resolution as well as guarantees that only genuine deadlocks

will be detected in the absence of spontaneous time-outs and aborts.

In the AND deadlock model, since multiple outgoing edges as well as multiple
incoming edges in the GRG are possible, nested cycles are expected. Each cycle
in a group of nested cycles is stable, but the whole group of nested cycles is not
stable because new cycles may be forming and attaching to the existing nested
cycles. Since there are joint parts between any two nested cycles, the resolution of
a deadlock may actually break more than one cycle at their common part of the
graph. Therefore, a detected cycle may not exist if it was nested with another cycle
which was detected and resolved earlier at a common part of these two cycles. To

avoid false detection of deadlocks, we need to detect the whole group of the nested

33

cycles as well as to prevent any new cycle from attaching to it before the current ones
are resolved. This requires synchronization between deadlock detection and other
system activities, for example, to “freeze” the system while a deadlock detection and
resolution in ongoing. Unfortunately, it is too costly to freeze a distributed system
and, therefore, false detection of deadlocks is inevitable. Also, due to the existence
of nested cycles, simple cycle detection algorithms, such as the ones used in the
Single-Resource model, can no longer guarantee that only genuine deadlocks will
be detected even in the absence of spontaneous time-outs and aborts. Situations
concerning nested cycles have to be taken into consideration in order to minimize
the detection of false deadlocks. In the probe based algorithms, foreign probes,
which are initiated by tasks outside a cycle, may enter the cycle. A foreign probe
may travel in the cycle more than once without detecting any deadlock if there is
no mechanism to stop it. A foreign probe may interfere with the in-cycle probes
and, hence, may cause the algorithm to fail to detect the deadlock. For example,
similar to the probe propagation rule introduced in the Mitchell-Merritt algorithm,
if the in-cycle probe with the largest label is expected to travel through the cycle
to detect.the deadlock, a foreign probe with a even larger label may enter the cycle
and compete with the in-cycle probes. The algorithm may fail if such situations are

not carefully considered.

In the OR model, a knot is a sufficient condition for deadlock while a cycle
is only a necessary condition. Hence, deadlock detection in the OR model can be
reduced to finding knots in the GRG. A task T;in a GRG is in a knot if, for every task
T; reachable from T}, T; is reachable from T;. To detect knots, probes are propagated
in both forward (to search tasks which are reachable from T;) and backward (to
search tasks which can reach T.) directions along the edges in GRG. After the
GRG has been fully searched, the algorithm can determine whether a knot exists.
Whenever a sink in the GRG is reached, a non-deadlock condition is found. A knot
detection algorithm should be able to terminate if it detects either a knot or a non-
deadlock condition. As discussed in Section 2.4.3.3, knot dete‘ction algorithms for

OR model deadlocks can be tailored to resolve the distributed termination problem,

34

o3 3 __3

-1 _ 4 __3

and vice versa. Many algorithms proposed in the literature [27, 68, 97, 105] are
actually based on the notion of Dijkstra and Scholten’s diffusing computation which
was originally used for distributed termination detection. Similar to the previous
two models, certain techniques can be used to reduce the number of probes traveling

in the GRG.

The problem complexity of the remaining models — the AND-OR model and
the C(n,k) model — are roughly the same. Many systems are neither solely the
AND-OR model nor solely the C(n,k) model but a mixture of two. Such a mixed
model system, however, can be mapped either to the AND-OR model or to the
C(n,k) model. The mapping, in general, is easier toward the C(n,k) model than
toward the AND-OR model. Since the AND-OR model is equivalent to the C(n,k)
model, we will focus on the latter. Assuggested by Bracha and Toueg [13], deadlocks
in the C(n,k) model can be found by processing a global snapshot of the system.
Once again, since AND deadlocks are embedded in the AND-OR model and the
C(n,k) model, nested deadlocks, similar to the nested cycles in the AND model,
may occur. Therefore, we face a similar false deadlock detection problem as found

in the AND model.

Different deadlock models are assumed in the four levels of problem complexity
categorized above. The applications of the algorithms developed for each of these
deadlock models, therefore, have different restraints. For the Single-Resource model,
resources must be non-sharable and must be distinguishable. Low level system
provided task synchronization mechanisms can be allowed if no multiple outgoing
edges in the GRG may result. For example, a semaphore is a synchronization
tool proﬁded in many systems. A semaphore S is an integer variable that cﬁn be
accessed only through two atomic operations P and V. The atomic operation P
decreases the integer S by 1 if S is greater than zero; otherwise, it waits. The atomic
operation V, on the other hand, increases the integer S by 1. Such a semaphore
is usually called a counting semaphore. A binary semaphore is a semaphore whose
value is either 0 or 1. A counting semaphore may be “granted” to more than one

task, which may cause multiple outgoing edges from the resource “semaphore,”

35

hence, is not permitted in this Single-Resource model. A binary semaphore may
only be “granted” to at most one task, therefore, is allowed in the Single-Resource
model. In the Ada environment, certain program restrictions must be enforced to
ensure the single outgoing edge in GRG requirement of this model. For example,
the Ada accept statement, which allows one of many potential calling tasks to be
in rendezvous with the accepting task, must be programmed in a one to one fashion

that limits the number of potential calling tasks to exactly one.

For the AND or OR model, some of the constraints of the previous Single-
Resource model can be relaxed. In the Ada environment, once using an algorithm
powerful enough to solve the AND model, then all deadlocks with the AND logic
mechanisms involved, such as task termination, can be detected. Also, resources
may be sharable in this model. For the OR model, all deadlocks with OR logic
such as task interactions and synchronizations due to accept statements, can be

detected. The counting semaphores can be used in the OR model.

The AND-OR and C(n,k) models are general enough that all the constraints
of programming to conform to the previous two models can be removed. Resources
may be indistinguisha.ble or sharable. All the Ada task interaction and synchro-

nization mechanisms are supported by the deadlock detection in this model.

2.6 Distributed Deadlock Detection and Resolution in Real-Time
Systems

In this section, some of the design issues concerning deadlock detection prob-
lems in a distributed real-time environments are discussed. In the discussion, the
problem is first defined. Then, design criteria for distributed deadlock detection

and resolution algorithms for real-time systems are discussed.

36

3 __3 _3 -3 _31 __3

3

—3 3

2.6.1 Deadlock Prohlems in Distributed Real-Time Systems

In real-time systems, due to timing constraints attached to each task, time-outs
and abnormal aborts may occur when a task is blocked. If a task T is blocked in a

real-time environment, it may be involved in the following situations:

Stable Deadlock: This is the situation that the reachable set RS(T) of the
blocked task T in the GRG forms a deadlock (may be a cycle or a knot)
and neither any time-out nor abnormal abort is expected. These deadlock
conditions are stable in that once they are formed, they will remain until they

are detected and resolved.

Temporal Deadlock: This is the situation where the reachable set RS(T) of the
blocked task T' in the GRG forms a deadlock. However, due to timing con-
straints, a nonempty subset of tasks in a set of deadlocked tasks may be timed
out or aborted from the blocked state. The deadlock situation, therefore, may

not exist forever and, hence, is temporal.

Non-deadlocked Blocking: This is the situation in which a task is blocked, but
it is not involved in any deadlock. The situation exists for a normal wait,
or an abnormal condition such as being livelocked or being an orphan task.
In a real-time setting, a task needs to make progress in a limited period of
time. It is important that the waiting situation, for whatever reason, should

be terminated in a timely manner to ensure the timing constraints.

The three situations stated above define three deadlock related problems in
real-time systems. A stable deadlock in real-time systems is the same as a tradi-
tional deadlock in non-real-time systems. A temporal deadlock, on the other hand,
is a special kind of deadlock which is not treated as a deadlock or is assumed not to
exist in non-real-time systems. Such a deadlock is temporal and hence not stable.
The stable property which is assumed in most of the traditional deadlock detection
algorithms can no longer be used to detect temporal deadlocks in real-time sys-
tems. Timing constraints must be taken into consideration in detecting temporal

deadlocks. The timing information collected for detecting temporal deadlocks can

37

also be applied to resolve many of the the problems associated with non-deadlocked

blocking.

The detection and resolution of temporal deadlock is important for tasks with
timing constraints in real-time systems. For example, in the Ada environment, task
T may be in a temporal deadlock state if there is a cycle (or a knot) in its RS(T)
which contains tasks blocked by timed statements. If T carries the nearest deadline
and the highest criticalness in the deadlocked task set, it is important that a timely
detection and resolution is completed before a time in which it is still possible to
meet the timing constraint of 7. If no detection operation is attempted, task T

may fail without knowing the existence of this temporal deadlock.

2.8.2 Criteria in Designing Distributed Deadlock Detection and
Resolution Algorith.ms for Real-Time Systems

A deadlock detection algorithm is correct if and only if it satisfies the following

criteria:

Safety Criterion: All the deadlocks detected by the algorithm must be genuine

ones.

Progress Criterion: The algorithm must be able to detect any deadlock in the

system in a finite time.

However, it is generally too expensive to completely achieve these two criteria
when designing algorithms for distributed real-time systems. Some of the issues cen-
tered around the correctness criteria in distributed real-time systems are discussed

next:

1. These criteria might be violated due to timing constraints in real-time systems.
The timing constraints associated with tasks make deadlocks temporal (i.e.,
not stable, see Section 2.6.1). A temporal deadlock may disappear without

ever being detected.

38

31 __ 3

3 _ 3 .3

_3 3 _3 _.1

A __3

-3 __3

2. These criteria might be violated due to synchronization difficulties in dis-

tributed real-time systems. For example, if the deadlock detection computa-
tions are running concurrently with the other system activities, false dead-
locks may be reported in the AND, AND-OR, and C(n,k) (see Section 2.5)
deadlock models which violates Safety Criterion. To synchronize deadlock
detection with the other system activities (e.g., to freeze the system while
running a deadlock detection) is difficult and expensive, especially, in dis-

tributed real-time environments.

. Another issue that arises is that sometimes one of the correctness criteria

might be fulfilled at the sacrifice of the other one. Again, let’s use the detection
of AND model deadlocks as an example. It is required that the whole group
of nested cycles should be detected together. However, most of the existing
distributed deadlock detection algorithms for the AND model do not use such
a complicated approach; instead, due to efficiency concérns, they simply detect
and resolve individual deadlock cycles. When a cycle is detected, whether it
is nested with other cycles is unknown. If so, it might have been broken at the
intersecting part of the graph. Therefore, the limited information indicates
only the potential existence of deadlocks and the algorithm is responsible for
the decision of whether the situation is to be treated as a deadlock. Ignoring
these potential deadlocks might violate the Progress Criterion. In contrast,
treating these potential deadlocks as genuine ones might violate the Safety

Criterion.

. For soft real-time systems where violations will not cause any severe per-

manent faults, these two criteria can be relaxed to an acceptable level. For
example, to cope with timing and synchronization problems described above,
a compromise may be to speed up the algorithm so that the number of
undetected and/or false deadlocks can be minimized. Also, only temporal
deadlocks are allowed to go undetected since they will not remain in the sys-
tem permanently. However, the effort of detecting temporal deadlocks before

they disappear is still required in order to prevent a system from staying in

39

a deadlocked state for too long. As for the decision to be made regarding
potential deadlocks, the Progress Criterion has a higher priority than Safety
Criterion. The reason is that leaving the system in a deadlocked state is
usually an uncontrollable fault whereas recovering from a false deadlock is a
type of compensating action which impacts the system less severely. While
this line of reasoning may not be true in some specific systems, our design
of distributed deadlock detection algorithms for real-time systems will follow

this criteria priority.

. In many complex systems, (e.g., in distributed real-time systems,) structured
(modular) and/or layered design approaches are used. Many deadlock detec-
tion or prevention algorithms only consider part of the system (i.e., a subset
of the sites, the modules, and/or the layers of a system) as the problem
domain and cannot detect or prevent deadlocks across related parts of the
system. By related parts of a system we mean the sites, the modules, and/or
the layers of a system which constitute the environment in which a group
of interacting tasks execute. For example, suppose an algorithm is designed
for detecting deadlocks at the application layer with the assumption that a
prevention strategy is used in the underlying system to provide a “deadlock
free” environment. The prevention strategy used in the underlying system
has no knowledge of the user application layer, but simply prevents tasks

from circular waiting upon system resources. Suppose we have two concur-

rent tasks T; and T in the system. At the application layer, T} is waiting for '

T, in Ada’s rendezvous while at the system layer T3 is waiting for T} upon
a system resource. Both waiting situations are allowed to occur separately
in the different layers of the system. From a global viewpoint, the blockings
across these two layers actually form a deadlock cycle. Such deadlocks cannot

be detected or prevented unless a “complete” strategy is adopted.

In addition to the correctness criteria discussed above, we must consider a

number of performance issues related to real-time requirements. One major question

is whether deadlock detection is a feasible approach in a soft real-time system. After

40

3 3 __3

3

all, if a task is blocked in a deadlock, then it is likely to miss its deadline unless
the deadlock algorithm is invoked soon enough to not only detect and resolve the
deadlock, but to also leave enough time for this task (and possible the aborted tasks)
to complete (even in the presence of subsequent “normal” blocking conditions).
Consequently, deadlock detection for a given task should begin as a function of its
deadline, D, remaining execution time, F, and the execution time cost for deadlock
detection and resolution, DR. In other words, deadlock detection for this task
should start no later than D — E — DR. It would also be advantageous if the
aborted task(s) were able to be restarted and also still make their deadlines. For
many real-time systems we can assume that D and E are known (or at least we
have good approximations for them). On the other hand, the execution time cost
of deadlock detection and resolution will not be known and will vary considerably
depending on the graph representing the “waiting” states of the distributed system,
the cost and delays involved in sending messages, and the application processing
the nodes are performing in addition to the deadlock algorithm itself. Fortunately,
experience has shown that most deadlock cycles are short, so it may be possible
to develop a reasonable estimate for DR for the common deadlock case. Note
that when the estimates are wrong, one or more tasks involved in the deadlock
will miss its deadline and abort, and thereby breaking the deadlock. Real-time
deadlock detection will be successful when it finds deadlocks early enough, resolves
them quickly; thus allows more and higher value tasks subsequently to make their
deadlines than otherwise would have without deadlock detection (i.e., using schemes
such as simply using timeout and abort, or using an “always abort” a lower value
task if it blocks a high value task). Performance studies are required to determine

which approach proves feasible in practice.

We must also consider resolution decisions based on real-time requirements.
Sufficient information should be monitored and collected in order to make a good
resolution decision to support real-time requirements. When collecting informa-
tion to support real-time deadlock resolution, we need to consider: (1) the inter-

dependency of the deadlocked tasks and their related tasks and (2) the timing

41

dependency among deadlocked tasks. In (1), by related tasks we mean the tasks
(not necessary involved in the deadlock) which rely on the success of a deadlocked
task. If a deadlocked task is chosen as the victim to be aborted, it may result
a cascading abort of its related tasks. The reason for (2) is that a deadlock is a
situation of cyclic wait and breaking a deadlock may result an acyclic wait which,
in turn, results in a timing dependency among the surviving tasks. Depending on
where a deadlock is broken, different timing dependencies might be formed. For
example, a cycle of deadlocked tasks Ty — T — T3 — Tj is detected. Each of these
tasks may reside at different sites. Assume their criticalness.order isTy < T3 < Ts.
A simple resolution strategy may be to abort the least critical task, which is task
T, in this example. This resolution creates a timing dependency where T, waits for
Ts to satisfy its request. Suppose T3 cannot complete in time for T, to make its
deadline. Consequently, both 7} and T, will fail in this resolution. If the timing
dependency among these deadlocked tasks has been considered in the resolution,
selecting T3 as the victim to resolve the deadlock might be a better decision in
that both T and T, might succeed. Therefore, in addition to the criticalness of
each task, the timing dependency information is needeci to make a better resolution
decision (in the sense that it allows more of the surviving tasks to meet their timing

constraints).

Reliability of the distributed deadlock detection algorithm is another major
concern. The underlying communication subsystem usually can be assumed to be
reliable, and a major concern of the reliability in distributed systems is how to deal
with site failures. Site failures in a distributed system usually change the system
state which, in turn, cause the GRG collected at each site to become inconsistent.
A deadlock detection algorithm is not reliable if it cannot quickly recover the GRG
from a inconsistent state due to site failures. To ensure that deadlock detection
computations function properly after site failures, the GRG inconsistency must be
corrected in finite time. This basically can be achieved in one of the two ways:

(1) inform the surviving sites of the failures to clean up inconsistent information or

42

—3

3 _ 3

3
'__'§

3

—2 3

~3 —3 —3 ~3 —3 ~3 T3 "3 —3 —3I ~3 3 1

(2) make the inconsistent information obsolete in the view of newly initiated dead-
lock computations so that the inconsistency may fade‘away. In any case, time is
needed to recover and correct the inconsistency, and the deadlock computations ex-
ecute concurrently with a site failure recovery may not be able to function properly.
Therefore, the reliability criterion requires that the inconsistency be temporary and
be corrected quickly so that only the deadlock detection computations in progress

when the failures occur, may be affected.

43

CHAPTER 3

A SURVEY OF THE DISTRIBUTED DEADLOCK DETECTION
AND RESOLUTION ALGORITHMS

Deadlock detection involves two basic tasks: (1) maintenance of the system
state (in terms of TWFG, TRG, or GRG) and (2) search of the system state graph
for the presence of deadlock conditions (cycles or knots). In distributed concurrent
programming environments, a deadlock may involve several sites and the search for
deadlocks greatly depends on the way the system state graph is maintained across

the system.

Deadlock detection algorithms can be classified according to (1) the way the
system state information is maintained or (2) the methodology used in searching
for deadlock conditions. Singhal [124] classified the distributed deadlock detection
algorithms based on the former notion into three types: centralized, distributed, and
hierarchical approaches. In contrast, Knapp [77] adopted the latter notion to classify
the distributed algorithms for the distributed deadlock detection into four classes:
path-pushing algorithms, edge-chasing algorithms, diffusing computations, and global
state detection. In this chapter, the distributed deadlock detection and resolution
algorithms are summarized and categorized in the following sections according to

both Singhal and Knapp’s classifications.

3.1 Centralized Algorithms for Distributed Deadloék Detection

In the centralized algorithms for distributed deadlock detection, a designated
site, often called the control site, has the responsibility of maintaining global syste.m
state information and searching it for deadlock conditions. The global system state
information may be maintained continuously (either keeping track of the up-to-date

system state information periodically, or whenever the system state changes) or

44

L3

3 3 __3

—_3 -3 _3 _3 3 __3

O

gathered from each site whenever the deadlock detection computation is needed.
Since the control site can be viewed as a global system monitor, the kind of dead-
lock which can be detected is unrestricted. However, for simplicity, some algorithms
place restrictions on the information gathered and on the algorithms used for search-
ing for deadlocks (for example, searching for cycles instead of searching for knots),
which, in turn, will restrict the kind of deadlock that can be detected. Since the
control site has a global view of the whole system, deadlock resolution policy is

relatively easy to carry out if the system was found in a deadlock state.

Centralized algorithms are conceptually simple and easy to implement, but
they are highly inefficient and unreliable. The control site has to be informed
by all the operations (resources requests, releases, etc.) across the system. Long
response time for user requests, large communication overhead, and congestion of
communication links near the control site are the problems which we can expect.
Also, the communication and computation overheads of the deadlock detection are
unrelated to the frequency of occurrence and the structure of deadlocks. Because the
status of resource allocation is centralized at a single site, the centralized algorithms

for distributed deadlock detection are subject to a single point of failure.

Some problems (such as long response time and congestion of communication
links near the control site) can be diminished by having each site maintain its
local resource status table for dll its resources. For each resource, the status table
keeps track of the tasks which have acquired the resource or are waiting for the:
resource. The control site, therefore, can collect these local resource status tables
periodically for construction of the global system state. However, as pointed out by
Ho and Ramamoorthy [64], the global system state may be inconsistent and false
deadlocks may be detected due to the inherent communication delay and the lack

of perfectly synchronized clocks in a distributed system.

For example, suppose two resources R, and R, are located at sites S, and S,
respectively. Let the following two tasks T; and T be started almost simultaneously
at sites S3 and S respectively, and execute lock L(-) and unlock U(-) operations in

the following total order sequence:

45

T,: L(Ry) U(Ry) L(R,) U(R>)
Tz : L(Rl) U(Rl) L(Rz) U(Rz)
time: — t 12}

The scenario is that both tasks T; and T, request resources R, and R; at sites Sy
and S,, respectively. At time ¢,, T} holds R, and T; is waiting for R, at site 5;. Both
T, and T finish accessing resource R, and start to request R, between time ¢, and ¢,.
At time ¢5, T5 holds R; and T is waiting for R, at site S;. Due to the communication
delay and imperfect synchronization, site S; reports its local resource status table
as T, — R, — T at time ¢, and site S, reports its local resource status table as
T, — R, — T, at time ¢;. After constructing the global system state at time ¢,,

the control site reports a false deadlock) — Ry, —» T, — R, — T.

Ho-Ramamoorthy Algorithm: Based on the observations of the above
problems, Ho and Ramamoorthy [64] proposed two algorithms called the two-phase
and one-phase deadlock detection protocols. Their protocols were intended to solve
the deadlock problem in AND models because only cycles are searched for in at-
tempting to detect deadlocks. However, this restriction is not necessary. A more
complex deadlock searching algorithm can be adopted in the designated control site

to handle a more complex deadlock model.

In the two-phase deadlock detection protocol, each site maintains a status
table for all the tasks that are initiated at that site. The status table of each task
keeps track of the resources that the task has acquired and the resources thaf the
task is waiting for. Periodically, a designated control site requests the status table
report from all sites and constructs a global system state. If the global system
state contains no cycle then there is no deadlock. Otherwise, the control site again
requests the status table report from each site. Only the tasks common to both
reports are used to construct a second phase global system state. The system is
declared deadlocked if the same cycle is detected again in the second phase global

system state.

46

D 3 _3

3 3 __1

3 -3 3 _3 __1

-3 3

S

Ho :—J‘.nd Ramamoorthy claimed that a consistent view of the system can be
guaranteed by using this two-phase deadlock detection protocol. However, Jagan-
nathan and Vasudevan [72] have disproved the claim by a counterexample which
shows false detection of deadlocks. Using two report phases reduces the probability

of false detection but it does not eliminate it.

On the other hand, the one-phase deadlock detection protocol detects deadlocks
in one communication phase. Two tables, the resource status table and the task
status table, are maintained at each site and gathered by the designated control site
periodically. Only the tasks that appear in both tables are used for the construction
of the global system state. The system is deadlocked if and only if cycles can be
found in the global system state. |

The correctness of the one-phase deadlock detection protocol has been proven
by Ho and Ramamoorthy. No false deadlocks are detected by the protocol because
the inconsistency is eliminated by matching the information gathered from two
status tables. In the bipartite GRG, the edges only appear between two disjoint

groups of vertices, a group of tasks and a group of resources. An edge really exists

_if it is reported by both of its end vertices, that is, indicated both in a task status

table and in a resource table. This pessimistic way of collecting global information
might miss the detection of some real deadlocks formed while the status tables are
being collected. However, all deadlocks will be detected eventually by the protocol
due to the stable property of deadlocks.

The one-phase protocol is faster and requires fewer messages than the two-phase
protocol. But it requires more storage for maintaining two status tables at each site

as well as for transferring these two status tables in one communication phase.

3.2 Distributed Algorithms for Distributed Deadlock Detection

In distributed algorithms for deadlock detection, all sites cooperate to detect
deadlocks in the system. Only partial knowledge of the global system state, which

is enough for the detection of deadlocks, is learned at each site. Deadlock detection

47

computation can be initiated whenever there is an indication of a possible deadlock.
In m‘any of the distributed algorithms, the computation is initiated when a task
suspects a deadlock!, and the initiation site can be either the site where the task
resides or the site where the awaited resource resides. The methodology used for
searching for deadlock conditions can be roughly divided into four classes [77]:
path-pushing, edge-chasing, diffusing computations, and global state detection, which

are discussed in the following four subsections.

There are several reasons why distributed algorithms for deadlock detection
are more attractive than centralized ones. First, unlike the centralized algorithms,
the distributed algorithms are not subject to a single point of failure, and there
is no single control site to be swamped with deadlock détection activities which
might become a system bottleneck. Second, based on the observation of typical
applications, the frequency of deadlocks (especially, the global ones) are low and
the length of the deadlock cycles are short [55, 12]. In the distributed algorithms,
deadlock detection can be initiated only if the system is suspected to be deadlocked
and can be executed only at sites involved in the suspected deadlock, which makes it
more efficient than the fixed cost centralized algorithms. Furthermore, distributed
algorithms for deadlock detection could be used with the algorithms for deadlock
prevention and deadlock avoidance to provide a better fault tolerance while keeping
the total cost of the deadlock detection low. Third, a distributed algorithm is
not necessarily more complex than a centraﬁzed one as most of the literature has
pointed out. Both centralized and distributed algorithms have similar difficulties in
the distributed environments due to the lack of global synchronized clocks and the
inherent communication delay. A major factor that determines the complexity of a
deadlock detection algorithm is what kind of deadlock model is being addressed by
the algorithm. The Mitchell-Merritt algorithm {100] is a fully distributed Single-
Resource model deadlock detection algorithm that has been claimed to be very

simple and has been proved to be correct. According to the authors, their first

In many cases, a waiting task sets a timer and if the time expires then it suspects deadlock
and initiates the algorithm.

48

—3 __3

3 _3

.

4

algorithm has been implemented in a database system in under an hour by one of
them. One drawback of the distributed algorithms‘; is the resolution of the detected
deadlock is usually more difficult (except for the strategy that simply aborts the
task which detects the deadlock) than that in the centralized ones. This is basically ~
due to the lack of complete global information at each site and the same deadlock

might be seen (or detected) at more than one site.

3.2.1 Path-Pushing Algorithms

Closely following the ideas of the centralized algorithms, the early distributed
algorithms for deadlock detection maintained the notion of an explicit global system
state. The basic idea is to construct a simplified form of global system state graph
at each site which is sufficient to detect deadlocks. When a deadlock computation
is initiated, each site sends its local state information to a number of neighboring
sites. Upon receiving the local state information from neighboring sites, the local
state graph is updated and then passed along. The procedure is repeated until some
site has a sufficiently complete picture of the global system state graph to announce
deadlock or to ensure that no deadlock: exists. The name path-pushing algorithms
come from the main feature of this scheme, that is, to transmit partial paths for

the construction of the global system state graph.

This class of algorithms appeared around 1979-1982 when distributed algo-
rithms for deadlock detection were ;‘irst explored. Many algorithms in this class
have been “proved” correct. However, they were subsequently found to be incorrect
because they may fail to detect true deadlocks or they may detect false deadlocks.
For example, Gligor and Shattuck [54] have illustrated that the distributed scheme
presented by Menasce and Muntz [95] is incorrect because message could be out of
order, and hence, mé.y fail to detect genuine deadlocks or may detect false dead-
locks. Obermarck’s algorithm and proof [106] have been identified incorrect by
himself as well as Elmagarmid [43] and Knapp [77] in the sense that false deadlock
may be detected. A plausible reason for these algorithm failures is that the notion

of consistent global state in the distributed environment was not well understood.

49

Consequently, most of the algorithms had to rely on freezing of the underlying

system computation while the deadlock detection is proceeding.

Though these algorithms are incorrect, the Menasce-Muntz algorithm [95] and
the Obermarck algorithm [106] are briefly summarized in order to describe the
difficulties of this class of algorithms. The discussion is followed by the Badal

algorithm [8] which is a correct extension of the Obermarck algorithm.

Menasce-Muntz algorithm: The Menasce-Muntz algorithm [95] was first to
use a simplified form of the transaction-wait-for graph (see TWFG in Section 2.1).
In their algorithm, only portions of the complete global TWFG are maintained
at the transaction’s original site for the detection of deadlocks. The underlying
deadlock model is the AND model; hence, the algorithm searches for cycles in a

subset of the global TWFG.

" A transaction can be either blocked (with outgoing edges in the TWFG) or non-
blocked (without outgoing edges in the TWFG). A blocking-set(T) of a transaction
T is the set of all nonblocked transactions 7' which can be reached from T in the
TWFG via a directed path. When a transaction T is blocked, for each transaction
T' in the blocking-set(T), a blocking pair (T, T"') is identified and this information is
sent to the original site of T' and 7’. When the original site of T’ receives the pair
and it is not the original site of T', new blocking pairs (T, T'") are sent to the original
site of T for each transaction T in the blocking-set(T"). On receiving such pairs a
site updates its TWFG and performs local deadlock detection in addition to trans-
mitting new blocking pairs to other sites. A path (or cycle) thus constructed in a
site’s TWFG may be “condensed” in the sense that some intermediate transactions

may be missing.

Gligor and Shattuck [54] have shown that this algorithm fails to detect genuine
deadlocks or m‘ay detect false deadlocks. First, in the remote request case, the
determination of whether a transaction is blocked or not is incorrect because the
determination can not be made until the response come back from the remote site.

Furthermore, when sufficient information is obtained to determine correctly whether

~

50

!
:

3

3

3

3

a transaction is blocked (i.e., when a blocking pair arrives), the protocol fails to use
that information. In providing a remedy to these problems, Gligor and Shattuck
suggested that every site should determine precisely whether a transaction is active,
blocked, or waiting for the response of a remote request. Further, when a transaction
is blocked it, in addition to identifying its blocking set, should identify a “potential
blocking set” (i.e., the set of all waiting transactions reachable from a blocked trans-
action). As the authors point out, the modified algorithm is impractical because
the implementation complexity arising primarily due to the condensation of the
TWFG. For example, consider a waiting chain Ty —T— .- —T, in which no two
transactions reside in the same site. The chain is condensed into T7—7T, at the
original site of T,,, When T, releases its resources, there is no straightforward way

to inform all the intermediate sites in this chain to update their TWFG’s.

Obermarck algorithm: The Obermarck algorithm [106] combines Gray’s
centralized deadlock detection algorithm [56] and the Menasce-Muntz algorithm
described above. The algorithm is developed for a distributed database system, in
which transactions can have agents at multiple sites, but only have a single locus of
control. The reliable underlying communication sysfem assures that all messages
are sent and received in the same sequence. The underlying deadlock model is the

AND model; hence the algorithm searches for cycles to detect deadlocks.

. In the algorithm, the local TWFG is built at each site by a deadlock controller,
and both resource waits and communication waits are gathered from database and
communication managers. The transactions are lexically ordered by their identifiers
and the deadlock messages are only transmitted in one direction which reduces the

overhead as well as assuring a single detection point of a deadlock cycle. A special

‘vertex in a local TWFG called EX -ternal is used to represent intersite wait-for

relations. The existence of the vertex EX in a local TWFG indicates potential
global deadlocks. Only the portion(s) of the local TWFG related to potential
global deadlocks are shipped as String(s) from one site to another to detect global
deadlocks. Deadlock detection at each site is an iteration of the following steps

executed by a deadlock controller. The deadlock controller:

51

1. waits for and receives deadlnck related information (produced in the previons

deadlock detection iteration) from other sites,
2. combines the received information with local TWFG and searches for cycles,

3. resolves local deadlocks by choosing a victim from each of the local cycles

which does not have an EX vertex, and

4. for all cycles EX—T}— --- —»T,—EX that contains vertex EX (those cycles
constitute potential global deadlocks), sends the String EX—T;— --- T, to

each site where the transaction T}, has an agent if the transaction identifiers

has the order Ty > T,,.

It is assumed in the correctness proof that the portion(s) of the local TWFG
shipped as String(s) from one site to another will be frozen until it has been received
and processed at some final site. A final site is either (1) the site where the TWFG
information completes a cycle, or (2) the first site where a global deadlock can
be proved not to exist. The assumption attempts to get a snapshot of part of
the system for the deadlock detection algorithm, and Obermarck admits that it
is not valid in real-world distributed systems. With this assumption, Obermarck
points out that the local TWFG still may not be a true picture of the wait-for
relations in the single site. False deadlocks, therefore, may be detected even with

this assumption.

This algorithm has the primary advantage that the TWFG information is trans-
mitted only when there is a potential global deadlock. However, the algorithm
suffers from the detection of false deadlocks as pointed out above. Also, building
the TWFG is expensive and the analysis for cycles is repeated every time a deadlock

detection is initiated.

Badal algorithm: In an attempt to optimize the costly distributed dead-
lock detection algorithms in terms of detecting the most frequent deadlocks with
maximum efficiency, Badal proposed a three level algorithm extension [8] of the
Obermarck algorithm [106]. A deadlock cycle can have many different topologies.
Badal partitioned the deadlocks into four types according to their topology. In

52

E

3 __3

—-3

3

-3 _13

general, a deadlock can either be local (all the involved transactions and resources
resiae in a single site) or global (some of the involved transactions or resources might
be remote). It is not necessary to use a costly algorithm designed to detect complex
global deadlocks for detecting simple local ones. Also, the long deadlock cycles are
less likely to occur and most of the deadlock cycles have only a length of two. This
fact leads to the idea of simplifyihg the detection of global deadlocks by making the
algorithm more efficient in detecting shorter global deadlocks. Based on these ideas,
the performance is optimized in Badal algorithm by using three levels of deadlock
detection to cope with different complexity classes of deadlocks. The activity at

each level is more complex and costly than that at the preceding level.

The deadlock detection starts at the first level algorithm which detects global
deadlocks of cycle length two. The level two algorithm starts whenever a requested
resource is still not available after a period of time and no deadlock has been detected
in level one. If all the involved activities are local, the level two algorithm can decide
whether a deadlock occurs or not; otherwise, it will wait for another period of time
after which it then either ships the information to the third level algorithm if the
resource is still not available or proceeds if the resource becomes available. The
third level of this algorithm is basically the same as the Obermarck algorithm [106]
(with improvements which can reduce one intersite message) and, hence, suffers

similar inefficiencies.

Badal has proved that the algorithm can detect the most frequent deadlocks
with a minimum of intersite messages. However, he also pointed out that the
algorithm has a constant overhead due to (1) the necessity to keep track of more
information (in the lock tables) and (2) the frequent checking of deadlocks of length
two. Consequently, this algorithm is most likely to be used in distributed environ-

ments where deadlocks occur frequently enough to justify the continuous overhead.

53

3.2.2 Edge-Chasing Algorithms

This class of deadlock detection algorithms received the name from the way
they search for cycles in a distributed system state graph. A special message called a
probe is initiated and propagated along the edges (called an edge-ché.sing algorithm
by Moss [101]) of the system state graph. If the probe (or a matching one) is finally
received by its initiator then a cycle is detected. Since this class of algorithms can
only detect cycles, they can only be applied to solve deadlock models of complexity
up to and including the AND model.

A nice feature of this approach in connection with deadlock detection is that
the complexity and efficiency of an algorithm can vary according to the complexity
of the underlying deadlock model. For example, Mitchell-Merritt algorithm [100]
is a very simple and efficient algorithm based on the Single-Resource model while
Chandy-Misra algorithm [23] is somewhat more complex but can be used in a more

general AND deadlock model.

A priority based probe algorithm is an extension of the edge-chasing algo-
rithm. The priority is used to reduce the probe messages and provide dead-
lock resolution. Several priority based algorithms have been proposed: Mitchell-
Merritt algorithm [100], Sinha-Natarajan algorithm [126] (remedied by Choudhary
et al. [35, 36]), and Sanders-Heuberger algorithm [118]). They are all designed for
the Single-Resource deadlock model. .

Another variation of the probe based algorithm is called the SET-based al-
gorithm proposed by Chandy and Misra [23], Haas and Mohan [57], and Choud-
hary et al. [34]. In the SET-based algorithm, a “SET” of the system state informa-
tion is propagated along with the probe. According to the Choudhary’s simulation
results, the SET-based algori!;hm is more efficient than the probe based algorithms.

For this class of algorithms, we only present the Mitchell-Merritt algo-
rithm [100] as an example due to its simplicity and elegance. Mitchell-Merritt
algorithm has two versions (one without priority and the other one with priority)

which capture most of the important features of the edge-chasing algorithms.

54

-3 __3

3 2

3

3

|

\

Mitchell-Merritt algorithm: The Mitchell-Merritt algorithm [100] is an
edge-chasing algorithm in which probes are sent in the opposite directions on the
edges of the TWFG. Each vertex of the TWFG has two labels: private and public.
The private label of each vertex, though not constant, is unique and non-decreasing
to the vertex all the times. The public label of each vertex can be read by other
tasks and need not be unique. Initially, the labels at each vertex have the same

value. The algorithm is executed in the following four steps:

1. Block Step: When a task begins to wait for another task upon some resources,
it becomes Blocked. Both of the labels of the Blocked task are increased to a
value greater than their previous values and greater than the public label of

the blocking task.

2. Active Step: A task becomes Active when it gets a resource, times out or
fails. Also, when a waiting task notices that the owner of a awaited resource
changes, it must become Active and then Blocked again if it does not acquire

the resource.

3. Transmit Step: When a Blocked task discovers that its public label is smaller
than that of the blocking task, it updates its label to a value equal to that of
the blocking task.

4. Detect Step: When a task receives its own public label back, a deadlock is
detected.

When a task become Blocked it adds an edge to the TWFG by executing the
Block Step. When a task becomes Active, it deletes an edge from the TWFG by
executing the Active Step. The Blocked tasks execute the Transmit Step periodically.
The effect 1s that the largest public label tends to migrate in the opposite direction
along the edges of the TWFG. Only one task in a cycle will detect deadlock, which
simplifies the problem of resolution. Only genuine deadlocks will be detected in the
absence of spontaneous aborts. Spontaneous aborts are allowed, however, if false

detection of deadlocks can be tolerated.

35

The simple algorithm given ahove can be easily extended to include priorities
such that the lowest priority task in a deadlock cycle aborts itself. Each vertex
in the TWFG now has two additional unique priority numbers, one private and
one public. Initially, each task posts its unique private label and priority number.
In the Transmit Step, vertices with equal public labels transfer the lower priority
number. And in the Detect Step, a task detects a deadlock and aborts itself when
it receives its own priority number together with its own public number. Since the

task with the highest public label may be waiting for the lowest priority task, the

low priority number may not be propagated around the cycle until after the public

label has gone full-cycle. Thus, this algorithm can take up to twice as long to detect
deadlock as the above first algorithm.

As pointed out by Knapp [77], the algorithm does not remain correct if public
labels are propagated in the same direction as the directed edges instead of the
other way around. The reason for this is that if the largest public label is owned
by a deadlocked task which is not part of a cycle, this label might enter the cycle
and circulate once without detecting the deadlock. After all the public labels in the
cyéle have been updated to a larger value than any of theirlabels, none of the tasks
in the cycle would detect the deadlock. Also, for a similar reason, there seems to
be no straightforward way to extend the algorithm to handle deadlocks in the AND

model.

3.2.3 Diffusing Computations

Dijkstra and Scholten [42] introduced the notion of diffusing computation in a
distributed system of tasks, and suggested an algorithm to detect the termination
of an arbitrary diffusing computation in any network environment. The generality
of the solution makes it is a candidate for a number of problems in the distributed
systems. Using this algorithm, Misra and Chandy presented algorithms for dis-
tributed deadlock detection for CSP-like environments [97, 98]. Their work was
followed and improved upon by Huang [68]. Also, Chandy, Misra and Haas [27]

presented an algorithm for a communication deadlock model which is an OR model

56

3

3

_;;-]

3

in the GRS. Hermann and Chandy’s algorithm [63] for the AND-OR model is a so

called tree computation which is a hierarchy of diffusing computations.

First, we summarize the diffusing computation and its properties from [42]. In
a distributed system, a diffusing computation can be mapped to a directed graph
such that each vertex represents a task and each directed edge represents the relation
between its two end tasks. If the graph contains an edge from vertex T; to vertex T,
T, is called a predecessor of T3 and T is called a successor of T;. It is assumed that
there exists a root initiator vertex without incoming edges, from which a diffusing
computation is initiated. The initiator is called the environment by Dijkstra and
Scholten [42] due to its relation to the rest of the graph. Vertices different from
the environment are called internal vertices. The messages are sent from a vertex
to its successors, while the signals are propagated in the reverse direction along the
edges. A diffusing computation grows by sending messages and shrinks by receiving

signals. It is this feature that inspired the name diffusing computations.

Each vertex in a diffusing computation begins with a neutral state. The en-
vironment initiates the computation by sending out messages to its successors. In
a diffusing computation, the first message sent to a vertex is called an engaging
message while the last signal sent by a vertex, which is used to reply to its engaging
message, is called an engaging signal. Upon reception of the first message (i.e.,
the engaging message), a vertex leaves its neutral state and becomes engaged. An
internal engaged vertex (1) is free to propagate messages (including its engaging
message) to its successors, and (2) is free to send signals to its prede.cessor for every
message (except its engaging message) it receives. An internal engaged verlex is
able to receive signals from its successors. An engaged vertex sends an engaging

signal to its predecessor when it receives engaging signals from all its successors.

For each edge, its deficit, a non-negative value, is defined as the number of
messages minus the number of signals transmitted over it. The neutral state of a
vertex can now be redefined to be the state in which the deficits of all incoming and

outgoing edges are zero. The diffusing computation terminates if the environment

57

returns to its neutral state because it implies that all the internal vertices are in

the neutral state.

If an engaged vertex T; sent an engaging message to its neutral state successor
T,, the edge (T1,T3) is called an engagement edge. The engagement edge (T3, T3)
will be finally canceled after the vertex T, sends an engaging signal to T and returns
to the neutral state. The lifetime of the engagement edge (T},T3) is the same as
the duration while T; is engaged. It follows that: (a) each engagement edge con-
nects two engaged vertices, (b) engagement edges do not form cycles, and (c) each
engaged internal vertex has exactly one incoming engagement edge. Consequently,
the engagement edges form a rooted tree during a diffusing computation, and all
engagéd internal vertices are reachable from the environment via paths of these

engagement edges. °

The basic idea of using the diffusing computation for deadlock detection in
the OR model is that the GRG can be implicitly reflected in the structure of the
computation. When a task suspects a deadlock, it initiates a diffusing computation.
Different from the original diffusing computation, the initiator is not necessarily the
root of a tree in the GRG. The initiator may have incoming edges which are the
hints of the deadlocks. During the computation, the engagement edges always
form a engagement tree spanning over the set of tasks which are waiting for each
other. The engagement tree contains no cycle. Such an engagement tree even-
tually vanishes if all the outgoing edges in the set of waiting tasks find a cycle.
Therefore, if the computation finally terminates, the initiator declares a deadlock.
If no deadlock exists, the initiator will remain idle in the engaged state until its
resource requests are fulfilled, and the transmission of all the messages and signals
will simply stop. The algorithms summarized below will further clarify how one

uses diffusing computations for deadlock detection.

Chandy-Misra-Haas Algorithm: By using the paradigm of diffusing com-
putations, Chandy, Misra, and Haas [27] presented a distributed deadlock detection

algorithm for the communication (OR) model.

58

3 3 3 3 __3

—d3 3 3 3

3

In this algorithm, messages are called queries and signals are called replies.
A blocked task initiates a deadlock computation by sending queries to tasks in its
dependent set. An executing task ignores all queries and replies. On the other hand,
if the diffusing computation reaches a blocked task then that blocked task becomes
engaged and participates in the computation. A query is answered whenever it
reaches an engaged task. A query will be eventually answered if it travels along the
edges of a cycle, and all the involved engagement edges will be canceled. It follows
inductively that engagement edges do not form cycles. All the queries initiated
find cycles if the diffusing computation terminates and the initiator returns to its
neutral state. Consequently, the initiator is deadlocked if it returns to its neutral

state.

As an example, a blocked task T, initiates a deadlock detection by a diffusing
computation and it requires resources B or C which are held by tasks Ty and T,
respectively. Consider the situation that task 7T} is executing and task T is waiting
for T,. The query received by task T, will be ignored because it is not blocked.
Upon receiving the query from T,, task T. becomes engaged and propagates the
query to its dependent set which is {T,}. Since T, is in the engaged state, a reply
will be sent back to 7. immediately. When T, receives the reply from Ty, it sends
back an engaging reply to T, and returns to neutral state. No more queries and
replies related to the computation initiated by task 7, will be send at this point.
Task T, remains idle and keeps waiting for the outcome of the executing task T.
Consider another situation that both tasks T, and T, are waiting for the task T,.
Both engagement edges (7., Ty) and (T,,T.) will eventually be canceled. Finally
task T, terminates the computation and declares a deadlock after it receives replies

from all the tasks in its dependent set {T,,T}} and returns to its neutral state.

Hermann-Chandy Algorithm: Hermann and Chandy’s algorithm [63] for
the AND-OR model is a so called iree computation. A tree computation consists
of a hierarchy of diffusing computations. First, the algorithm requires a general
AND-OR request to be mapped to a regular form, such as disjunctive normal form.

A task may have either an AND request or an OR request. An AND-OR request

59

issued by a task is mapped to a tree of tasks with only AND or OR requests. A
blocked task T is deadlocked, if either

e T is an AND task and at least one of its requests will not be satisfied, or
e T is an OR task, and none of its requests will be satisfied.

The basic idea of the algorithm is that whenever a diffusing computation
reaches a blocked OR task, the computation is propagated to its dependent set;
if the engaged task is an AND task, it initiates a separate tree computation for
each of its outgoing edges. Therefore, a tree computation consists of either a dif-
fusing computation or a set of tree éomputations. Since an engaging reply (the
one that replies to an engaging query) means an engaged blocked task has been
reached, a cycle is found along the path on which the reply returns. An AND task
will send back an engaging reply when it receives an engaging reply from one of its
dependent set. An OR task will send back an engaging reply when it receives all the
replies from its dependent set. If the initiator is an AND task, it terminates when
it receives an engaging reply. If the initiator is an OR task, it terminates when
it receives all the engaging replies. A tree computation terminates and declares

deadlock whenever the initiator terminates.

3.2.4 Global State Detection

A key notion in distributed global state detection algorithms is that a consistent
global state can be determined without freezing the underlying system computations.
Chandy and Lamport [21] proposed the notion of distributed snapshots which is a
mechanism to get information about the global state of a distributed ‘computa.tion
without synchronization. Spezialetti and Kearns [128] modified this algorithm to
gain more efficiency in some special application c;I.ses. The algorithm is intended to
provide a general purpose framework which can be adapted to specific implemen-

tation requirements.

The Chandy and Lamport’s global snapshot algorithm runs in two independent

phases. During the first phase, each task records its own state, and the two tasks

60

—3 __3

connected by a communication channel conperate in recording the channel state.
Due to the lack of global clock, the recording procedure can only be carried out
asynchronously, and the recorded system state is required to be “meaningful.” The
recorded task and channel states will then be collected and assembled in a second

phase after the completion of the first phase.

The recorded task and channel states might be inconsistent in the global system
state. For example, there are two tasks 77 and T, connected by the channel C.
Task T} sends a message along C to T;. If T} records the state of channel C' before
sending the message and records its own state afier sending the message, then an
inconsistent global system state will erroneously show that a message is missing.

Thus a “meaningful” global system state cannot be formed in this way.

Chandy and Lamport suggested that a special message, called a marker, being

sent to avoid such inconsistent states. The outline of their algorithm is as follows:

Marker-Sending Rule for a Task Ty: For each outgoing channel C connected to T3,
a marker is sent along C after the state of T} is recorded and before any further

message is sent along C.

Marker-Recetving Rule for a Task T,: On receiving a marker along a channel C:

if T> has not recorded its state then
T, records its own state;
T, records the state of C as empty;
else
Ty records the state of C as the sequence of messages
recetved along C between the event where it recorded its own

state and the event where it received the marker;
end if;

The Distributed Snapshot algorithm is completely self-contained and makes no
assumptions about the states it collects. The only assumption it utilizes is the stable

system property. Therefore, this algorithm is suitable for a variety of stable system

61

property applications such as termination detection, deadlock detection, and global

state monitoring.

In using the snapshot algorithm for distributed deadlock detection, the col-
lected global system state is a consistent GRG. Let GRG, denote the GRG at time
t. Bracha and Toueg [14] proved that if the time ¢, is earlier than the time ¢;, and
a task T is deadlocked in the GRG,,, then the task T is deadlocked in the GRGq,.
This result allows a global snapshot of the GRG to be analyzed for deadlocks in

parallel with the continued operation of the system.

Bracha-Toueg Algorithm: Bracha and Toueg [14] proposed an algorithm to
process the system snapshot GRG to find deadlocks in the C(n,k) model. Since there
is no simple construct of graph theory in terms of GRG to describe the deadlock
condition in the C(n,k) model, the graph reduction techniques suggested by Holt [66]
are used to determine the existence of deadlocks. Each of the active tasks in the
snapshot GRG can be scheduled to terminate and to release the resources it holds.
The GRG thus can be reduced to a new state (see Section 2.4.2). A GRG is said to
be completely reducible if there exists a sequence of graph reductions that reduces
the GRG to a set of isolated vertices. A task T; is not deadlocked in state S if and
only if there exists a sequence of reductions in the corresponding GRG that leaves
T; unblocked. If a GRG is completely reducible, then the state it represents is not
deadlocked.

3.3 Hierarchical Algorithms for Distributed Deadlock Detection

In hierarchical algorithms for distributed deadlock detection, sites are logically
organized in a hierarchy. Each site is responsible for detecting deadlocks involving
itself and its children sites. In most of the hierarchical arranged systems, the re-
source access pattern is localized to a cluster of sites belonging to a same parent site.
The performance, therefore, can be optimized if a hierarchical deadlock detection

algorithm reflects the hierarchical structure of its underlying system.

62

% _3 ._3 __3 _3 _3% _31 _31 _3 __3 _3 _3 _3

Menasce-Muntz Algorithm: TIn the hierarchical deadlock detection algo-
rithm presented by Menasce and Muntz [95], the database (DB) is partitioned
into a set of subdatabases (sub-DB’s). The locking and deadlock controllers are
arranged in a tree fashion. Each of the leaf controllers manage a sub-DB, while a
non-leaf controller is responsible for distributed deadlock detection. A leaf controller
maintains the part of the global GRG concerning the sub-DB managed at the con-
troller. A non-leaf controller maintains the GRG including its children controllers
and is responsible for detecting deadlocks involving only its children controllers. A
non-leaf controller keeps track of the changes, such as the occurrences of allocation,
wait, or release of the resources, in each of its children controllers. This job can be
done continuously (that is, whenever a change occurs) or periodically. After each
update of its own GRG, a non-leaf controller performs deadlock detection. This
algorithm is developed for the AND model since it searches for cycles. However,
the approach can be applied to a more complex deadlock modelb if an appropriate

deadlock detection algorithm is used.

Ho-Ramamoorthy Algorithm: In the hierarchical deadlock detection algo-
rithm presented by Ho and Ramamoorthy [64], sites which are close to each other are
grouped into a cluster. A site in a cluster is chosen as the control site periodically.
A control site collects status tables from all the sites in its cluster, and applies a
one-phase deadlock detection protocol (see their algorithm in Section 3.1) to detect
intra-cluster deadlocks. Also, a central control site is chosen dynamically which
then collects the inter-cluster information and constructs a system wide GRG for

inter-cluster deadlock detection.

3.4 Summary of the Distributed Deadlock Detection Algorithms
In this section, we have surveyed, though not completely, a variety of dis-

tributed deadlock detection algorithms. To summarize, we want to emphasize two

issues: correctness and performance of these algorithms.

63

During the survey of the distributed deadlock detection algorithms, we have
observed that correctness proofs are very difficult in this area. The basic reason is
that these algorithms are developed for the distributed environments which are usu-
ally complex and non-deterministic in nature. The number of execution patterns of
an algorithm can be extremely large which eliminates the possibility of exhaustively
studying all possible situations. The lack of perfect global synchronization further
* complicates the correctness proof due to the timing sensitivity of the algorithms.
Consequently, informal proof techniques based on intuitive arguments are widely
used in most of the literature. These informal correctness proofs are relatively
unreliable. Many algorithms were informally proved and claimed correct by their
authors have been disproved later (many examples can be found in our survey).
However, it is worth noting that the situation has been improved recently due
to some important concepts, such as “global state consistency,” “stability of the
deadlocks,” “complexity of the deadlock problems,” and “diffusing computation,”
that have been introduced. These concepts makes the analysis of the problems and
the resolutions more precise and, therefore, enhances the reliability of the algorithm

correctness.

To evaluate the performance of a distributed deadlock detection algorithm is
difficult because there are many related factors, such as the message traffic, the
size of messages, the complexity of the problem to be addressed, the complexity of
the algorithm, the frequency that the detection computation is invoked, the per-
centage of the invoked computations that detect deadlock, etc., which could affect
the performance of an algorithm. Also, many algorithms were motivated by the
performance improvement to a previously developed one. However, their achieve-
ments are usually hard to judge. For example, many authors of these improved
algorithms argue that their algorithms could perform better because they reduce
the deadlock message traffic. This argument, however, may not be true due to
the fact that the complicated new algorithm may increase the overhead during the

normal computations while they attempt to reduce the deadlock message traffic.

64

3

Therefore, a precise perfrrmance comparison among different algorithms is very

difficult.

In Table 3.1, we have listed the performance of the surveyed algorithms from a
variety of aspects. The algorithms of the hierarchical approach are excluded because
they are the modified versions that take the workload access pattern into consid-
eration and their performance upper bound is exactly the same as their original
versions. The values are gathered from the 'original articles, Singhal’s survey [124],
and Knapp’s survey [77]. The algorithms listed are developed for different kind of
system environments which may have different problem comple;cities. Consequently,
the values listed in the Table 3.1 can only serve as a reference and cannot be used

to judge which algorithm performs better.

In general, Knapp [77] compares the performance of the distributed algorithms
in terms of the problem complexity and the algorithm complexity. He concludes that
the Single-Resource, the AND, and the OR models all have a worst-case algorithm
complexity of O(N?) messages, in which N is the number of the vertices in a
GRG. The AND-OR model requires at most O(N®) messages which doesn’t include
the complexity of the mapping used to transform a general request, say a C(n,k)
request, to the regular AND-OR form. The C(n,k) model needs O(N?) messages
to construct a consistent global snapshot in which the complexity of searching a
snapshot for deadlocks is not included. Therefore, Knapp suggests that in selecting
a deadlock algorithm for a particular application, the least general technique which

is still general enough to solve the problem is advised.

65

Table 3.1: Performance of the Surveyed Algorithms

No. of Sige of Problem
Algorithms Messages - Delay Messages Complexity
I. Centralized Approaches
Ho-Ramamoorthy 4N B: 4T V,L AND
(two-phase) W:p+4NT
Ho-Ramamoorthy 2N B: 2T V,L AND
(one-phase) W:p+2NT
II. Distributed Approaches
1. Path-Pushing Algorithms
Menasce-Muntz m(n — 1) nT v,S AND
Obermarck m(n — 1)/2 nT V,M AND
Badal (type I) M-1 M-1T V.M AND
Badal (type II) n-1 (n-1)T V.M AND
2. Edge-Chasing Algorithms
Mitchell-Merritt (no priority) m(n —1)/2 (n-1)T/2 C,S Single-Resouce
Mitchell-Merritt (priority) m(n—1) (n—-1)T C,S Single-Resouce
3. Diffusing Computation
Chandy-Misra-Haas W:2m(n-1) 24T C,S OR
Hermann-Chandy W:2m?(n—-1) 24T vV,M AND-OR
4. Global State Detection
Bracha-Toueg 4m(N - 1) 4dT V.M C(n,k)

N: number of sites; n: number of sites involved in deadlock;

m: number of tasks involved in deadlock; T': inter-site communication delay;

p: the period between two consequent GRG updates; d: diameter of GRG.
Message Sizes: V: variable; C: constant; L:large; M: medium; S: small.
B: best case; W: worst case.

Notes for Badal Algorithm:

type I: resource’s intention lock can be determined before task migration;

type II: resource’s intention lock can be determined after task migration;
for type L M =33 _ (n—k).

66

—-3

—3 13

3 _3 __3

— 1

3

3 T 3 T3

E |

CHAPTER 4

A METHODOLOGY FOR THE DEVELOPMENT OF
DISTRIBUTED DEADLOCK DETECTION ALGORITHMS

Deadlock detection requires knowledge of the global state of a system. In a
distributed system the control mechanisms are not centralized and, hence, its global
state is a collection of locally recorded system states. Also, typically, a distributed
environment lacks a common physical global clock and the message delays are un-
predictable. in such a distributed environment, to synchronously collect all the
local states in the construction of a global system state is rather difficult. A good
distributed deadlock detection algorithm should (1) confine its knowledge about
the global system state to local views that any individual site can see and (2) use

logical time instead of a real common global clock.

Until recently, little has been done on the subject of characterization and cor-
rectness of distributed deadlock detection. The lack of the understanding of the
synchronization problems in a distributed environment (i.e., no physical common
global clock and no centralized storage for system states) may account for many
errors found in the literature. Both Kshemkalyani and Singhal [83] and Tay and
Loke [131) have realized the problem and developed theories and solutions'. Their
works are based on the Single-Resource and the AND deadlock models. The graph
structure of the deadlocks considered in their theories and solutions restricts the
application of their results to be directly used in problems such as OR deadlock
detection. Although generalizations of these results can be made as claimed in the

reports, they are not straightforward.

In this chapter, we develop a methodology for the design and verification of

distributed deadlock detection algorithms which observes the above limitations.

1Although the motivations of these two related works are the same, they were performed
independently and have taken different approaches.

67

The fundamental idea of this methodology is twofold. First, the principles of the
detection of a certain deadlock structure (e.g., a cycle or a knot) can be developed
by studying its graphical properties in static graphs and, hence, can be separated
from the synchronization problems encountered in distributed systems. Second, the
synchronization problems can be resolved by the stable property of deadlocks. The
main focus of this chapter is the latter, i.e., to develop criteria to deal with the

synchronization problems encountered in distributed environments.

This chapter is organized as follows. In Section 4.1, we first summarize char-’

acteristics and assumptions of deadlock detection in distributed environments. An
overview of the methodology is given in Section 4.2. Issues concerning the design of
distributed algorithms in static systems are discussed in Section 4.3. In Section 4.4,
the deadlock detection computation in dynamic systems is characterized and a
systematic method for the derivation of a dynamic algorithm from a static one is

developed. Finally, concluding remarks are given in Section 4.5.

4.1 Characterizations and Assumptions of Distributed Deadlock

Detection

A typical model for distributed systems is a network of sites connected by
communication channels. There may be well synchronized system clocks (especially
in real-time applications) at all sites, but no assumed physical common global clock.
It is also generally assumed that there is no shared memory among the sites in a
distributed system. Message passing is a commonly assumed mécha.nism for the
data exchange and synchronization among different sites across the network. As
surveyed in Chapter 3, the most efficient way for detecting deadlocks in such a

distributed system is based on probe messages.

In Section 2.1, we introduced three types of wait-for graphs, i.e., TWFG
(Task Wait-For Graph), TRG (Task-Resource Graph), and GRG (General Resource
Graph), to represent the underlying system states for the purpose of deadlock
detection. In a TWFG, only the task-task wait-for relations are depicted. Its

68

-1 __ 3

2 23 ____j

)

1 v " _ 31 _ 3

T‘

structure differs from a real system state in that the resources are omitted in the
graph where resource competitions are the causes of the wait-for dependencies. A
TWFG is usually maintained in a separate data structure where synchronizations
between the graph and the underlying system activities are needed. Some of the
proposed TWFG-based algorithms may be prone to error in real applications if this
one extra level of synchronization is not considered carefully. On the other hand,
the structure of a TRG can closely reflect a real system state when resources are
involved in the wait-for relations. Usually, TRG’s are used in database systems
to deal with resource deadlocks where inter-task communications/synchronizations
are not considered part of the deadlock problem (e.g., they may be solved by some
sort of deadlock-free approaches). Unless it can be proven that the wait-for de-
pendencies due to inter-task communications/synchronizations and those due to
resource competitions are mutually exclusive, a cyclic wait may contain both types
of wait-for relations. If such a deadlock occurs, both the communication sub-system
and the resource manager may fail to recognize it. To avoid problems stated above,
we choose GRG'’s to represent the underlying system states where both resource
and communication deadlocks are modeled by the unified “general resources” (Sec-

tion 2.4.2).

A GRG is a data structure which records the inter-dependent relations among
tasks and resources in a system. As there is usually no centralized control mecha-
nism in a distributed system, without loss of generality, we assume that a (global)
GRG is a collection of local GRG’s which are physically recorded at different sites
across the network in the system. Since the structure of a GRG resembles a system
state being recorded in the task and resource control tables, it can be integrated
in a system with little extra overhead. In a running system, a GRG is dynami-
cally updated to closely reflect the changes of the underlying system state. Such a
dynamically changing GRG is called a DGRG (Dynamic GRG, to be defined later).

Since in a DGRG both task and resource vertices are included in a graph, for
easy treatment in the algorithms, their states are defined uniformly as follows. In

a dynamic system the DGRG is updated dynamically while the deadlock detection

69

computations (DDC’s) are running. In such a DGRG, a vertex is in the “waiting”
state if and only if there are outgoing edges; otherwise, it is “free.” In a DGRG, a
nonempty set of waiting vertices S are deadlocked if the reachable set of every veES

is a nonempty subset of S.

There are different types of vertices in a system and the concepts of “waiting”

and “free” have different meanings when applied to a specific type of vertex.

Task Vertices: A task vertex is waiting if it is blocked (idle) and is waiting for
its outstanding requests to be granted. A task vertex is free if it is actively
running. In some systems, a task can be simultaneously waiting for requests
to be granted as well as performing internal computations. Depending on the
semantics of the task, such a task can be divided into two sub-tasks (or two
threads), one is in waiting state and the other one is free, if the requests need
to be granted in finite time; otherwise, the task can simply be treated as in a

free state.

Resource Vertices: There are two kinds of resource vertices:

" Consumable Resources: Consumable resources are used to model commu-
nication and synchronization requests among tasks. A consumable re-
source does not exist in a system until it is requested by a task. A
consumable resource vertex starts waiting for a set of “producer” tasks
to satisfy the request when it is initiated by a “consumer” task which
issues the request. When one of the producers satisfies the request of a
consumable resource, the resource becomes free and is “consumed” by

its consumer.

Reusable Resources: In contrast to consumable resources, reusable re-
sources are never created or deleted in a system. To determine the state
of a reusable resource depends on the way the resource is managed in a
system. A reusable resource may be shared by many tasks or it may only
be exclusively assigned to a single task. Also, in the case of exclusive

assignment, a reusable resource may have a fixed number of units and

70

1 3 3

?i

T3

each of them may only be exclusively allocated to a task. Let’s first
consider a reusable resource which can be shared by many tasks. Such
a resource is free as long as no task is waiting for using it exclusively
or is holding it exclusively; otherwise, the resource is waiting to be re-
leased. Suppose a resource 7 is shared by a nonempty set of tasks {v;}.
Although 7 is allocated to some tasks it is free until a task u wants to
use it exclusively (i.e., u starts to wait for » and = starts to wait for all
its holders {v;} to release it). After all the holders {v;} release r, r is
then exclusively assigned to u and is waiting for u to release it. Next case
to consider is exclusive assignments. Suppose a reusable resource has a
fixed number of units for exclusive assignments. The resource is free if
there are available units; otherwise, the resource is waiting for its holders
to release any of its units. If such a resource contains only one unit, it

starts waiting whenever it is allocated to a task.

An edge (v — v) may be (1) a request edge, i.e., a task u has an outstanding
request to a resource v or it is waiting for a message/synchronization from some
other tasks (e.g., in Ada, task u is waiting for some other tasks in a rendezvous v),
(2) an assignment edge, i.e., one instance of a resource u is assigned to a task v,
or (3) a producer edge, i.e, v is a message request or a synchronization which may
be fulfilled by a task v. For brevity, we say that the edge (v — v) represents the

situation in which u is “waiting” for v.

The notation (¢ — v) denotes that the edge (v — v) is locally recorded at the
vertex u. Similarly, (u — v) denotes that the edge (u — v) is locally recorded at

the vertex v.

When a vertex u starts to “wait” for a vertex v, an edge (& — v) is recorded at
u. In a finite delay, the vertex v will learn that the vertex u is “waiting” for it and
an edge (u — ¥) is recorded at v. The edge (v — v) may be deleted if u and/or
v initiates an edge deletion process. The initiator u (or v) of the edge deletion

process removes the edge (Z — v) (or {(u — ¥)) from its local records. When the

71

other end v (or u) knows that the edge (u — v) is being deleted, it removes the

record (u — ¥) (or (€ — v)) accordingly.

Edge records may be added to and deleted from a free vertex. Once a vertex
becomes waiting, no more outgoing edges will be added to it. Also, a waiting vertex
does not initiate the deletion of any of its incoming and outgoing edges. A waiting

vertex u will become free if

- the requests for which it is waiting is fulfilled. If u is a task, it may proceed
its computation after it becomes free. If u is a resource, it is available for

allocation when it is free.

- it is selected as a victim to resolve a detected deadlock. Only tasks may
be considered as the victims of the deadlock resolutions. When task u is
chosen as a victim, it becomes free and starts to carry out the resolution by

relinquishing its outstanding requests and releasing its holding resources.

- its waiting state terminates voluntarily. A vertex may terminate its waiting
state (1) due to the program or system faults or (2) upon the expiration
of a pre-programmed duration. The termination of é waiting state due to
program or system faults is unpredictable and is assumed to rarely happen.
On the other hand, the termination of a waiting state due to the expiration
of a pre-programmed duration is very common in certain systems. For ex-
ample, in real-time applications, tasks may leave waiting states according to
their timing constraints. In such systems, the timing constraints can provide

enough information to predict when a waiting state will terminate.

In this chapter, we are dealing with Stable deadlocks. We assume that vertices
do not terminate their waiting states voluntarily and, hence, the deadlocks are stable
until they are detected and resolved. This assumption is relaxed when the algo-
rithms are extended for real-time applications. We ignore the voluntary termination
of a waiting state due to program or system faults because such situations are rare
to occur and they may only cause a system to recover from a false deadlock which

will not damage the system severely.

72

-3 '3

_4 g __3

— A

—a | | 3 1

Based on the above descriptions, a DGRG can be defined as follows.

Definition 4.1 (Dynamic System State GRG) A DGRG records the global

state for a system dynamically. A DGRG contains vertices to denote tasks
and resources in the system and edges to represent wait-for dependency
among the tasks and resources. Each vertex in a DGRG is in one of the
two states: free or waiting. Also, each vertex has a table of incoming and
outgoing edges. A vertex is in the waiting state if and only if it has outgoing
edges; otherwise, it is free. In a distributed system, each site maintains a
local DGRG by keeping track of the state and the edge records for each of its
local vertices. The global DGRG of such a distributed system is a collection
of the local DGRG’s recorded at every participating site.

A deadlock detection algorithm is based on the information available in such
a distributed DGRG. The algorithm initiates computations to construct (but once
constructed) static views of a DGRG and searches deadlock structures in the con-
structed views. In other words, a DGRG can be viewed as a shared data structure

between the underlying system activities and the DDC’s. The correctness of DDC’s

relies on the correct synchronization of accessing the DGRG.

Without lbsing generality, we assume that the synchronization of accessing the
DGRG among the system activities and the DDC’s is achieved through message
passing?. Messages used in a system are of two types: (1) control messages for
updating the structure of the DGRG (as described earlier) in a distributed envi-
ronment and (2) probe messages for the DDC’s. Suppose there are two vertices u
and v in a DGRG which represent a task and a resource in a distributed system.
When u propagates a probe message to v along (v — v}, this implies that the
DDC is transferred® from a task (resource) represented by u to a resource (task)

represented by v. The synchronization among system control messages and the

2In real implementations, for efficiency reasons, a local message may be realized as a direct
modification to the DGRG.

3Likewise, in real implementations this may be done by directly updating the probe information
in the local DGRG if both u and v are at the same site.

73

deadlock detection probes are based on the following assumptions which are typical

In many message passing systems.

Assumption 4.1 A sequence of messages sent out from a vertex will be received

and processed in the same order at the destination vertex.

Assumption 4.2 Messages may be processed in parallel at different vertices.

Assumption 4.3 If multiple messages are received and queued at a vertex, they

will be processed one by one. In other words, there is no parallelism assumed

within any vertex.

Assumption 4.4 The message propagation delay from a vertex to any of its

neighbors is finite.

Assumption 4.5 The underlying communication subsystem is assumed to be

reliable that no message will be lost or duplicated.

In the following chapters, we develop deadlock detection algorithms in a series
of refinement steps. First, we assume the GRG is static when a DDC is running on
it so that we can concentrate on the properties and principles of deadlock detection
computatibns without worrying about the dynamic nature of the graph. Actually,
many centralized deadlock detection algorithms are such static algorithms. Then,
the static algorithm* is extended to deal with DGRG using the methodology de-
veloped in this chapter. And, finally, timing constraints are considered so that the

algorithms may be used in real-time applications.

A static system GRG implies the absence of control messages in the system.
Such a GRG can be created by either “freezing” the system activities or taking a
“snapshot” [21] of the system state and then processing it “off-line.” It is much
easier to analyze and validate a DDC on a static GRG than on a DGRG. Basically,

combined with protocols that either “freeze system” or “take snapshots,” a static

“In the following discussions, an algorithm or a DDC is said to be static (or dynamicy if it is
associated with a static (or a dynamic) system state GRG.

74

3

1 1 _13

—3 3 _ 3

=

algorithm can be used in dynamic systems. However, there may exist better syn-
chronization mechanisms for extending a static algorithm to a dynamic one. One
of the goals of this chapter is to develop a systematic method of finding such a
synchronization mechanism for static algorithms. Using the criteria suggested in
our methodology, we may then develop dynamic algorithms from static algorithms

and verify their correctness.

As a final step, we take into account the timing constraints in many real-
time systems. When a task is waiting for a resource or is holding a resource, a
corresponding edge is present in the DGRG. This waiting or holding situation may
be terminated due to timing constraints associated with the task. We assume this
timing information is available in the system so that we can predict how long a task
could stay in a blocked waiting state and how long a task could be holding a resource.
Therefore, each edge in a DGRG may have a lifetime deadline which reflects the
timing constraints of its end vertices. With this available timing information in
DGRG, we may then extend algorithms to real-time applications. Since these real-
time extensions are specific to individual algorithms, they will be discussed in the

next two chapters where algorithms are presented.

4.2 Overview of the Methodology

A deadlock detection algorithm is correct if and only if the following “progress”

and “safety” concerns (Section 2.6.2) are satisfied:

Safety : A detected deadlock indicates an existing real deadlock in the underlying

system.
Progress : An existing deadlock will be detected in finite time by some DDC.

In a dynamic system, a DDC constructs its own view of a GRG from the
underlying DGRG. A deadlock is declared if a DDC finds a deadlock structure in
its constructed GRG. The first concern requires that an algorithm should be able to

(1) recognize a deadlock structure in a graph (i.e., in its constructed view of GRG),

75

and (2) assure that the detected deadlock structure does indicate a real deadlock
in the underlying system (i.e., could be found in the DGRG). Therefore, we may
consider an algorithm to consist of two parts: (a) a “quasi-static” procedure that
recognizes the structure of deadlocks in GRG’s and (b) a synchronization mechanism
that deals with the dynamically changing nature of the underlying system. We call
part (a) a “quasi-static” procedure because such a procedure searches for deadlock
structures in a dynamically constructed (but once constructed) static view of the
DGRG. In terms of finding deadlock structures in a graph it functions like a stati;:
algorithm. The idea of using a static algorithm in the design of a dynamic algorithm
is that the procedure specified in part (a) could be similar to and, hence, could be
based on a static algorithm. In the worst case (in terms of performance), the
synchronization mechanism can be a “freezing” or a “snapshot taking” protocol

and the so captured GRG’s are then analyzed by a static algorithm.

In addition to the first concern, the second concern requires that an algorithm
should be able to assure at least one DDC which satisfies the Safety co;lcern is
guaranteed to proceed to declare an existing deadlock. Usually a very loose condi-
tion is adopted to cope with the second concern; that is, a deadlock can be at least
detected by a “latest” DDC which is usually initiated after the deadlock is formed.
One of the optimizations frequently found in the literature is to reduce the number
of DDC’s detecting a deadlock to be one. Most of these optimizations rely on the
“latest” DDC initiated “after” a deadlock is formed to be the one which leads to the
declaration of the deadlock. In Section 4.4.2.3, a “tighter condition” under which
an existing deadlock can be detected by a DDC (may be initiated “before”® the
formation of the deadlock) is proposed with proof. This “tighter condition” may
be used to further improve an algorithm to efficiently detect deadlocks as early as

possible.

Based on the above analysis, the correctness criteria for a deadlock detection

algorithm could be rephrased as follows:

SSince there is usually no common global clock in a distributed system, the concepts “latest,”
“after,” and “before” are based on logical timestamps.

76

1

Recognition of deadlock structure : A DDC should be able to correctly recog-
nize a deadlock structure in-a graph (i.e., in a constructed view of a DGRG),

and

Synchronization with the underlying system : A synchronization mecha-

nism should fulfill the following two concerns:

1. Safety concern: The algorithm should be able to assure that a detected
deadlock structure does indicate an existing deadlock state in the under-

lying system, and

2. Progress concern: The algorithm should be able to assure that at least
one DDC which satisfies the Safety claim is guaranteed to proceed to

declare an existing deadlock.

As mentioned earlier, to recognize a deadlock structure in a graph is a “quasi-
static” procedure in a dynamic algorithm. How to fulfill the first criterion, therefore,
can be studied in static algorithms. Issues concerning the design of such a static

algorithm is discussed in Section 4.3.

To synchronize a DDC and the underlying system activities, we need to prop-
erly model their interactions. First, in Section 4.4.1 we adopt a global view in
modeling the DDC and the underlying system (in terms of DGRG). According to
this global view model, two consistency criteria (spatial and temporal) are proposed
to verify if a DDC can be correctly executing in a DGRG. These consistency criteria
are used to judge if a constructed view of a DGRG is “meaningful.” We use the
concept of meaﬁingfulness to indicate if a constructed view of a DGRG can faithfully
reflect the real situation of the underlying system state. An interesting result in
meeting the meaningfulness requirement is that a dynamic DDC can be “projected”
onto a static GRG and is equivalent to a “static” computation. This also implies

that a dynamic algorithm can be derived from a static one.

In Section 4.4.2, we then discuss how the meaningfulness of a DDC can be
maintained according to the information which is local to each of the DDC’s partic-

ipating vertices. The notion of meaningfulness and the deadlock’s stable property

7

also led to the derivation of conditions for a synchronization mechanism to satisfy
the Safety and the Progress concerns. These conditions only rely on information
that is local to each vertex. Consequently, these conditions provide a feasible way

of realizing a synchronization mechanism.

From the above descriptions, the methodology can be used to derive a dynamic
algorithm from a static one. This methodology is also useful in the verification of
the correctness of dynamic deadlock detection algorithms. A summary of these two

usages can be found in Section 4.4.2.2.

4.3 Distributed Deadlock Detection in Static Systems

A static algorithm describes deadlock detection computations executing on a
static GRG. Since it is generally assumed that there are no centralized control
mechanisms and no common shared storage in a distributed system, the global
system state GRG is a collection of local GRG’s recorded at different sites across
the network. The algorithms considered in such distributed systems are based on

the probe computations.

The derivation of deadlock detection algorithms are usually based on the way
the deadlock problems are defined. There are several guidelines for the deadlock
definitions so that they can properly lead to the derivation of probe-based algorithms
for distributed applications. First, the definition should be confined to the informa-
tion which can be easily gathered at each vertex in the system. Such a definition
is called a “local view definition” (Section 4.3.1). Second, the definition should be
- based on a well defined graphic structure (e.g., a cycle or a knot) which satisfies
both the necessary and the sufficient conditions of the deadlocks in a system. Such
a set of deadlocked vertices is called a “deadlock core set” (Section 4.3.2). Finally,
in Section.4.3.3, we formally model a probe-based DDC in a static GRG.

78

L3

— 4 __ 13

4.3.1 Local View Definition for Distributed Deadlock Detection

The conventional definitions for deadlock structures are usually derived from
the concepts of the system states. The main concern of such definitions is whether
a system is in a deadlock state. The definition usually requires a global view of the
whole system state GRG. For example, a deadlock cycle may be defined as a group
of waiting vertices which form a path in a GRG with the same start and end vertex
(Section 2.2). Such a definition suggests an algorithm to collect the whole system
GRG in order to find cycles in it. However, this is not appropriate for the deadlock
detection in distributed environments. To remedy the problem, we need to use a

“local view definition” to describe the deadlock situations in a distributed system.

In a “local view definition” a deadlock is defined in a form that any single
vertex can “see” it. This definition consists of (1) functions which can be invoked
at any vertex and (2) deadlock conditions which are based on the functions’ return
values. Any function used in a'local view definition must return the necessary
value to the vertex where the function is invoked. For example, we may re-define
the above cycle deadlock as: a vertex v is in a cycle if and only if v € RS(v)
(Section 2.2). The reachable set function RS(v) can be realized by means of forward
probe propagations. When a vertex v wants to know if it is involved in a cycle, a
probe is initiated and propagated along the edges in a GRG to search RS(v). Since
the size of a GRG is finite and the message delay is finite (Assumption 4.4), the
probe will eventually reach every member of the reachable set RS(v). The deadlock
condition is defined as v € RS(v). The probe may come back to v if and only if
v € RS(v). Therefore, a cycle is detected if the initiator v receives its probe back;
otherwise, this probe computation will terminate normally with no cycle detected.
There is no global system state GRG need to be constructed in this local view
definition and it is relatively easy (compared to the first cycle definition) to be

realized in the distributed environments.

79

4.3.2 Deadlock Core Set

In the literature, deadlock is sometimes defined in such a general way that
there is no information concerning the structure of the deadlocks. For instance,
many algorithms are based on the concept of a deadlock set. A typical definition
of a deadlock set is a nonempty set of blocked vertices S where the reachable set
of every vE€S is a nonempty subset of S. One of the major problems with this
definition is that even if such a deadlock set can be identified; it is difficult to have
a proper resolution to break it due to the lack of deadlock structure information.
For example, a deadlock set is shown in Figure 4.1. This deadlock situation may be
resolved only if both cycles A and B are identified and broken. Without knowing

the two cycle structures in the deadlock set, the deadlock may not be resolved

properly.

Figure 4.1: Example of a deadlock set

Instead of detecting deadlock sets in a system, we need to identify and re-
solve deadlock core sets. A deadlock core set satisfies both necessary and sufficient
conditions for the existence of deadlocks in a certain system. Usually a deadlock
core set has a well defined graphic structure such as cycle and knot. As discussed
in Chapter 2, cycles are the deadlock core sets in the Single-Resource and the
AND model deadlock systems whereas knots are the deadlock core sets for the OR

model systems. A deadlock set is only a sufficient condition for deadlocks. Many

80

a3 __% _ 3

3 1

-

_t 3 3 3

—3 3 3

non-core vertices in a deadlock set, such as vertices 11, 12, and 24 in Figure 4.1, are
transitively waiting for some other vertices in the deadlock core sets. A deadlock
state may persist without these non-core vertices in a deadlock set. Consequently,
it is important that an algorithm should be able to identify deadlock core sets. For

brevity, we use deadlock to denote the deadlock core set in the following discussions.

'4.3.3 Probe-Based Static Deadlock Detection Computation

The algorithms discussed in this chapter are based on the probe computations.
The local view definition requires that a deadlock is always declared by a DDC at the
vertex where the computation was initiated. Without lost of generality, we further
require that a DDC which leads to the declaration of a deadlock be initiated at a
core vertex in the detected deadlock. Although this is not a necessary requirement
in terms of the correctness, this requirement eliminates many complicated situa-
tions and, hence, simplifies the development and verification of an algorithm. This
requirement can always be achieved because (1) the initiator of a DDC is known
and (2) a deadlock core set is the target to be identified. If a DDC finds that its
initiator is not in the detected deadlock core set, it terminates without declaring the
deadlock. The efficiency may be improved if a mechanism is developed to eliminate

DDC'’s which are initiated at non-core vertices earlier.

A probe-based static DDC can be pictured as a set of :operations executed on
a static GRG. A DDC starts from an initiation operation when a vertex invokes
a deadlock detection algorithm. The initiation operation then leads to a set of
subsequent operations to carry out the computation defined by the algorithm. Each
operation has a condition to trigger its execution. When an operation is complete,
its result is in effect (i.e., lead to the subsequent operations or return values to the

initiator vertex). An operation can be formally defined as follows.

Definition 4.2 (Deadlock Detection Operation) Let OP; be an operation in

a DDC which is performed by the execution of a deadlock detection algo-

rithm. The operation OP, consists of three steps: (1) the evaluation of a

81

trigger predicate 7y, (2) the execution of the operation procedure op, and
(3) the result predicate rej. If the operation opy is executed, 7 should have
held prior to the beginning of opi, and re, should hold upon the termination

of the operation.

For example, consider an operation O P, which forwards a probe from » to v.
A predicate tr asserts that the probe being forwarded must be at vertex v € GRG
and (¢ — v) € GRG, then the procedure op; can be performed. Within finite
time, upon the termination of opy, e, asserts that the probe must be received at

vertex v.

A DDC is a computation that uses probes to search and explore vertices and
edges in a GRG. A probe may come back to the initiator to report evidence of the
existence of cyclic waiting. Each operation (except for the initiation operation) in a
DDC is responsible for exploring one edge in a GRG. The result of an operation may
“lead to” the triggering of another operation (or a set of operations). - The notation
“~»"(reads “leads to”) is used to describe such a precedence relation between two
predicates. For example, rep~+tr; means that the result of an operation OP; leads
to the triggering of another operation OP,. A static DDC, therefore, can be modeled

as a partially ordered sequence of operations as follows.

Definition 4.3 (Static DDC) A Deadlock Detection Computa.tion. generated

by a static algorithm is a partially ordered sequence of operations {OPy|k =
0,1,...,n} where OF, is the initialization operation and OP, is one of the
most recent operations of the computation. Als;o, Vil<li< n, d:k <l such

that reg~tr;.

The structure of such a DDC is a tree of operations starting from the root
OPF, (i.e., the initialization operation of the DDC). The result predicate re; of an
operation O P} may lead to a set of trigger predicates {¢r;} which, in turn, trigger a
set of operations {OF;}. The set {OP;} may be empty if the operation O P, reaches
the initiator of the DDC or leads to no valid trigger predicates (e.g., the probe

reaches a leaf vertex and finds no path to continue its propagation). Operations

82

31 3 '3 ._3

3

4

‘
—

a3 b _3

which repeatedly propagate a probe in the same cycle should be properly avoided.
Since the size of a GRG is finite, within finite time the DDC should terminate (when
the DDC tree cannot grow).)

The Safety concern is easy to be verified if a static algorithm may only generate
such well defined DDC’s. To verify the Progress concern is subject to each individual
algorithm. However, comparing to a dynamic algorithm, it is relatively easy to

analyze and verify a static algorithm.

The tree structure of a DDC represents a partial ordering which reflects the
inter-dependencies among operations. The time order in which a DDC’s operations
are actually executed is not important. The wait-for dependencies in the underlying

system are reflected in the structure of a DDC. Therefore, the equivalence of two

DDC’s can be defined as follows.

Definition 4.4 (Equivalence of DDC’s) Two DDC’s are said to be equivalent

if they both apply to the same GRG and form the same tree structure.

In Sectionder-ver-dyn-algo, we describe how the concept of the DDC equiva-

lence can be used in the derivation of a dynamic algorithm from a static one.

4.4 Distributed Deadlock Detection in Dynamic Systems

In this section, we model DDC’s in dynamic systems and develop a system-
atic method for the derivation of dynamic algorithms from static ones. For easy
understanding, in Section 4.4.1, a global view is assumed. Then in Section 4.4.2,

a practical approach is developed based on the information which is local to each

vertex.

83

4.4.1 From Global View

Suppose we have a global monitor in a distributed system which is capable of
keeping track of the global system state. With this global monitor, we can verify an

algorithm which is executing in a DGRG as we have characterized in Section 4.1.

The easiest way of applying a static algorithm to a dynamic system is to
“freeze” the system state or to take a “snapshot” off the system [21] and then
apply this static algorithm in the “frozen” state or in the “snapshot” GRG. How-
ever, we believe that there exist a more efficient mechanism to synchronize a DDC
and the underlying dynamically changing system. In the following subsections,
the snapshot approach is first summarized and based on that our synchronization

mechanism approach is then developed.

4.4.1.1 The Snapshot Approach

To detect deadlocks in a distributed system, we may first “freeze” the system
to determine a global system state and then apply a static algorithm on the frozen
global system state. However, in a distributed system, it is very difficult and costly
to simultaneously freeze the whole system to get a global state. Instead, Chandy
and Lamport [21] suggest taking a consistent “snapshot” of the system state. A
“snapshot” in a distributed system is a consistent view of a global system state
which can be constructed dynamically without “freezing” the underlying system

computations (see also Section 3.2.4).

A vertex (with the help of the underlying system) can keep track of its own
. state and the messages it sends and receives. To determine a global system
state, a vertex v must inform all the connected (through all possible communi-
cation/synchronization channels) vertices to record their own states and the states
of the communication channels they are directly connected to. The global snapshot

is the collection of all the locally recorded states.

84

' gl

3 31 2 ._3

Each vertex state change or each message send/receive is assumed to be an
atomic event. There are many types of system activities in a dynamiic system. For
example, task (or resource) vertices may be created, deleted, migrated to another
place, split, or joined together, and communication channels may be created or
removed. For the purpose of deadlock detection, we are mostly interested in the
events that are related to the DGRG. These events include: (1) the state of a vertex
is changed from (or to) a waiting state to (or from) a free state, (2) the receiving of
a message which causes the creation or the deletion of an edge record, and (3) the

sending of a message which is due to the creation or the deletion of an edge record.

Due to the lack of a global clock and a common storage, the snapshot taking
procedure can only be carried out asynchronously at each vertex across the net-
work, and the recorded system state is required to have no message/synchronization
in transition and the events recorded in a snapshot must satisfy the causal rela-
tion (83, 85} (i.e., a logical order, Lamport first put it as “happened before” partial
ordering [85]). For example, if the deletion of an edge record (v —) is happened
before the creation of another edge record (¥ — w), a snapshot which implies the
coexistence of the two edges (v — ¥) and (¥ — w) is inconsistent. The causal

relation can be formally defined as follows.

Definition 4.5 (Event Causal Relation) The relation “<” on a set of events

in a system is the smallest transitive relation satisfying the following con-
ditions: (1) If @ and b are events that happened in the same vertex (task
or resource), and a comes before b, then a<b. (2) If a is the initiation
of a message/synchronization and b is the corresponding event (receive the
message or response to the synchronization), then a<b. The relation “<” is

transitive and two events a and b are said to be concurrent if a4b and bA4a.

Chandy and Lamport have suggested that such a global state snapshot is
“meaningful” in a sense that it could be used to solve problems with stable property.
For example, each of the consistent snapshots can be processed “off-line” by a static
deadlock detection algorithm. If a deadlock appears in a snapshot, it indeed exists

in the underlying system. Also, if a deadlock is formed in the underlying system,

85

it persists and can be found in a global system snapshot later. Therefore, if an
algorithm checks system snapshots periodically (or whenever there is evidence of

the existence of deadlocks), an existing deadlock will be detected eventually.

Chandy and Lamport suggested that a special message, called a marker, being
sent to record the consistent states (see Section 3.2.4). However, this snapshot
taking algorithm makes no assumptions about the states it collects. For deadlock
detection, we may restrict a snapshot taking to collect information that is required
for the construction of a GRG. The types of events which need to be recorded to
construct GRG’s differ from system to system. However, it is not difficult to identify

these necessary events.

Usually, an edge in a recorded GRG implies a sequence of events. For example,
in a system, an edge recorded in a GRG may have gone through the following events:
(1) vertex u sends a request to vertex v#u and records (& — v), (2) v receives the
request but does not grant it immediately, (3) v then sends u a request pending
message and records (u — #), and, finally (4) u receives the request pending message
from v and the edge (& — v) is confirmed. Between the events (1) and (2), the state
of the edge (u — v) is inconsistently recorded at the vertices u and v. Only after the
event (4) completes, the edge (u — v) is confirmed at its both ends, thereby, can
be consistently recorded in a GRG. Therefore, in addition to the requirement that
no message/synchronization could be in transition in a snapshot, a consistent GRG

further requires that no edge creation/deletion could be in transition. A consistent

GRG can be defined as follows.

Definition 4.6 (Consistent GRG) Ina Consistent GRG, (1) the edges are con-

sistently recorded at its two end vertices and (2) the events which form the
GRG (e.g., the vertex state changes and the creation and deletion of the

edge records) must satisfy the causal relation.

The marker algorithm does not directly generate a consistent GRG. Since the

creation or deletion of an edge is composed of a sequence of events, a snapshot may

86

t ___g ! %‘

3 3 3 __3

3

~32 3 _3 __3

-3 13

|

inconsistently record edges which are being created or deleted. A consistent GRG

can be constructed from a snapshot using one of the following approaches.

1. All the edges which are in the transition of being created or deleted are elim-

inated in the construction of a consistent GRG. This is a rather simple ap-
proach. The edges which are being deleted will eventually disappear from
the system. The edges which are being created will hopefully appear in a
consistent GRG in the future. Bracha and Toueg [14] have used and proven
this approach in their deadlock detection algorithm for the C(n,k) model.
This approach has been regarded as incorrect by Knapp [77] because certain
deadlocks may be ignored in a consistent GRG. However, this is not a severe
problem if an algorithm can guarantee that the ignored deadlock will appear

and be detected in a future consistent GRG.

. All the edges which are in the transition of being deleted are eliminated in the

construction of a consistent GRG. All the edges which are in the transition of
being created are recorded after their existence are confirmed. This approach,
although manifestly correct, requires a complicated extension to the original

marker algorithm to confirm and record the forming edges.

. All the edges which are in the transition of being deleted are eliminated in the

construction of a consistent GRG. All the edges which are in the transition
of being created are assumed to exist in the constructed consistent GRG. In
Section 4.4.2.1, we will prove that the forming edges can be counted as the
stable edges if they are found in a deadlock structure and will not cause the
detection of false deadlocks. Therefore, this approach is appropriate for the

detection of deadlock structures in a constructed consistent GRG.

To take a snapshot off a system requires the marker messages to be propa-

gated through every possible communication/synchronization channels to inform
every vertex to record its local states. However, in most of the cases, the wait-for
edges in a constructed consistent GRG may only be mapped to a small portion of

the communication channels in the system where marker messages are propagated.

87

Consequently, the process of taking. snapshots incurs large unnecessary overheads

to the system.

4.4.1.2 The Synchronization Mechanism Approach

Instead of performing deadlock detection in the GRG’s which are built on top

of the snapshots, a deadlock detection algorithm which is equipped with a properly
designed synchronization mechanism can be directly applied to a DGRG. Suppose

| we have a deadlock detection algorithm which is applied to a DGRG thus generating
a dynamic DDC. The only difference between a dynamic DDC and a static one
(characterized in Section 4.1) is that the former is performed in a dynamically
changing GRG. In this section, we analyze dynamic DDC’s and suggest consistency

criteria for the development of synchronization mechanisms.

Again, probes are used in a dynamic DDC to search and explore vertices and
edges in a dynamic system. From time to time the probes are searching at different
places in the system to explore the bridging edges (i.e., dependency relations) among
vertices to build a view of a consistent system state in terms of a static GRG. Each
operation in a DDC is responsible for exploring one edge in a DGRG. A probe may
come back to the initiator to report evidence of the existence of a cyclic waiting.
However, the information gathered may include an unstable part of the DGRG and,
hence, the constructed local view of DGRG may be inconsistent. Consequently, a

declared deadlock may not exist or an existing deadlock may never be declared.

Suppose in a system, a snapshot is quickly taken immediately after each state
change and after the evaluation of each predicate of a DDC. The snapshot tak-
ing procedure is invoked at the place where the state change occurs or where the
predicate is evaluated. The snapshot taking procedure is performed so quickly that
no further system state changes or predicate evaluations can be made before the
completion of the snapshot taking. To facilitate the analysis and verification of a
dynamic DDC, the GRG constructed by the DDC is examined in these snapshots.

A subscript is used to specify the situation a snapshot is taken. For example,

88

.___-'g '\‘.j) :%

the notation ST{" denotes a snapshot which is taken after the evaluation of the
trigger predicate try of an operation OP. Also, tri(ST[°) means that the trigger
predicate try is examined (i.e., re-eva.luatéd) in the snapshot ST[®. Since global
knowledge is assumed in the analysis, the time orders < and >, i.e., happened
before and happened after, respectively, between two snapshots are assumed to be
known. Superscripts are used to number a sequence of snapshots in time order,

e.g., ST'<ST?*< ... <ST™.
In Definition 4.6, a consistent GRG built on top of a snapshot requires that

- no edge creation/deletion is in transition. This requirement is “spatial” in
the sense that it specifies the consistency within a snapshot where a GRG is

constructed.

- the events in terms of the vertex state changes and the creation and deletion
of the edge records must satisfy the causal relation. This requiremeﬁt is
“temporal” because it specifies the consistency regarding the temporal logic

of a snapshot taking procedure.

Similarly, the sources of inconsistency in a dynamic DDC can be classified into
two types: “spatial™ and “temporal.” A spatial inconsistency is an intra-snapshot

inconsistency while a temporal inconsistency is an inter-snapshot inconsistency.

Specifically, a spatial inconsistency results when an edge in a DGRG is tem-
porarily recorded at its two ends inconsistently. Again, without global knowle.dge
of a distributed system, the predicates of the operations are usually evaluated ac-
cording to local information at a certain vertex. If a predicate is evaluated to
be true while the corresponding edge is in a transition state, it must hold after the
transition state; otherwise, the condition that the predicate asserts may never exist.
For instance, when the probe arrives at vertex u, the edge record (u — %) is being
deleted by v. Before the vertex u notices that the edge is being deleted, u may
have triggered an operation O P, to send a probe through a vanishing edge (z — v).
Such a situation is allowed in a snapshot but should be avoided in the construction

of a consistent GRG.

89

A temporal inconsistency, on the other hand, results when a view of DGRG is
inconsistently constructed based on the information collected across different time
slots. In a DDC, a view of a DGRG is constructed at the initiator based on the
edges explored over a period of time when its probes were traveling in the system.
If some of the probes ever reached the unstable part of the system, the explored
edges may exist at different time slots. When putting two never coexisting edges
together, the constructed view of DGRG may inconsistently reflect the dependendy
relations among the involved vertices. For example, the path (d — u — v) exists in
a snapshot ST!. A probe initiated at d reaches v and the snapshot ST? > ST* is
taken. The edge (# — v) is then removed by u in a snapshot ST >~ ST? (e.g., due
to u’s request being satisfied by another vertex). The edge (¥ — d) is added by v in
a snapshot ST* = ST3. Eventually, the probe may come back to the initiator d and
a non-existing cycle (d — u — v — d) may be reported. The temporal consistency
requires that although the cycle (¢ - v — v — d) combines information from

different snapshots, all the edges must coexist in a single snapshot.

To deal with spatial inconsistency, an operation in a DDC must satisfy the

following Spatial Consistency criterion.

Criterion 4.1 (Spatial Consistency) An operation is spatially consistent if

and only if both its trigger and its result predicates are evaluated valid in

a snapshot.

In a DGRG, although the wait-for dependency between two vertices may come
and go many times, each incarnation is treated as a different edge. When an opera-
tion explores an edge, it is limited to one incarnation of the wait-for dependency be-
tween the two vertices. When a GRG is constructed from the information provided
by a set of operations, all the edges must coexist in a certain snapshot; otherwise,
the constructed GRG is temporally inconsistent. An operation is meaningful in a
snapshot in the sense that it reflects a real edge in the underlying system DGRG.

The meaningfulness of the operations is defined as follows.

90

1 ¥ 1 __3

-3 1 _13

|

1

—3

Definition 4.7 (Meaningful Operation) An operation is meaningful in a

snapshot if and only if the edge it explored exists in the snapshot.

Obviously, a meaningful operation must be spatially consistent in the snapshot.

Based on meaningful operations, Temporal Consistency can be defined as follows.

»Criterion 4.2 (Temporal Consistency) A temporally consistent GRG is con-

structed by a set of (spatially consistent) meaningful operations in a snapshot.

At this point, it is clear that the Spatial Consistency criterion is a necessary
condition for the Temporal Consistency criterion. If a DDC satisfies the Temporal
Consistency criterion, it satisfies the Spatial Consistency criterion as well. The most
important thing is to verify the meaningfulness of the operations when a GRG is

constructed.

In a dynamic DDC, although an operation is performed over a period- of time
and across two connected vertices, the evaluation of its predicates can be assumed
to be atomic. To analyze the temporal consistency problem, the DDC modeled in
Section 4.3.3 is expanded to a tree of predicates and a snapshot is associated with
every predicate. The time order of the snapshots is the same as their associated
predicates. The “previous” snapshot means the snapshot which is associated with
the parent predicate in the DDC tree. To verify the meaningfulness of the operations
in a DDC can be broken down to the verification of the meaningfulness of the

predicates as follows.

1. For the root predicate trq of @ DDC tree:

(a) trg is evaluated valid and meaningful in the initial snapshot ST§"; and

(b) trgis meaningful in a snapshot ST*>~ST¢" if and only if it was meaningful
in the previous snapshot ST*~! and can be re-evaluated valid in the

current snapshot ST".

2. For a non-root predicate p; in a DDC tree which is first evaluated valid in a
snapshot STy

91

(a) pk is meaningful in the snapshot S T? if its parent predicate is meaningful
in STY; and

(b) px is meaningful in a snapshot ST*>STY if and only if it was meaningful
in the previous snapshot ST'~! and can be re-evaluated valid in the

current snapshot ST*.

An operation OP, is meaningful in a snapshot ST* if both its trigger predicate
tr, and result predicate re; are meaningful in the snapshot ST*. In the following
discussions, an operation is said to be meaningful at time ¢ means that it is examined

meaningful in a snapshot taken at time ¢.

Since the evaluation of a predicate is timely based on the evaluation of its
parent predicate, we cannot simply re-evaluate a predicate in a later snapshot in-
dependently. The re-evaluation of a predicate has to involve the re-evaluation of its
parent predicate. Consequently, the re-evaluation of a predicate requires a “replay”®
of the DDC from the root predicate tro. And a non-root predicate is re-evaluated
meaningful in a snapshot implies all its ancestor predicates in the same DDC tree

are meaningful in that specific snapshot.

A synchronization mechanism should be able to distinguish the meaningful
operations from the meaningless ones when a view of the underlying DGRG is
constructed. In Section 4.3, we characterize a DDC as a computation which is
initiated at a vertex and all the necessary value are returned to the initiator. Al-
though a GRG is not necessary to be physically built at the initiator of a DDC, the
returned information reflects certain structure of the DGRG where the probes have
searched. It is equivalent to say a GRG is built at the initiator and the same graph
structure is found. For example, when a probe is received at its initiator u, v isin a
cycle. We may ask the probe to report the path it has traveled and make the same
conclusion. When the initiator of a DDC tries to put together a GRG to determine
the existence of a deadlock structure, it takes a final system snapshot STf. The

SReplay is for reasoning only, algorithms will be shown to automatically satisfy the requirements
without expensive replay.

92

.3 1 __3 .3 __3

-3

e

synchronization mechanism should guarantee that all the operations which may
affect the construction of the GRG are meaningful in the final snapshot STf. A
practical approach for the development of the synchronization mechanisms is given

in Section 4.4.2.

To summarize, each of the operations in a DDC is spatially consistent if it
satisfies the Spatial Consistency criterion. When a spatially consistent operation
explores an edge, the edge may exist at the time it is explored. In addition to the re-
quirements for meeting the Spatial Consistency criterion, the Temporal Consistency
criterion further asserts that when a DDC constructs a view of a DGRG only the
results of its meaningful operations may be in effect. The meaningless operations
which do not show up in the replay of a DDC should be ignored when constructing
a view of a DGRG. Consequently, a DDC which satisfies both Spatial Consistency
and Temporal Consistency criteria can be “projected” to any static snapshot of
a DGRG by “replaying” its meaningful operations in that specific snapshot. The
“execution” of a correct dynamic DDC up to a certain time when a snapshot ST/
is taken is equivalent to the “replay” of a “static version” of the DDC in ST which
consists of all the meaningful operations in the STf. To be more specific, suppose
a dynamic DDC, say DDDC,, can be projected to a snapshot ST/ as a static
DDC, say SDDC,. DDDC, must satisfy both Spatial and Temporal consistency
criteria. Obviously, DDDC, may declare a deadlock if and only if its projected
SDDC 4 declares it.

One property of a projected static DDC is that it preserves inter-dependency
of the meaningful operations in its corresponding dynamic DDC. The preserved
inter-dependency of the meaningful operations may correctly reflect certain graph
structures in a final snapshot where a GRG is constructed. However, such a pro-
jected static DDC may not be equivalent to a real static DDC which is directly
generated in that final system state. For example, an algorithm (e.g., Algorithm 6.3
in Section 6.3.1) requires that forward probes be merged together when received at a
free vertex. They may be propagated as a single probe if the vertex becomes waiting

later. In a projected SDDC,, we may observe merge operations in just the same

93

way as they occurred in the DDDC,. Suppose the whole system becomes static in
ST! and a static DDC, say SDDCp, is directly performed in that snapshot. It is
impossible to find merged probes propagating in SDDCpg because there is no vertex
that could become waiting from free state. Both SDDC, and SDDCpg may reflect
the same graph structure in the underlying system but they are not equivalent
in terms of their DDC structure. This example shows that the “re-evaluation”
or the “replay” of DDDC,4 has to fake into account that the underlying DGRG is
changing. A “re-evaluation” or a “replay” does not mean that a real static .S' DDCpg

is directly “executed” in the final state.

4.4.2 From Local View

So far we have developed the notion of meaningfulness for the operations in
a DDC from a global view. To examine the meaningfulness of the operations in
a DDC requires the knowledge of the history (i.e., be able to replay a DDC) of
the DDC. In this section, we develop conditions for the Safety and the Progress
concerns, which are based on the meaningfulness of the operations and the stable
property of the deadlocks. To examine these conditions only requires information

that is local to each vertex.

4.4.2.1 Safety Concern of Dynamic Algorithms

The meaningfulness of a DDC is sufficient to satisfy the Safety concern. As
long as the operations are meanihgful, no false deadlocks may be declared. The
meaningfulness as defined requires a knowledge of the whole computation (we need
to “replay” the whole computation to decide if an operation is meaningful). In this
section we develop a local method to judge if an operation in a detected deadlock

structure is meaningful and, hence, could be used to resolve the Safety concern of

the DDC.

When searching a graph for deadlock structures, we are looking for the ex-

istence of the edges and the relationship among them. Without a global view,

94

3 1 3

!

3

3

at each vertex, only the connectivity between pairs of adjacent operations might
be known. Two operations OP; and OP, are said to be adjacent if and only if
re; (ST)~tri(ST{") at a vertex v. The connectivity of these two adjacent oper-
ations relies on both the result predicate re; and the trigger predicate ¢ri being
evaluated to be valid simultaneously (or in a snapshot) at v. At least, if re;(ST,")
is valid, i.e., the result predicate re; remains valid when the trigger predicate try is

evaluated, the two adjacent operations OP; and OP, are connected at v.

Definition 4.8 (Connectivity of Adjacent Operations) Two adjacent op-

erations OP; and OP, are connected at a vertex v if and only if

1) re; (ST)~tri(STE) at v and (2) re;(STET) is valid.
J i k 2 k

A set of operations are meaningful in a snapshot ST/, if they satisfy both
Spatial and Temporal consistency criteria. For Spatial consistency, a vertex can
only examine the validity of an operation’s trigger or result predicate which is locally
evaluated at the vertex. For Temporal consistency, a vertex can only evaluate the
connectivity of the adjacent operations. Now the question is how the Safety claim

can be made with these limitations in the system.

First, let’s paint each edge in a DGRG with colors to reflect its status. We
borrow Chandy and Misra’s method [23] to paint the edges as follows. An edge

(v — v) is painted

gray if u has sent a request message to v to add the edge (& — v) in the DGRG

but v has not yet received the message;

black if v has received a request message from u and the request is not yet granted
by v (i.e., the edge (v — ¥) has been added to DGRG);

white if v (or u) has deleted the edge (v — ¥) (or (& — v)) and is sending a
message to u (or v) to remove the edge (& — v) (or (v — %)) from DGRG

but u (or v) has not yet received it.

Both gray and black edges are called “dark edges.” If a deadlock contains only dark
edges, it is a “dark deadlock.”

95

Chandy and Misra [23] used colored edges to address a similar problem in
dynamic systems and proved that “dark” cycles (i.e., the AND model deadlocks)
detected by their proposed algorithm are the genuine deadlocks. Similar techniques
are used in the literature (e.g., the AND deadlock detection in [27] which is de-
rived from [23], the AND-OR. deadlock detection in [63], and the C(n,k) deadlock
. detection in [14]) to prove the safety concern of the proposed algorithms, i.e, false

detection of deadlocks are eliminated.

The colored edges describe the dynamically changing nature of the underlying
system. The purpose of a dynamic DDC is to construct a view of such a dynamic
system (in terms of a constructed GRG). Since each operation in a DDC is related
to an edge in the underlying DGRG, a color may be assigned to the operation to
reflect the status of the edge when it is detected. A constructed GRG, therefore,
could be described by the colored operations/edges. An operation is “black” if it
is performed over a black edge. An operation is “gray” if it discovers a gray edge

that is forming. An operation is “white” if it explores a vanishing white edge.

Suppose in the underlying system, an edge (v — v) is formed and then deleted

as follows:
1. at time ¢;, u sends a request message to v,
2. at time ¢;, v sends 5. request message to w,
3. at time t3, v receives u’s request message,
4. at time ¢4, v receives w’s grant message.
5. at time 5, v sends a grant message to u, and
6. at time tg, u receives v’s grant message.

The edge (v — v) is gray between ¢, and t;, black between ¢, and 5, and white
between tg and tg. Also, suppose an operation OP; is performed to explore the edge
(v — v). The operation OP, is “black” if it is performed over a black edge, i.e.,
t, =< ST <ty and t3<XST;*<ty. The operation OPy is “gray” if it discovers a forming
gray edge, i.e., t;<XSTf <t3 and t3X5T°<ty. The operation OP, is “white” if it

96

N

-1

3

—g3 ~—3 ™—3 ~ 3 T~ 3 T3 T3 i 31 ~3 T3 T3 ~3 T3 T8 —3F T3 T3 T3

ezplores a vanishing white edge, i.e., t; ST <tg and t; < ST]®. Please note that, an
operation may be incomplete if its result predicate has never been evaluated. Once
an operation’s result predicate is evaluated, its color is determined. As indicated in

this example, both black and gray operations may disappear later but not whitening.

The above example shows how the color of an operation indicates the condition
when it explores an edge in a dynamic system. When a view of a DGRG is con-
structed, an color is assigned to each of the edges in the constructed GRG. We use
the same color for the edge in a constructed GRG and the operation which explores
it.

Figure 4.2 shows how the inconsistencies may cause the failure of an algorithm.
In this example, suppose a simple cycle detection algorithm is used to detect dead-
locks in a dynamic system and the inconsistencies which might happen in dynamic
systems are not considered carefully. The claimed deadlock in a constructed GRG
(i-e., Figure 4.2-(d)) is a false one because it contains a vanishing white edge and

three dark edges that are not meaningful in a final snapshot.

The difference between a gray operation and a black operation basically de-
pends on the time when the operation is triggered. If an operation is triggered
before the edge is known at the other end, e.g., t; XST}{"<t3 in the above example,
it is a gray operation. If an operation is triggered when the edge is known by its
both ends, it is a black edge. It is difficult to distinguish a gray operation from a
black operation when a vertex evaluates a result predicate. On the other hand, a
white operation can always be identified by checking the existence of the edge from
which the probe of the operation was received. In a constructed GRG, the following
lemma proves that with respect to Spatial Consistency, we only need to deal with

white edges.

Lemma 4.1 If white edges are eliminated in a constructed GRG, all the opera-

tions satisfy Spatial Consistency criterion.

Proof: In a constructed GRG, black edges represent black operations which sat-

isfy the Spatial Consistency criterion. Both gray and white edges represent

97

(a) t1: Consistent GRG in ST (b) t2: Inconsistent GRG

() 2
(19 (2)

(¢) t3: Consistent GRG in ST** ~ (d) Declared false deadlock

Figure 4.2: Example of the inconsistencies in a DGRG.

(a) At time ¢;, a system state is consistently recorded as ST*. In
ST*, 21 initiates a DDC and its probe has reached 2. (b) At time
t2>t,, the system state is inconsistently recorded. Between ¢, and ¢,,
15 has granted 8’s request and deleted the edges (8 — 15). At time

ts, 8 is deleting the edge (2 — 8) by granting 2's request. Almost
simultaneously, 2 is sending out a probe along the white edge (2 — 8)
without knowing that 8’s grant message is coming the other way. (c) At
time t3>t,, a system state is consistently recorded as ST*. In ST%, 8
starts to wait for 10 and the probe from 2 is received. The edge (§ — 10)
may be a gray one. Also, after receiving 8’s grant message, 2 starts to
wait for 6. (d) Eventually, the probe may come back to 21 and a false
deadlock (with a deleted white edge (2 — 8) and meaningless dark edges
(8 — 10), (10 — 18), and (18 — 21)) may be declared.

98

3 3 3

y __ 3 _3 __3 _3

2 _3 3 3

—3 _ 1

operations involving transient inconsistent states but only white edges are
the violators of Spatial Consistency criterion. This is because a gray edge is
one which is forming. Both trigger and result predicates of a gray operation
‘will be valid in a snapshot taken upon the completion of the operation. On
the other hand, a white operation explores a vanishing edge and both its
predicates will become invalid eventually. Consequently, all the dark opera-

tions in the constructed GRG satisfy Spatial Consistency criterion.]

In searching for a deadlock structure in a graph, an algorithm should be able
to correctly identify the existence of edges and the connectivity between each pair
of adjacent edges. According to Lemma 4.1, the dark edges (i.e., black and gray
operations) may be treated as real edges (i.e., meaningful operations) when con-
structing a view of a DGRG. In the following lemma, we further prove that Temporal
Consistency criterion can be met if (1) a constructed deadlock structure is a dark
one and (2) the connectivity between adjacent operations are well maintained at

each vertex in the deadlock.

Lemma 4.2 In a DDC, if the connectivity between adjacent operations are well
maintained, the operations (edges) in a constructed dark deadlock fulfill the

Temporal Consistency criterion.

Proof: Suppose a dark deadlock D is constructed by a DDC, by Lemma 4.1, each

operations in D satisfies the Spatial Consistency criterion.

In the underlying DGRG, a gray edge should have turned black when
its corresponding operation terminates. Therefore, when a dark deadlock D
is constructed by the DDC, all the detected edges in the underlying DGRG

have turned black, i.e., consistently recorded at its two ends.

When two adjacent operations are connected at a vertex v, one of them
must be an outgoing edge. Therefore, v must be waiting when two operations
are connected through it. The state of the vertex v and the edges which
connect through it should remain unchanged until the DDC constructs a

GRG which contains the deadlock D. This stable property should be true for

99

all the vertices and the edges discovered by the operations in the constructed

dark deadlock D. This property can be proven by contradiction as follows.

Suppose an edge (v — v)eD is removed after it is explored by an
operation OF,. This means that eventually, u will become free and delete
(€ — v) from its records. Since u was waiting when the ¢r;, was evaluated, to
become free u must be able to reach a free vertex which is not in the deadlock
set D. It is contradictory to the definition of deadlock that the reachable
set of every vertex u€D is a nonempty subset of D. Therefore, D is not a

deadlock; otherwise, (v — v)¢D.

All the operations in D are stable from the time they are performed
until a GRG which contains the deadlock D is constructed. Consequently,
we can conclude that all the operations in D fulfill the Temporal Consistency

criterion. []

By Lemmas 4.1 and 4.2, we can conclude that

Theorem 4.1 Ina DDC, if the connectivity between adjacent operations are well

maintained, the dark deadlock structure in the constructed GRG is a genuine

one.

Proof: By Lemmas 4.1 and 4.2, the operations in such a constructed dark dead-

lock fulfills both Spatial and Temporal consistency criteria. All operations
in D are meaningful when D is detected and, hence, do indicate the existing
edges in the underlying DGRG. Consequently, the detected deadlock D does

indicate an existing deadlock in the underlying system. |

4.4.2.2 Derivation and Verification of Dynamic Algorithms

The methodology developed in this chapter can be applied in two ways. First,

a dynamic algorithm can be derived from an existing static algorithm based on this
methodology. The derived dynamic algorithm must satisfy conmsistency criteria.

Improvements may then be made on the derived dynamic algorithm. Second, the

100

13

—3 3 3 _3 _3 _3

theorems derived in this chapter could be used to verify a dynamic algorithm. For
example, to verify the above improved dynamic algorithm, we may need to prove
that the algorithm satisfies consistency criteria and all its projected static DDC’s
can be simulated by another correct static algorithm. In this section, the techniques

for the derivation and the verification of dynamic algorithms are discussed.

First, suppose we have an algorithm, say ALGOgs, which is used in static sys-
tems and we want to develop another algorithm, say ALGOp, to perform equivalent
functions, e.g., the detection of cycles/knots, in dynamic systems. ALGOp could be
derived from ALGOgs with Spatial and Temporal consistency concerns. The Spatial
and Temporal consistency criteria are used to deal with the dynamically changing
nature of the underlying system. Furthermore, ALGOp is derived from ALGOs
such that each projected static DDC” generated by ALGOp should be equivalent
to a DDC due to ALGOs (see Definition 4.4 for the equivalence of DDC’s). Since
ALGOs can correctly detect deadlocks in any static GRG, so can the projected
DDC'’s due to the derived ALGOp.

As another example, suppose we have a dynamic algorithm ALGOp which is
to be verified. We could relate ALGOp to some static algorithm, say ALGOY,
as follows. First, ALGOp must be proven to satisfy both Spatial and Temporal
consistency criteria which, in turn, means every DDC it generates could be pro-
jected to a static DDC. Such a projected DDC is equivalent to an execution of
ALGOp. Suppose a static algorithm ALGOY% is derived to simulate ALGOp’s
projected DDC’s in any static state (i.e., to generate equivalent static DDC’s). If
ALGOY is proven to have the property that each of its DDC’s can correctly recog-
nize a deadlock structure, the same property also holds for the projected DDC’s by
ALGOp. Consequently, ALGOp can be proven correct if it satisfies both Spatial
and Temporal consistency criteria and can only generate projected DDC’s which

are equivalent to the executions of the correctly proven static algorithm ALGOs.

THere, the discussion is focused on any single DDC, i.e., except for necessary interventions from
the DGRG, no other DDC's may affect the execution of a certain DDC.

101

Theoretically, there exists at least one ALGO} that randomly generates any
possible DDC pattern (i.e., propagate probes randomly) in a static state including
all the possible projected DDC’s due to ALGOp. However, such an ALGOj is not
useful in that it does not have the property we need to verify ALGOp. The purpose
of executing ALGOp is to correctly detect deadlock structures in the DGRG. Its net
effect (i.e., a projected DDC in a static GRG) should be equivalent to the detection
of the same deadlock by a static algorithm ALGOY%. The goal of finding an ALGOj
is, therefore, twofold; i.e., (1) to simulate ALGOp’s projected DDC’s in static states
and (2) to preserve the properties of ALGOp which could then be verified through
ALGOs. In general, such a ALGOY% can be constructed systematically as follows
by taking the advantage of that ALGOp must satisfy both Spatial and Temporal

consistency criteria.

A dynamic algorithm specifies how the operations in a computation are in-
voked in distributed environments. An operation may be (1) triggered by the state
changes of the underlying system (e.g., when a vertex becomes waiting it may initi-
ate a DDC), (2) triggered by some other operations (e.g., a probe may continue its
propagation when received by a waiting vertex), or (3) triggered by mixed situations
of (1) and (2) (e.g., a previously received probe may continue its propagation when
a vertex becomes waiting). A dynamic DDC contains all three types of operation
triggering while a static DDC (i.e., by executing an algorithm in a static system
state) has no operations due to state changes. A projected DDC is a static version
of a dynamic DDC in which all three types of operation triggering may be found. As
we have discussed in Section 4.4.1.2, this is a major difference between a “replayed”
projected DDC and a “real” static DDC.

A projected DDC contains meaningful operations which were triggered by the
underlying system state changes and/or some preceding meaningful operations.
There are two types of system state changes that may affect a dynamic DDC,
i.e., (1) when a vertex becomes waiting and (2) when a vertex becomes free. The
second type of state changes may only cause the operations to become meaning-

less. This type of state change can be ignored since it does not have any explicit

102

-3 -3 _3 __3

effect that could be found in a projected DDC. On the other hand, the first type
of state changes may have effect on the projected DDC. A meaningful operation
requires that its triggering vertex, once becoming waiting, should stay in the waiting
state until a GRG is finally constructed. In order to “tightly simulate” projected
DDC'’s in static states (i.e., generating equivalent static DDC’s while preserving the
properties of ALGOp), ALGOj should be able to simulate any operation triggering
situations that may be found in the projected DDC’s. Consequently, ALGO% should
be able to simulate every meaningful operation that is triggered either by preceding

operations or when a vertex becomes waiting or a mixture of both.

Suppose a set of rules is used in ALGOp to specify how to trigger operations
in different situations. The rules can be classified into three types: (1) rules that
are used to specify how to trigger operations from preceding operations, (2) rules
that are used to specify how to trigger operations when a vertex becomes waiting,
and (3) rules that are used to specify how to trigger operations when a vertex
becomes free. These rules may be applied individually or mixed in ALGOp. The
meaningless operations are ignored in the projected DDC'’s, therefore, the third
group of rules can be ignored when constructing ALGOj§. The inter-dependency
between any two meaningful operations are specified by the first group of rules.
The inter-dependency is preserved in the projected DDC’s and can be simulated
by directly applying group (1) rules in ALGO%. The situations that vertices may
change into waiting state do not happen in static states. However, these situations
could be simulated in ALGOY as follows. Each of the vertices in a static state is
arbitrarily assigned a finite delay time. When a static algorithm is applied to a
static state, a timer is started. Upon the expiration of the assigned delay time, a
vertex may then initiate new DDC’s and/or participate in the propagations of the
received probes as that may happen in a dynamic system when the vertex becomes

waiting.

Consistency criteria may help to preserve the properties of ALGOp as much

as possible in the process of constructing ALGO%. It is up to the specific ALGOp

103

and ALGO% pair to determine if the latter can be used to verify the former. We
will demonstrate this technique in the development of Algorithm 6.3.

4.4.2.3 Progress Concern of Dynamic Algorithms

The progress concern of a dynamic algorithm requires that an existing deadlock
is guaranteed to be detected by some DDC’s in finite time. To make such a claim
for the developed algorithm, we need to find out the circumstarices under which
an existing deadlock will be detected by a DDC in finite time. In the following
discussions, a “tight condition” under which an existing deadlock may be detected
by a certain ongoing DDC is proposed and proven based on the consistency criteria

we have developed.

Whether (1) a dynamic algorithm ALGOp is derived from a static algorithm
ALGOs with consistency concerns or (2) ALGOs is constructed from ALGOp to
verify the latter, both algorithms should handle probe propagations in the same
way in a real static GRG. By real static GRG we mean that there are no state
changes in the underlying DGRG for ALGOp and the simulation of state changes
in ALGOg is turned off by setting the delay time to zero for all vertices. So far
we have only discussed the “DDC structure” equivalence of the two algorithms;
i.e., every projected DDC due to ALGOp is equivalent to a DDC performed by
ALGOs. Another important characteristic of the two algorithms is that they tend
to continue their DDC’s with equivalent operations if they are not complete in
a certain system state. This “progress” equivalence of the DDC’s from the two

algorithms is discussed in details in the following.

Suppose at time t; a global system state can be determined by a snapshot
ST* quickly taken at ¢;. For brevity, we say it is the system state ST*. Suppose
ALGOp generates a DDC, say DDDCp(ST*,ST?), in a DGRG from an initial
system state ST* until the final current state ST/. The meaningful operations of
DDDCp(ST*, STY) can be projected to ST/ to form a static DDC SDDCp(STY).

104

—3

3

B é') Fli ;3

-3 _ 3 __3

1

The SDDCp(ST?) should be equivalent to a DDC performed by ALGOs in the
static state ST/, say SDDCs(STY).

In a static state, a DDC is said to be “complete” if no more operations may
be performed; otherwise, it is said to be “incomplete” and may continue new
operations in that state until complete or state change. If in a final state ST,
SDDCp(STY) is complete, so is its equivalent SDDCs(ST). Both SDDCp(STY)
and SDDCs(ST?) may become incomplete (they may also become meaningless)
in a new state STf*! and continue equivalent operations until complete or next
state change. The continued equivalent operations are performed on a “real” static
state and the implication behind this equivalence is twofold: (1) whatever oper-.
ations appended to SDDCp(ST*) due to ALGOp, equivalent operations should
also be performed by ALGOs and (2) whatever operations ALGOs may continue
on SDDCs(ST!) can be used to predict the growth trend of SDDCp(ST?) due to
ALGOp in that static state.

Suppose an incomplete SDDCs(STf) may continue its execution of ALGOs
until complete in STf. Depending on the characteristic of ALGOs, we may get a
set of possible complete DDC'’s {CSDDCs(ST?)}. That is, if ALGOs is a verified
algorithm such that it can correctly detect an existing deadlock in finite time, the
whole set of DDC’s {CSDDCs(ST!)} will agree on whether there is a deadlock is
detected. In other words, if one of {CSDDCs(STf)} may detect a deadlock, all
of them will declare the same deadlock; otherwise, none of {CSDDCs(ST/)} may

declare any deadlock. This property is proven in the next lemma (Lemma 4.3).

Lemma 4.3 Suppose ALGOs is a correct static deadlock detection algorithm.
Starting from an incomplete DDC S DDCs(STY), all the possible complete
DDC’s {CSDDCs(ST!)} due to ALGOs will declare the same deadlock, if
any, or none of them may declare any deadlock.

Proof: Suppose a DDC is initiated at a vertex d and will terminate at dif a

deadlock is found. The minimum possible incomplete DDC is the initiation

105

operation at d and, from the initiator d, a universal set of all possible com-
plete DDC’s can be derived in STY. A {CSDDCs(ST*)} derived from an
incomplete SDDCs(ST!) is a subset of this universal complete DDC set.
The lemma could, therefore, be proven if all possible complete DDC’s start-

-3 _3 _3

ing from a vertex will agree on whether a deadlock is detected. That is if d is
in a deadlock D, any possible DDC initiated at d will lead to the declaration
of the deadlock D; otherwise, none of them will detect any deadlock.

A _3

Suppose ALGOs is a verified static algorithm such that it could correctly
detect an existing deadlock in a state ST in finite time. There is no repeated
invocation of ALGOs at the same initiator d in the same state ST/ which, in
turn, means although there may be more than one possible DDC’s starting
from d, at most one of them may be executed. Suppose d is in a deadlock D 7
but not every possible DDC initiated at d will lead to the declaration of the
deadlock D. Vertex d may fail to declare the deadlock D if the executed DDC ﬁ{
does not find it. Since this kind of failure may occur at every vertex in D,
there is no guarantee that deadlock D may be detected in finite time. This j
result contradicts the progress claim of ALGOg that an existing deadlock
can be detected in finite time. Therefore, in order to support the progress "

claim of ALGQyg, it is required that every possible DDC starting from an

initiator d should lead to the declaration of a deadlock D if deD. Also, if i
d is not in any deadlock, none of its possible complete DDC could find a
deadlock. This is because an existing deadlock may only be declared by its 7]
member vertices (Section 4.3.3). Consequently, the lemma is proven because
all the possible DDC’s initiated at a vertex will agree on the same result, so 7]
do a subset of those DDC'’s. |

o

As discussed earlier a complete DDC due to ALGOs in a state ST can be
used to predict the growth trend of SDDCp(ST?) due to ALGOp. This results in =

the following theorem.

106

Theorem 4.2 Suppose there is a deadlock D € STf and a dynamic
DDDCp(ST?,ST?) due to ALGOp is initiated in a state ST* no latter
than the current state ST/. In state ST?, the projected SDDCp(ST?) is
an incomplete DDC and is equivalent to SDDCs(STY) which is also an
incomplete DDC performed by ALGOs. Deadlock D could eventually be
detected by DDDCp if D could be declared by a complete DDC which is
continued from SDDCs(ST?) due to the execution of ALGOs in the state
STS.

Proof: In the system state ST/, if SDDCs(ST?) can lead to the detection of a
deadlock D, it must be initiated at a vertex d € D and it can eventually
detect the deadlock D by means of its operations in D. Also, a DDC can
detect at most one deadlock, we can treat each of the deadlocks in ST
independently and ignore the meaningful operations taking place outside of

any deadlock.

In a dynamic system, a deadlock is a stable property such that it will
not change once it is formed, i.e., D € ST9, VST? >~ ST/, since D € STY.
Therefore, we can ignore meaningful operations of DDDCp executed outside
of D and treat D as a separate realstatic subgraph after ST. In other words,
within the scope of D, both §DDCp(ST?) and SDDCs(ST7) could continue
equivalent operations regardless the state changes outside of the deadlock
D. If SDDCs(ST!) may lead to the declaration of the deadlock D, by
Lemma 4.3, every possible complete DDC derived from SDDCs(S T!) within
the scope of D will agree on that result. Since based on ALGOp, DDDCp
will only develop equivalent DDC’s as those derived from S DDCs(ST!) due
to ALGOs, eventually, DDDCp will terminate and declare the deadlock D
just the same way as SDDCs(ST/) does. |

107

4.5 Concluding Remarks

In this chapter, a methodology for the design and evaluation of distributed
deadlock detection algorithms is developed. The correctness concerns of the algo-
rithm lie on two issues: first, if it can correctly recognize deadlock structures and
second, if it can properly synchronize with the underlying dynamically changing sys-
tem. The Safety and the Progress concerns are addressed in each of the two issues.
The reorganized correctness concerns suggest that the principles of the detection of
deadlock structure can be developed by studying its graphical properties in static
graphs and, hence, can be separated from the synchronization problems encountered
in the distributed systems. The main focus of this chapter is the development of

synchronization mechanisms for the dynamic algorithms.

A dynamic DDC requires that all of its operations must be meaningful when
a view of the underlying DGRG is constructed. The Spatial and the Temporal
consistency criteria are used to satisfy this requirement. The meaningful operations
of a dynamic DDC can be “projected” to a static system state GRG, which can then
be simulated by a static algorithm. Both algorithms share some common properties
(e.g., using the same set of principles for the detection of a certain deadlock structure
in GRG’s) such that the dynamic algorithm is correct if its corresponding static

algorithm can be proven correct.

Theorem 4.1 suggests that to construct a meaningful view of a deadlock in a
dynamic system, it is required that (1) the connectivity between adjacent opera-
tions are well maintained and (2) the detection of white edges are avoided. Both
requirements can be realized using information local to each vertex. This theorem

points out a feasible way to satisfy the Safety concern.

Theorem 4.2 shows when an existing deadlock can be detected by a certain
deadlock detection computation. When a deadlock is formed in a dynamic system,
Theorem 4.2 proves that the meaningful operations of a DDC initiated in that
deadlock can detect the deadlock in finite time provided that the DDC is allowed

to continue successfully. This is a relatively tight condition in comparison with the

108

-1 _ 1

3

condition usually found in the literature that a deadlock could at least be detected
by a “latest” DDC (usually means a DDC initiated after the formation of the dead-
lock). Many algorithms (include the algorithms proposed in this dissertation) are
optimized such that each deadlock can be declared exactly once. This optimization
introduces competitions among DDC’s. When we develop DDC competition rules
for an algorithm, this tight condition could help us to push the algorithm to allow

a deadlock to be detected as early as possible.

Based on our methodology, distributed deadlock detection algorithms can be

developed in refinement steps as follows.

1. Static Algorithm: Develop principles for the deadlock detection in a static
graph.
2. Dynamic Algorithm:
e Analyze and avoid the situations where white edges may be detected.

e Analyze and maintain the connectivity between adjacent probe opera-

tions.
e Examine the situations when a new computation should be initiated to
ensure the Progress concern.

3. Real-Time Applications:

e Associate a deadline to each of the edges.

e Analyze the meaningfulness of a probe concerning the deadlines associ-

ated with the edges.

4. Maintain the principles developed in the first step throughout the rest of the

design procedure.

In the following chapters we derive dynamic deadlock detection algorithms
based on the static ones which have been proven correct. The derived dynamic
algorithm needs to fulfill both Spatial and Temporal consistency criteria when con-

structing a view of a deadlock. Theorem 4.1 suggests that this can be done at each

109

vertex locally by eliminating the detection of white edges as well as maintaining the
connectivity between any pair of adjacent operations. Following this theorem, rules
are designed to handle dynamic situations. In addition, Theorem 4.2 suggests that
meaningful DDC’s should be preserved as much as possible under these dynamic
system rules. This is not only to guarantee that an existing deadlock can at least be
detected once (i.e., the progress claim of the correctness concern) but also to push
the declaration of an existing deadlock to be as early as possible. Theorem 4.1 also
guarantees that such a derived dynamic algorithm may only declare genuine dead-
locks (i.e., the Saféty claim of the correctness concern). Improvements may then be
made to the derived dynamic algorithm. To verify the new improved algorithm, it
could be related to some static algorithm as described in Section 4.4.2.2. Since both
algorithms share certain common properties, the improved dynamic algorithm can
be verified by proving that the corresponding static algorithm can correctly detect

deadlocks in static GRG’s.

110

31 _3

-1

3 __ 13

g

A 13

5]

T3 T3 A — 8 ™3 ¥ —3 3 —3a 3 =3 —3

—a ~—=% ~—=3a ™—3 ~—3 —3 ™14

CHAPTER 5

CYCLE DETECTION

Cycle detection is the basis for the detection of the Single-Resource and the
AND deadlocks. In this chapter we develop two algorithms: one for the detection
of Single-Resource deadlocks (to be referred to as the Single-Resource Algorithm)
and the other one for the detection of AND deadlocks (to be referred to as the AND
Algorithm).

In these two algorithms optimizations are made due to efficiency concerns. The
optimizations can reduce the probe overhead in terms of reducing the number of
probe messages passed around as well as eliminating the possibility of repeated
detection of a cycle (which means single point of detection for each deadlock). The
deadlock resolution can also benefit from this single point of detection feature since

no synchronization is necessary when resolving a deadlock.

Also, timing constraints are considered in these two algorithms. In real-time
applications, when a task is waiting, it is usually assigned a deadline in order to
time out from a waiting state. These two algorithms could utilize tasks’ waiting

deadlines for deadlock detection in real-time systems.

Following the guidelines suggested in Chapter 4, these two cycle detection
algorithms are developed in three refinement steps. Before we start the develop-
ment of our algorithms, in Section 5.1, some assumptions concerning the real-time
constraints are summarized. In Section 5.2 the principles of cycle detection are an-
alyzed in terms of a static GRG. The synchronization mechanisms and the deadline
computations are directly developed for each of the algorithms (in Sections 5.3 and
5.4). Concluding remarks are found in Section 5.5. In this chapter, we will give
clear reasoning before the presentation of each algorithm but skip formal proofs of

the resulting algorithms.

111

5.1 Assumptions of the Algorithms Concerning the Real-Time

Constraints

The two deadlock detection algorithms developed in this chapter are our first
attempt at dealing with timing constraints in distributed deadlock detection. Since
there are complicated issues involved in the determination of an intermediate dead-
line whenever a task is in a waiting state, we assume that when a task becomes
blocked, there is a known deadline for that waiting state. A task’s waiting state ter-
minates when its waiting deadline expires. Our algorithms only utilize the waiting
deadline information for deadlock detection but do not specify how such a deadline
is assigned. Also, since there are complicated issues involved in the resolution of
deadlocks in distributed real-time systems, we simply assume the resolution of a
detected deadlock is done by choosing the task which declares the deadlock as the
victim.

Due to waiting deadlines, spontaneous time-outs and aborts may occur and may
cause false detection of temporal deadlocks. False detection of temporal deadlocks
could be minimized by carrying waiting deadline information in each of the probes.
If all the system clocks are perfectly synchronized and all the deadlines carried
by the probes are absolutely accurate, the false detection of temporal deadlocks is
eliminated. Also, a temporal deadlock may not be detected if the timing constraint
in a cycle is so tight that none of the existing probes can finish traveling through the
cycle in time. An undetected temporal deadlock is resolved automatically when a
task in the cycle times out or aborts. This spontaneous time-out or abort, however,

may not be the best resolution of a temporal deadlock.

As stated in Section 2.6.2 it is very difficult in a distributed real-time system
for a deadlock detection algorithm to fulfill the two correctness criteria. The two
algorithms presented in this chapter only “attempt” to detect temporal deadlocks.
It is assumed that most of the deadlocks are simple cycles. The two algorithms
are designed to be efficient especially when detecting simple cycles. Therefore, the

undetected temporal deadlocks can be minimized.

112

f 3 -2 __3 _3 _2 __3

1

.1

] _ 1

1

5.2 The Principles of Cycle Detection

We begin our development of the cycle detection algorithms by analyzing cycle
detection principles in static systems. First, as discussed in Section 4.3.1, a local

view of a cycle can be defined as follows.

Definition 5.1 (Local View of a Cycle) In a GRG, a vertex is in a cycle if

and only if it can find a directed path to itself.

In Definition 5.1, the found path is a cycle. If we search a GRG along the

_ directed edges, a vertex v is in a cycle if and only if v € RS(v). On the other hand,

if we search a GRG in the reverse direction of the edges, a vertex v is in a cycle if
and only if v € TS(v). If a vertex v wants to know if it is in a cycle, it may send
out a probe message to search the GRG. The probe may be propagated in either
direction, i.e., forward or backward, but should be consistent throughout the whole

probe computation. If v receives its probe back, it is in a cycle.

In a GRG, a cycle may be connected with vertices which don’t belong to the
cycle. A probe is called a “foreign” probe if it is propagated in a cycle but was
initiated at a vertex outside of that cycle. One of the problems with probe-based
cycle detection is that foreign probes may be propagated in a cycle forever without
declaring the cycle. There are three strategies which may be used to resolve this

problem:
1. Prevent foreign probes from entering into any cycle.

This is the best strategy among the three but it can only be applied to the
detection of Single-Resource model deadlocks. This strategy is based on the
fact that in a Single-Resource model system, there may be incoming edges
into cycles but there are no outgoing edges from any cycle. If probes are
propagated backward, they may be propagated out from cycles but they may
not go into any cycle. Mitchell and Merritt’s algorithm [100] is a very good
example of the application of this strategy. In Section 5.3, we develop a

Single-Resource Algorithm based on this strategy.

113

2. At each vertex, record the received probes and stop a probe’s prop-

agation when it is received the second time.

This is the most popular strategy used in the algorithms for AND deadlocks
(e.g., [27), [35), and [126]). First, Chandy, Misra, and Haas use the notion
of dependent set in their resource deadlock detection algorithm [27]. In their
algorithm, each probe carries its initiator’s ID as the probe ID. Each vertex
collects a dependent set which contains the received probe ID’s. Whenever a
probe is processed at a vertex it is checked against the vertex’s dependent set
before further propagation. A probe will not be propagated if it is found in a
vertex’s dependent set. This algorithm has two problems: (1) it may fail to

detect certain cycles and (2) it may declare a cycle multiple times.

Problem (1) is due to the fact that a vertex, say v, may need to initiate probe
computation many times whenever it becomes blocked. If vertices u and v
are in the same cycle and v is already in u’s dependent set (due to a previous
probe computation initiated at v), v’s probe will be stopped at u» and won’t
declare the cycle. If v is the very one which could detect the cycle, the cycle
will not be detected. For example, a cycle (a — b — ¢ — a) is formed when
two edges (b — c) and (c — a) are created almost simultaneously. Each of b
and c initiates a probe computation about the same time. However, c receives
its probe back earlier than b and decides to abort itself to break the detected
cycle. When b’s request is granted due to the abortion of ¢, its probe has just
arrived at a. Now, we have (¢ — b) and b is in a’s dependent set. Suppose
b starts to wait for a later, b’s new probe will be stopped at a and the cycle
(¢ = b — a) will not be detected. An easy remedy to this problem is to

always generate a new ID for the initiated probe whenever a vertex becomes

blocked.

Sinha and Natarajian [126] use priority based probes to solve the problem (2)
so that a cycle may be declared exactly once. Since the information of a cer-

tain computation are distributed at different places where the probes of the

114

. é] ! g] %l

-1 1 1 3 3 1 __13

computation are received, Sinha and Natarajian’s algorithm requires a post-
resolution computation to clean up the out of date dependency information.
Their algorithm becomes very complicated and incorrect. Choudhary et al.
made an attempt to fix the problem found in Sinha and Néta.rajia.n’s prior-
ity based algorithm, but it resulted in an even more complicated algorithm
and which was incorrect when first published. All of these complications are
due to the fact that the states of a probe computation are distributed at
different places and out of date information needs a post-resolution clean up

computation.

. In each probe, record the visited vertices and stop further propa-

gation when a vertex is visited a second time.

This is an alternative way of recognizing whether a probe has visited a vertex
twice. The AND Algorithm developed in Section 5.4 is based on this strategy.
There are several interesting aspects of this strategy: (a) Part of a GRG is
carried with the probe and when new vertex are visited, new information can
be appended to the sub-GRG collected by the probe. For example, a cycle
can be declared when a probe finds it has visited a vertex twice. (b) When
a vertex puts itself into a probe’s sub-GRG, it can be treated as a merge of
probe computations. For example, suppose a vertex v becomes blocked and a
new probe computation is needed. Vertex v may put itself in a received probe
and when the probe comes back, v could find itself in the probe and declare a
cycle. If the second strategy is used, a separate probe computation is needed
in this case. (c) In addition to the declaration of a cycle, it is necessary to
identify the members of the detected cycle. If so, this strategy may be the

best choice.

One disadvantage of this strategy is that the probes are of variable length and
are longer than the probes required by the previous strategies. In spite of this

disadvantage, the strategy may still be justified by the advantages due to the

aspects discussed above.

115

In the algorithms developed in the following sections, cycle detection compu-
tations (CDC’s) are only invoked by the tasks. This is because that a GRG is a
bipartite graph such that each edge connects a task and a resource. Ina static GRG,
it is sufficient that each edge can be reached by a cycle detection computation. In
a dynamic system, whenever a new edge is created it is due to either (1) a task is
waiting for a resource or (2) a resource is acquired by a task. If (1) is the case, the
resource must be held by another task and a CDC may be invoked by the waiting
task. On the other hand, if (2) is the case, the task must be active and it is not
necessary to invoke any cycle detection. Therefore, it is sufficient that CDC’s are

only invoked at the tasks in a system.

5.3 Algorithm for the Single-Resource Model

In this section a deadlock detection algorithm' is developed for the Single-
Resource model systems. Following the methodology developed in Chapter 4, the
Single-Resource algorithms are developed in three refinement steps, i.e., (1) sim-
ple cycle detection in static systems (Section 5.3.1), (2) simple cycle detection
in dynamic systems (Section 5.3.2), and (3) extension for real-time applications
(Section 5.3.3). Finally, an integrated Single-Resource algorithm for distributed

real-time applications is presented in Section 5.3.4.

5.3.1 Static. Algorithms for the Single-Resource Model

The following algorithm for the Single-Resource deadlock detection in static

systems is based on the first strategy in Section 5.2.

Algorithm 5.1

Initiate a probe for each task in a GRG. Probes are propagated backward
along the edges of a GRG. If a probe comes back to its initiator, a deadlock
is found. O

116

3

1 3

_—

1 13

—13

-1 1 _ 13 3 g

— 1 3 __1

o

—3 ~—3 ~—3 "3 —3% ~3 "3 T3 ~3 "B ¥ TP 3 3 3 3 —3

3 3

Algorithm 5.1, although it guarantees the detection of all deadlocks, allows all
tasks in the cycle to detect the deadlock. It has two drawbacks: (1) it is inefficient
in terms of message overhead and (2) it is complicated to recover a deadlock due to
the multiple detections of the cycle. By using a technique similar to that used in
the Mitchell and Merritt’s algorithm [100], the following algorithm can reduce the

number of probe messages and achieve a single point of detection of every deadlock

cycle.

Algorithm 5.2

Initiate a probe for each task in a GRG. Each probe, when it is initiated, is
assigned a unique ID. Each vertex in the GRG memorizes the largest probe
ID it has propagated. Only probes that have larger ID’s than previous probes
are allowed to pass through a vertex. Probes are propagated backward along
the edges of the GRG. If a probe comes back to its initiator, a deadlock is
found. O

Since probes are propagated backward, they may be propagated out from cycles
but they may not go into any cycle. Therefore, we don’t have to consider that any
foreign probe may appear in a cycle. Since ID’s are unique, there exists a probe
with the largest ID in a cycle which can pass through every vertex in the cycle and
declare the cycle. Since this largest probe is initiated in the cycle, its initiator must
remember its ID. Therefore, no other probe could pass through the initiator of the
largest probe because they have smaller ID’s. Consequently, a cycle will be declared

exactly once by the largest probe initiated in the cycle.

5.3.2 Dynamic Algorithm for the Single-Resource Model

Backward probe propagation in a Single-Resource model system ensures that
probes are always received at waiting vertices (i.e., blocked task and held resources).
Since a waiting vertex does not voluntarily delete its only outgoing edge, we don’t
have to worry about the white edges in the Single-Resource dynamic algorithm.

Also, since probes are always received at waiting vertices via its only outgoing edge,

117

they can be propagated to any incoming edge immediately. Also, if a new incoming
edge is connected to a waiting vertex, Theorem 4.2 suggests that all the probes
received at this vertex while it is waiting can continue their propagation through
the new incoming edge. There is no special concern of the connectivity between the
adjacent edges since probes are always received from the very outgoing edge while

a vertex is waiting. By Theorem 4.1, the safety concern is satisfied.

In a dynamic system, a DGRG may be updated only when a task or a resource
changes its state. As discussed earlier, resources do not initiate probe computa-
tions when they are held by tasks. The rest of the situations are described in the

synchronization mechanism in Algorithm 5.1 as follows.

Algorithm 5.3

Synchronization Mechanism:

o Each of the tasks/resources keeps track of the probes received while it

is blocked/held.

e Whenever a task/resource becomes active/free, it deletes all the probes

received while it was blocked/held.

o Whenever a task is blocked by a pending request, it resumes the propa-
gation of all the probes stored at the waited resource as well as initiates

a probe for itself.

Description of a CDC:
Probes are propagated backward along the edges of a GRG. If a probe comes

back to its initiator, a deadlock is found. O

Since backward probe propagation in a Single-Resource model system ensures
that probes are always propagated in the stable part of a DGRG, both the Spatial
and the Temporal consistency criteria are automatically fulfilled when it applies to
dynamic systems. Therefore, this algorithm guarantees that in dynamic systems,

all cycles and only genuine cycles will be detected in finite time.

118

% 3 _3 _3 3 _1

. 1a

3 3 1

1

1]

We now want to derive a dynamic algorithm based on Algorithm 5.2 which
could detect every cycle exactly once. Similar to Algorithm 5.3, safety concern can
be fulfilled without dealing with the white edges and the connectivity problems in
the following dynamic algorithm.

To generate a unique ID for each invocation of CDC we need to consider the
following factors. First, when a vertex becomes blocked, it needs to override all
its previously involved now meaningless probe computations. Also, according to
Theorem 4;2, it is not necessary to always initiate a new probe computation to
override an old meaningful one whenever a vertex becomes blocked. Therefore,
when a vertex v becomes blocked, it acquires a probe from the resource for which
it is waiting. If this probe is larger than v’s previous probes and is still valid
(meaningful at v), no new probe should be generated. Otherwise, a new probe
computation .is initiated with a logical timestamp which is a number greater than
the largest timestamp that a task and its waiting resource have ever seen. To
guarantee the uniqueness of each probe timestamp, it could be combined with its

initiator’s ID which is unique across the whole system.

Algorithm 5.4

Synchronization Mechanism:

e Fach of the tasks/resources keeps track of the largest probe received
while it is blocked /held.

e Whenever a task/resource becomes active/free, it marks the stored

largest probe as invalid.

o Whenever a task is blocked by a pending request, it acquires the probe
stored at the waited resource. If this probe is is still valid and is larger
than the local one, no new probe is generated; otherwise, a new probe
is initiated with a logical timestamp which is a number greater than

the largest timestamp the task has ever seen.

Description of a CDC:

The probes which are allowed to pass through a vertex are in increasing

119

timestamp order. Probes are propagated backward along the edges of a

GRG. If a probe comes back to its initiator, a deadlock is found. <o

We could imagine that a smaller timestamp is generated in the case that no
new probe is needed and the correctness argument of this algorithm is then similar

to that of Algorithm 5.2 in terms of meaningful projected CDC’s.

5.3.3 Real-Time Constraints in the Single-Resource Algorithm

Now, let’s consider how tasks’ waiting deadlines can be incorporated in a probe
computation. Since probes are propagated backward to search vertices which can
reach their initiator, probes may become meaningless if one of its visited vertices
leaves the waiting state due to the expiration of its deadline. Therefore, each probe
may be associated with a deadline which is the earliest task waiting deadline that a
probe has ever seen. A probe misses its deadline if at least one of the tasks it visited
misses the deadline. Therefore, a probe is discarded immediately if it is found to

miss its deadline.

5.3.4 The Single-Resource Algorithm

In this section, we present a simple probe algorithm that deals with the Single-
Resource deadlock model in distributed systems. This algorithm is based on Algo-
rithm 5.4 along with a deadline checking mechanism as described in Section 5.3.3.
This algorithm is able to detect all stable deadlocks and attempts to detect temporal
deadlocks.

The data structures for the probes, tasks, and resources are defined in Fig-
ures 5.1, 5.2, and 5.3, respectively. In Figure 5.1 the fields probe_id and initr_id
give each probe a unique logical timestamp (identification). A probe is said to be
larger than another one if it carries a larger probe_id. The larger initr_id is used to
distinguish between two probes with the same probe_id. The deadline of a probe is
defined by the field probe dl. Figure 5.2 shows the data structure for tasks, which

120

.3 3 _3 _3

may be part of a task control block or may be a separate data structure dedicated
for deadlock detection. Two buffers are prepared for storing probes for each task:
probe_init stores its own initiated probe and probe_buf stores the largest probe ever
received. Figure 5.3 defines the data structure for resources. Only one probe buffer
probe_buf is prepared for storing the largest probe ever received for each resource

since no probe may be initiated by resources.

type PROBE_ID_TYPE is range 0..INTEGER’LAST;
type TASK_ID_TYPE is range 0..INTEGER’LAST;
type PROBE_TYPE is

record
probe_id : PROBE ID TYPE := 0; -- probeid
initr_id : TASK ID TYPE := 0; —- the task_id of the probe initiator
probe_dl : DURATION := 0.0; - - probe deadline is determined by the earliest tim-

-- ing constraint in its travelling path
end record;

Figure 5.1: Data structure for probes in the Single-Resource Algorithm.

type TASK_STATE TYPE is (ACTIVE, BLOCKED);
type TASK_TYPE is
record
task_id : TASK_ID TYPE := 0,
task state : TASK STATE_TYPE := ACTIVE;
task_dl : DURATION := 0.0; -- deadline of task’s request
probe_init : PROBE_TYPE; -- probe initiated
probe_buf : PROBE_TYPE; -- probe buffered
holding table : RES TABLE_TYPE; —-- resources held by the task
pending_table : RES TABLE_TYPE; —- pending requests of the task
end record;

Figure 5.2: Data structure for tasks in the Single-Resource Algorithm.

When a task becomes BLOCKED from the ACTIVE state, it checks the status
of the requested resource. If a valid probe is found at the requested resource, the
probe may continue its propagation if it has a larger ID (i.e., compared to the one
in task’s probe_buf). Otherwise, a new probe may be initiated after a delay time At
which is chosen as a function of a task’s deadline and /or the average blocking time of

a request. The logical timestamp (i.e., the probe_id) of the newly created probe is the

121

type RESOURCE_ID_TYPE is range 0..INTEGER'LAST;
type RESOURCE_STATE_TYPE is (FREE, HELD);
—— For a consumable resource, it is FREE if it is produced but is not consumed yet; on the
—— other hand, it is HELD by its producer if it is requested but is not produced yet.
type RESOURCE_TYPE is
record
resource_id : RESOURCE_ID_TYPE := 0;
resource_state : RESOURCE_STATE_TYPE := FREE;

probe_buf : PROBE_TYPE; -- probe buffered
waiting queue : QUE_TYPE; -- waiting queue for the resource
grant_queue : QUE_TYPE; —-- granted tasks of the resource

end record;

Figure 5.3: Data structure for resources in the Single-Resource Algorithm.

increment of the largest probe_id ever received by its initiator. The deadline of the
new probe is initially set according to the initiator’s timing constraints. The newly
created probe is, then, treated as the largest probe ever received and is propagated
accordingly. The procedure TASK_INIT_PROBE depicted in Figure 5.4 describes

how a probe is initiated.

The procedure TASK_RCV_PROBE described in Figure 5.5. is invoked when a
task receives a probe. This algorithm guarantees that only tasks in the BLOCKED
state may receive probes since probes are propagated in the reverse direction along
the edges in GRG. The received probe is, first, checked to see if it has missed its
deadline. If so, it is discarded immediately because at least one task in the path that
the probe traveled has timed out or was aborted at the time the probe is received.
If the probe is still valid, it is checked whether it is initiated by the receiving task.
If s0, a deadlock (which may either be a stable deadlock or a temporal deadlock) is
found. Otherwise, the probe is checked to see if it is the largest probe ever received.
If so, the deadline of the probe is updated, if necessary, and then the probe is
propagated to all the resources held by the task.

The procedure RESOURCE_RCV_PROBE shown in Figure 5.6 is invoked when
a resource receives a probe. This algorithm guarantees that only HELD resources

may receive probes since probes are propagated in the reverse direction from a

122

1

procedure TASK_INIT PROBE (T: in out TASK_TYPE,
R: in RESOURCE_TYPE) is
—— This procedure is invoked when a task T requested a resource R which is not FREE. The
—— task T is in transition from ACTIVE state into BLOCKED state. It requests the probe
—— from the waited resource R.probe_buf. A period of waiting time At which is chosen as
-- a function of task T’s deadline and/or the average blocking time of a request might be
—- inserted before the initiation of a new probe.
R_ID : RESOURCE_ID_TYPE;
begin
if ((R.probe_buf.probe_dl <= current time) or else
R.probe_buf.probe_id <= T.probe_buf.probe_id)) then
—— prepare a new probe after a delay time At
T.probe_init.probe_id := MAX (R.probe_buf.probe_id, T.probe_buf.probe_id) + 1;
—— function MAX(a,b) returns the maximum value of a and b
T.probe_init.initr_id := T.lask_id;
T.probe_init.probe_dl := T.task dl;
T.probe_buf := T.probe_init;
else ,
T.probe_buf := R.probe_buf.probe_init;
end if;
—— propagate the new probe to all the resources it holds
for R_ID in T.holding table loop
SEND (T.probe_buf, R_ID);
end loop;
end TASK_INIT PROBE;

Figure 5.4: Procedure for the probe initiation in the Single-Resource Algorithm.

BLOCKED task to all its HELD resources. In the Single-Resource model, a resource
can only be held exclusively by one task and does not initiate any probes. It is
not necessary to detect deadlocks at a resource vertex. The probe at the resource
vertex, therefore, is only checked to see if it has missed its deadline. If so, the probe

is discarded; otherwise, it is propagated to all the tasks waiting for that resource.

Initially, all tasks are ACTIVE when created, all reusable resources are FREE,
and all consumable resources are HELD by the producers when requested. When
a task is in transition from the ACTIVE state to the BLOCKED state, it adds
an edge to the GRG and executes the procedure TASK_INIT_PROBE to initiate
a deadlock detection probe. When a task becomes ACTIVE from the BLOCKED
state, it deletes the corresponding edges from the GRG. Resources are the passive
entities in the GRG which will not initiate deadlock computation. If resources are

eliminated and a TWFG is considered, the correctness of this algorithm still holds.

123

procedure TASK_RCV_PROBE (T: in out TASK_TYPE; P: in PROBE_TYPE) is
— - This procedure is invoked whenever a task T receives a probe P.
R_ID : RESOURCE_ID_TYPE;
begin
if ((P.probe_dl <= current_time) or else
P.probe_id < T.probe_buf.probe_id) or else
(P.probe_id = T.probe_buf.probe_id) and then
(P.initr_id < T.probe_buf.initr_id))) then
null; -- discard the received probe
elsif ((P.probe_id = T.probe_init.probe_id) and then
gP.initr_id = T.lask_id)) then
a deadlock is found;
else
—- update its deadline if necessary and put it in probe_buf and propagate it
if (P.probe_dl > T.task_dl) then
P.probe_dl := T.task_dl;
end if;
T.probe_buf := P;
for R_ID in T.holding_table loop
SEND (P, R_ID);
end loop;
end if;
end TASK RCV_PROBE;

Figure 5.5: Procedure for tasks handling received probes in the Single-Resource
Algorithm.

procedure RESOURCE_RCV_PROBE (R: in out RESOURCE_TYPE;
P: in PROBE_TYPE) is
- - This procedure is invoked whenever a resource R receives a probe P.
T ID : TASK_ID_TYPE;
begin
if ((P.probe_dl <= current_time) or else
P.probe_id < R.probe_buf.probe_id) or else
P.probe_id = R.probe_buf.probe_id) and then
P.initr_id < R.probe_buf.initr_id))) then
null; -- discard the received probe
else
-- put it in probe_buf and propagate it
R.probe_buf := P;
for T_ID in R.waiting queue loop
SEND (P,T_ID);
end loop;
end if;
end RESOURCE_RCV_PROBE;

Figure 5.6: Procedure for resources handling received probes in the Single-Resource
Algorithm.

124

3 3

—y 3 3 _ 3

Whenever a task becomes ACTIVE or a resource becomes FREE, the probe stored

at the probe_buf is invalidated by resetting probe_dl := 0.

A GRG can be implemented as a two dimensional matrix. One dimension
represents tasks, and the other dimension represents resources. Each of the elements
in a GRG matrix represents one of the following three states: (1) the task is waiting
for the resource, (2) the resource is held by the task, or (3) there is no relationship
between them. Another possible implementation of GRG is to store the information
in each of the task tables and resource tables, for example, the holding_table in
TASK_TYPE and the task waiting_queve in RESOURCE_TYPE used in our algorithm

data structure.

An agent may be assumed to handle the deadlock detection activities at each
site. The probe SEND procedure, which is not described explicitly in the algorithm,
is assumed to be handled by the agent. A simple copy operation can accomplish
a local SEND operation, while a real message will be sent out for an inter-site
SEND operation. The procedures TASK_INIT PROBE, TASK_RCV_PROBE, and
RESOURCE_RCV_PROBE are designed to be executed by the agent on behalf of

each task or resource.

5.4 Algorithm for the AND Model

In this section a deadlock detection algorithm is developed for the AND model
systems. Again, the algorithms are developed in three refinement steps in Sec-
tions 5.4.1, 5.4.2, and 5.4.3, and an integrated AND algorithm for distributed

real-time applications is presented in Section 5.4.4.

5.4.1 Static Algorithm for the AND Model

Suppose Algorithm 5.2 is modified for the AND model as follows.

Algorithm 5.5

Initiate a probe for each task in a GRG. Each probe, when it is initiated, is

125

assigned a unique ID. Each vertex in the GRG memorizes the largest probe
ID it has propagated. Only probes that have larger ID’s than previous probes
are allowed to pass through a vertex. Probes are propagated either forward
or backward along the edges of a GRG. If a probe revisits a task, a deadlock
is found. %

A GRG in the AND model is symmetric in the sense that multiple incoming and
outgoing edges of a vertex are allowed. We may find both incoming edges as well as
outgoing edges in an AND model cycle. Therefore, in terms of the graph structure,
it makes no difference whether probes are propagated in either the forward or the
backward direction. Since the foreign probes may enter a cycle in the AND model
and may interfere with the in-cycle probes, it is required that every probe (either
in-cycle probes or foreign probes) be able to detect deadlocks. Instead of declaring a
cycle at a probe’s initiator, Algorithm 5.5 declares a cycle whenever a probe revisits
a task. This algorithm guarantees that all cycles in a GRG will be detected in finite

time.

Since in Algorithm 5.5, a foreign probe is required to declare a cycle when it
revisits a task, carrying the initiator’s ID with each of the probes is not enough
for this purpose. A set of tasks/resources which contains part of a GRG may be
included in each of the probes in order for foreign probes to determine if cycles are

found. Such a probe is referred to as a “set-based” probe.

The notion of set-based probes was first proposed by Chandy and Misra [23] and
subsequently developed by Haas and Mohan [57]. In Haas and Mohan’s algorithm,
a probe carries a set of permanent blocking edges that has been known to the probe.
The probes are propagated in the forward direction along the edges of a GRG. Upon
receiving a probe, each task searches for cycles that involve itself and deletes the
edges related to the detected cycles from the set. If the remaining set is not empty,
the task will append itself to the set and propagate it to the tasks it is waiting
for. The set grows as it reaches more and more tasks and shrinks when cycles are

detected.

126

3 -3 _¥ __3 .3

——j ‘__,_3

1 1

3

3

In the AND Algorithm proposed here, each probe includes a set of edges which
ogly contains the path traveled by the probe. A set is a one-dimensional chain in our
algorithm as opposed to a tree-like structure sub-GRG in the algorithms previously
proposed in the literature. The original motivation for propagating a tree-like set in
each of the probes is to discover all cycles that involve a deadlocked task which can
then act as a deadlock resolver. If deadlock resolution is taken into consideration,
some of the detected cycles might have been broken (false deadlocks) due to the fact
that cycles may be nested in the AND model. When a deadlocked task knows all
cycles that it is involved with, this only reduces the false detection of deadlocks. On
the contrary, if only. chain-like set probes are propagated in detecting cycles, each
deadlocked task will detect at most one cycle at a time. The remaining cycles, if
they exist, will be detected as soon as all the involved tasks are searched by a probe.
Unlike a tree-like set algorithm, in which a deadlock resolution is delayed until a
task can determine it has detected all the cycles it is involved in, our algorithm
attempts to resolve deadlocks as soon as it is detected. The probability of related
false detection of deadlocks will be reduced since the detected deadlocks are resolved
as soon as possible. Also, processing and propagation of the tree-like set probes are
more costly compared to the chain-like set probes. Therefore, our algorithm can
avoid some false detection of deadlocks comparable to the previous algorithms, while
providing better efficiency. Consequently, in real-time applications where timing
constraints are important, a chain-like set probe algorithm is more attractive than

a tree-like set probe algorithm.

Since the chain set based probe computation could declare a cycle whenever
a task finds itself in the chain of a previously received probe, each of the task in
a probe chain could be treated as a co-initiator of the probe. Therefore, a probe
can be treated as a merged multiple probes which share the same probe timestamp.
Also, the chain set represents the wait-for dependencies of the tasks/resources found
in the chain. The direction of the probe propagation may affect the management of

the chain which, in turn may affect the correctness of the algorithm. We will discuss

127

this issue in Section 5.4.3 after a brief description of how real-time constraints are

incorporated in the computations.

5.4.2 Dynamic Algorithm for the AND Model

We now develop a dynamic algorithm based on Algorithm 5.5. Algorithm 5.5
allows probes to be propagated either forward or backward. If the probes are
propagated backward, similar to the reasoning of Algorithm 5.4, both the Spatial
and Temporal consistency criteria are automatically fulfilled. On the other hand, if
the probes are propagated forward, the detection of white edges need to be avoided.
Also, probes may be received by the active task if forward propagation is used. Since
Theorem 4.2 suggests that the meaningful CDC’s should be preserved as much as
possible, those probes received while a task is active may continue their propagations
if necessary. However, care should be taken concerning the connectivity between
two adjacent operations if a probe is received at a active task. If a probe received
at an active task is saved for later use, the existence of the incoming edge from
which the probe was received must be checked when it triggers subsequent probe
propagations after the task becomes blocked. This mechanism requires a complex
data structure to keep track of the information concerning where each probe was
received and it incurs constant overhead when a task is active. Instead, a probe P
which is supposed to be sent to an active task T from a resource R could be kept
at R. The probe P may be propagated to T later after T becomes blocked and
R is still held by T. Since the tasks which are waiting for the resource R do not
withdraw their requests voluntarily, the connectivity requirement at resource R is

fulfilled.

For a reason to be discussed in Section 5.4.3, we use forward propagation
in the following dynamic AND algorithm. Again, resources do not initiate probe
computations when they are held by tasks. In the AND model system, the state
of a task may be changed when (1) it is blocked by a set of pending request, (2) it
is granted one of its pending requests (but is still blocked by other outstanding

requests), or (3) it becomes active after all its requests are granted. We can imagine

128

/.

—J

—3 1

that in the case (2), a task T is temporarily active and then becomes blocked hy

a new set of pending requests. While T is temporarily active, it acquires a new

resource which dramatically changes its surrounding graph structure. Consequently,

the occurrence of (1) or (2) may trigger a new probe computation.

Algorithm 5.6

Synchronization Mechanism:

Each of the tasks/resources keeps track of the largest probe it has ever

received.
The probes received at active tasks will be ignored.

Whenever a task/resource becomes active/free, it marks the stored

largest probe as invalid.

When a task is (1) blocked by a set of pending request or (2) granted
one of its pending requests but remains blocked, it acquires the probes
stored at its holding resources. If the largest probe acquired is still valid
and is larger than the one which is previously stored at the vertex, no
new probe is generated; otherwise, a new probe is initiated with a logical
timestamp which is a number greater than the largest timestamp that

the task has ever seen.

Description of a CDC:

The probes which are allowed to pass through a vertex are in increasing

timestamp order. Probes are forward propagated along the edges of a GRG.

If a probe revisits a task, a deadlock is found. O

Again, each probe in Algorithm 5.6 carries a chain of task/resource ID’s which

records its propagation path. Every cycle will be declared exactly once by the

largest probe propagated in the cycle at a task which first appears twice in the

probe chain.

129

5.4.3 Real-Time Constraints in the AND Algorithm

Unlike the Single-Resource Algorithm, only part of a probe’s trace may form
a cycle. A single timing constraint can no longer be associated with each probe. A
timing constraint for each task in a probe chain should be included. When searching
for cycles in the chain set, the timing constraints attached to each of the task ID’s
are also evaluated. A deadlock is found if none of the tasks which form the cycle
has missed its deadline. A chain may be broken at a task in the chain if the task
is found to have missed its deadline. Also, the task ID’s in the chain which are
waiting for the one that missed its deadline should be discarded. This is because
the wait-for relations may have been changed when the task which missed deadline

aborted and released its resources.

We now explain why backward propagation cannot be used if timing constraints
are considered. If a probe is propagated backward, the chain grows by adding new
dependents to the chain. A new dependent is impossible to add to the chain if the
chain is broken. Therefore, a backward propagated probe should be discarded if
its chain is broken. For example, consider a chain T; - R; = T — -+ = Tjp, —

- = R, — T, which is propagated along with a probe. If the task Ty, is found
to miss its deadline, the chain is broken at T}, and its left hand side of the chain
T. - R; — -+ — T, is discarded. Since the probe is propagated backward, a
new entry (a dependent of T;) should be added to the left hand side of T; which no

longer exists in the chain; the whole probe, therefore, should be thrown away.

One problem with the backward propagation of the probe chain is that a mean-
ingful part of a probe chain may be discarded. Such an algorithm may fail to detect
certain deadlocks which are supposed to be searched and declared by the discarded
probes. Following the previous example, suppose at the time the probe is discarded,
acycle T, = Ry — T; —» R; — T exists and all the other probes are eliminated due
to their smaller timestamps. This deadlock may not be detected if no new probes

with a larger timestamp could possibly reach this cycle. Consequently, backward

130

3 13

3

e

—4 1 _ 3

probes cannot be used in real-time applications because the probe chain may break

due to timing constraints.

In contrast, if the probe is propagated forward along the directed edges, the
new entries are added to the right hand side of T, and the probe, after discarding
its invalidated part of the chain, can continue to search the GRG until it reaches an
end vertex (an active task) or finds a cycle. In other words, the forward propagated

probe avoids the error that the backward probe exhibits.

The subset of the resource vertices may be eliminated in the GRG by replacing
an assignment edge (or a producer edge) and a request edge pair attached to a
resource vertex with a single directed edge between two tasks. For example, T; —
R; — T can be simplified to T; — T} if the resource vertex R; is not necessary in the
graph. If all the resource vertices are eliminated, it becomes a task-wait-for graph
(TWFG). In the AND Algorithm presented in the following, we ignore the resource
vertices in the probe chain since we are not interested in detecting deadlocks at
the resource vertices in a GRG. This simplification can reduce the size of the probe

messages.

5.4.4 The AND Algorithm

In this section, based on Algorithm 5.6 and the deadline computation described
in Section 5.4.3, we propose a set-based probe algorithm that deals with the AND
deadlock model in distributed real-time systems. This algorithm is able to detect
all the stable deadlocks and attempts to detect temporal deadlocks. Spontaneous

time-outs and aborts are allowed if they are needed for timing constraints.

The data structures for the probes, tasks, and resources are defined in Fig-
ures 5.7, 5.8, and 5.9, respectively. In Figure 5.7, the fields probe_id and initr_id
are defined in the same way as those in the algorithm for the Single-Resource
model. A set of task_id’s which record the path of a probe are chained together
in the probe. The field chain_head points to the head of such a path. Figure 5.8

shows the data structure for tasks. Two buffers are prepared for storing probes for

131

each task: the probe_init stores its own initiated probe and the probe_buf stores the
largest probe ever received. Also, the data structure for chained task is defined as
CHAINED_TASK. In the CHAINED_TASK, each task_id is attached with a task_dl
(task deadline). Figure 5.9 defines data structure for the resources. Only one probe
buffer is prepared for storing the largest probe ever received for each resource since

no probe may be initiated by resources.

type PROBE_ID_TYPE is range 0..INTEGER’LAST;
type TASK_ID TYPE is range 0..INTEGER’LAST;
type TASK_PTR; —- point to a task in a chain

type PROBE_TYPE is

record
probe_id : PROBE_ID TYPE := 0; -- probe identification
tnitr id : TASK_ID TYPE := 0; —— the task_id of the probe initiator

chain_head : TASK_PTR := null;
—- a chain of tasks which records the path of the probe;
—— the chain_head points to the head of the path
end record;

Figure 5.7: Data structure for probes in the AND Algorithm.

type TASK_STATE_TYPE is (ACTIVE, BLOCKED);
type TASK_TYPE is
record
task_td : TASK ID TYPE := 0;
task_state : TASK_STATE_TYPE := ACTIVE;
task_dl : DURATION := 0.0; -- deadline of task’s request
probe_init : PROBE_TYPE; -- probe initiated
probe_buf : PROBE_TYPE; -- probe buffered
holding_table : RES TABLE_TYPE; -- resources held by the task
pending_table : RES_TABLE TYPE; -- pending requests of the task
end record; '
type CHAINED_TASK; —- a task in a chain
type TASK_PTR is access CHAINED_TASK;
type CHAINED_TASK is

record
task id : TASK ID TYPE := 0; -- taskid
task dl : DURATION := 0.0; —— task deadline

nezt : TASK PTR; -- pointer link to the next task in chain
end record;

Figure 5.8: Data structure for tasks in the AND Algorithm.

132

|

—3

type RESOURCE_ID_TYPE is range 0..INTEGER’LAST,
type RESOURCE_STATE_TYPE is (FREE, HELD);
~— For a consumable resource, it is FREE if it is produced but is not consumed yet; on the
~— other hand, it is HELD by its producer if it is requested but is not produced yet.
type RESOURCE_TYPE is
record
resource_id: RESOURCE_ID_TYPE:=0;
resource_state : RESOURCE_STATE_TYPE := FREE;
probe_buf : PROBE TYPE,; - — probe buffered
waiting_queue : QUE_TYPE; -- waiting queue for the resource
grant_gueue : QUE_TYPE; -- granted tasks of the resource
end record;

Figure 5.9: Data structure for resources in the AND Algorithm.

Probes may be initiated by the tasks when one becomes BLOCKED from the
ACTIVE state or when a BLOCKED task is granted one of its pending requests and
remains BLOCKED. A period of time At which is chosen as a function of a task’s
deadline and/or the average blocking time of a request may be inserted right before
the initiation of a new probe. Again, by Theorem 4.2, a new probe will be initiated
only if the previously received one is meaningless (with an empty chain in this case)
or it is with a smaller timestamp. The procedure TASK_INIT PROBE depicted
in Figure 5.10 describes how a probe is initiated. A probe chain is created and is
accessed through the chain_head in the new probe. The new probe is stored both
in probe_init and probe_buf, and is propagated to each resource in its pending table

(pending request table).

The procedure TASK_RCV_PROBE depicted in Figure 5.11 describes how a
probe is received and processed at a task. When a task receives a probe, it first
checks the validity of the probe including (1) if the received carries a larger times-
tamp and (2) whether it was received from a non-white edge. If a probe is received
by an ACTIVE task, it is discarded immediately. On the other hand, a BLOCKED
task will process a received validated probe as follows. In the received probe, the
head of the chain is treated separately because if it misses its deadline, the whole
chain is thrown away and the probe will not be propagated. The cycle detection is

done by search the current task_id in the chain starting from the head of the chain.

133

procedure TASK_INIT PROBE (T: in out TASK_TYPE) is
—— This procedure is invoked when an ACTIVE task T requests resources which are not all
—- FREE, or when a BLOCKED task is granted one of its pending requests but remains
-- BLOCKED. A period of waiting time At which is chosen as a function of task T’s deadline
-- and/or the average blocking time of a request might be inserted before the initiation of a
—— new probe.
pir: TASK_ PTR; R_ID: RESOURCE_ID TYPE; P, FP: PROBE TYPE
begin
P.probe_id := T.probe_buf.probe_id
P.chain_kead := null; -- it is an INVALID probe
for R_ID in T.holding_table loop —- poll probes from holding_table
RECEIVE (FP, R_ID); -- FP is the probe from R_ID
if ((FP.probe_id < P.probe_id) or else
FP.probe_id = P.probe_id) and then
FP.initr_id < P.initr_id)) or else
(FP.chain_head.lask_dl <= curreni_time)) then
null; - - discard the received probe
else
P := FpP;
end if;
end loop;
tr := P.chain_head;
if (?atr = null) or else -- empty chain
pir.task_dl <= current_time)) then -- the head missed its deadline
—— prepare a new probe after a delay time At
T.probe_init.probe_id := T.probe_buf.probe_id + 1;
T.probe_init.initr id := T.task id;
T.probe_init.chain_head := new TASK_PTR (T.task_id, T.task di, null);
1 T.probe_buf := T.probe_init; —— put the new probe in probe_buf
else
—- append the task T to the head of the chain
dT;ItJ.robe_buf.chain_head := new TASK_PTR (T.task_id, T.iask dl, pir);
end if;
-~ propagate the new probe to all the resources it is waiting for
for R_ID in T.pending_table loop
SEND (T.probe_buf, R_ID);
end loop;
end TASK_INIT PROBE;

Figure 5.10: Procedure for the probe initiation in the AND Algorithm.

134

.3 3 _3 __3

—3

-3 _ 3

U

1

.3

3

3

procedure TASK_RCV_PROBE (T: in out TASK_TYPE;
P: in out PROBE_TYPE) is
—— This procedure is invoked when a task T receives a probe P.
pir: TASK PTR; found : BOOLEAN := FALSE;
R_ID : RESOURCE_ID _TYPE;
begin
pir := P.chain_head;
if ((not IN_TAB(R, T.holding_table)) or else -~ from a white edge
T.task_state = ACTIVE) or else
P.probe_id < T.probe_buf.probe_id) or else
ﬁP.probe_id = T.probe_buf.probe_id) and then
P.initr_id < T.probe_buf.initr_id)) or else
(ptr.task_dl <= current_time)) then
null; -- discard the received probe
elsif (pir.task_id = T.task_id) then
a deadlock is found;
else
-~ search the current task in the chain
while not found and then pir.nezt /= null loop
if (pir.nezt.task dl <= current time) then
pir.nezt := null; -- discard the rest of the chain
else
ir := pir.nezt;
if (pir.task_id = T.task id) then
found := TRUE;
end if;
end if;
end loop;
if found then
a deadlock is found;
else
—- append the task T to the head of the chain

P.chain_head := new TASK PTR (T.task_id, T.task_dl, P.chain_head);

T.probe_buf := P; —— put it in probe_buf
for R_ID in T.pending_table loop
SEND (P, R_ID); -- propagate the probe to every
end loop; -- resource in T’s pending_table
end if;
end if;
end TASK_RCV_PROBE;

Figure 5.11: Procedure for tasks handling received probes in the AND Algorithm.

135

The deadlines are also checked for each task in the chain. If an expired task is
found, the un-searched part of the chain is disconnected. If no cycle is found, the
current task is appended to the head of the chain, and the probe is save in the

probe_buf and propagated to all the resources which the task is waiting for.

The procedure RESOURCE_RCV_PROBE shown in Figure 5.12 is invoked
when a resource receives a probe. The resource first checks the validity of the
received probe. If the probe is valid and is the largest probe ever received, it is

saved in the probe buf and propagated to all the tasks in the resource’s grant_queue.

procedure RESOURCE_RCV_PROBE (R: in out RESOURCE_TYPE;
P: in PROBE_TYPE) is
—— This procedure is invoked when a resource R receives a probe P.
T ID : TASK_ID TYPE;
begin
if ((not IN_QUE(T, R.waiting_queue)) or else -- from a white edge
P.probe_id < R.probe_buf.probe_id) or else
P.probe_id = R.probe_buf.probe_id) and then
P.initr_id < R.probe_buf.initr id))) then
null; -- ignore the received probe
else
R.probe_buf := P; —- put it in probe_buf
for T_ID in R.grant_queve loop
SEND (P, T_ID);
end loop;
end if;
end RESOURCE_RCV_PROBE;

Figure 5.12: Procedure for resources handling received probes in the AND Algo-
rithm.

In addition to the SEND procedure mentioned in the Single-Resource Algo-
rithm, two functions, IN_TAB and IN_QUE, are used to check if a probe is received
from a white edge. The function IN_TAB searches a task’s holding table to see if the
probe is received from a resource held by it. Similarly, function IN_QUE searches a

resource’s waiting_queue to check if the probe is received from a task which is waiting

for it.

There are two weak points of this algorithm. First, the detection of a deadlock

may not be done in a limited period of time. This is because foreign probes with

136

13

increasing timestamps may keep on interfering with each other until one eventually
travels through the whole cycle. The detection of an existing deadlock, therefore,
may be indefinitely delayed. This situation is more likely to happen in a complicated
GRG where a infinite number of new tasks are dynamically created. However, most
of the systems, although complicated, do have an upper limit for the maximum
number of tasks allowed in the system. Also, the statistical analyses, such as the
one done by Gray et al. [55], have shown that most of the deadlocks are simple
cycles with a length of two to three vertices involved. This implies that the chance
of infinitely delay of a deadlock detection is rare, and in many systems it may be
justifiable to live with this rare occurrence in order to take advantage of the opti-
mization made with the probe timestamps. Secondly, the resolution of a detected
deadlock is limited to the abortion of the task which declares the deadlock. If more
information is carried with each of the probes, such as the priorities of the tasks in
the chain, the algorithm may be able to declare the deadlock at the task which is
going to be chosen as the victim for the resolution. The priority may be defined to
reflect any combination of the criticalness, timing constraint, task processing time,
lazity, amount of I/O completed, etc. Also, if the priority considers the degree
of forward and backward dependency of the task in GRG, the false detection of
deadlocks due to the existence of nested cycles may be further minimized. How-
ever, more overhead in terms of the size and the number of the probe messages is

required.

5.5 Concluding Remarks

In this chapter we developed cycle detection algorithms for the Single-resource
and the AND deadlock models. These algorithms are able to detect stable deadlocks
and attempt to detect temporal deadlocks. One unique aspect of these algorithms
is their ability to address timing constraints of tasks. Both algorithms are based
on probes to detect deadlock cycles. Probe message overheads are optimized by
carefully choosing a probe propagation direction and imposing a probe propagation

rule. Also, based on Theorem 4.2, these algorithms are optimized to detect cycles as

137

early as possible (most of the algorithms in the literature tend to allow the “latest”

computation to declare a cycle).

In the Single-Resource Algorithm, we have shown that the backward probe
propagation is the best choice. In the AND Algorithm, forward probe propagation
is chosen because the chain carried by a probe may break due to task’s waiting
deadlines. In both algorithms probes are assigned timestamps. The probes which
are allowed to pass through a vertex are in increasing timestamp order. This probe
propagation rule can greatly reduce the probe overhead and ensure the single de-
tection of deadlock cycles. Also, we point out that imposing this rule may cause an
unlimited delay of the detection of certain deadlocks. However, this situation may
be so rare that it is still justifiable to take advantage of the optimization made with

the probe timestamps.

138

|

]

2 _3

3 13

-3 3 _3

_3

~3

CHAPTER 6

KNOT DETECTION

The OR deadlock model was first referred to as Communication Deadlock
model by Chandy et al. In this model, a task is blocked until it is satisfied by
any of the resources it has requested or any of the messages or synchronizations it
has been waiting for. Most of the OR deadlock detection algorithms proposed in
the literature are basically derived from Dijkstra and Scholten’s notion of “diffusing
computation.” However, the structure of a diffusing computation does not directly
define a knot which is the necessary and sufficient condition for the existence of
an OR deadlock. Therefore, many efforts have been made to adapt the diffusing
computations to detect knots which cause OR deadlocks. Instead of using diffusing
computations, we take a new approach to directly develop efficient knot detection
algorithms in refinement steps. Since our approach can effectively recognize the
properties of knots, we are able to develop more efficient and practical algorithms

than the previous ones.

The first part of this chapter is the development of knot detection algorithms
and their extensions to real-time applications. First in Section 6.1, a formal def-
inition of the OR model deadlocks is given. Then, knot detection algorithms are
developed in three refinement steps, i.e., (1) knot detection in static systems (Sec-
tion 6.2), (2) knot detection in dynamic systems (Section 6.3), and (3) their exten-

sions to real-time applications (Section 6.4).

In this dissertation study we are also interested in applying the algorithms to
distributed real-time systems such as Ada environments. In Ada, the rendezvous
mechanism may cause OR model deadlocks. Also, timing constraints may be in-
volved in Ada rendezvous through delay statements. The detection of Ada ren-
dezvous deadlocks is a good application of the algorithms developed in the first

part of this chapter. Moreover, there are similarities between the detection of an

139

OR model deadlock and the detection of the termination of a group of cooperating
tasks in a distributed computation. In Ada, the terminate statements may be used
in association with rendezvous. This suggest that we could resolve two problems in
an integrated fashion. Therefore, in Section 6.5, we demonstrate how our real-time
knot detection algorithms are used in the detection of Ada rendezvous deadlocks

and task terminations.

In Section 6.6, we briefly summarize related work. And, finally, concluding

remarks are found in Section 6.7.

6.1 Formal Definition of the OR Model Deadlocks

In Chapter 2, we have briefly defined knots in terms of graph theory concepts
(Section 2.2) and used it in the analysis of the OR deadlocks. In this section, we
will formally study knots and the OR deadlocks in depth.

According to Chandy et al. [27], a nonempty set of tasks S is deadlocked in the
OR model (i.e., is communication-deadlocked) if and only if (a) all tasks in S are
blocked, (b) the dependent set of every task in S is a nonempty subset of S, and
(c) there are no messages, tokens, or synchronizations in transit between tasks in S.
Condition (c) is required when a consistent snapshot of the system state is taken
to construct a GRG. Suppose we have such a consistent GRG. The OR deadlock

condition can, therefore, be defined as follows.

Definition 6.1 (OR Deadlock) In the OR model, a nonempty set of ver-

tices(tasks/resources) S is deadlocked if and only if Vv € §, (1) RS(v) C S
and (2) |RN(v)| > 0.

Condition (1) means v can only reach vertices in S and condition (2) means the non-
isolated vertex v is not a sink. Obviously, any vertex which is in a knot is deadlocked.
However, according to Definition 6.1, a deadlocked vertex is not necessarily in a

knot. Actually, as we discussed in Section 4.3.2, knots are the deadlock core sets

140

3 _3 __3

1

for the OR deadlocks. It is a misconception to define a deadlock set S as a knot?.
Instead of using knots, Huang [68] has introduced the notion of a stable tie to
describe a OR deadlock set. The concepts of tie and stable tie can be defined as

follows.

Definition 6.2 (Tie) A tie T is a nonempty set of vertices such that the reachable

set of each vertex v in T is T or a subset of T. That is T is a tie if Vv €
T, the reachable set RS(v) C T.

Definition 6.3 (Stable Tie) A stable tie S is a tie in which there is no sink, i.e.,

Vv € S, |RN(v)| > 0.

It is clear that in addition to the condition (1) of Definition 6.1, which is ensured
by Definition 6.2, Definition 6.3 ensures condition (2). From the definitions stated

above, it is easy to see that the following properties hold:

Property 6.1 A stable tie K is a knot if there exists no S C K that is a tie.

Property 6.2 A stable tie contains at least one knot.

Figure 6.1 shows an example of knots, ties, and stable ties. There are two knots
A and B shown in the figure. Also, both knot A and knot B are stable ties which
contain no other ties. Stable tie C contains knot B. Stable tie D is the largest
stable tie in the picture and it contains all the stable ties and knots in the graph

including knot A, knot B, and stable tie C. In addition to stable tie D, the whole

picture is a tie.

From Properties 6.1 and 6.2 we can see that an OR model deadlock (which is
described by a stable tie) is broken only if all the knots it contains are detected and
resolved. Also, it is easy to see that a digraph is free of OR model deadlocks (i.e.,
free of stable ties) if and only if it is free of knots. Therefore, the detection and
resolution of OR deadlocks can be reduced to finding and breaking all knots in a
GRG.

1Liu (89] has pointed out this misconception found in Natarajan'’s paper [105].

141

asssdeney
Py LT
.y
-
-
-
-
-
.~
-

.
P
-
-
-
.
*
]

-
Y
-
.
-
.
.Q
-

soa
"""""
.
o*
o

oo
..........
P ‘e
-® .
- e,
- -
L hd

.
.

LI
.
.
.Q

essnmoaa,,
-
-
-

cewecong,
.
»
®

.
®

-
ane®
Stecnccccssses

sacevevenan,
- .
Svenenas"
PP
4 -
* e
.
- -
- .~..“Q..
. s
Stecance”

-
-
3 -
Lt o
L3t]

RS

""""""
“ S

o %
. -

-
- .
- -

- -
.....

-"

.
. o’
e

-

.......

Figure 6.1: An example of ties, stable ties, and knots

6.2 Knot Detection in Static Systems

We begin our development of knot detection algorithms from static systems. In
static systems, we assume there are no control messages in the underlying system,
which means a knot detection computation (KDC) is running on a static GRG. The
purpose of studying static knot detection is to concentrate on the properties and

principles of KDC'’s.

In the following sections, we first develop a basic knot detection algorithm
(Algorithm 6.0) for static systems. Algorithm 6.0 is not practical because it may
not terminate in finite time. However, Invariant 6.1 proven in this basic algorithm
serves as a principle of the knot detection of the subsequent algorithms. We then
begin the development of the first real algorithm (Algorithm 6.1) by focusing on
individual KDC’s. Algorithm 6.1 treats each KDC independently and guarantees a

142

3 3 3 __3 _3

31 _ 3

3

knot will be detected in finite time. Then, Algorithm 6.2 is developed to take into
account that multiple KDC’s may be executing concurrently. In Algorithm 6.2 a

“voting” mechanism is developed to allow a knot to be declared exactly once.

6.2.1 The Principles of Knot Detection

In this section, we investigate some of the principles of knot detections. A
basic knot detection algorithm (Algorithm 6.0) is derived from the definitions and
properties of knots in a static GRG. The primary concern here is how to find a
knot structure in a distributed GRG. Algorithm 6.0 is neither efficient nor practical
because it does not care if an existing knot could be detected in finite time (i.e., it
does not satisfy the progress concern). The only purpose of Algorithm 6.0 is to allow
us to present some fundamental principles for the development of the subsequent

algorithms.

In a distributed system, it is usually difficult to have a global view of the whole
system. The knot definition in Section 2.2, unfortunately, suggests the use of such
a global view which needs to examine all vertices in a system in order to find out
every knot in the system. However, a knot can be defined from the view point of a

vertex in a GRG. This is called the “local view definition” of a knot.

Definition 6.4 (Local View of a Knot) For a vertex d in a GRG, its reachable
set RS(d) is a knot if and only if RS(d) C T'S(d).

By using Definition 6.4 a knot may be identified from a vertex within the knot.
This can be accomplished by initiating a probe based KDC from a vertex d (called
d-computation)? if we want to determine if d is in a knot. The probes are propagated
along the directed edges of GRG. If a vertex v#d receives probes initiated by d, it is
in RS(d). The vertex v can then participate in d’s computation by propagating the

received probes to its neighbors RN(v). If u appears in a probe propagation thread

2Since such probe computations are concurrently initiated at different vertices, to distinguish
them from each other we need to identify each of them uniquely. Here, we use initiator’s identifi-
cation to name such a computation. This naming convention might be changed as the algorithms
get more complicated.

143

which comes back to d eventually, u can reach d (i.e., v € TS(d)). If the GRG is
fully searched by the probes (i.e., every member of RS(d) has been reached) and
all threads of probe propagations have come back to d (i.e., RS(d) C T'S(d)), d is
in the knot RS(d).

Again, it is difficult to keep track of all the probes propagated in a distributed
environment. Huang [68] suggested a probe strength computation which allows a
vertex to initiate a probe computation and keep track of it locally. In Huang's
algorithm, each probe carries a probe strength. A probe strength may split if its
carrier is propagated to several vertices. A probe strength may join at the initiator
if its carrier is propagated back. If the initiator sees the original probe strength
propagated back, all probes have come back. This idea leads to the following
algorithm.

Algorithm 6.0

Convention: A probe (d,v, s) carries three parameters. The first parameter
d is the ID of the probe initiator; the second parameter v indicates the
destination vertex; the third parameter s shows the current strength of the
probe. When a d-computation is initiated the total probe strength is set to
one. At the initiator d, a variable Sy is used to accumulate the returned back

probe strength.
In a static GRG, the following procedures can be used to test if a vertex d

is in a knot.

1. From d, a KDC (d-computation) is initiated as follows:
Sq = 0;
Send a probe (d,u,1/|RN(d)|) to every vertex u € RN(d).

2. For each vertex u # d which receives a d-computation probe (d,u, s), it

does:

Send a probe (d, v, s/|RN(u)|) to every vertex v € RN (u).

144

3

3

-3 __ 3 __3

3

R

-

3. After initiating a probe computation, the initiator d starts collecting
returned probes and accumulating the returned probe strength in Sq.

If the accumulated probe strength S, reaches one, a knot is found. &

The total probe strength is originally set to one and never enhanced (e.g.,
duplicated probes may create extra strength) or destroyed (e.g., discarded probes
may destroy the strength they carry)®. Throughout a d-computation, probes may
be (1) split and propagated to several vertices or (2) propagated back and joined
at the initiator. For the convenience of discussion, the operations in which a probe
strength splits or joins in Sy are assumed to be atomic in the sense that none of
these operations may be in transition whenever we check the probe strengths in
a GRG. Suppose at time ¢;, a snapshot of a d-computation is taken and a set of

probes {P;} is found. The strength of the probe P; is Sp,%. Also, in the same

snapshot, the strength at the initiator is S4%. The following invariant holds.

Invariant 6.1 Throughout a d-computation, the sum of all its probe strengths in

the system is always one. That is S4% + Yv; Sp,% = 1.

Proof: Although the probes may be processed in parallel at different vertices, the
assumption that these probes are processed in an arbitrary total order does
not affect the correctness of this invariant. With this assumption, we can
divide a d-computation into steps which are the snapshots of the probes in
the system after each probe is processed. The invariant can be proven by

induction as follows.

Step 0: Initially, S, = 0 and the probes sent to RN(d) are with strength
1/|RN(d)|. Therefore, S4* + Lv; Sp," = 0+ |[RN(d)|/|RN(d)| = 1.

| T -

Step i: Suppose at time t;, S5 + Yv; Sp;" = 1.

Step i + 1: From Step i to i + 1, a probe P,* may be

3Here, we are only talking about characteristics of Algorithm 6.0. The underlying communi-
cation subsystem is assumed reliable that no message might be lost or duplicated.

145

(1) sent to the initiator d:

Sa# = 54 + Sp*

Z Spjtu.x — Z Spit.' _ SP,‘“
Vi

or (2) sent to a vertex u # d:

S dti+1 = S dti
> Sp'* = 3 Sp"+ RN(u) x (Sp,"/RN(u))
vj Vigk
= Sgh 4+ ZS}:,-““ = S+ ZSP,-t‘ =1
vj vj
Consequently, S4% + >viSP; % =1 at any time ¢; in a d-computation.]

Suppose probes are grouped and propagated in steps as follows. At each step i:

1. Take a snapshot of the d-computation. The probes are found at a set of

vertices V;.

2. Propagate every probe found in V; to its reachable neighbors. That is, V;;; =
RN(V;), where RN(V;) = {w | v € V;,(v,w) € E}.

3. Repeat for the next step ¢ + 1.

At each step i, the explored reachable set RS%(d) is the set of vertices which have

been visited by at least one probe from the d-computation.

Lemma 6.1 New reachable vertices (RS*+!(d) — RS*(d)) may only be explored
by the probes sent out from the vertices in (RS*(d) — RS*~!(d)). That is

(RS**'(d) — RS'(d)) C RN(RS'(d) — RS*"'(d))

Proof: At each step i, thereis a set of newly explored reachable vertices (RS i(d)—
RS*-1(d)) C V. At next step i + 1, (RS**Y(d) — RS (d)) C Viyy = RN(V;),

146

3 13

3 3 3

_3

—3 ~—3 ~3 —3 ~T3 713 3 ~ 3 ~ 3 ~ 3 ~—3 7~ 3 T3 T3 — 3 T3 "3 T3

— 3

which, in turn, means the newly explored set, i.e., (RS*+(d) — RSi(d)), is

included in the set of vertices which can be reached from V..

Suppose a vertex v € (RS**!(d) — RS*(d)) is reachable from u € (V; —
(RS*(d)— RS*"!(d))). Since u is not newly explored at step 7, all its reachable
neighbors should have been visited at least once by the time of step i. This
implies v ¢ (RS**(d) — RS'(d)) which is contradictory to the assumption.
Therefore, there is no vertex v € (RS*+!(d) — RSi(d)) which is reachable
from (V; — (RS!(d) — RS*-1(d))).

Consequently, every member of (RS**!(d) — RSi(d)) is a reachable
neighbor of (RS*(d) — RS*~!(d)). In other words, (RS**'(d) — RSi(d)) C
RN(RS(d) — RS*-1(d)). -

One problem with Algorithm 6.0 is that it may not terminate in finite time.
For example, Figure 6.2 shows a knot in a GRG. If Algorithm 6.0 is initiated at
the vertex 1, 2, 8, or 10, the detection computation will terminate in finite time.
However, if the computation is initiated at the vertex 18, the probe strength will

always split at vertex 10 and a propagation thread will involve an infinite loop.

Figure 6.2: Example of an infinite loop in a knot

We will discuss the remedies of this problem in Section 6.2.2. Although
a d-computation may be executing perpetually due to infinite loops, based on
Lemma 6.1 and the fact that the size of a GRG is finite the complete reachable
set RS(d) could be explored (i.e., visited at least once by d-computation probes) in

finite time.

147

Lemma 6.2 By forward propagation of the probes initiated from d, every member

of the RS(d) is guaranteed to be reached in finite time. m’]
Proof: The construction of the reachable set RS(d) by Algorithm 6.0 can be
recursively described as follows. ’_}
Step 0: Starting from RS°(d) = 0. rm}
Step 1: Probes are sent to d’s neighbors RN(d), that is
RS'(d) = RN(d) = {u | (4,3) € E))
Step i: Suppose probes have visited the set RS*(d). j
Step i +1: By Lemma 6.1,
RS*'(d) = RS*(d) U RN(RS*(d) — RS*"'(d))
Step co: Following these steps, RS(d) = RS*(d).
According to the algorithm, no vertex may be removed from the visited o
reachable set, that is, Vi, RS'(d) C RS**!(d). Also, the size of RSi(d) is
upper bounded by the number of vertices in GRG (i.e., |V|). Therefore, it =
is not true that, Vi, RS*(d) C RS**!(d). Consequently, within a finite steps,
say k steps, the set may stop growing, that is, "7

.-+ C RS*'(d) C RS*(d) = RS**'(d)

Since RS**!(d) — RS*(d) = 0, RS*+?(d) = RS**'(d) U RN(0) = RS**1(d).
By induction, RS(d) = RS*(d) = RS*(d). Therefore, RS(d) will eventually ™
be constructed in a finite number, say k, steps. Assumption 4.4 assures that

these finite number of steps can be done in finite time. | ™

Based on Invariant 6.1 and Lemma 6.2, we can prove following theorem which

provides a local condition at the initiator d of a KDC when a knot is found by the

computation.

Theorem 6.1 A knot RS(d) is found if a d-computation observes Sg = 1.

148

.3

Proof: By Invariant 6.1, Sq = 1 means Yy;Sp; = 0. Since each probe should
carry a positive valued strength, >v; Sp; = 0 implies {P;} = 0, which, in
turn, means all probes are propagated back to the initiator and the com-
putation has come to the end. Also, by Lemma 6.2, all vertices in RS(d)
are guaranteed to be visited at least once by the probes. Consequently, by
the time Sy = 1, all the vertices in RS(d) are visited at least once and
all the probes are propagated back to the initiator, which, in turn, implies
RS(d) C TS(d). According to Definition 6.4, a knot RS(d) is found since
RS(d) C TS(d). o

Although Algorithm 6.0 is not practical due to the possible infinite loops in
knots, the idea of declaring a knot as that described in Theorem 6.1 serves as the

foundation of the algorithms developed in the following sections.

6.2.2 Knot Detection in Finite Time

There are at least two strategies to remedy the infinite loop problem from

which Algorithm 6.0 suffers:

1. To remember the history of the probe propagation threads so that any loop

could only appear once in a propagation thread.

2. To send probes backward to mark the vertices which belong to the T'S(d) so
that a vertex v € T'S(d) may send a forward probe which has been repeatedly

revisiting u directly back to the initiator d to break the infinite loops.

To realize the first strategy, each probe has to keep track of its traveling thread
history. The traveling thread is analyzed at each vertex when a probe is received.
If there are loops in a probe’s history, the information can be used to avoid the
repetition of the same loop. For example, a probe which has traveled (d — -+ —
@ = b—c— a— b— c) wil not be forwarded to vertex a again to avoid the

repetition of the loop (@ — b — ¢ — a).

149

The second strategy is basically inspired by Lemmas 6.1 and 6.2. Although
a d-computation may not terminate in finite time, the RS (d) could be completely
reached by the forward probes in finite time. For the convenience of discussion,
let’s classify probes into two categories “primary” and “non-primary.” In a d-
computation, the first forward (or backward, as we are going to use them in this
algorithm) probe received at a vertex u is recognized as a primary forward (or
backward) probe by u; otherwise, it is a non-primary one. The vertices in (RS*(d)—
RS'!(d)) are newly explored at step ¢ which, in turn, means they have just received
the first probe from d-computation. Therefore, the probes found in (RS*(d) —
RS*-!(d)) are the primary forward probes. As described in Lemmas 6.1 and 6.2,
all vertices in RS(d) could be reached by the primary forward probes in finite time.
Similarly, in finite time, all vertices in T'S(d) could be reached by the primary
backward probes. Therefore, in terms of exploring the sets RS(d) and T'S(d), the
propagation of non-primary probes is not necessary. The idea behind the second
strategy is that a repeatedly received probe is a kind of non-primary probe which
can be eliminated from further propagation in order to break the endless looping.
Such a non-primary forward probe may be directly sent back to the initiator to

carry out the probe strength computation if necessary.

Both strategies have their advantages and disadvantages. We adopt the sec-
ond strategy for the following reasons. First, the delay of declaring a knot is
in general longer in the first strategy than in the second one. This is because
the second strategy allows a detection computation to execute in opposite di-
rections concurrently. For example, if a probe computation is initiated in Fig-
ure 6.2 at vertex 18, the longest propagation thread by applying the first strategy
is (18851 —-2—-58—-510—->1—2—8— 10 — 18). The vertex 18 may declare
the knot after 9 propagation delays. On the other hand, if the second strategy is
applied, the longest thread will be (18 -1 —»2 — 8 — 10 — 1 — 18). It takes 5
hops to revisit vertex 1 and one more hop to directly go back to the initiator 18.
Since the backward probe takes 4 hops to reach vertex 1, it is very likely that when a

forward probe revisits vertex 1, 1 has already been marked as a member of T'S (18);

150

3 _3 __3

— 3

3 3 __3

3

[

therefore, the revisit probe (a non-primary probe) can be immediately forwarded
back to 1. Consequently, vertex 18 may declare a knot as soon as 6 propagation
delays. Another reason to adopt the second strategy is that the backward probes
can be used to reduce the number of vertices which report the existence of a knot to
be exactly one. We will discuss this in detail later in Section 6.2.3. The improved

algorithm which detects knots in finite time is as follows.

Algorithm 6.1

Convention: A probe (d,v,s,dir) carries four parameters. The first three
parameters d, v, and s are the same as those in Algorithm 6.0. The fourth
parameter dir defines the propagation direction of the probe. A dir can be
either forward (F) or backward (B). The forward propagation F-probes are
the same as those probes used in Algorithm 6.0. The backward propagation
B-probes are used to mark the T'S(d) of the initiator d. The probe strength
computation is carried out by the F-probes and is ignored (marked “z”
which means don’t care) in the B-probes. At each vertex u the probe infor-
mation is recorded separately for each d-computation as follows. Two flags
F? and B¢ are used to indicate if u has received the F- and B-probes from
d-computation, respectively. A variable S4 at u is used for the temporary
accumulation of the received F-probe strength from d-computation. Initially

when a GRQ is constructed, Vd,u € V, F? := FALSE, B} := FALSE, and
Sd .= 0.
In a GRG, a KDC (d-computation) is initiated at each vertex d € V as
follows.
1. Initialization phase of a d-computation at vertex d:
Send a B-probe (d,u,z, B) to every vertex u € TN(d);
Send an F-probe (d,v,1/|RN(d)|, F) to every vertex v € RN(d).
9. For each vertex v # d, if v receives an F-probe (d, v, s, F') it does:

if (F¢ = FALSE) then -- it is a primary F-probe
F¢ .= TRUE;
Send an F-probe (d,w,s/|RN(v)|, F) to vertices w € RN(v);

151

else -- it is not a primary F-probe
if (B¢ = TRUE) then
-— a primary B-probe has been received
Send an F-probe (d,d, s, F) to the initiator d;

else -- no B-probe has yet been received
—— Accumulate the strength until a B-probe is received.
§3 := §¢ 4+ s
end if;
end if.

For each vertex u # d, if u receives a B-probe (d,u,z, B) it does:

if (B2 = FALSE) then -- it is a primary B-probe
B¢ .= TRUE;
Send a B-probe (d,w, z, B) to every vertex w € TN(u);
if (S > 0) then
—— non-primary F-probes have been received
Send an F-probe (d,d, S%, F) to the initiator d;

53 .= 0;
end if;
else -- it is not a primary B-probe
null; -- discard the received probe

end if.

After initiating a KDC, the initiator d starts collecting returned d-

computation F-probes and accumulating the returned probe strength

in 5§. If the accumulated probe strength 53 =1, a knot is found.

In Algorithm 6.1, the primary probes are distinguished from the other probes,
and only primary probes are fully prbpagated in a d-computation. In the proof of
Lemma 6.2, (RS*(d) — RS*~'(d)) defines a set of vertices which are newly explored
by the first received forward probes. In other words, an F-probe may be found in
(RS%(d) — RS*-(d)) if and only if it is a primary one. Since the proof of Lemma 6.2
is based on the propagation of primary forward probes, it will still hold if all the
non-primary forward probes are ignored when received. Thus, Lemma 6.2 can be

rephrased for Algorithm 6.1 as follows.

152

3

i
i

F
|

Lemma 6.3 In a d-computation, every member of the RS(d) is gnaranteed tn he

reached by a primary F-probe in finite time.
Similarly, the following lemma holds for the B-probes.

Lemma 6.4 In a d-computation, every member of the T'S (d) is guaranteed to be

reached by a primary B-probe in finite time.

Since non-primary probes are no longer allowed to continue propagating in the
GRG, infinite loops can be eliminated. Since the size of a static GRG is finite, with

Assumption 4.4 the following lemma holds.

Lemma 6.5 In a static GRG, any d-computation as described by Algorithm 6.1

will terminate (i.e., no more probe propagation activity) in finite time.

Proof: By Algorithm 6.1, in a d-computation, each vertex u # d in GRG could
appear at most once in the propagation thread of a primary F-probe and at
most twice in a non-primary F-probe thread. Similarly, each vertex u # din
GRG could appear at most once in a primary B-probe thread and at most
twice in a non-primary F-probe thread. Since the size of a static GRG is
finite, the length of any probe (primary or not) thread will be finite. The
lemma is therefore proven with the assumption that each propagation delay

is finite. [|

In the worst case, the longest probe propagation thread would be a probe which
has traveled through a directed Hamiltonian path, if such a path exists in GRG,
revisits a vertex, and then is sent back to the initiator. Therefore, the length of

probe thread is upper bounded by |V| + 1.

For the B-probe computation, the goal is to mark every member of T'5(d).
Since this goal can be accomplished by the primary B-probes, the non-primary

B-probes, if received, can be discarded immediately.

For the F-probe computation, the goals are twofold (1) to explore every mem-
ber of RS(d) and (2) to return to the initiator d to carry out the strength computa-
tion. The first goal can be accomplished by the primary F-probes; therefore, there

153

is no need to continue the propagation of the non-primary F-probes. To accomplish
the second goal, all F-probes (primary and non-primary) are required to get back
to d if they have been traveling within the range of T'S(d).

Lemma 6.6 A knot RS(d) is found if and only if a d-computation terminates
with 5 = 1.

Proof: The same as the probes in Algorithm 6.0, F-probes in Algorithm 6.1 only
split or join at the initiator. Thus, Invariant 6.1 is still true for Algorithm 6.1
and, similarly, % = 1 means all F-probes are propagated back to the initia-

tor.

By Lemma 6.3 and 6.5, in finite time, the whole RS(d) will be ex-
plored by the primary F-probes. Similarly, by Lemma 6.4 and 6.5, in finite

. time, the whole T'S(d) will be marked by the primary B-probes. Also, by
Lemma 6.5, within finite time, the d-computation will terminate which, in
turn, implies all non-primary F-probes are either propagated back to d or
simply stopped at a vertex v ¢ T'S(d). Therefore, in finite time, when
d-computation terminates, both RS(d) and T'S(d) are completely 'explored

and all the non-primary F-probes are propagated back to d if necessary.

A primary F-probe will eventually reach the initiator d if and only if
every vertex it has visited is in 7S(d). A non-primary F-probe is directly
sent back to its initiator d if and only if the vertex u it is visiting is a
member of 7'S(d) (which also implies all the vertices the probe has visited
are in TS(d)). Also, all the vertices that can be reached by the F-probes
define the set RS(d). Therefore, in a d-computation all F-probes (primary
and non-primary) may eventually find their way back to the initiator d if and
only if RS(d) C T'S(d). Consequently, a d-computation may terminate with
S¢ = 1if and only if RS(d) C T'S(d). Since by Definition 6.4 RS(d) C T'S(d)
defines a knot RS(d), the lemma is proven. |

Following the above lemmas, we can conclude that:

154

Theorem 6.2 In a static system, if a computation described in Algorithm 6.1 is
initiated at every vertex in GRG, (1) all knots, if any, will be detected in
finite time and (2) there will be no false detection of any knot.

Proof: Suppose there exist a knot K which contains at least a vertex d. Since
Algorithm 6.1 is initiated at every vertex in GRG, it must be initiated at
d. By Lemma 6.6, knot K is guaranteed to be declared as RS(d) (when
S¢ = 1). Lemma 6.5 assures such a d-computation will detect the knot
RS(d) in finite time. This proves part (1) of the theorem. Since the system
is static, whenever a vertex d reports S = 1, by Lemma 6.6 there exist a
knot RS(d). This proves part (2) of the theorem. Therefore, all knots and
only genuine knots will be detected in finite time if Algorithm 6.1 is applied

to every vertex in a static GRG. |

6.2.3 Single Detection of Knots

In Algorithm 6.1 a KDC, say a d-computation, is required to be initiated at
every vertex d in a static GRG in order to detect all the knots that exist in the graph.
Each d-computation is executed independently and will declare a knot K = RS(d) if
it exists. In other words, knot K will be declared multiple times by all the vertices
d € K. The disadvantages of the multiple detection of a single knot is at least
twofold: inefficiency and extra synchronizations required for deadlock recovery. It
is inefficient in the sense that redundant messages are passed around to detect one
knot many times. Also, since a knot may be detected by all its members, extra
synchronizations are needed among the members to reach a consensus as when
and how to recover from the deadlock. Yet another unbounded storage problem
might occur later when the algorithm is extended to deal with dynamic systems. In
Algorithm 6.1 the sizes of the storage for F2, B3, and S? at each vertex v should be
as large as the number of possible concurrent d-computations in a dynamic system.
The size of a dynamic GRG could be arbitrarily large, and the execution time of the

d-computation could be arbitrarily long. Although a garbage collection mechanism

155

may be used to clean up the out-of-date information stored in these buffers, their

required sizes are still unbounded.

A widely used idea for the single detection of knots is to assign a unique ID
(or priority, timestamp, etc.) to each vertex, say d, and its initiated d-computation
(e.g., [68, 105], also [35, 84, 100, 114, 118, 126] have proposed similar methods for
single detection of cycles). Whenever two d-computations encounter each other (i-e.,
their probes meet at a vertex), according to certain probe propagation rules which
compare probe ID’s, one of them may be dropped from further propagation. Sup-
pose there is a knot K in GRG, eventually one and only one of the d-computations
initiated at the vertices d € K is allowed to proceed to declare K. The goal of
this section is to develop similar probe competition rules in order to refine the knot
detection Algorithm 6.1 so that knots can be declared exactly once. Also, since only
one d-computation is the final winner to declare a knot, one set of local storage at
each vertex is sufficient to support the algorithm. This will help in eliminating the
unbounded storage problems which might emerge in the next two algorithms for

dynamic systems.

Each time that a probe competition rule is applied at a vertex v, based on v’s
local knowledge of the received probe ID’s, a decision is made if a received probe
should be dropped from further propagation. The effects of such a decision, however,
are not only local to v but also are widely spread in that they may reach other
places and affect other d-computations. Therefore, we need to carefully examine
the behavior of probe propagations and competitions to develop a set of rules so

that the effect of executing these rules is exactly a single detection of knots.

First, let’s examine different types of d-computation competitions. A vertex v
is said to be “in-knot” if its RS(v) defines a knot; otherwise, v is “out-knot.” A
d-computation is an “in-knot” computation if it is initiated at an in-knot vertex;
otherwise, it is an “out-knot” computation. According to Algorithm 6.1 a knot is
supposed to be detected by its in-knot d-computations. Based on this classification,

the following types of compefitions are possible:

156

3 3 _3 __3

-3

1 1] 3 1]

r

1. A competition among the in-knot d-computations may be:

(a) an intra-knot competition: occur at a vertex v in a knot K, where

all the involved d-computations are initiated in K, or

(b) an inter-knot competition: otherwise (i.e., the competition occurs

at an out-knot vertex or its involved d-computations are initiated in

different knots).
2. A competition among the out-knot d-computations is referred to as an out-
knot competitions.

3. A competition between in-knot and out-knot d-computations is referred to as

an in-knot-out-knot competition.

The following properties help us understand where and how the results of these

competitions might reach and affect other d-computations. By Definition 6.2, any

‘member of a tie may only reach other members of the same tie. Therefore, we have

the following property.

Property 6.3 There is no path from a vertex in a tie to a vertex outside the tie.

Since a knot is a special type of stable tie (see Property 6.1), Property 6.3 is also
valid for knots.

Property 6.4 There is no path from a vertex in a knot to a vertex not in the

knot.

Also, Property 6.1 implies that a knot contains no other knots. Therefore, it is
easy to see that (1) there is no path from a vertex in a knot to a vertex in another
knot and (2) there is no common part that may be shared between any two knots.

Consequently, we have the following “Isolation Property” for the knots.

Property 6.5 (Isolation) Knots do not overlap and cannot be reached from each

other.

Although Property 6.4 tells us that there are no outgoing paths from knots,
there still may be incoming paths to knots. In Algorithm 6.1, for any knot, there are

157

no outgoing F-probes but there may be incoming ones. On the other hand, for any
knot, there are no incoming B-probes but there may be outgoing ones. Also, the
Isolation Property implies that the inter-knot competitions may never happen at
an in-knot vertex. Therefore, the only situation in which an inter-knot competition
might occur is one where the B-probes initiated in-knot meet with each other at
an out-knot vertex. Since B-probes may never enter any knot, the effects of such
inter-knot competitions (i.e., carried by the survived B-probes) may never reach and
affect any knot. Since in Algorithm 6.1 only ‘the in-knot probe propagations are
the necessary and sufficient operations for knot detections, the effects of inter-knot
competitions can be ignored. This result inspires the idea that each knot may be

treated independently by applying the following rules:

Rule 6.1 Prevent F'-probes from entering into any knot from outside of that knot.
By applying this rule, there will be no in-knot-out-knot competitions at in-
knot vertices. And the result of out-knot and in-knot-out-knot competitions
occurring at the out-knot vertices will have no chance of reaching in-knot
vertices. Therefore, the effects of both out-knot and in-knot-out-knot com-

petitions can be ignored.

Rule 6.2 Vote for a unique in-knot d-computation to complete the detection com-
putation and declare the existence of the knot. In the following algorithm
we choose to let the computation with the larger ID to continue whenever
two d-computations meet at a vertex. Therefore, by applying this rule, the
intra-knot competitions in a knot K, if it exists, will vote for a d-computation

with the largest ID to complete its computation and declare the knot K.

Note that the ID associated with each d-computation may be arbitrarily as-
signed. The only requirement is that each ID be unique. Here, in Rule 6.2, we
may also choose the d-computation with the smallest ID to win the competition.
However, in the dynamic systems to be discussed in the following sections, an ID for
a d-computation is required to reflect its initiation logical timestamp. A commonly
used method is to increment a logical time counter before its value is assigned to a

new d-computation. When two ID’s are compared, one of the concerns is to decide

158

which probe carries the more up-to-date information. Consequently, the probe with

the smaller ID is usually the victim to be ignored.

Also note that by Rule 6.2, we can always let a d-computation continue if it
has a larger ID, but we may not be able to drop a d-computation with a smaller ID
immediately if it has arrived at a vertex earlier and has already been propagated.
However, in the algorithm presented later, each vertex is assigned an ID, say d, and
a presumed d-computation a priori. The total effect of the a priori assigned ID is

that all the computations with a smaller ID will be dropped eventually.

There is no straightforward way of realizing Rule 6.1 because knots themselves
are the targets to be detected. Before all knots in a GRG are found, we cannot
say a probe is currently “out-knot” (it might be in an undetected knot) nor can
we prevent such a “out-knot” (suppose it is really out-knot) from being propagated
into any knot (there might be some undetected knots). However, Rule 6.1 may
be accomplished by applying a necessary condition to the existence of a knot. By
Definition 6.4, if a vertex u is in a knot K, it must be in a cycle because u € K =
RS(u). In other words, a vertex is out-knot if it is out-cycle. A cycle is a necessary
(but not a sufficient) condition of the existence of a knot. If F-probes are prevented
from entering into any cycle from outside of that cycle, they will never enter into
any knot. In a d-computation, if an F-probe is sent to a vertex u where a B-probe
has visited, both the F-probe and u are currently in the same cycle. Therefore,

Rule 6.1 can be modified and realized as:

Rule 6.1-A Prevent F-probes from entering into any cycle from outside of that
cycle. In other words, in a d-computation an F-probe will only be propagated

to where a primary B-probe has visited.

Rule 6.1-A also suggests that the voting process of Rule 6.2 is done primarily by
the B-probes. This is because at any vertex an F-probe may only be received after
a matched B-probe (i.e., with the same ID which, in turn, means from the same

d-computation) is received. The competition among d-computations, therefore, is

159

)
:
primarily done by comparing B-probe ID’s. A refined version of Algorithm 6.1,
which detects every knot in a GRG exactly once, is as follows. j
Algorithm 6.2 -
Convention: A probe (d,u,v, s, dir) means it is initiated at d and is currently ‘
transferred from u to v with strength s and direction dir. At each vertex u
in the GRG the probe information for the currently involved d-computation j
is recorded as follows. A variable B, is used to store the largest B-probe ID -
that has been known to u. All the smaller B-probe ID’s are discarded, which '-?
means u will be only involved in the largest d-computation that has been -
known to it. Also, there is a flag F, to indicate that if a primary F-probe ’_}

from the involved d-computation has been received. If a primary F-probe is
received at u, its strength is divided by the number of outgoing edges | RN(d)|
and is temporarily stored at the buffer P, for further propagation. Also, for i,
each outgoing edge (z — v) at u, the largest B-probe ID received along the ‘_x
edge is stored in O,. Once again, at the initiator d of each d-computation,
a variable Sy is used to accumulate the strength of the returned probes.
Originally when a GRG is constructed, each vertex d € V is presumably
involved in its own d-computation; that is, initially, B := d, Fy := TRUE,
Py :=1/|RN(d)|, and Sy := 0. Also, initially, ¥(u,v) € E, OY := 0.

S

In a GRG, a KDC (d-computation) is initiated at each vertex d € V as

follows.

|

1. Initialization phase of a d-computation at vertex d:

if (d = By) then -- dis ready to initiate a d-computation m’
Send a B-probe (d,d, u,z, B) to every vertex u € TN(d).
else -- d has already received a larger B-probe ID
null; -- not to initiate another d-computation (6.2.1) '_]
end if;
160 ’—l

1

i

2.

For each vertex w € V, if w receives a B-probe (d,v,w,z, B) from v it

does:
if (d > B,) then -- itis a primary B-probe with a larger ID
By := d; F, := FALSE; P, :=0; OY :=d;........ (6.2.2)
Send a B-probe (d,w,u,z, B) to every vertex u € TN(w);

elsif (d = B,) then -- itis a non-primary B-probe

0% := d; -- B-probe ID’s are propagated in ascending order

if (Fy = TRUE) then -- a matched F-probe is ready

Send an F-probe (d, w,v,Py, F)towv; (6.2.3)

end if;
else —- smaller ID

null; -- discard the received probe (6.2.4)
end if;

For each vertex w # d, if w receives an F-probe (d,u,w, s, F') from u it
does:

if (d = By) then —- theID is match
if (Fy = FALSE) then -- itis a primary F-probe

F, := TRUE; P, := s/|[RN(w)|; ...cvvvvernienn.n. (6.2.5)
Send an F-probe (d,w, v, Py, F) to every vertex v
where OV =d;oooiiiiiiiiiiiii i (6.2.6)

else -- it is not a primary F-probe

Send an F-probe (d,w,d,s, F) to the initiator d; (6.2.7)
end if;

else -- the ID is not match

null; -- discard the received probe (6.2.8)

end if;

161

4. After initiating a probe computation, the initiator d starts collecting
returned F-probes (d,v,d, s, F') and accuml;lating the returned probe
strength in S; as long as the d-computation it is involved is still the
one initiated by itself (i.e., By = d). If the accumulated probe strength
Sq = 1, a knot is found. <

In Algorithm 6.2, Rule 6.1-A requires every vertex u to keep track of the
largest B-probe ID received along each of its outgoing edges. In real systems,
this information can be easily kept in the task and resource control tables. For
brevity, we use O to store the information for each outgoing edge at u. Even
in dynamic systems, the number of outgoing edges of u is fixed once it becomes
blocked. Therefore, unlike the storage for F¢, BZ, and S¢ at each vertex v in
Algorithm 6.1, the size of the OY is known when u becomes blocked. Also, O} is
always updated whenever a B-probe is received through the edge (v — v) until »

leaves the blocked state. No clean up mechanism for O} is necessary.

Algorithm 6.2 is modified from Algorithm 6.1 based on the requirements of
Rules 6.1-A and 6.2. Comparing these two algorithms, Algorithm 6.2 differs from
Algorithm 6.1 as follows.

1. The only situations where an F-probe may be propagated are at lines (6.2.3),
(6.2.6), and (6.2.7). Line (6.2.7) is used to handle non-primary F-probes.
A primary F-probe is propagated from w to v only when (1) w receives a
non-primary B-probe from v while a local matched primary F-probe is ready
(see line (6.2.3)) or (2) w receives a primary F-probe while a matched B-probe
has been received earlier from v (see line (6.2.6)). These observations provide
enough evidence that Rule 6.1-A is faithfully realized; and the differences can

be summarized as

(a) Out-knot F-probes are stopped before entering into any cycle from out-

side of that cycle.

162

.

-3

3 _3 __3

A 3 3 3

3

(b) The propagation of an in-knot F-probe from u to v may be postponed

until a matched B-probe is received at v.

2. Line (6.2.1) asserts that a d-computation should not be initiated if a larger
ID is known (i.e., from a reachable vertex). If a d-computation is initiated, its
computation may be interrupted at the following situations: (1) A received
probe is discarded if its ID is smaller than a previous one (see lines (6.2.4) and
(6.2.8)). (2) At a vertex, its currently involved d-computation is overridden
if a larger B-probe ID is received (see line (6.2.2)). To summarize, a d-

computation may be interrupted

(a) at the initialization stage when the initiator d find itself is currently

involved in a detection computation with an ID B4 > d, or

(b) when its F- and B-probes are overridden/discarded at vertices w where

a larger B, is found.

These differences are due to the realization of Rule 6.2. The correctness of
Lemmas 6.7 and 6.8 in the following proves that Rule 6.2 is faithfully realized.

In Algorithm 6.2 a probe strength is split and assigned to several “new” F-
probes whenever an F-probe is to be propagated to several vertices (see line (6.2.5)).
Although not explicitly stated in the algorithm code, the “new” F-probes are as-
sumed to be temporarily “stored” at the vertex where the “old” one split. Some of
the new F-probes may be propagated immediately at line (6.2.6) while the other
F-probes may be waiting until line (6.2.3). The only situation that results in new
F-probe being propagated occurs when a matched B-probe has been received from
the edge on which the new F-probe is supposed to be sent. Although the algorithm
does not keep track of which outgoing edges have propagated a new F-probe, there
will be no duplicated probe strength propagated through any single edge. This is be-
cause in a d-computation, at most one B-probe may be propagated along each edge
in a GRG. Consequently, suppose there are no discarded probes in a d-computation

(i.e., d-computation is the winner under Rule 6.2), Invariant 6.1 is preserved by

163

Algorithm 6.2. The following Lemmas are proven based on the differences listed

above and the conditional Invariant 6.1 preserved by Algorithm 6.2.

Lemma 6.7 By Algorithm 6.2 a knot, if it exists, will be detected at least once
in finite time.

Proof: By the Isolation Property, knots do not overlap and cannot be reached
from each other. Therefore, we can consider each knot independently. As
we have discussed earlier, for any knot, F-probes may be coming in and
B-probes may be going out. According to the difference 1(a) listed above,
Rule 6.1-A prevents F-probes from entering any cycle from outside of that
cycle which, in turn, can effectively prevent out-knot F-probes from entering
any knot from outside of that knot. Also, the B-probes which exit from a
knot can never come back or reach any other knot, hence, can be ignored.
Consequently, we can restrict the proof within the scope of a single knot, say

K, if it exists.

Sl;ppose K is a non-empty set which is composed of {dy,d,,...,dm,dn},
where the vertex ID’s d; < d3 < --+ < din < dn. The set of d-computation
ID’s which may be seen at any vertex in K is exactly the set K itself because
they may be propagated by B- and F-probes to anywhere in K. If we try to
initiate a detection computation for each vertex in K, at least d,, will succeed
because none of the other d-computation ID’s in K is larger than d,,. Since d,
is the largest ID in K, its probe propagations will never be interrupted by an
even larger ID. Therefore, Rule 6.2 does not affect the d,,-computation which,
in turn, means Invariant 6.1 holds for the d,-computation by Algorithm 6.2.

Suppose, for comparison, another d,-computation is initiated and exe-
cuted independently by Algorithm 6.1. The only difference left is that, in
Algorithm 6.2, due to Rule 6.1-A the propagation of an F-probe from d; to
d; may be postponed until a primary B-probe is received at d;. Since the
size of K is finite, primary B-probes can reach any vertexin K in finite time
(Lemma 6.4 applies here). The extra delay due to Rule 6.1-A, therefore, is
finite. By Theorem 6.2, Algorithm 6.1 guarantees that d,, can declare knot K

164

A

3 __3

3 3

3

.3 3

in finite time. Taking this extra finite delay into account, d, can still declare
knot K in finite time by executing Algorithm 6.2. Consequently, knot K will
be declared at least by d, in finite time. [|

Lemma 6.8 By Algorithm 6.2 a knot, if it exists, will be detected at most once.

Proof: This Lemma can be proven by contradiction. Following from the proof
of Lemma 6.7, knot K should at least be declared by d,,. Suppose, in K,
there is another d;-computation initiated at d; < d, may also declare the
knot K. Every vertex in K, including d,, will be visited by B- and F-probes
from d;-computation in finite time. Initially Bg, equals d, and may only be
increased whenever a higher ID is received. All the B-probes from the d;-
computation will be discarded at d, because its ID d; < d, < By,. Therefore,
no F-probe from d;-computation is able to reach d,, (Rule 6.1-A). At least
one primary F-probe of d;-computation will be stopped before reaching d,,.
Consequently, Sy, will never reaches one which, in turn, means d; will never
declare the knot K. |

Combine Lemmas 6.7 and 6.8, we can conclude the following theorem.

Theorem 6.3 In a static system, if we initiate a computation described in Algo-

rithm 6.2 at every vertex in GRG,

(1) all knots, if any, will be detected exactly once in finite time and

(2) there will be no false detection of any knot.

Proof: The statement (1) of the theorem is true due to Lemmas 6.7 and 6.8. In the
proof of these two lemmas, Invariant 6.1 holds for the d,-computation (the
very one which declares knot K) by Algorithm 6.2. Similar to the reasoning
of Lemma 6.6, a knot K = RS(d,) exists if d,-computation terminates with
S4, = 1. This proves part (2) of the theorem. [|

165

6.3 Knot Detection in Dynamic Systems

First,. let’s summarize characteristics of dynamic systems in which OR dead-
locks may be found. In a dynamic system the GRG may be updated dynamically
while the knot detection computations are running. In such a DGRG, a vertex is
in the “waiting” state if there are outgoing edges; otherwise, it is “free.” A task
vertex is waiting if it is blocked and is waiting for its outstanding requests to be
granted. A resource vertex is waiting if all its units are assigned and is waiting
to be relinquished by the holders. On the other hand, a task vertex is free if it
is active, and a resource vertex is free if there are available units. A set of edges
{{v — v;)} are added to the DGRG if a vertex u starts to wait for a set of vertices
{v:}. Examples are: a task vertex starts waiting when initiating a set of requests but
none of the requests may be satisfied immediately; a consumable resource vertex
starts waiting for a set of producers to satisfy the request when it is created; and a
reusable resource vertex starts waiting for its holders to release its units when the
last unit is assigned. Once u becomes waiting, no more outgoing edges from u will
be added to the DGRG. One of the outgoing edges {(v — v;)} may be deleted by a
free vertex v; which, in turn, will cause the waiting vertex u to delete its whole set

of outgoing edges.

Since in a knot, vertices are waiting for each other and none of them is free to
satisfy (i.e., to delete) others’ waiting needs (i.e., outgoing edges), the whole group
of waiting situations will persist. Therefore, we have the following Stable Property

for knots in dynamic systems.

Property 6.8 (Stable) Once a knot is formed in a dynamic system, it persists

until it is detected and resolved.

The stable property is the foundation of the methodology developed in Chapter 4.
In the following sections, synchronization mechanism of dynamic algorithms are
developed based on the guidelines suggested by that methodology. Algorithms 6.1
and 6.2 are then extended for dynamic systems (Algorithms 6.3 and 6.4).

166

—3

3 2

3 3

3 3

3 __3

.3

6.3.1 A Guaranteed Knot Detection Algorithm for Dynamic Systems

In this section, we develop a dynamic algorithm Algorithm 6.3 based on Algo-
rithm 6.1 using the methodology suggested in Chapter 4. Due to an efficiency con-
cern, a minor improvement is then made in Algorithm 6.3. Following the guideline
described in Section 4.4.2.2, a modified version of Algorithm 6.1 (Algorithm 6.1')
is used to simulate the projected KDC’s due to Algorithm 6.3. The correctness of
Algorithm 6.1’ is analyzed without a formal proof since it is very similar to that
of Algorithm 6.1. The developed Algorithm 6.3 should satisfy both Spatial and
Temporal consistency criteria and each of its KDC’s should be equivalent to a legal
execution of Algorithm 6.1’. Similar to Algorithm 6.1, both Algorithm 6.1’ and
Algorithm 6.3 allow an individual KDC to be treated independently without any
interference from other KDC’s. Therefore, in the following discussions, we focus on

the interactions between a KDC and the underlying DGRG.

To maintain the meaningfulness of a KDC, Theorem 4.1 requires that at each
vertex (1) the detection of white edges should be avoided and (2) the connectivity
of the adjacent operations should be ensured. We will first deal with the problem of
white edges. The connectivity concern will be discussed in the cases when probes

are propagated.

In the OR deadlock model, an edge may be deleted in the forward direction
(e.g., a waiting vertex may become free after it is granted one of its requests and,
then, withdraw all other requests) or in the backward direction (e.g., a free ver-
tex may grant other’s requests). Therefore, both F-probes and B-probes may be
received from white edges. Based on Assumptions 4.1 and 4.3, the only situation
where a white edge may be detected is when an edge is being canceled from one
end of the edge and, almost at the same time, a probe is being sent from the other
end. Since each vertex could keep track of its incoming and outgoing edges locally,
the receiving end should always know if a probe was from an unknown edge (i.e.,
a white edge) which, in turn, can eliminate the detection of white edges. This idea

can be realized by the following rule.

167

Rule 6.3 Fach vertex keeps track of its incoming and outgoing edges locally and

when a probe is received from an unknown edge, it is discarded immediately.

In a static GRG, each vertex has an invocation of Algorithm 6.1. Similarly,
Algorithm 6.3 could be applied to dynamic systems as follows. In a DGRG, suppose
at time ¢4, the state of a vertex d is changed from free to waiting. Within a finite

delay Ag;, 2 KDC ((t;, d)-computation?) is initiated at time ¢; for vertex d.

As required in Algorithm 6.1, a set of storages F&t, B3, and S* should be
pre-allocated and initialized at every vertex w € V' whenever a (t;, d)-computation
is initiated. This can be done easily in static systems but is very difficult to do in
dynamic systems. In a dynamic system, such storage can be dynamically allocated
and initialized when a vertex u receives a primary B- or F-probe from (i;,d)-

computation.

According to Algorithm 6.1, each probe is processed immediately after it is
received. The result of processing each probe is final when the GRG is static. For
example, a probe propagation “terminates” when it reaches a leaf vertex (i.e., a
free vertex v with RN(u) —Qora waiting vertex v with TN(v) = 0). However,
in a DGRG, the situation at each vertex may be dynamically changing. Consider
the situation that, at a vertex v, a probe is received and later v may have new
edges built to connect to neighbors (e.g., becomes waiting if it was free or starts
to be waited on by other vertices). Theorem 4.2 suggests that as long as a probe
received at v is meaningful, it should be allowed to continue its propagation after v
has built new connections. If the continuation of the propagations are allowed when
vertices connect to new edges, the connectivity of the adjacent probe propagation
operations in such situations need to be examined to keep a KDC meaningful. If
the connectivity of the adjacent operations are well maintained, Algorithm 6.3 can
generate KDC’s which are equivalent to the legal executions of Algorithm 6.1. Thus,
the following rule may be applied to a dynamic algorithm.

*Here a (i, d)-computation is similar to a d-computation in the static systems. Since in a
dynamic system a vertex d may initiate KDC’s multiple times, the notation (¢, d)-computation is
used to distinguish them from each other.

168

% _3 .3 _3 _3 _3 32 3 .3

.3 __*

' é’

L3

E

|

43

Rule 6.4 In a dynamic system, probes are saved after they are processed at each
vertez. If new edges are connected to a vertez, the saved probes may continue

their propagation if necessary.

However, to maintain information for the examination of the connectivity of
the adjacent operations incurs overhead at the free vertices. An alternative solution
is to render a KDC obsolete whenever the connectivity requirement is not met. We

will come to this solution later.

One of the situations which may occur in dynamic systems but does not exist in
the static systems is that vertices in waiting state may become free. When a vertex
u is in the waiting state, it may be involved in several (¢;, d)-computations. A set
of storages is arranged at u to keep track each of its involved (¢;, d)-computations.
When u goes free, it becomes a leaf vertex (or becomes an isolated vertex if no
vertices are waiting for it) and is not effectively involved in any KDC. All of the
probes previously propagated through u become meaningless. This is because the
operations previously triggered at u become meaningless and, therefore, the probes
propagated by these operations are meaningless. As far as Theorem 4.1 is con-
cerned, nothing need be done beyond the deletion of u's outgoing edges in DGRG
(by sending control messages to RN(uz)). Since these operations are known to be
meaningless and, according to Theorem 4.2, their information should no longer be

used, the following rule should be enforced in the algorithm.

Rule 6.5 Abandon all of the currently involved KDC’s when a vertez becomes
free from a waiting state. In a dynamic system, when a vertex u becomes
free from a waiting state, all of the old records kept at u for its previously
involved (t;, d)-computations could be deleted and their storage spaces could

be de-allocated.

Another side effect of Rule 6.5 is that it solves the problem of the connectivity
of the adjacent probe propagations without requiring a complicated mechanism to
examine the status of each saved probe. First, let’s consider the B-probes. The B-

probes are always received and processed at waiting vertices. The connectivity of two

169

adjacent B-probe propagations is directly ensured by Rule 6.5. Then, let’s consider
the F-probes. Two adjacent F-probe propagations over the edges (a — b) and (b —
c) may not be connected if the latter is triggered after the former edge is deleted.
The deletion of the edge (¢ — b) means the vertex becomes free which, in turn,
means that a can reach free vertices while it is waiting. Therefore, for each KDC K
in which a was involved, part of its probe strength is destroyed when a abandons
it. This violates Invariant 6.1 and K is rendered obsolete although its meaningless
probes may still continue their propagations through vertex b. Consequently, by
Theorem 4.1, Rules 6.4 and 6.5 ensure that every detected knot must be a genuine

one.

With Rule 6.4, there is an efficiency improvement that could be made to Al-
gorithm 6.3. Since both primary and non-primary F-probes may be saved at a leaf
vertex while it is free, the probe strength could be accumulated together and prop-
agated as the strength of a primary probe later when the vertex becomes waiting.
This modification simplifies the algorithm as well as improves its efficiency in terms
of reducing non-primary F-probes. However, with this modification, Algorithm 6.1
needs to be modified to simulate the projected KDC’s due to the improved Algo-
rithm 6.3. Algorithm 6.1’ is derived from Algorithm 6.1 by delaying the propagation
of the primary F-probes at each vertex to simulate the situation that the vertex is
in the free state. While a primary F-probe is waiting at a vertex for further prop-
agation, it collects the strength of received non-primary F-probes. A non-primary
F-probe is discarded immediately if its strength is transferred to a primary F-probe.

" Each delay time is a randomly selected finite duration.

The modification in Algorithm 6.1’ may reduce the number of messages required
for sending the non-primary F-probes back to the initiator of a KDC but it may
also delay the declaration of a knot. However, the latter disadvantage is not the case
in Algorithm 6.3 since the “delay” is the time while a primary F-probe is waiting

at a free leaf vertex where no outgoing edges exist.

Algorithm 6.1 can be easily proven correct since the modification only adds

finite delay time to the F-probe propagations (i.e., Lemma 6.3 still holds) and

170

— 3

-3

i~ _3 3

does not violate Invariant 6.1. Also, Lemmas 6.5 and 6.6 still hold after taking
into account that some of the non-primary probes may be merged with the primary

probes. Consequently, Algorithm 6.1’ can be proven in a similar way as Theorem 6.2.

The following algorithm consists of two parts: (1) the synchronization mecha-
nism which deals with dynamically changing nature of the underlying system and
(2) the description of a KDC. The synchronization mechanism in part (1) is derived
from Rules 6.3, 6.4, and 6.5. The KDC described in (2) is basically the same as
that specified in Algorithm 6.1 with the modification mentioned earlier.

Algorithm 6.3

Convention: A probe (t,d,v,s,dir) carries five parameters. The first param-
eter ¢t is the timestamp when the computation is initiated. The other four
parameters d, v, s, and dir are the same as those in Algorithm 6.1. At each
u € V a pool of storages are reserved for the following data structures used for
keeping track of each (¢;, d)-computation which u has been involved. These
data structures are dynamically allocated when the first probe arrives at u
from a (t;,d)-computation. Two flags, Ft¢ and By, are used to indicate
if u has received F- and B-probes from (t;, d)-computation, respectively. If
a flag is not found at vertex u (i.e., not allocated), its value is assumed to
be FALSE for brevity. Similarly, a dynamically allocated variable Stid at u
is used for temporary accumulation of the received F-probe strength from
(:, d)-computation. If St is not found at , its value is assumed to be zero.
The state of each vertex u € V is recorded in ST(u) with a value of waiting

or free.

Synchronization Mechanism:

o In a DGRG, if a vertex d becomes blocked:

1. Construct a set of reachable neighbors RN(d).

9. Send a control message to every vertex v € RN(d) to register d in

TN(v).

171

3. Set its state ST(d) := waiting (at time ¢g;).

4. At d, for each previously received F-probe (i.e., for each u#d,
where its Si*#0 and flag F}" = TRUE), send an F-probe
(t;,u,v, 53" /|RN(d)|, F) to every vertexv € RN(d) and then reset
S3t =0,

5. Send a control message to every vertex v € RN(d) to poll B-probes
(i.e., probes with flag By = TRUE, where u#d). Upon receiving
this polling message, vertex v will propagate all its B-probes to d.

o If one of the requests of a vertex d is satisfied:

1. Send a control message to every vertex v € RN(d) to de-register d
in TN(v).

2. De-allocate all F}*/| By* and S;* found at d.

3. Set the state ST(d) := free.

e When a probe is received from an unknown edge, it is discarded imme-

diately.

Description of a KDC:

1. With a finite delay Ay, after t4;, a KDC ((¢;, d)-computation) is initiated

at time ¢; as follows.

S:,"'d := (; -- allocate and initialize S;"d
Send a B-probe (t;,d,u,z, B) to every vertex u € TN(d);
Send an F-probe (t;,d,v,1/|RN(d)|, F) to every vertex v € RN(d).

2. For each vertex v # d, if v receives an F-probe (¢;,d,v,s, F):

if (Ft#? = FALSE) then -- it is a primary F-probe
Ftd := TRUE; -- allocate and initialize Fti-d
Stid ;= 0; -- allocate and initialize St
if (ST(v) = waiting) then
Send an F-probe (t;,d,w, s/|RN(v)|, F)
to every vertex w € RN (v);

172

3 -2 __3

i3 _3 3

.4 3 '3 ‘__3

A 3 '__3

| ‘ 3

3.

else —- free and has no RN(v)

Stid .= g;
end if;
else -- it is not a primary F-probe

if (B%4 = TRUE) then
—— a primary B-probe has been received
Send an F-probe (t;,d,d, s, F) to the initiator d;
else -- no B-probe has yet been received
—— Accumulate the strength.
Stid = gtd 4 g
end if;
end if.

For each vertex u # d, if u receives a B-probe (¢;,d,u,z, B):

if (B4 = FALSE) then -- itis a primary B-probe
Btd .= TRUE; -- allocate and initialize B%
Send a B-probe (t;,d,w,z, B) to every vertex w € TN(u);
if (St > 0) then '
—— non-primary F-probes have been received
Send an F-probe (t;,d,d, St F) to the initiator d;
Stid .= (; -- St can be de-allocated here
end if;
else -- it is not a primary B-probe
null; -- discard the received probe
~end if.

After initiating a knot detection computation, the initiator d starts

collecting returned (¢;, d)-computation F-probes and accumulating the

t;d

returned probe strength in S5°. If the accumulated probe strength

§%4 =1, a knot is found.

Note that in Algorithm 6.3, there is a finite delay, say Ag;, allowed between
when a vertex d; goes to waiting at ¢4, and when a (¢, d)-computation is initiated.
There are two reasons that this finite delay A4, is necessary. First, it is to recognize
the fact that the two events always occur in series. Second, time is always needed

to satisfy a vertex’s outstanding request in a distributed environment. In a real

173

system, there is a minimnm delay between the time a vertex starts waiting and the
time its request could be granted. In some systems, a minimum delay time Aq4; may

be implemented as a performance parameter.

According to the dynamic system model described at the beginning of Sec-
tion 6.3, there are four types of system activities in a DGRG, i.e., (1) the creation
of a vertex, (2) the deletion of a vertex, (3) the change of the state of a vertex from
free to waiting, and (4) the change of the state of a vertex from waiting to free. It
could be assumed that a vertex is always created as an isolated free vertex and the
deletion of a vertex can only take place when the vertex becomes free and isolated.
Therefore, only the state changes of the vertices in a DGRG need to be considered.
This confirms that the synchronization mechanism in Algorithm 6.3 does cover all

the possible situations that could happen in a DGRG.

To prove the correctness of the algorithm, we need to argue that: (1) any
existing knot will be detected eventually, and (2) a detected knot must be a real

one. These are established in the following theorem.

Theorem 6.4 In a dynamic system, if a (¢;, d)-computation described in Algo-

rithm 6.3 is initiated at a vertex d € V within a finite delay at time ¢; after
d starts waiting, (1) there will be no false detection of any knot, and (2) any

existing knot will be detected in finite time.

Proof: It is easy to see in the development of Rules 6.3, 6.4, and 6.5 that Algo-
rithm 6.3 has been kept as close to Algorithm 6.1 as possible. The three rules
are used to deal with dynamic situations and to ensure that Algorithm 6.3
satisfies Spatial and Temporal consistency criteria. When designing the three
rules, we have carefully examined them so that the projected KDC’s due to
these rules are equivalent to the legal executions of Algorithm 6.1 in static
states. The efficiency improvement made to Algorithm 6.3 can be simulated
by a modification in Algorithm 6.1’. The verification of Algorithm 6.1’ is
very similar to that of Algorithm 6.1 as we have described. Consequently,
we have a correct Algorithm 6.1’ which could simulate every possible pro-

jected KDC’s due to the execution of Algorithm 6.3 in dynamic systems.

174

3

3

.3 3 _ 3

.3 3 '3 ‘_3

_3

3 3

-y 3 '_ 7

—g 3 ~ 3 —3 3% "3 T3 3 T3 T3 T3 3 T3 73 Ty T3 T3 T3 T3

This, in turn, means Algorithm 6.3 can correctly recognize knots in terms of
meaningful operations in the projected KDC’s. By Theorem 4.1, Rules 6.3
further ensures that Algorithm 6.3 may only detect genuine knots. Part (1)

of the theorem is, therefore, proven.

Suppose there is a knot K which exists in a DGRG. Knot K is a finite
non-empty set of vertices {d;}, where< =1,...,n. Suppose that each vertex
d; starts waiting and becomes a member of K at time t4,, where 4, < t4, <
+++ < tg,. When the youngest member d, becomes waiting, it is already in
the existing knot K. By the Stable Property, K can be treated as a static
sub-GRG after t4,. According to Algorithm 6.3, a (t,, d,)-computation is
initiated at d, at time ¢, with a finite delay after ¢4,. By Theorem 4.2, at
least the (¢,, d,)-computation could detect the knot K in finite time. Hence,
part (2) of the theorem is proven. ||

The idea behind Rules 6.4 and 6.5 is that all probes are allowed to continue in
dynamic systems except the ones that are known to be meaningless. In other words,
every meaningful KDC could freely continue its probe propagation until it finds a
knot. Theorem 4.2 suggests the use of this policy to give every meaningful KDC a
chance to continue to find an existing knot. On the other hand, Theorem 6.4 has
proven that there exist at least one such KDC and, therefore, an existing knot is

guaranteed to be declared in finite time.

A KDC may become inactive (including termination) if all of its probes cease
propagating due to the following reasons: (1) a probe returns to the initiator,
(2) a probe is discarded because it is found meaningless (e.g., due to Rule 6.5),
or (3) a probe reaches a leaf vertex in the system. If all the probes of a KDC are
stopped due to (1) or (2), it is permanently terminated; otherwise, it may resume its
computation later if some of the probes are in the situation (3). All the data storage
of a permanently terminated KDC are de-allocated as described in Algorithm 6.3.
The meaningless probes in situation (3) may eventually be cleaned up if the leaf
vertices where they are located change from the waiting state to the free state (i.e.,

due to Rule 6.5) or are deleted in the free state. If a leaf vertex remains in a

175

free state for a long time, it may need a large heap of storage for the KDC’s that
ever reached it between its two free states; otherwise, the algorithm may fail due
to storage overflow at some vertices. Therefore, there is no upper bound for the
size of this reserved storage at each vertex. Alternatively, the cleaning process for
the meaningless probes under situation (3) could be speeded up by a periodically
invoked garbage collection mechanism or by clean messages spread out from the
vertices where probes are found meaningless. Although these mechanisms may

reduce the frequency of storage overflow problems, they do incur an overhead.

6.3.2 Single Detection of Knots in Dynamic Systems

In this section, we develop a dynamic algorithm based on Algorithm 6.2. As
discussed in Section 6.2.3, we need to rule oﬁt some of the possible interferences
between KDC’s. The Isolation property (Property 6.5) states that, in a static GRG,
knots do not overlap and cannot be reached from each other. In dynamic systems if
both Spatial and Temporal Consistency criteria are fulfilled, the Isolation property

can be rephrased as follows:

Lemma 6.9 In a dynamic system, knots do not overlap and cannot be reached
from each other in terms of meaningful operations generated by a dynamic

algorithm which satisfies Spatial and Temporal consistency criteria.

Proof: Suppose we have a dynamic algorithm, say ALGOp, which satisfies the
Spatial and the Temporal consistency criteria. The projected KDC’s due to
ALGOp should be equivalent to some KDC’s generated by a static algorithm,
say ALGOgs. Here, we don’t care if ALGOg can correctly detect knots. The
only thing that concerns ALGOj is that it propagates probes which can
simulate projected KDC’s due to ALGOp.

Suppose in a system state ST/, a dynamic KDC DK DCp is projected
as SKDCp. SKDCp is equivalent to a legal execution of ALGOgs, say
SKDCs. Since Property 6.5 could be applied to any static KDC generated
by ALGOs in ST, it also holds for any projected KDC such as SKDCp

176

-3

-3 __3

3 .3 1

.3

1 3

3 __3

~3 _1

in STY. SKDCp consists of all the meaningful operations in DK DCp that
could be found in STY. Consequently, in ST, knots do not overlap and
cannot be reached from each other in terms of meaningful operations found
in the projected KDC’s such as DK DCp. Since this is true in an arbitrarily
composed example, it is true in general that in a dynamic system, knots
do not overlap and cannot be reached from each other through meaningful
operations generated by a dynamic algorithm which satisfies Spatial and

Temporal consistency criteria. []

Since Rules 6.1-A and 6.2 are based on the static Isolation property (Prop-
erty 6.5), Lemma 6.9 implies that, if a derived dynamic Algorithm 6.2 satisfies
Spatial and Temporal consistency criteria, these rules should still apply. In other
words, a knot will be declared exactly once if a synchronization mechanism properly

maintains Spatial and Temporal consistency criteria.

The set of Rules 6.3, 6.4, and 6.5 derived in Section 6.3.1 provide a good
mechanism to deal with the dynamically changing nature of the underlying system.
Rule 6.3 prevents any operation in a KDC from detecting a white edge. This rule
does not interfere with Rules 6.1-A and 6.2 and, hence, can be directly applied to
Algorithm 6.4. However, there is a little concern that Rules 6.4 and 6.5 might affect
the effectiveness of Rule 6.2. Rule 6.4 suggests that a meaningful KDC should be
allowed to continue when new edges are attached to the existing graph. Rule 6.5
suggests that a vertex should abandon all of its currently involved KDC’s when it
goes free from a waiting state. Both of them may conflict with Rule 6.2. How these

three rules are realized might affect the validity of the algorithm.

In dynamic systems, a vertex might invoke multiple KDC’s during its lifetime.
It is not sufficient to uniquely identify a KDC by its initiator’s ID as has been done
in Algorithm 6.2. In addition, each KDC needs a timestamp as part of its ID to
distinguish itself from other KDC’s initiated at the same vertex. The timestamp
could be a real-time or a logical clock which specifies the causal relations between

KDC'’s. Since there is usually no common global clock in distributed environments,

177

a logical clock is used in our algorithm. We need a protocol to generate logical
clocks for KDC'’s when they are initiated. This logical clock protocol is an attempt
to realize Rules 6.4 and 6.5 while retaining the effectiveness of Rule 6.2.

When a vertex d becomes waiting, a new KDC is initiated and a logical times-
tamp ¢ is generated to go with it. The ID of a KDC is now a pair (¢,d) where ¢
is the logical timestamp and d is its initiator’s ID. To find the greater ID between
two KDC’s, their logical timestamps are compared first. The KDC with a smaller
ID is logically initiated before a KDC with a greater one. The initiator’s ID is used
to determine a total ordering when two KDC’s have the same logical timestamp.
In terms of meaningful KDC’s, as long as their ID’s are uniquely assigned and a
total ordering can be determined, Rule 6.2 is satisfied. Combined with Rule 6.3,
Rules 6.4, and 6.5 are responsible for the meaningfulness of KDC’s.

One of the characteristics of Algorithm 6.2 is that only B-probes are involved
in the voting process and F-probes may be received at a vertex only if a primary
B-probe of the same KDC has been received (Rule 6.1-A). Therefore, only B-
probes coming from RN(d) are considered in the process of generating a new logical
timestamp whenever a vertex d becomes waiting. Since no B-probes may be received
while d is free, to fulfill Rule 6.5, d could override all its previously involved KDC’s
when it becomes waiting. In other words, d should be involved in a new KDC (either
d initiates a new one or it joins in an existing one which is meaningful at d) with a

greater ID when it becomes waiting.

To fulfill Rule 6.4, no higher logical timestamp need be created provided d
can find any existing meaningful KDC via B-probes received from RN(d) after
it becomes waiting. This may be sufficient in implementing Rule 6.4 but is not
necessary if we plan a little bit ahead. Suppose among the larger B-probes collected
at d that (1) the one from u carries the largest ID but is meaningless and (2) the
one from v is the largest meaningful B-probe. We may let the KDC from v continue
its propagation through d. However, there are two possible situations that » may
turn to eventually: (1) grants d’s request and renders the KDC obsolete at v or

(2) becomes waiting and initiates or propagates a B-probe to override the KDC

178

% _3 _3 _&» _3 __&» 3 __3

-3 3 _.3 '_3

3 _ 3 1

4

from v. In any case, the KDC from v will become meaningless in the future. We
may (a) wait for u’s result or (b) initiate an even larger KDC at d. Approach (a)
can reduce the number of probe message but it tends to delay the declaration of
knots. On the other hand, approach (b) may cost more probe message overhead,

but knots may be detected much earlier than approach (a).

Consequently, to fulfill all three rules (i.e., Rules 6.2, 6.4, and 6.5), d should
initiate a new KDC only if it finds that the largest KDC ID in the set {d}URN(d)
is meaningless. If that is the case, the new logical timestamp of the initiated KDC
is the increment of this largest ID. Based on this approach, rules developed in the

previous two algorithms can be realized in Algorithm 6.4 as follows.

Algorithm 6.4

Convention: A probe (¢,d,u,v,s,dir) means it is initiated at d and is cur-
rently transferred from u to v with strength s and direction dir. The first
parameter ¢ is the timestamp when the computé.tion is initiated. The pair
(t,d) is the ID of the computation (i.e., (¢, d)-computation). The timestamp
t is a logical clock which defines the causal relation between KDC’s. If two
KDC carries the same timestamp t, a total ordering is determined by their
initiator’s ID d which is unique in the whole system. At each vertex v in
GRG the probe information for the currently involved (t, d)-computation is
recorded as follows. A variable K, stores the latest KDC ID initiated at
u. A variable B, is used to store the largest B-probe ID has been known
to u. All the smaller B-probe ID’s are discarded, which means u will be
only involved in the largest d-computation has been known to it. Flag Fy
indicates that if a primary F-probe from the involved (¢, d)-computation has
been received. If a primary F-probe is received at u, its strength is divided
by the number of outgoing edges |RN(d)| and is temporarily stored at the
buffer P, for further propagation. Also, a flag V,, is used to show if the
recorded B-probe is valid. A B-probe from a free vertex is invalid. An
invalid probe is marked dir = INVALID. For each outgoing edge (v — v)
at u, the largest B-probe ID received along the edge is stored in Of. At

179

the initiator d of each d-computation, a variable Sy is used to accnmulate

the strength of the returned probes. Initially when a vertex v is created,
K, := (0,0), B, := (0,0), V, := INVALID, F4 := FALSE, P4 := 0, and
Sq:=0. Also, V(v,u) € E, 0% :=(0,0).

Synchronization Mechanism:

In a DGRG, if a vertex d becomes blocked:

1.
2.

4.

Construct a set of reachable neighbors RN(d).

Send a control message to every vertex v € RN(d) to register d in
T N(v) and to poll B-probes. Upon receiving of this control/polling
message, a vertex v will propagate its B-probe to d if ST(v) =
waiting; otherwise, v will send its latest B-probe marked dir :=
INVALID if ST(v) = free.

Collect all the B-probes from v € RN (d) and record them in O}
if the received probe is valid (i.e., dir = B). Compare all the
received probe ID including the invalid ones with By and put the
largest ID in By. If this largest ID belongs to a valid B-probe, set
Va:= TRUE.

Set its state ST'(d) := waiting (at time tg,).

If one of the requests of a vertex d is satisfied:

1.

2.
3.

Send a control message to every vertex v € RN(d) to de-register d
in TN(v).

Set Fy:= FALSE and V; := INVALID.

Set the state ST(d) := free.

When a probe is received from an unknown edge, it is discarded imme-

diately.

Description of a KDC:

180

2 3 _3

3

2

-3 3

-3

.3

1. With a finite delay Ay, after ty,, the vertex d does:

if (Va = INVALID) then
—- d is ready to initiate a KDC
t; := Bg4.t + 1; -- increment the logical clock
By := (t_i,d); Kq := By;
Fq := TRUE; Py := 1/|RN(d)|;
Sq4 := 0; Vg = TRUE,
else -- d has already received a larger B-probe ID
null; -- not to initiate another d-computation
end if;

Send a B-probe (¢;,d,d, u,z, B) to every vertex u € TN(d).

2. For each vertex w € V, if w receives a B-probe (¢;,d,v,w,z, B) from v:

if ((ti, d) > By) then
—— it is a primary B-probe with a larger ID
B, := (4, d); F, := FALSE;
0y := (t;, d); Py := 0;
Send a B-probe (t;,d,w,u,z, B) to every vertex u € T N(w);
elsif ((¢;, d) = B,) then -- itis a non-primary B-probe
0Y := (t;, d); -- B-probe ID’s are propagated in ascending order
if (F, = TRUE) then -- a matched F-probe is ready
Send an F-probe (t;,d,w,v, Py, F) to v;

end if;
else -- smaller ID

null; -- discard the received probe
end if;

3. For each vertex w # d, if w receives an F-probe (t;,d,u,w, s, F) from
u:
if ((t;, d) = By,) then -- the ID is match
if (F, = FALSE) then -- it is a primary F-probe
F, := TRUE; P, := s/|RN(w)l;
Send an F-probe (t;,d, w,v, Py, F) to every vertex v
where 0% =(t;, d);

181

else —- it is not a primary F-probe
Send an F-probe (t;,d,w,d, s, F) to the initiator d;
end if;
else -- the ID is not match
null; -- discard the received probe

end if;

4. After initiating a probe computation, the initiator d starts collecting
returned F-probes (t;,d, v, d, s, F') and accumulating the returned probe
strength in Sy as long as the (¢;,d)-computation it is involved is still
the one initiated by itself (i.e., By = K4). If the accumulated probe
strength Sg = 1, a knot is found. o

The following theorem proves the correctness of Algorithm 6.4 based on the

rules used and Theorems 4.1, 4.2, and 6.3.

Theorem 6.5 In a dynamic system, Algorithm 6.4 guarantees that (1) any exist-

ing knot will be detected exactly once in finite time and (2) there will be no

false detection of any knot.

Proof: The set of Rules 6.3, 6.4, and 6.5 sufficiently maintains meaningfulness

of each KDC in DGRG. Also, the realization of Rules 6.2, 6.4, and 6.5)
is such that a vertex d, which has just became waiting, will initiate a new
KDC with a greater logical timestamp only if it finds the largest KDC ID
in the set {dURN(d)} is meaningless. Imagining that if this is not the case
and d still initiates a new KDC but with a smaller logical timestamp, this
newly initiated smaller KDC will be overridden by a larger KDC from RN (d)
immediately. In terms of projected meaningful operations, Algorithm 6.4 is

equivalent to Algorithm 6.2.

Suppose there is a knot K formed in a system state GRG, say ST/,
when a vertex d€K starts waiting. An KDC will be initiated at d in any
case (it may initiate a smaller KDC as described above). By the Stable
Property and Isolation Property (i.e., Lemma 6.9, knot K can be treated
as a separated static sub-GRG and there will be at least one KDC running

182

3

.3

3

on K, i.e., the one initiated at d). In terms of meaningful operations on K
starting from ST/, Algorithm 6.4 will be equivalent to Algorithm 6.2. By
Theorems 6.3 and 4.2 knot K will be detected exactly once in finite time.
This proves part (1) of the theorem. Also, since only meaningful KDC’s
may declare knots and they are equivalent to KDC’s due to Algorithm 6.2,
Theorem 4.1 and 6.3 guarantee that all declared knots are the real ones.

This proves part (2) of the theorem.]

6.4 Knot Detection with Timing Constraints

Finally, in this section we take into account that the timing constraints which
are used in many real-time systems may be associated with vertices in DGRG. A
waiting vertex in a real-time systerﬁ may become voluntarily free due to timing
constraints associated with it. For example, a task may wait for a a resource with
a specified deadline. Upon the expiration of the deadline, the waiting task may
relinquish its request and, hence, become free voluntarily. Consequently, edges in a
real-time system DGRG may disappear if one of its end vertices becomes free volun-
tarily due to timing constraints. As discussed in Section 2.6.1, some of the deadlocks
may be temporal. Many systems do not consider these Temporal deadlocks to be
real deadlocks since they do not persist forever. However, our performance data
(Chapter 7) has shown that detecting and resolving these temporal deadlocks in a
system may significantly improve the system performance. Therefore, it is worth-

while to attempt to detect deadlocks even if they are temporal.

Without loss of generality, we assume that timing information is available at
every vertex in a DGRG. Whenever a vertex starts waiting, it knows the maximum
length of time the waiting state will last. When a task vertex starts waiting, it
may set a deadline for the waiting state according to its own timing constraints.
If a resource vertex is waiting it means the resource is held or is to be produced
by a task. The deadline of a waiting resource depends on the timing constraints

associated with the task which is holding or to produce it. There are many policies

183

that could be used to determine the deadline of a waiting state. How to determine a
deadline for a waiting state is an interesting performance problem which is beyond
the scope of this dissertation study. We assume that the deadline of a waiting vertex

can be properly obtained.

First, let’s assume that there is a well synchronized system clock at each site
in a distributed system. When a probe P reaches a waiting vertex v, P can check
how long v will remain waiting. An operation, say OP:, may then propagate P
to a neighbor of v, say u. The meaningfulness of the operation OP; relies on
the existence of an edge between'vertices v and u. If the deadline has expired at
either v or u, the edge between v and u will be deleted from DGRG and, hence, the
operation OP, will become meaningless. This, in turn, will cause all the subsequent
operations from OP, to be meaningless. If a KDC is not aware of this problem in

real-time applications, it may detect false knots with meaningless edges.

To resolve the problem stated above, we need to keep track of the temporal
meaningfulness of a KDC all over the places where its probes have ever reached.
To do this, we can use probes to propagate deadline information as follows. Each
probe carries a deadline such that it indicates when the KDC at a certain vertex
will become meaningless. In other words, the deadline carried by a probe should
indicate when one of the previous operations will become meaningless due to the
expiration of a vertex deadline. Consequently, the following rule should be applied

to probes.

Rule 8.6 A probe needs to keep track of the earliest vertez deadline while it is
propagated in a DGRG.

Also, each vertex needs to keep track of the meaningfulness of the KDC’s in
which it is currently engaged. If a vertex d is the initiator of a KDC, it needs to
keep track of the meaningfulness of all the returned F-probes. When d sums up the
returned probe strength, all of the returned F-probes should have valid deadlines.
On the other hand, a non-initiator vertex v which is engaged in the KDC needs

to maintain the information so that it knows if it can reach the initiator d, i.e., if

184

a2 __3

3

A

3

F

v€T S(d), at a certain time. This is required both in Algorithms 6.3 and 6.4 so that
v can decide if a received non-primary F-probe should be directly sent back to the
initiator. Moreover, Rule 6.1-A of Algorithm 6.4 requires this information to decide
if an F-probe can be received and processed at v. Consequently, the following rule

should be applied to the vertices which are engaged in a KDC.

Rule 8.7 In a KDC, the initiator needs to keep track of the earliest deadline of
the F-probes that have returned while all the other engaged vertices need to
keep track of the latest deadline of the B-probes received from the KDC.

Based on Rules 6.6 and 6.7, we derive the following algorithm (Algorithm 6.5)
which describes the deadline computation for a KDC. Each of Algorithms 6.3 and
6.4 may then be integrated with Algorithm 6.5 for knot detections in real-time

applications.

Algorithm 6.5 (Deadline Computation of a KDC)

Convention: P.dl denotes the deadline dl carried by a probe P. v.dl denotes
the deadline of a vertex v. Also, at each engaged vertex the computation

deadline is maintained at KX DC.dl.

In a KDC, when a probe P is received at an engaged vertex v, the deadline

computation is carried out as follows:

1. Both P.dl and v.dl are checked first. If either one is expired, discard

the received probe immediately.

2. If v#d, i.e., v is not the initiator of the KDC:

if (P is a B-probe) then
if (P.dl > v.dl) then
P.dl := v.dl;
end if;
if (P.dl > KDC.dl) then
KDC.dl := P.dl;
end if;

185

elsif (P is a F-probe) then
if (KDC.dl <= current_time) then
—— the KDC is not meaningful at v

null; -- discard the received probe
elsif (P.dl > v.dl) then

P.dl := v.dl;
end if;

end if;

3. Ifv =d, i.e., the initiator of the KDC:

if (KDC.dl <= current_time) then
—- the KDC is not meaningful at v
null; -- discard the received probe
elsif (P is a F-probe) then
if (P.dl < KDC.dl) then
KDC.dl := P.dl;
end if;
accumulate the probe strength in Sg;
declare a knot if Sg=1;
end if;
&
The basic idea of Algorithm 6.5 is that in a real-time system we can precisely
predict when an existing edge will disappear from the DGRG. By Rule 6.6, when
a vertex v receives a probe P, v could determine when the operation in which P is
received will become meaningless due to some other vertex having deadline expire.
Since a vertex may receive multiple probes from a certain KDC, Rule 6.7 suggests
a way to only maintain the necessary timing information at each engaged vertex of

a certain KDC. It is clear that Algorithm 6.5 could effectively help to keep a KDC

from declaring false knot.

For a Stable Knot (i.e., a Stable Deadlock defined in Section 2.6.1), all of
the involved vertices have an infinite deadline and, hence, Algorithm 6.5 won’t be
effectively applied to it. Both Theorems 6.2 and 6.3 are still true for Stable Knots
in real-time applications. Therefore, Stable Knots will be correctly detected as that

has been proven in these two theorems.

186

3

3 3 B 3

-

A

i1

3

F

:

On the other hand, a Temporal Knot (i.e., a Temporal Deadlock) is not guaran-
teed to be detected in time. This is because the delay of a KDC may be longer than
the tightest timing constraints in a Temporal Knot. For example, suppose there is
a Temporal Knot K formed in a DGRG and the earliest KDC which may detect K
will finish its computation at time ¢4 while one of the edges in K will disappear at
time ¢;. The knot K may be successfully detected only if ¢;<¢;. Algorithm 6.5 is

an attempt to avoid the declaration of knot K in the case that ts>ts.

So far we have assumed that the clocks in a distributed real-time system are
precisely synchronized. We now relax this assumption a little bit so that clocks may
be allowed to drift apart to a upper limit, say Atgpis:, and will be re-synchronized to
maintain a certain accuracy requirement. Still, this will not affect the correctness of
the detection of the Stable Knots. But now Algorithm 6.5 cannot precisely predict
when a certain operation will become meaningless. An operation may be treated as
a meaningless one a little bit too early or too late within the clock accuracy Atgpif:

specified in the system. In the former case, a Temporal Knot may go undetected

~as it is supposed to be. This is not a serious problem because such an undetected

Temporal Knot will be broken very soon within Atg4.;s.. However, in the later case,
a broken false knot may be declared. If a knot is detected very close to the earliest
deadline in the knot, e.g., within Atg.ye, it is very likely that the detected knot
may be already broken. Since this knot will not exist after a short time Atg4pis in

any case, we could simply ignore it.

6.5 Application to Ada Environments
We are also interested in applying our algorithms to distributed real-time sys-

tems such as Ada environments. In this section, we will show how our algorithms

can be applied to detect both Ada rendezvous deadlocks and task terminations.

187

6.5.1 Ada Rendezvous and Task Termination

As discussed in Section 2.3.3, the Ada rendezvous mechanism may cause OR
model deadlocks. Also, a delay statement may be incorporated in an Ada ren-
dezvous. The delay statement is designed to support some of the real-time features.
Timing constraints, therefore, may be involved in Ada rendezvous deadlocks. For
example, due to timing constraints attached to each task, a task which is blocked
in a rendezvous may need to be timed out or even abnormally aborted. This can be
accomplished by specifying a delay duration in a rendezvous. Consequently, a task
may not stay in a waiting state forever and a “deadline” may be associated with a
waiting state as modeled in Section 6.4. Therefore, Ada rendezvous deadlocks may
not be stable in real-time applications. Currently, there are no good solutions for

Ada rendezvous deadlocks, especially when timing constraints are involved.

There are similarities between the detection of an OR model deadlock and
the detection of the termination of a group of cooperating tasks in a distributed
computation (5, 6, 39, 41, 42, 48, 50, 98]. In a distributed system tasks cooperate
with each other in a computation by means of message exchange. A distributed
computation is said to be globally terminated if it reaches a final state which,
in turn, relies on its member tasks reaching their final states and being ready to
terminate locally. When a task has finished its local computation, other cooperating

tasks still may want to communicate with it. The termination problem arises when

tasks are ready to terminate locally, but they still agree to communicate with other

cooperating tasks. The global termination condition is defined as the condition that
each of the cooperating tasks in a distributed computation is either terminated
or ready to terminate. A global termination condition is not satisfied if any of
the cooperating tasks in a distributed computation is still active and not ready to
terminate. The distributed termination problem can be treated as a special case of
an OR deadlock where all the cooperating tasks in a distributed computation are
involved in a “deadlock” (in the sense that every task in the computation is waiting
for others to terminate). If any of these cooperating tasks is not ready to terminate

(i.e., still active), there is no “deadlock” and, hence, the global termination condition

188

3

3

3 .3 '3 3 | 3 _ 3 __3

3

3

is not satisfied. Therefore, any knot detection algorithm for the OR deadlocks can

also be tailored for solving the distributed termination problem and vice versa.

In Ada, the terminate statements may be used in association with rendezvous
(e.g., in selective wait statements). A selective wait statement may allow a task
to terminate if all its sibling tasks and their dependent tasks which belong to
the same root creator have terminated or are waiting at a terminate alternative
(Section 2.3.3). This is a pessimistic solution of the termination problem in that
it assumes all the active sibling tasks may want to make an entry call to the ones

which are ready to terminate in a selective wait statement.

Ada has the deficiency of not providing well defined task dependencies. For
example, in Ada rendezvous semantics, the calling task is not provided in the accept
statement. It is because of this deficiency, such a pessimistic definition for the
condition of task termination is suggested. Also, the deficiency results in difficulties
of rendezvous deadlock detection. Without special compiler and runtime support,
it is impossible to detect certain deadlocks involved in Ada rendezvous. We have
found that with this additional Ada rendezvous semantic information available at
runtime, not only does the detection of rendezvous deadlocks become possible, but
also the detection of task termination becomes more efficient. As an example,
in Section 6.5.3, we present an integrated algorithm (to be referred to as “OR
Algorithm”) for both the detection of Ada rendezvous deadlocks and the detection

of task terminations.

6.5.2 Design Assumptions Concerning the Ada Runtime Environments

In the development of the following OR Algorithm, we made several assump-
tions. First, we assume that runtime tasking in the distributed environment is
supported by a Distributed Runtime Tasking Supervisors [116] (DRTS’s). Each of
the nodes in a distributed system is equipped with a copy of DRTS. The DRTS’s
provide services by sending messages to each other. A DRTS could be a separate

entity or embedded in the operating system (OS) or kernel. Information concerning

189

task interactions and synchronizations which are managed by the OS, kernel, or
DRTS should be available for deadlock detection. For example, the state of the lo-
cal task synchronization (rendezv‘ous/ termination) should be available in the local

OS or kernel, the state of the inter-site task synchronization should be provided by
DRTS’s.

In addition, information concerning implicit task interactions and synchroniza-
tions should be supported both by the compiler and the runtime environment. For
example, in Ada rendezvous semantics, the calling task is not provided in the accept
statement. Without special compiler and runtime support, this feature makes the
deadlock problem unsolvable. It is required that a correct and up-to-date DGRG
is built at runtime to support correct deadlock detection operations. One possible
solution is to ask the compiler to provide extra data structure and program code
(not explicitly programmed) for deadlock detection. The extra code provided by
the compiler is to be executed at runtime to maintain the deadlock detection related
data structure. For example, two kinds of tables are to be built to support deadlock
detection for the Ada accept statement, one reachable entry calls (REC) table for
each task, and one possible calling tasks (PCT) table for each entry point declared
in a task. Initial values for these tables should be entered by the compiler. Program
code for maintaining the REC table should be inserted at the proper places in a
task by the compiler. Each task, therefore, can update its REC table whenever it is
necessary at runtime. When a task is blocked by an accept statement at an entry
point, the deadlock detection agent is triggered to search every REC table in every
possible calling task which is listed in the PCT table of that entry point. An edge is
added to the DGRG if there is a matched reachable entry call in a possible calling
task.

In real-time systems a timing constraint is usually associated with a task. The
runtime system should be able to detect a missed deadline and abort the task. This
deadline information is not available from Ada. As summarized in Section 2.3 other
aspects of real-time processing are supported by Ada’s selective wait statement.

Using a combination of the delay statement and the else alternative in Ada’s select

190

13

3 3

3

.3

statement, one can provide an escape in the event that no open alternatives exist
or that open alternatives are unduly delayed in their selection. These delays and
the ways to terminate them have an effect on whether the task makes its deadline.
Similarly, using Ada’s timed or conditional entry calls, a calling task can ensure that
it will not be blocked forever impacting its ability to make its deadline. Primarily,
we are concerned with task deadlines, and to meet a task’s timing constraints,
time-out durations are associated with the timed entry calls for the task calling an
entry and the delay alternative in the selective wait statement for the task which
is waiting for an entry call. How to pick up an appropriate time-out duration for
each operation (a rendezvous attempt or a resource request) is beyond the scope of
this paper. A simple choice which is assumed in the following discussion is to set
the time-out of an operation by the task deadline which, of course, means that if it

times out it will not make the deadline.

6.5.3 Algorithm for the Detection of Ada Rendezvous Deadlocks and

Task Terminations

In this section we present an OR Algorithm which can be used to detect Ada
rendezvous deadlocks and task terminations. The OR Algorithm is based on Algo-
rithm 6.4 integrated with Algorithm 6.5. Therefore, the OR Algorithm carries the
features discussed in both Algorithm 6.4 and 6.5.

Whenever a task becomes BLOCKED, a KDC is initiated. There are two types
of KDC’s, i.e., DEADLOCK detections and TERMINATION detections, in the OR
Algorithm for the detection of deadlocks or termination conditions, respectively. A
task which is waiting for termination may still be involved in a deadlock. Only if all
tasks in the same knot are waiting for termination, a global termination condition is
satisfied. This means that a DEADLOCK detection computation works on the entire
DGRG while a TERMINATION detection computation only works on a subset of
DGRG where tasks are waiting for termination in rendezvous. If a task is waiting

for termination and a KDC is initiated, the task and all the probes of the KDC will

191

be labeled as TERMINATION type. A TERMINATION probe can only go through
TERMINATION tasks.

The data structures for the probes, tasks, and resources are defined in the
Figures 6.3, 6.4, and 6.5, respectively. We assume that the resources are not as-
sociated with timing constraints and, hence, they are not involved in the deadline
computation in a KDC. Therefore, there are no deadline fields in the data structure
of resources. However, the deadline information may be added to the resources
similar to the tasks if necessary. The DGRG is directly recorded at every task and
resource. At each task, there is a holding table which contains the resource held by it
(incoming edges) and a pending_table which contains its pending requests (outgoing
edges). At each resource, there is a waiting_queue which contains the tasks which
are waiting for the resource (incoming edge) and a praducer_queue which contains

the task which may be the producers of the resource (outgoing edges).

type PROBE_TS_TYPE is range 0..INTEGER’LAST;
type TASK_ID_TYPE is range 0..INTEGER’LAST;
type DETECTION_TYPE is (DEADLOCK, TERMINATION);
type PROBE DIR_TYPE is (FORWARD, BACKWARD, INVALID);
type PROBE STR_TYPE is range 0.0..1.0;
type PROBE_TYPE is
record
probe_ts : PROBE_TS TYPE := 0; —- probe timestamp
tnitr id : TASK_ID_TYPE := 0; -- the ID of a probe initiator
probe_dl : DURATION := 0.0;
-~ Probe deadline is determined by the earliest vertex deadline in its travelling path.
probe_det : DETECTION_TYPE := DEADLOCK;
probe_dir : PROBE DIR_TYPE := BACKWARD; -- direction
probe_str : PROBE_STR_TYPE := 0.0; -- strength
end record;

Figure 6.3: Data structure for probes in the OR Algorithm.

A DGRG is a bipartite graph that vertices are divided into two disjoint subsets,
a set of resources vertices and a set of task vertices, such that there are no edges
connecting vertices from the same subset. Request edges may be created in DGRG

due to that a task is waiting for a set of consumable resources (rendezvous) and

192

3 _3

3

3

type TASK_STATE_TYPE is (ACTIVE, BLOCKED);
type RESOURCE_ID_TYPE is range 0..INTEGER’LAST;
type TASK_TYPE is

record

f

3

e

3

task_id : TASK_ID_TYPE := 0;

task_state : TASK STATE_TYPE := ACTIVE;,

task_det : DETECTION_TYPE := DEADLOCK;

task_req dl : DURATION := 0.0; -- deadline of task’s request

task_kdc_dl : DURATION := 0.0; -- deadline of a KDC in which the task is engaged
probe_init_ts : PROBE_TS_TYPE; -- TS of the initiated probe

probe_buf : PROBE_TYPE; -- probe in buffer

holding_table : RES_TABLE_TYPE; -- resources held by the task

pending_table : RES_ TABLE_TYPE; -- pending requests of the task

—3 ~ 31 ~ 3 ~ 3 "3 "3 "3 3 "3 773 T3 T3

request_count : NATURAL := 0; -- the number of pending requests of the task
forward_res table : FORWARD_TABLE TYPE;
~~ a table of resource ID’s which are ready to receive forward probes
rec_probe_sir : PROBE_STR_TYPE := 0.0; —- received probe strength
end record;

Figure 6.4: Data structure for tasks in the OR Algorithm.

type RESOURCE_ID_TYPE is range 0..INTEGER’LAST;
type RESOURCE_STATE_TYPE is (FREE, HELD);
-- For a consumable resource, it is FREE if it is produced but is not consumed yet; on the
—— other hand, it is HELD by its producer if it is requested but is not produced yet.
type RESOURCE_TYPE is
record
resource_id: RESOURCE_ID TYPE:=0;
resource_state : RESOURCE_STATE _TYPE := FREE;
probe_buf : PROBE_TYPE; -- probe in buffer

waiting_queue : QUE_TYPE; -- waiting queue of the resource
producer_queve : QUE TYPE; -- producer queue of the resource
producer_count : NATURAL := 0; —- number of tasks in producer_queue

forward_task_table : FORWARD_TABLE TYPE,
-- a table of task ID’s which are ready to receive forward probes
end record;

Figure 6.5: Data structure for resources in the OR Algorithm.

193

the corresponding producer edges (point to the tasks which might satisfy the ren-
dezvous) are created immediately after the creation of these consumable resources.
Unlike assignment edges, which may be created at any time when a resource is as-
signed to a task, producer edges are created only after a new consumable resource
is initiated due to a request from a task. Since all these edges are created at once
as a group, it is sufficient that only one KDC is initiated when necessary. The best
candidate for the initiation of a KDC for a group of newly created edges is the task
which first requested the set of consumable resources. Consequently, in the OR
Algorithm, KDC’s may be initiated only when a task becomes BLOCKED in the
rendezvous. In Figure 6.6, procedure TASK_INIT_PROBE describes how a KDC is

initiated.

In Figures 6.7 procedure TASK_RCV_B_PROBE describes how tasks han-
dle B-probes and in Figures 6.8 procedure TASK_RCV_F_PROBE describes how
tasks handle F-probes. These two procedures are the integration of Algo-
rithms 6.4 and 6.5. Also, procedure RESOURCE_RCV_B_PROBE (Figures 6.9)
and procedure RESOURCE_RCV_F_PROBE (Figure 6.10) describe how resources
handle B-probes and F-probes, respectively. The differences between the proce-
dures for tasks and the procedures for resources are: (1) resources do not perform
deadline computation since there is no assumed deadline associated with it and
(2) resources do not perform strength checking for knot declaration since all the
KDC’s are initiated at tasks. When a probe is received at a resource vertex, its

deadline is checked as part of the probe validity checking.

There are several procedures and functions used in the OR Algorithm which

are not explicitly described in the figures. They are briefly defined as follows:

1. procedure SEND (P, ID) sends a probe P to a task or a resource identified
as ID.

2. procedure RECEIVE (P, ID) receives a probe P from a task or a resource
identified as ID.

194

3 3

3 3 __ 3

3

3 3 3 3 .1 3 3 3

—3 13

—3 ~—3 —3 ~— 3 —3 ~ 3% ~3 —3 T3 T3 ~3F T3 T3 I TP T3 T3 T3 3

procedure TASK_INIT PROBE (T: in out TASK_TYPE) is
~— This procedure is invoked when an ACTIVE task T requests a set of HELD resources. The
-- deadline of T'’s request is T.task_req dl. The task T is in transition from the ACTIVE
—— state to the BLOCKED state. The B-probes are collected from R.probe_buf at each of the
—— waited resources R along with the request pending response. A period of waiting time At
- - which may be chosen as a function of task T’s deadline might be inserted right before the
—- calling of this procedure.
b R : RESOURCE_TYPE; R_ID: RESOURCE_ID_TYPE; P, BP: PROBE_TYPE
egin
CLEAR_TABLE(T.forward_res_table);
P.probe_ts := T.probe_buf.probe_ts
P.probe_dir := INVALID; —- it is an INVALID probe
for R_ID in T.pending_table loop
RECEIVE (BP, R_ID); -- BP is the B-probe from R_ID
if (((P.probe_det = TERMINATION) and then
T.task_det = DEADLOCK)) or else
(BP.probe_ts < T.probe_buf.probe_is)) then
null; - - discard the received probe
elsif (BP.probe_ts > P.probe_is) then
P := BP;
CLEAR_TABLE(T.forward_res_table);
ADD_TO_TABLE(T forward_res_table, R_ID);
elsif ((BP.probe_ts = P.probe_ts) and then
BP.initr_id = P.iniir_id)) then
ADD_TO_TABLE(T forward_res_table, R_ID);
end if;
end loop;
if ((P.probe_dir = INVALID) or else
P.probe_dl <= curreni_time)) then
~— The largest KDC is meaningless; initiate a new probe to override it.
P.probe_ts := P.probe_ts + 1; P.initr_id := T.lask_id;
P.probe_det := T.task_det; ——- DEADLOCK or TERMINATION
P.probe_dir := BACKWARD; P.probe_sir := 0.0;
P.probe_dl := T.lask_req di; T.task_kdc_dl := P.probe_dl;
T.probe_init_ts := P.probe_ts; T.probe_buf := P;
T.probe_buf.probe_dir := FORWARD); -- prepare a F-probe
T.probe_buf.probe_str := 1.0 / T.request_count;
T.rec_probe_sir := 0.0; —- reset received probe strength
else -- otherwise, no probe is initiated.
if (P.probe_dl > T.task req dl) then P.probe_dl := T.task reg dl; end if;
T.probe_init_ts := 0; T.probe_buf := P;
T.task_kdc_dl := P.probe_dl;
end if;
for R_ID in T.holding_table loop
SEND (P, R_ID); —- propagate BACKWARD
end loop;
end TASK_INIT PROBE;

Figure 6.6: Procedure for the probe initiation in the OR Algorithm.

195

procedure TASK_RCV_B_PROBE (T: in out TASK TYPE;
P: in PROBE_TYPE; R: in RESOURCE_TYPE) is

-~ This procedure is invoked whenever a BLOCKED task T receives a B-probe P from a

-- resource R.
R_ID : RESOURCE_ID TYPE
begin
if ((not IN_TAB(R, T.pending_table)) or else -- from a white edge
(P.probe_det = TERMINATION
P.probe_ts < T.probe_buf.probe_ts) or else
P.probe_ts = T.probe_buf.probe_ts) and then
tP.initr__id < T.probe_buf.initr id)) or else
T.task_reg dl <= current_time) or else
P.probe_dl <= current_time)) then
null; - - discard the received probe
elsif (T.probe_buf.probe_dir = BACKWARD) then
if ((P.probe_ts = T.probe_buf.probe_ts) and then
P.initr_id = T.probe_buf.initr_id)) then
ADD_TO_TABLE(T forward_res_table, R.resource_id);

if (P.probe_dl > T.task_kdc_dl) then T.task_kdc_dl:= P.probe_dl; end if;

else -- a new one received
CLEAR_TABLE(T.forward_res_table);
ADD_TO_TABLE(T.forward_res_table, R.resource_id);

if (P.probe_dl > T.task_req dl) then P.probe_dl:= T.task_req dl; end if;

T.probe_buf := P; T.lask_kdc_dl := P.probe_dl;
for R_ID in T.holding_table loop
SEND (P, R_ID); -- propagate backward

end loop; ‘

end if;

else -- there is a F-probe in the buffer

if ((P.probe_ts = T.probe_buf.probe_ts) and then

P.initr_id = T.probe_buf.initr id)) then

and then (T.task det = DEADLOCK)) or else

-3 3 .3 _3 __3» 3 _3 _3 __3

3 __3

if (P.probe_dl > T.task_req dl) then T.task kdc_dl:= T.task_req_di;
elsif (P.probe_dl > T.task_kdc_dl) then T.task kdc_dl := P.probe_dl;

end if;
SEND (T.probe_buf, R.resource_id) —— R is the sender of the probe P
else -- the new one is larger, hence, override the current one

CLEAR_TABLE(T.forward_res_table);
ADD_TO_TABLE(T.forward_res_table, R.resource_id);

if (P.probe_dl > T.task_reg dl) then P.probe_dl:= T.iask req dl; end if;

T.probe_buf := P; T.task_kdc_dl := P.probe_dl;
for R_ID in T.holding_table loop
SEND (P, R_ID); -- propagate backward
end loop;
end if;
end if;
end TASK RCV_B_PROBE;

Figure 6.7: Procedure for tasks handling received B-probes in the OR Algorithm.

196

3

13

— 3 _3

procedure TASK_RCV_F PROBE (T: in out TASK_TYPE;
P: in PROBE TYPE; R: in RESOURCE_TYPE) is
—— This procedure is invoked whenever a BLOCKED task T receives a F-probe P from a
—— resource R.
R_ID : RESOURCE_ID_TYPE
begin
if ((not IN_TAB(R, T.holding_table)) or else —- from a white edge
((P.probe_det = TERMINATION) and then (T.task_det = DEADLOCK)) or else
P.probe_ts < T.probe_buf.probe_ts) or else
P.probe_ts = T.probe_buf.probe_ts) and then
P.initr_id < T.probe_buf.initr_id)) or else
T.task_req_dl <= current_time) or else
P.probe_dl <= current_time)) then
null; - - discard the received probe
elsif (T.probe_buf.probe_dir = BACKWARD) then
if ((P.probe_ts = T.probe_buf.probe_ts) and then
P.initr_id = T.probe_buf.initr_id)) then
if (P.probe_dl > T.task_req_dl) then P.probe_dl := T.task_req_dl; end if;
P.probe_str := P.probe_sir / T.request_count;
T.probe_buf.probe_dir := FORWARD; T.probe buf.probe_sir := P.probe_str;
for R_ID in T.forward_res_table loop
SEND (P, R_ID); -- only send to forward_res_table
end loop;
end if;
else -- there is a F-probe in the buffer
if ((T.task_kdc_dl > current_time) and then
P.probe_ts = T.probe_buf.probe_ts) and then
P.initr_id = T.probe_buf.initr_id)) then
if ((P.probe_ts = T.probe_init ts) and then
P.initr_id = T.task_id)) then
if (P.probe_dl < T.task kdc_dl) then T.task kdc_dl := P.probe_dl; end if;
T.rec_probe_sir := T.rec_probe_sir + P.probe_str;
if (T.rec_probe_sir = 1.0) then
A deadlock is found;
end if;
else -- non-primary F-probe, send it back to its initiator
SEND (P, P.initr_id);
end if;
end if;
end if
end TASK RCV_F PROBE;

Figure 6.8: Procedure for tasks handling received F-probes in the OR Algorithm.

197

procedure RESOURCE_RCV_B_PROBE (R: in out RESOURCE_TYPE;
P: in PROBE_TYPE; T: in TASK_TYPE) is
—— This procedure is invoked when a resource R receives a B-probe P from a task T.
T ID : TASK_ID TYPE
begin :
if ((not IN_QUE(T, R.producer_queue)) or else - from a white edge
£ P.probe_ts = R.probe_buf.probe_ts) and then
{P.initr_id < R.probe_buf.initr_id)) or else
P.probe_ts < R.probe_buf.probe_ts) or else
P.probe_dl <= current_time)) then
null; —- discard the received probe
elsif (R.probe_buf.probe_dir = BACKWARD) then
if ((P.probe_ts = R.probe_buf.probe_ts) and then
P.initr_id = R.probe_buf.initr id)) then
ADD_TO_TABLE(R.forward_task_table, T.task_id);
else —- a new one received
CLEAR_TABLE(R.forward_task_table);
ADD_TO_TABLE(R.forward_task_table, T.task_id);
R.probe_buf := P;
for T_ID in R.waiting_que loop
SEND (P, T_ID); -- propagate backward
end loop;
end if;)
else —- it is a FORWARD probe in the buffer
if ((P.probe_ts = R.probe_buf.probe_is) and then
P.initr_id = R.probe_buf.initr id)) then
SEND (R.probe_buf, T) —— T is the sender of the probe P
else -- the new one is larger, hence, override the current one
CLEAR_TABLE(R.forward_task_table);
ADD_TO_TABLE(R.forward_task_table, T.task id);
R.probe_buf := P;
for T_ID in R.waiting que loop
SEND (P, T_ID); -- propagate backward
end loop;
end if;
end if;
end RESOURCE_RCV_B_PROBE;

Figure 6.9: Procedure for resources handling received B-probes in the OR Algo-
rithm.

198

3 __3

_ 3

.3

—3

—3 _3

—3 ~ 3 ~ 3 3§ —3 T8 T3 T3 3 —T3 T3 T3 73 73 T3 T3 T3 T3 T3

procedure RESOURCE_RCV_F_PROBE (R: in out RESOURCE_TYPE;
P: in PROBE_TYPE; T: in TASK_TYPE) is
—— This procedure is invoked when a resource R receives a F-probe P from a task T.
T ID : TASK_ID_TYPE
begin
if (gnot IN_QUE(T, R.waiting_queue)) or else -- from a white edge
P.probe_ts = R.probe_buf.probe_ts) and then
P.initr_id < R.probe_buf.initr_id)) or else
P.probe_ts < R.probe_buf.probe_ts) or else
P.probe_dl <= current_time)) then
null; —- discard the received probe
elsif (R.probe_buf.probe_dir = BACKWARD) then
if ((P.probe_ts = T.probe_buf.probe_is) and then
P.initr_id = T.probe_buf.initr_id)) then
P.probe_sir := P.probe_str / T.producer_count;
R.probe_buf.probe_dir := FORWARD; R.probe_buf.probe_sir := P.probe_sir;
for T ID in R.forward_tesk_table loop
SEND (P, T _ID); —- only send to forward_task_table
end loop;
end if;
else -- it is a FORWARD probe in the buffer
if ((P.probe_ts = T.probe_buf.probe_ts) and then
P.initr_id = T.probe_buf.iniir_id)) then
—— non-primary probe, send it back to its initiator
SEND (P, P.initr_id);
end if
end if
end RESOURCE_RCV_F _PROBE;

Figure 6.10: Procedure for resources handling received F-probes in the OR Algo-
rithm.

3. function IN_TAB (R, TAB) returns a value TRUE if a resource R is found in
a table TAB, where TAB could be a task’s pending_table (for the outstanding
requests) or holding_table (for its granted resources); otherwise, a value FALSE

is returned.

4. function IN_QUE (T, QUE) returns a value TRUE if a task T is found in a
queue QUE, where QUE could be a resource’s waiting_queue (for the waiting
tasks) or producer_gueue (for the potential producers of the resource); other-

wise, a value FALSE is returned.

5. procedure CLEAR_TABLE(F_TAB) clears table F_TAB, where F_TAB is a
table of ID’s to where an F-probe should be forwarded.

199

6. procedure ADD_TO_TABLE(F_TAB, ID) adds an ID into F_TAB, where ID is

a resource_id or a task_id.

The procedures SEND and RECEIVE are used for probe propagations. The functions
IN TAB and IN_QUE are used to check if a received probe was coming from a
white edge. And the procedures CLEAR_TABLE and ADD_TO_TABLE, which is an
alternate way of implementing O in Algorithm 6.4, maintains a table of outgoing

address (ID’s) to where an F-probe should be forwarded.

All tasks are ACTIVE when created and all consumable resources (rendezvous)
are HELD by the producers when requested. In Ada, synchronization between two
tasks occurs when the task issuing an entry call and the task accepting an entry
call are ready to establish a rendezvous. A rendezvous is a consumable resource.
Either one of the calling and called tasks arriving at the rendezvous first will wait,
and, hence, becomes the “consumer” of the “rendezvous.” The second task which
establishes a rendezvous is always the “producer” of the “rendezvous.” After a
rendezvous is established, the calling task becomes BL OCI{ED while the called task
is executing corresponding statements following the accept statement. The called

task, therefore, is ACTIVE and acts as the producer during the rendezvous period.

6.6 Comparison to Other Work

In this section we compare our algorithms to related work. First, we briefly
survey some previously proposed OR deadlock and knot detection algorithms in
Section 6.6.1. Our proposed Algorithm 6.4 is then compared to the most similar one
in the literature. In Section 6.6.2, we briefly survey a related work on the dynamic

detection of deadlocks for Ada programs and compare our Ada application to it.

200

3

3

—g 3§ —3 —3 3 —3z —3 —3

6.6.1 The OR Deadlock and Knot Detection Algorithms

Dijkstra and Scholten [42] introduced the notion of diffusing computation
(See Section 3.2.3) and suggested an algorithm to detect the termination of an arbi-
trary diffusing computation in any network environment. Most of the OR deadlock
detection algorithms proposed in the literature are basically derived from their no-
tion of diffusing computation. For example, Misra and Chandy [98] discussed how
a diffusing computation based termination detection algorithm can detect com-
munication deadlocks. Following this Chandy, Misra and Haas [27] presented an
algorithm for the communication deadlock detection based on diffusing computa-

tion.

However, the structure of a diffusing computation does not directly define a
knot which is the necessary and sufficient condition for the existence of an OR
deadlock. Therefore, many efforts have been made to adapt diffusing computations
to detect knots which cause OR deadlocks. For example, Misra and Chandy [97]
presented an algorithm based on diffusing computation for distributed knot detec-
tion. Also, Natarajan [105] modified Chandy, Misra and Haas’s algorithm in [27] to
include a voting phase so that the algorithm can explicitly detect each knot exactly

once.

Another disadvantage of using a diffusing computation for OR deadlock detec-
tion is its prolonged two phased structure. Although there is no explicit boundary
between the two phases of a diffusing computation, query messages have to travel to
every reachable vertex and reply signals may be bounced back when it sees a cyclic
wait. Chandy, Misra, and Haas’s communication deadlock detection algorithm [27]
is a typical application of the diffusing computation. Natarajan’s algorithm [105]
includes an additional voting phase before the invocation of a diffusing computa-
tion to detect knots. This make the delay of the detection of an OR deadlock even
longer. Huang proposed an algorithm [68] which is based on Natarajan'’s algorithm.

Huang uses a probe strength computation to combine the two phases of a diffusing

201

computation. However, Huang’s algorithm still employs two phases, i.e., a voting

phase and a knot detection phase. 7

Our proposed Algorithm 6.4 differs from Huang’s algorithm in two respects: _

1. The voting process in Algorithm 6.4 is blended with the B-probe computation. ’—!

To be more specific, in Algorithm 6.4, Rule 6.1-A requires that, in order to '11
receive and process an F-probe, a primary B-probe from the same KDC must

be received at a vertex. In Huang’s algorithm, to accomplish the voting phase, r-v]

an F-probe cannot be processed at a vertex until at least a B-probe from the

same KDC is received at each of the vertex’s outgoing edges.

]
2. Algorithm 6.4 may initiate a new KDC for a newly blocked vertex d only if
it finds that the largest KDC ID in the set {dURN(d)} is meaningless. The "1
idea is that the meaningful KDC’s should be preserved as much as possible so
knots may detected earlier. On the other hand, Huang’s algorithm attempts m’
to detect knots by a “latest” KDC. Whenever a vertex becomes blocked, a
new KDC is initiated with a “latest” logical timestamp. This “latest” KDC m]
may override previous meaningful KDC’s which may detect the same knot

earlier. ’W‘]

In addition, Algorithm 6.5 may be integrated with Algorithm 6.4 for real-time

applications. This is a feature has not yet been found in the literature.

]

6.6.2 Deadlock Detection Algorithms in Ada Applications w]
Most research work on the deadlock problem in Ada programs is in the area "T‘]

of static program analysis. There has been very limited research in the dynamic
detection of deadlock for Ada programs. One noteworthy exception is the work
performed by German, Helmbold, and Luckham [52, 53, 61, 62]. Their work uses
a runtime monitor to detect a class of Ada deadness errors including some limited ™
forms of deadlock. There are four major differences between their work and the

work presented here. First, the monitoring mechanism used in their work is a =

centralized mechanism, while our work focuses on distributed systems. Second,

202

1

3

—3 —3 3 —3 —3 3 !'_E' —3 —3 3 —3 3 —3 T3

deadlock problems are analyzed in very different ways. In their work, deadness
errors are classified into three types: Circular Deadlock, Global Blocking, and Local
Blocking. Circular Deadlock is extremely restricted and involves only entry calls.
It does not account for deadlock that may occur for any other reason such as
circular conflicts over a disk resource. Their Circular Deadlocks model is equivalent
to the Single-Resource deadlock model, but (again) is used only on entry calls.
In addition to handling Circular Deadlocks for entry calls, they can also detect
a Global Blocking situation. A Global Blocking means that all the tasks in the
system are stopped, regardless of the reason. This implies that when they find all
tasks stopped it may have been due to problems that would have to be modeled
by the OR model, or the AND-OR model, or the C(n,k) model. However, to find
such a problem requires either the unlikely situation that all tasks are stopped, or
waiting long enough for all tasks which are still running to terminate successfully,
or to eventually call a blocked task. This is unreasonable for a real-time system.
A third type of deadness error that they deal with is called Local Blocking. Local
Blocking means that a subset of interacting tasks are blocked. However, neither the
Circular Deadlock nor the Local Blocking consider deadlocks which involve the OR
logic wait-for dependency due to accept statements. Consequently, their monitor
cannot detect any local deadlock with OR model or AND-OR model, or C(n,k)
model complexity unless the situation evolves into a Global Blocking situation.
Third, timing constraints are not considered in their work. This is due, in part,
because it was not their intent, and in part, because they do not treat a task
which is executing a delay of a selective wait statement as in the blocked state.
Fourth, their monitor is built at the user application level rather than as part of
the underlying runtime system. Most of their research effort was spent on the
program transformations necessary to gain program visibility at the user level. In
our approach, we assume the compiler and underlying system can provide the proper
information, and then focus on the development of efficient, distributed, real-time

deadlock detection algorithms for Ada programs.

203

6.7 Concluding Remarks

This chapter basically contains two parts: the development of knot detection

algorithms and its application to Ada environments.

In the first part we have carefully developed a series of knot detection algo-
rithms in three refinement steps as suggested in Section 4.1. In the first step, the
underlying system is assumed static and we then could focus on the properties and
principles of knot detection computations. To detect knots in distributed systems
we need to use a “local view definition” which defines a knot from the point of view
of a vertex in a GRG. From a vertex d, this “local view definition” suggests that
we should construct a set of vertices RS(d) to which d can find a directed path in
GRG and a set of vertices T'S(d) from where we can find a path directs to d. The
set RS(d) is a knot if and only if RS(d) C T'S(d). This definition leads to the idea
that if probes are sent out along d’s outgoing edges to search RS(d) all the probes
should come back if RS(d) C T'S(d). To determine if all the probes come back, a
strength is associated with each probe [68]. Whenever a probe split, the strength
splits; wherever probes merge, the strength merges. If the initiator of a KDC sees
its original probe strength come back, all the probes are back. This principle is

presented and proven in Algorithm 6.0.

One of the problems with Algorithm 6.0 is that an infinite loop may be involved
in the probe forwarding path and, hence, a KDC may not terminate in finite time.
To remedy the infinite loop problem, we developed the notion of “primary” probes,
i.e., the probes (forward and backward) from a certain KDC received at a vertex
for the first time. Only the primary probes are fully propagated in a GRG. A non-
primary probe will be discarded or directly sent back to the initiator if necessary.

This idea is presented and proven in Algorithm 6.1.

In the development of Algorithm 6.2 we analyze how KDC’s might interact with
each other in a GRG and derive probe competition rules to reduce the detection
of a knot to be exactly once. These rules also help in eliminating the unbounded

storage problems which might emerge in the dynamic algorithms.

204

{ %!

—31 3 1 __13 3 3 3 1

—.1

__1 i

In the second step of the algorithm development, based on our methadolngy
presented in Chapter 4, synchronization mechanisms are developed to extend Al-
gorithms 6.1 and 6.2 into dynamic systems. We have tried to optimize our syn-
chronization mechanisms so that an existing knot could be detected as early as
possible. The results are presented and proven in Algorithms 6.3 and 6.4. Since
our algorithms are directly derived from properties of the OR deadlock model and
knot structures, they are more efficient in the sense that the computation delay of

declaring knots is in general shorter than previous work.

In the last step, Algorithms 6.3 and 6.4 are extended for real-time applications.
We analyze the properties of Algorithms 6.3 and 6.4 and the implications of tim-
ing constraints in real-time systems to derive a Deadline Computation Algorithm
(Algorithm 6.5). Algorithm 6.5 may be integrated with Algorithms 6.3 or 6.4 for

real-time applications.

In the second part of this chapter, our algorithms are applied to Ada environ-
ments. We analyze Ada rendezvous deadlock and task termination problems and
proposed an integrated solution for them (i.e., the OR Algorithm). One unique
feature of the OR Algorithm is that it is-able to properly handle both delay and
terminate statements in Ada’s rendezvous which has never been addressed in any

previous work.

205

CHAPTER 7

IMPLEMENTATION AND PERFORMANCE EVALUATION

In this chapter, we report on a performance study based on the deadlock
detection algorithms and various schemes implemented in a distributed real-time
database testbed. The testbed system is briefly described in Section 7.1. The
implementation of the algorithms and the baseline schemes (for comparison) are
described in Section 7.2. Experiment parameters and performance metrics are dis-
cussed in Section 7.3. The experimental results are presented in Section 7.4. Finally,

a summary and conclusions are found in Section 7.5.

7.1 The Real-Time Database Testbed RT-CARAT

RT-CARAT (Real-Time Concurrency And Recovery Algorithm Testbed)[67] is
a distributed real-time database testbed system. RT-CARAT is designed to be a
flexible tool for the testing and performance evaluation of real-time database pro-
tocols. The testbed is implemented as a set of cooperating server processes which
communicate via efficient message passing mechanisms. Figure 7.1 illustrates the
processes and message structure of RT-CARAT for any two sites of the system. In
each site there is a TM (Transaction Manager) server process and a pool of DM
(Data Manager) server processes, which are created during system start up. TR
(Transaction) processes are created by users to execute database transactions. For
the purpose of performance measurement, TR processes are created automatically
by the TD (Test Driver) process according to a specified workload. The DC (Data
Collector) process is responsible for collecting performance statistics. The SPY pro-
cess can monitor and display the system status while the transactions are executing

and it is used primarily for debugging purposes.

206

-—3 13

—3

1

_ 1 3

1

r
[

" Transaction
Workload e \T

Global Coordinator

and Observer

Workload

Driver

Target |
System

Figure 7.1: RT-CARAT processes and message structure

207

When a TR initiates a transaction, it registers a unique ID with its local TM
(i.e., its coordinator). In the RT-CARAT system, there is one database at each
site (together they may be treated as a non-replicated database that is partitioned
and distributed among all the involved sites). To open a database, the TR process
sends a DBOPEN message to its coordinator TM. If the database is located at the
local site, the coordinator TM assigns a local DM server to this transaction and
then forwards the DBOPEN message to the assigned DM. If the database is located
at a remote site, the coordinator TM will forward the DBOPEN message to the
remote site (slave) TM which in turn assigns a DM server to this transaction and
then forwards the DBOPEN message to the assigned DM. When a TR initiates a
transaction, a deadline which is randomly selected from a pre-specified range called
“deadline window” is associated with the transaction. This deadline information
is then passed to the TM’s and the designated DM’s along with the DBOPEN
messages. Before a transaction reaches its commit point (i.e., the transaction com-
pletes all its database operations and initiates the two-pahse-commitment protocol)
it will be aborted upon the expiration of the transaction deadline by any of the
involved TR, TM’s, and DM’s processes. To access (read/write) records, the TR
process sends a TDO message to its coordinator TM. A TDO message may contain
multiple data accesses to any single-site database. In the Single-Resource and the
AND model system, the data granules requested in a TDO step are processed in
sequence and each of them must be granted before the transaction can proceed. On
the other hand, in the OR deadlock model system, a transaction may proceed if
any data granule requested in a TDO step can be granted. If a TDO step accesses
data granules in the local site, the coordinator TM forwards the TDO message to
the assigned DM server for the actual database operations. If a TDO step accesses
data granules from a remote site, the coordinator TM forwards the TDO message
to the remote slave TM which in turn forwards it to the designated DM server.
When a transaction completes by its deadline, its coordinator TM is informed to
perform the two-phase-commitment protocol. If a transaction is to be aborted, its

coordinator TM is informed to broadcast the ABORT messages to each of slave

sites.

208

3 __13

The physical environment for the experiments includes three microVAX Il sites.
The sites are connected by a local area DECnet. System clocks are synchronized at
the beginning of each test and they may drift up to 100 msecs apart in an hour long
test. We believe that this clock drift rate does not significantly affect the experiment

results since most of the transaction deadlines are set to tens of seconds.

For concurrency control and recovery, we use the two-phase locking protocol
and after-image journaling mechanism from the RT-CARAT implementation. In
each site, a TWFG (Transaction Wait-For Graph) is maintained by the TM and
the DM processes (see Figure 7.1).

In RT-CARAT, when a DM process is in a waiting state, it cannot process
any message until it is woken up. Therefore, probes are propagated by the TM
and active DM processes immediate after they update the TWFG. In RT-CARAT,
locks are performed at the page level and each database page contains 6 records
(data granules). When a DM wants to read (or write) a record, it acquires a read
(or write) lock on the page which contains the record. If there are lock conflicts, the
DM will update the TWFG and perform deadlock detection operations (propagate
probes according to the TWFG). After a DM finishes all of the possible local probe
propagation operations, it checks to see if there are probes needed to be propagated
to the remote sites. If so, the local TM is informed to initiate inter-site probe
propagations. TM’s then cooperate in the inter-site probe propagations. Since
TM’s are responsible for the inter-site TDO message transfers, they will update
their local TWFG’s whenever remote TDO messages are sent or received. When
a coordinator TM forwards a TDO message to a remote slave TM, a remote wait
outgoing edge record (the state of the receiving end of the edge is not shown locally)
is added to the local TWFG. When a slave TM receives a TDO message from a
remote coordinator TM, an incoming edge record (the state of the sending end of the
edge is not shown locally) is added to the local TWFG. When a slave site finishes
a TDO and responds back to the coordinator site, the above two edge records

will be reversed by the involved TM’s. Necessary inter-site probe propagations

209

will be cooperatively performed by the involved TM’s after they update their local
TWFG’s.

When a transaction is chosen as the victim of a deadlock resolution, it is
aborted. No rollback is necessary to abort a transaction in RT-CARAT since after-
image journaling is used. An aborted transaction will be restarted immediately if

its deadline has not expired.

In RT-CARAT, the CPU is scheduled based on transaction priority with pre-
emption using the underlying VAX/VMS operating system real-time priorities (pri-
orities 16-30). The CPU scheduler is embedded in the TM. Upon receiving a
transaction execution request from a TR, the scheduler assigns a priority to f.he
transaction according to the chosen CPU scheduling policy, e.g., EDF (Earliest
Deadline First) [67]. The scheduling operation is done by mapping the assigned
transaction priority to the real-time priority of the DM process which carries out
the transaction execution. At this point, an executing DM will be preempted if it
is not the highest priority DM process at the moment, otherwise it will continue to

run.

In our experiments, we primarily assume that no specific real-time scheduling
protocol is used in the underlying system. Most of the experiments focus on the
effects of various schemes related to the deadlock problems in the system. All the
DM processes are running in the regular priorities (priorities 4-15) which are manip-
ulated by the underlying VAX/VMS operating system. However, for comparison,
a commonly used real-time CPU scheduling protocol EDF' is used in one of the

experiments.

RT-CARAT is a secondary storage database system. In a secondary storage
database system, disk I/O is an important performance factor. However, the disk
I/O performance is beyond the scope of our experiments. Instead of performing
physical disk I/O operations, which is under the control of disk controllers, we
simulate I/O operations in our experiments. Each I/O operation is simulated as

a fixed delay time protected by a FIFO critical section. For each read operation,

210

_3 3

—3 3 _1

E |

A

3

a page of database records is directly generated in the main memory. The delay

time is chosen so that all of the tests in an experiment will not cause the system to

become I/O bound or CPU bound.

7.2 The Schemes for the Experiments

To verify the deadlock detection algorithms and to study their performance,
we have implemented three classes of schemes in the RT-CARAT system:

1. Break by deadline: This is one of the baseline schemes. In the RT-CARAT
system, each transaction is associated with a deadline. An transaction is
aborted when its deadline expires. This scheme allows a deadlock to persist

until one of its participants is aborted by deadline. This class of schemes is
denoted as NDD (No Deadlock Detection).

2. Timeout and retry: This is a class of baseline schemes. Instead of allowing
transactions to wait until deadline expiration, this class of schemes sets a
short timeout period for the transactions’ waiting states. A transaction will
stop waiting and rollback upon the expiration of the timeout period or the
transaction deadline. A transaction will be restarted after the rollback if its
deadline is not expired. Three timeout settings are used in the experiments:

1 second (denoted as WO01), 5 seconds (W05), and 10 seconds (W10).

3. Deadlock detection/resolution: For deadlock detection/resolution schemes,
three proposed algorithms are implemented: the Single-Resource Algorithm
(denoted as SRD, see Section 5.3.4 for the detail of the algorithm), the AND
Algorithm (AND, Section 5.4.4), and the OR Algorithm (ORD, Section 6.5.3).
Also, there is a previously implemented AND deadlock detection algorithm
which is based on Chandy, Misra, and Haas’s resource deadlock detection
algorithm proposed in [27] (denoted as CMH). Some of the implementation

details are discussed in the following paragraphs.

In the original SRD, AND, and ORD algorithms, the code is composed of

two parts: one specifies the operations performed at the tasks and the other part

211

specifies the operations performed at the resources. The resource part of the al-
gorithm code is basically simplified from the task part so that resources do not
initiate probes and do not declare deadlocks. These algorithms are designed for
the systems where tasks and resources are managed separately and GRG’s can be
easily formed. In RT-CARAT, transactions can be treated as tasks in the deadlock
detection. However, since RT-CARAT only supports TWFG, the resource part of
the proposed algorithms is eliminated in the implementations. Probes are directly

transferred between transactions according to the TWFG in RT-CARAT.

Also, in the original ORD (Section 6.5.3), the detection of a task termination
condition is treated as a special case of the deadlock. If a deadlock is detected in
which every participant is also waiting for the termination, a termination condition
is declared. Since, in RT-CARAT, transactions do not wait for each other to ter-
minate, the termination detection part of the ORD algorithm is eliminated in the

implementation.

The CMH algorithm uses the notion of dependent set to stop foreign probes
from being repeatedly propagated in a cycle (see Section 5.2). At each site, the TM
keeps track of a dependent set for each of the; transactions it manages. A dependent
set contains the probe ID’s received at a transaction. A probe will not be propagated
to the remote sites if it is found in the dependent set of the transaction where the
probe is processed. A dependent set is cleared when its corresponding transaction
leaves a remote waiting state. The probe ID is a combination of the initiator’s

transaction ID and site ID and a logical timestamp maintained at each DM process

such that a probe ID can be uniquely identified in the whole system.

Both the SRD and the AND algorithms are optimized to reduce the number
of probe initiations such that each cycle may be declared exactly once. Also, trans-
action deadline information is considered in the SRD and the AND algorithms to
reduce the possible false detection of Temporal deadlocks. On the other hand, the
implementation of CMH algorithm

212

.%l : g

4

3

-3

]

- is optimized to reduce the inter-site probe propagations. In the CMH im-
plementation, a DM will finish searching local cycles before it informs TM
to propagate probes to the remote sites. Inter-site propagation will not be
initiated if a DM finds local cycles and aborts the transaction it serves. This
is because in the CMH implementation, a DM only searches cycles in which

the transaction it serves is involved.

- may cause a cycle to be declared (and broken) at more than one places. This
is because in the CMH algorithm, every transaction in a cycle may initiate
a probe computation and may detect the cycle and abort itself (actually,
all these operations are done by the transaction’s designated DM and TM

processes).

- does not take transaction deadline into consideration. In the CMH algorithm,
a detected Temporal deadlock may never exist or may have been broken by a

transaction which is aborted due to deadline expiration.

7.3 Parameters and Performance Metrics

In RT-CARAT, tests are automatically executed according to the parameters
specified in a configuration file. Some of the important parameters are summarized

as follows.

TR_Length - transaction length. In all our experiments, transactions are of two
lengths, long and short. In a test configuration, the transaction length is
specified as [z, yi; Z,,y,]- The first two numbers are used to specify the long
transactions and the last two numbers are used for the short ones. The z
values specify the number of TDO step per transaction and the y values
specify the number of records per TDO steps.

Pr_.Long.T'R - the probability of initiating a long transaction.

213

Pr_.Write.T R - the probability of initiating an write (update) transaction. When
a transaction is initiated, it is either a write transaction or a read-only trans-

action. Only an write transaction may issue write TDO steps.
Pr_Write.TDO - the probability of issuing a write TDO in an update transaction.

Pr_Dist. TR - the probability of initiating a distributed transaction. When a trans-
action is initiated, it is either a distributed transaction or a local one. Only a

distributed transaction may request records from remote sites.

N_Rem_Sites — the number of remote sites from which a distributed transaction

may request records.

IO_Delay - simulated I/O delay. In our experiments, each disk I/O operation is

simulated as a constant delay protected by a critical section.

MPL - multiprogramming level. This parameter is primarily determined by the

number of TR processes in the system.

DB_Size - database size. The maximum database size at each site is 3000 pages

with 6 records per page.

DL_Window - deadline window. The deadline window is specified as [z;-y1,2,-¥.)-
The notation z;-y (values are in seconds) specifies the lower (z;) and the
upper () limits of the deadlines for the long transactions. Similarly, z,-y,
specifies the lower (z,) and the upper (y,) limits of the deadlines for the short

transactions.

Acc_Pattern - data accessing pattern. This parameter specifies how records are
selected from a database for a TDO step. In our experiments, two types of
accessing patterns are used: random and contiguous. A random accessing
pattern means that each record is randomly selected from the whole database
specified by the DB_Size. On the other hand, a contiguous accessing pattern
means that the records accessed in a TDO step are contiguous (only the first

one is randomly selected).

CPU_Scheduling - (real-time) CPU scheduling policy. This parameter specifies
the real-time CPU scheduling policy used in the underlying system. In our

214

-3

3

experiments, we primarily assume that there is no speéiﬁc real-time scheduling
protocol is used in the underlying system. However, for comparison, EDF

(Earliest Deadline First) scheduling is used in one of the experiments.

DD_Scheme - deadlock detection scheme. The schemes (described in Section 7.2)

used in an experiment.

The following metrics and statistics are used to evaluate and compare the

proposed algorithms and baseline schemes:
e For the overall performance comparison, the following metrics are used:

- Deadline Guarantee Ratio - the percentage of transactions in a test that
are committed by deadline.

- Record Throughput - the amount of useful work done in one second.
Since transactions are of two lengths in the tests, instead of using Trans-
action Throughput, Record Throughput (records/second) is used for this

measurement.
e To evaluate the efficiency of the implemented algorithms,

- we measure the CPU Utilizations for the deadlock detection, the locking

management, and the total system usage.

- we collect the statistics for the number of locks requested and blocked
(i.e., not immediately granted locks), the number of probe computations
initiated, and the number of local and global (inter-site) probe messages

during the period of a test run time (30 minutes).

7.4 Experimental Results

In addition to the verification of the implemented algorithms (described in

Experiment 0), we report on the following four sets of experiments:

1. The AND Deadlock Model: The purpose of this experiment is to study

and evaluate the performances of various algorithms and baseline schemes in

215

a typical database environment (i.e., the AND deadlock model system). The
algorithms and schemes used in this experiment are: CMH, AND, NDD, W01,
W05, and W10.

. The CPU Scheduling and the Deadlock Detection: This experiment is
an extension to the first experiment. In this experiment, we study the effect of
adding the real-time scheduling policy EDF to systems both with and without

the deadlock detection/resolution or the timeout/retry schemes.

. The Single-Resource Deadlock Model: A Single-Resource deadlock
model system can be simulated by imposing a restriction on the RT-CARAT
system such that a data granule can only be requested and granted exclusively
(i.e., write locks only). This is a special case of the system studied in the first
experiment (i.e., the AND model system). In this experiment, we also study
the efficiency of different types of probe algorithms (forward vs. backward

propagations, and simple probes vs. complex chain probes). The algorithms
and schemes used in this experiment include CMH, AND, SRD, and NDD.

. The OR Deadlock Model: The purpose of this experiment is to study
and evaluate the performances of the OR algorithm and the baseline schemes
in a OR deadlock model system. The algorithms and schemes used in this
experiment are: ORD, NDD, W01, W05, and W10.

Our data collection is based on the method of replication. In the experiments,

each test consist of five runs where each run is 30 minutes long. The data are
collected and averaged over the five runs of each test. The major performance
metric “deadline guarantee ratio” is used to determine the length of each run and
the number of runs needed. Thirty minutes is chosen to reduce the transient effect
during the test startup period. The deadline guarantee ratio during a test startup
period is better than that during the steady state because deadlocks are less likely
to happen in the startup period. We gradually increased the test run time and
observed that there is no significant differences between the 30 minutes and any
run time longer than that. The choice of five runs for each test was determined so

that the width of the 95% confidence intervals for the deadline guarantee ratio is

216

— 3

1 31 _3 _3

—3 3

less than 5% (actually, after five runs, it is less than 2% in most of the tests) of the

estimated point (i.e., the mean value of the deadline guarantee ratios over the runs

in a test).

7.4.1 Experiment 0: Algorithm Verification

The verification of the implemented algorithms was largely done in the debug-

ging phase. The following verification procedures were performed on each of the

implemented algorithms:

Execution Trace Analysis : Debugging a distributed program is rather difficult.
The technique we use to debug the RT-CARAT implementations is to keep

a message log and a trace log for each of the RT-CARAT processes. At the

final stage of the implementation, the unnecessary information is eliminated

from the trace log files. After each test run, the trace log files are analyzed to

i check if

simple local cycles can be quickly detected by the DM’s,

long and nested local cycles (or long and complex local knots) can be

correctly detected by the DM’s whenever they appear in the local TWFG,

global cycles (or knots) which involves more than one site can be effi-

ciently detected by the TM’s,

transaction deadlines can be properly handled in the probe propagations

such that false detection of the Temporal deadlocks are rare, and

- probe computations can terminate properly (i.e., no infinite propagation

loops).

Exhaust Test : A set of exhaust tests are conducted to verify the progress concern

of the implemented algorithms (i.e., if a deadlock can be properly detected in

finite time). We use very long transaction deadlines (more then 30 minutes)

in the long exhaustive tests (more than two hours each). The results of these

exhaust tests have shown that (1) thousands of deadlocks are detected and

217

resolved in each of these tests and (2) all the transactions in these tests are
committed by their deadlines. Suppose all types of deadlock situations may
have appeared in each of these exhaust tests, the 100% deadline guarantee
ratio indicates that all of them are detected and resolved. These results imply

that the possibility of severe implementation error is very low.

7.4.2 Experiment 1: The AND Deadlock Model .

We begin our experiments with the AND deadlock model system. The AND
deadlock model system is very common in databases. In RT-CARAT, if both “read”
and “write” locks can be acquired for a database page, the TWFG depicts an AND
deadlock system. For example, suppose two transactions share a read lock to a
database page and a third transaction wants a exclusive write lock to the same
page. The third transaction has to wait for both read lock holders to release the

lock to the page.

Table 7.1 summarizes the parameter settings of this expefiment. When a trans-

action is initiated,

- it is 50% chance short and 50% chance long. A short transaction has 4 TDO
steps while a long one has 12 TDO steps. Each TDO step accesses 4 records.
Each record is randomly selected from a database with a size specified by the

parameter DB_Size.

- it is 50% chance read-only and 50% chance write. In a write transaction, a

TDO step is 50% chance read-only and 50% chance write-only.

- it is 50% chance local and 50% chance distributed. In a distributed transac-
tion, TDO steps are evenly distributed over three sites: one coordinator site

and two remote slave sites.

There are 8 TR processes at each site. The database size is varied from 1000 to
3000 pages per site. The shortest deadline window [20-80, 6-24] is determined by a
set of pilot tests. In these pilot tests, we observe that 60-80% of the transactions

can commit by deadline with this deadline window setting. In the experiment, the

218

; |

deadline window is varied from this shortest setting to a four times longer setting.
The algorithms and the baseline schemes used in this experiment are: CMH, AND,
NDD, W01, W05, and W10.

Table 7.1: Experiment 1 Parameter Settings

Parameters Settings
Fixed Settings
TR_Length [12,4; 4, 4]
Pr_Long. TR 50%
Pr.WriteTR 50%
Pr.WriteTDO | 50%
Pr_.Dist.TR 50%
N_.Rem._Sites 2
MPL 8 TR’s per site
Acc_Pattern random
CPU_Scheduling | non-real-time
10.Delay 200 msecs
Varied Settings
DB_Size 1000, 1667, 2333, and
3000 pages per site
DL_Window [20-80,6-24], [40-160,12-48],
[60-240,18-72], [80-320,24-96],
and [00-00,00-00]
DD_Scheme CMH, AND, NDD, W01, W05, and W10

Figures 7.2 and 7.3 compare all of the schemes listed above with respect to
deadline guarantee ratio. Figures 7.4 and 7.5 compare these schemes with respect
to record throughput. Overall, the two detection/resolution schemes, i.e., the AND
and the CMH schemes, perform about the same and they are the best schemes in
this experiment. Slightly below these two detection/resolution schemes are the two
timeout/retry schemes W05 and W10. Among the three timeout/retry schemes
W01 is significantly worse than the other two. This indicates that most of the
outstanding requests can be granted within 5 seconds, but the one second timeout

period is too short.

219

NDD is the worst scheme in this experiment. In terms of deadline guaran-
tee ratio, NDD is not sensitive to the deadline window (Figure 7.2). However,
in Figure 7.4, the performance of NDD drops dramatically when the transaction
deadlines become longer. This result indicates that without any scheme (either
detection/resolution or timeout/retry) to deal with deadlocks, a longer deadline
window setting might actually degrade the system performance because it causes

transactions’ average waiting state longer.

Figures 7.6 and 7.7 show that the majority of lock requests (in the period of
30 minutes test run time) are granted immediately. Only a small number of the lock
requests are blocked and part of the blocked requests may cause the initiation of
deadlock detection computations. Also, in Figures 7.8 and 7.9, the amount of CPU
power used for deadlock detection is very small (less than 2%) compared to the CPU
utilizations for the locking management (about 30%) and the system total (70-80%).
Although more than ten thousand probes may be processed in a 30 minutes test
run time (Figures 7.10 and 7.11), they only consume less than 2% of the CPU
power. All these results show that a deadlock detection algorithm implemented in
a system can be very efficient and incurs very little overhead. These results also
explain why there are no significant differences between the two deadlock detection
algorithms tested in this experiment in terms of deadline guarantee ratio and record

throughput.

The probe statistics (Figures 7.10 and 7.11) show that the AND algorithm
invokes probe initiation less frequently and requires less probe propagations than
the CMH algorithm. This makes the AND algorithm more attractive than the
CMH algorithm in the systems where the probe propagations are complicated and

expensive. For example,

- in a wide area communication network where each probe message propagation
is routed through many intermediate sites, the delay of a probe propagation

is long and the overhead it incurs is not low.

- in some systems, the resolution of a detected deadlock requires information

(e.g., the criticalness, the deadline, and the priority of each deadlocked task)

220

3

N

3

3

3

¥ |

E|

: j

—3

which should be collected by the probes. Processing and propagating such

complicated probes can be very expensive.

To reduce the frequency of both the probe computation initiation and the probe

propagation is crucial in such systems.

As described in Section 7.2, the CMH algorithm is optimized to reduce the
inter-site probe propagations. However, this optimization does not work well under
high data contention workloads. In F igure 7.11, the global probe message incurred
by the CMH algorithm is more than that incurred by the AND algorithm when the
data contention is high (i.e., database size is 1000 or 1667 pages). This is because
under the high data contention workload, the TWFG becomes more complicated
(edges are created due to data competitions), and the situation that a DM finishes
a local search without finding any cycle while the inter-site probe propagations
are needed is more likely to happen in a more complicated TWFG. Consequently,
the inter-site global probe message rate is relatively higher under the high data

contention workloads.

7.4.3 Experiment 2: The CPU Scheduling and the Deadlock Detection

This experiment is an extension of Experiment 1. In this experiment, we
study the effect of a real-time scheduling policy EDF in systems both with and
without the deadlock detection/resolution or the timeout/retry schemes. Since EDF
scheduling utilizes VAX/VMS real-time priorities 16-30, the maximum number of
DM servers at each site has to be limited to 15 (in the worse case, each DM needs
to be assigned to a site-wide unique priority). Therefore, the parameter settings
of ‘this experiment (shown in Table 7.2) are scaled down from Experiment 1 as
follows. The multiprogramming level is reduced to 4 TR processes at each site.
To maintain a similar data contention level, the database size is varied from 500
to 2000 pages per site. Since the multiprogramming level is reduced to half of
the setting in Experiment 1, the average response time will be about half of that in

Experiment 1. Therefore the deadline window is set to 1/2 and 2/3 of those settings

221

in Experiment 1 for the long and the short transactions respectively. The 2/3
deadline window reduction reflects the fact that constant overhead (e.g., transaction
start and commitment overhead) is significant in short transactions. Again, the
algorithms and the baseline schemes used in this experiment include CMH, AND,
NDD, W01, W05, and W10.

Table 7.2: Experiment 2 Parameter Settings

[Parameters | Settings
Fixed Settings
TR.Length (12,4; 4, 4]
Pr_.Long.TR 50%

Pr_Write.TR 50%
Pr_WriteTDO | 50%

Pr.Dist.TR 50%
N_Rem_Sites 2
MPL 4 TR’s per site
Acc_Pattern random
I0.Delay 200 msecs
Varied Settings
DB_Size 500, 1000, 1500, and
2000 pages per site
DL Window (10-40,4-16}, [20-80,8-32],

[30-120,12-48], and [40-160,16-64]
CPU_Scheduling | non-real-time and EDF
DD_Scheme CMH, AND, NDD, W01, W05, and W10

Overall, the EDF scheduling increases the deadline guarantee ratio by about
2-5% and the throughput by about 1-2 records/second (Compare Figures 7.12,
7.14, 7.16, and 7.18 with Figures 7.13, 7.15, 7.17, and 7.19 respectively). All the

performance trends remain the same as observed in Experiment 1.

Figures 7.20-7.23 depict the probe statistics with and without EDF scheduling.
When EDF scheduling is in use, the probe messages are moderately reduced. One
interesting phenomenon we have observed is that the number of probe computation
initiations by the AND algorithm is decreased 50% by EDF scheduling while the

reduction of the AND probe messages does not reflect this ratio. This is because

222

| 3 ! =§I . 3

3

3

in the AND algorithm a transaction can “append” itself to the chain of an existing
probe instead of creating a new one. Under the EDF scheduling, the AND algorithm
is less likely to initiate new probes and, hence, the ongoing probe computations get
more chance to continue. This also implies that, in average, a deadlock cycle can

be detected earlier by the AND algorithm when EDF scheduling is in use.

7.4.4 Experiment 3: The Single-Resource Deadlock Model

The Single-Resource deadlock model system is a special case of the AND model
system. A Single-Resource deadlock model system can be simulated by imposing a
restriction on the RT-CARAT system such that a data granule can only be requested
and granted exclusively (i.e., write locks only). The goal of this experiment is to
study the efficiency of different types of probe algorithms (forward vs. backward
propagations, and simple probes vs. complex chain probes). Table 7.1 summarizes
the parameter settings of this experiment. These parameter settings are similar to
those in Experiment 1 except that all the transactions are of the write-only type
and the number of remote slave sites for the distributed transactions is varied from
1 to 2. The algorithms and the baseline schemes used in this experiment include
CMH, AND, SRD, and NDD.

Again, overall, all the three algorithms perform about the same with respect
to both the deadline guarantee ratio (Figures 7.24-7.27) and the record throughput
(Figures 7.28-7.31).

One of the goals of this experiment is to study and compare the forward and
the backward probe propagations. Since the parameter N_Rem._Sites which sets
the number of slave sites for the distributed transactions will affect the backward
propagation more than the forward propagation, probe statistics are compared un-
der both 1 and 2 slave sites settings. Note that there are about 5-10% more lock
requests in the 1 slave ‘site tests than in the 2 slave sites tests (Figures 7.32-7.35).

This is because the mean response time for the 1 slave site transactions is shorter

223

Table 7.3: Experiment 3 Parameter Settings

| Parameters Settings

Fixed Settings

TR.Length (12,4;4,4]

Pr.Long.TR 50%

Pr.Write.TR 100%

Pr.WriteTDO | 100%

Pr_Dist. TR 50%

MPL 8 TR'’s per site

Acc.Pattern random

CPU_Scheduling | non-real-time

I0.Delay 200 msecs

Varied Settings

DB_Size

1000, 1667, 2333, and

3000 pages per site

DL Window [20-80,6-24], [40-160,12-48],
[60-240,18-72], [80-320,24-96],
and [00-00,00-00]
N_Rem_Sites 1,2

DD_Scheme CMH, AND, SRD, and NDD

than that for the 2 slave sites transactions. With this in mind we now proceed with

the following analysis.

Figures 7.36-7.39 show the number of probe computation initiations for these
three algorithms. When the system workload is changed from 2 to 1 slave site, the
probe initiation rates for both the CMH and the SRD algorithms increase slightly.
However, the probe initiation rates decrease slightly for the AND algorithm when
the system is changed to 1 slave site workload. A possible explanation is that the
TWFG is simpler (less incoming edges from the remote sites) under the 1 slave site

workload and the AND algorithm can benefit from it.

Figures 7.40-7.43 show the statistics for the probe messages. In most of the
tests, the AND algorithm generates the smallest number of local and global probe
messages. In general, the CMH algorithm requires the most local messages while the

SRD algorithm requires the most global messages. The number of probe messages

224

due to the SRD algorithm is very sensitive to the number of slave sites, the deadline
window, and the data contention. In terms of the probe message rate, the SRD
algorithm becomes the best among the three algorithms when the system workload

is set to 1 slave site, the shortest deadline window, and the largest database size.

7.4.5 Experiment 4: The OR Deadlock Model

The purpose of this experiment is to study and evaluate the performances of
the OR algorithm and the baseline schemes in the OR deadlock model systems.
In an OR deadlock model system, a transaction may proceed if any of the records
requested in a TDO step can be granted. If the number of the records requested in
a TDO step is increased, not only does the probability that a TDO step is blocked
decrease but also the average size of the knots increase. Also, knots are more
complicated than cycles because, in general, more transactions and more wait-for
edges are involved in a knot than in a cycle. In this experiment, we need to greatly
reduce the database size to raise the data contention to a level such that enough
number of knots can be generated in the tests. In a set of pilot tests we have
found that a satisfactory setting is such that each TDO step should be limited to
two requests and the database size should be smaller than 100 pages. Since in
each TDO step only one database operation is actually performed, to maintain the
average length of the transactions’ execution time to be comparable to the other
experiments, both the number of TDO steps per transaction and the I/O delay
are increased by 50%. In this experiment, in addition to the random accessing
pattern, the contiguous accessing pattern is also tested. In a test with the contiguous
accessing pattern, 5/6 of TDO steps will map their two requested records into the
same page. In other words, 5/6 of the transactions in the TWFG will have only one
outgoing edge while the remaining 1/6 of the transactions will have two outgoing
edges. Comparing to the random accessing pattern setting; the contiguous accessing
pattern will result in a higher frequency of deadlock occurrences and, in general,

the deadlock structure is simpler. The algorithms and the baseline schemes used in

225

this experiment are: ORD, NDD, W01, W05, and W10. Table 7.4 summarizes the

parameter settings used in this experiment.

Table 7.4: Experiment 4 Parameter Settings | 7

| Parameters | Settings |
Fixed Settings
TR Length [18,2;6,2]
Pr_.Long.TR 50%
Pr_Write.TR 100%
Pr-WriteTDO | 100% -
Pr.Dist.TR 50% ']
N_Rem._Sites 2 -
MPL 8 TR’s per site S .
CPU_Scheduling | non-real-time j
I0_Delay 300 msecs
Varied Settings '“7
DB_Size 30, 50, 70, and ,
90 pages per site
DL Window [20-80,6-24], [40-160,12-48], '71
[60-240,18-72], and [80-320,24-96]
Acc_-Pattern random and contiguous
DD_Scheme ORD, NDD, W01, W05, and W10 "‘j
Figures 7.44-7.47 compare the algorithms and the schemes with respect to the m‘

deadline guarantee ratio. Figures 7.48-7.51 compare the algorithms and the schemes

3

with respect to the record throughput. Again, the NDD is the worst scheme in this

experiment.

3

Overall, among the three timeouf/ retry schemes, W05 outperforms the other
two. In Figures 7.46, 7.47, 7.50, and 7.51, W10 outperforms W01 when the data
contention is low (i.e., DB.Size = 90). The reverse is the case when the data
contention is high (i.e., DB_Size = 30). Also, the nearly linear curves shown in
these figures imply that W01 may be the best scheme when DB_Size > 90 and
W01 may be the best scheme when DB_Size < 30. This observation tells us that

the choice of a timeout period is not an easy task.

226

When the record accessing pattern is random, the SRD algorithm performs
worse than W05 in most of the tests. There are three possible causes for the

relatively poor performance of the SRD detection/resolution scheme:

1. To rollback a transaction is simple in RT-CARAT which favors timeout/retry

schemes.

2. The resolution of a detected knot is not good enough to allow most of the

surviving transactions to meet their deadlines.
3. There are probably many long wait-for paths in the TWFG.

The first cause is obvious. To see why the latter two are possible causes let’s consider

two more cases:

- When the record accessing pattern is contiguous, the SRD algorithm performs

very close to the W05 scheme.

- In Experiment 1, all the detection/resolution schemes outperform all the time-

out/retry schemes.

Table 7.5 shows the average cyclic wait lengths found in the tests of the above
three cases. When a deadlock is a knot, the length of the longest cycle in the knot
is used as the cyclic wait length of that knot. Although the average cyclic wait
length of the knots only range from 4.1 to 6.5 transactions, the size of a knot is
usually more than 10 transactions. The cyclic wait length of a deadlock (a cycle or
a knot) can be used as an index to indicate how “long” the surviving transactions
should be waiting. Also, the average cyclic wait length in a system is related to the
average length of the wait-for paths in the TWFG.

Table 7.5: Mean Cyclic Wait Length

Test Settings Mean Cyclic Wait Length
OR system/random access 6.0 - 6.5 transactions
OR system/contiguous access | 4.1 — 4.6 transactions
AND system/random access | 2.8 — 3.5 transactions

227

Table 7.5 suggests that when the mean cyclic wait length is longer than 4

transactions in a test, we should consider
- using a smarter resolution policy to break detected deadlocks.

- breaking a long wait-for path even before it forms a deadlock.

This also suggests that an integrated solution can be developed for both Non-
deadlocked Blocking situations and Temporal deadlocks in a real-time system (Sec-

tion 2.6.1).

7.5 Summary of Results and Conclusions

To verify the algorithms and to study their performance, we have implemented
three classes of schemes in the RT-CARAT system: (1) break by deadline, (2) time-
out/retry, and (3) detection/resolution. For the detection/resolution schemes, four
algorithms are implemented and evaluated in the experiments. These algorithms
include the Single-Resource Algorithm (Section 5.3.4), the AND Algorithm (Sec-
tion 5.4.4), the OR Algorithm, and the resource deadlock detection algorithm pro-
posed by Chandy, Misra, and Haas [27]. In general, our experimental results indicate

the following:

e Distributed deadlock detection can be efficiently realized. Because they can
be efficiently realized, the overall performance differences (in terms of deadline
guarantee ratio and throughput) between related algorithms are not signifi-

cant.

e Compared to the baseline scheme break by deadline, any of these deadlock de-
tection algorithms can significantly improve the system performance in terms

of the deadline guarantee ratio and the throughput.

e Compared to the timeout/retry schemes, the detection/resolution scheme
s performs better when the deadlocks are simple and short (e.g., the Single-

Resource and the AND deadlocks). However, the detection/resolution scheme

228

3 :

-3 3 '3 __3

H

3

performs worse than timeout and retry when the average cyclic wait length is

long (e.g., the OR deadlocks).

e EDF scheduling slightly improves the overall system performance but does

not affect the trend of the performance results.

e In terms of the probe message rate, the AND Algorithm is the best (i.e.,
requires the least probe messages) among the three cycle detection algorithms
in most of the tests. However, the Single-Resource Algorithm becomes the
best one when the system workload is set to 1 slave site, the shortest deadline

window, and the largest database size.

The results of the experiments conducted in this chapter indicate that when
the mean cyclic wait length is long, a good deadlock resolution policy is necessary
to manage to allow most of the surviving transactions to meet their deadlines. Also,
the length of the mean cyclic wait length in a system is related to the average length
of the wait-for paths in the TWFG of that system. This suggests that an integrated
solution should be developed for both the Non-deadlocked Blocking situations and

the Temporal deadlocks in a real-time system.

229

Deadline Guarantee Ratio

DB size = 1667 pages

100%

80% |- 4”’,,”””Aj___—______,__——{}-—"""-_—__-U

60% |-

40% |-

20% |-

0% 1 L | 1 1
[20-80,6-24] [40-160,12-48] (60-240,18-72] [80-320,24-96] [N/A,N/A)

Deadline Window (seconds)
—--AND . CMH __NDD . W01 W05 _.W10

Figure 7.2: Deadline Guarantee Ratio, AND Model System, DB Size 1667 Pages

Deadline Guarantee Ratio

deadline window = [40-160,12-48]
160%

|

60% |-

- a0% |

20% |

0% L ' ' '
1000 16687 2333 3000
DB Size (pages)

- AND o CMH __NDD o W01 W05 _, W10

Figure 7.3: Deadline Guarantee Ratio, AND Model System, DL Window
[40-160,12-48]

230

)

3

S |

3 __13 7

Records/second

Record Throughput
DB size = 1667 pages
30.00
25.00 -
20.00 -‘f 1;‘:\:2}\5}__#
15.00 |-
10.00 |-
5.00 |-
0.00

[20-80,6-24] [40-160,12-48]) [60-240,18-72] [80-320,24-96]) [NVA,N/A)
Deadline Window (seconds)

- AND o CMH __NDD W01 W05 _, W10

Figure 7.4: Record Throughput, AND Model System, DB Size 1667 Pages

Records/second

Record Throughput
deadline window = [40-160,12-48]
30.00
25.00 |-
20.00 |-
15.00 |- -
10.00 |-
5.00 F
0.00
1000 1667 2333 3000
DB Size (pages)

-+AND . CMH __NDD W01 W05 _, W10

Figure 7.5: Record Throughput, AND Model System, DL Window [40-160,12-48|

231

3 3

Locking Statistics
DB size = 1667 pages

-3

50

40

30

Thousands
AR S

20

T

T

R

10

3

7]) e T

° {20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)

- Probe [nitiation (AND) &&&# Lock Blocked (AND) e Lock Requested (AND)

Probe Initlation (CMH) D Lock Blocked (CMH) D Lock Requested (CMH)

Figure 7.6: Locking Statistics, AND Model System, DB Size 1667 Pages

Locking Statistics
deadline window = [40-160,12-48]

60
50 rm%
40

2

:]

g 30 .

Q

(=]

20 W}
10 *
1000 1667 2333
DB Size (pages) j
B p:obe nitiation (AND) Lock Blocked (AND) B3] Lock Requested (AND)

Probe [nitlation (CMH) D Lock Blocked (CMH) D Lock Requested (CMH)
Figure 7.7: Locking Statistics, AND Model System, DL Window [40-160,12-48] ’_I

232

CPU Utilizations
DB size = 1667 pages

100%

80%

60%

40%

20%

0%

[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)

- Deadlook Dstection (AND)

Locking Management (AND) System Total (AND)

Deadiook Detestion (CMH) D Looking Managsment (CMH) E] Systsm Total (CMH)

Figure 7.8: CPU Utilization, AND Model System, DB Size 1667 Pages

CPU Utilizations
deadline window = [40-160,12-48]

100%

80%

60%

40%

20%

0%
1000 1667 2333 3000

DB Size (pages)

i Looking Management (AND) System Tolal (AND)

- Deadiook Detsetion (AND)

| Daadiook Dsteotion (CMH) I:l Looking Management (CMH) D System Total (CMH)

Figure 7.9: CPU Utilization, AND Model System, DL Window [40-160,12-48]

233

Probe Statistics
DB size = 1667 pages

15

10

Thousands

e

[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)

- Probs Initiation (AND) Qlobal Probe Msg. (AND) Local Probe Mag. (AND)

mhlmson(cum I___]ahhlnmhuq.(cm) Dmlmmm.(euu)
Figure 7.10: Probe Statistics, AND Model System, DB Size 1667 Pages

Probe Statistics

deadline window = [40-160,12-48]
15

10

Thousands

1000 1667 2333 3000
DB Size (pages)
- Probe Initistion (AND)

Qlobal Probe Meg. (AND) Loosl Probe Mag. (AND)

mmlmuon(cum Dom-lma-uq. (CMH) Dmumum.(m}
Figure 7.11: Probe Statistics, AND Model System, DL Window [40-160,12-48]

234

Deadiine Guarantee Ratio

DB size = 1000 pages
100%

80%

60% I-

40% |

20% |-

0% 4 A 4 f
[10-40,4-16]} [20-80,8-32] {30-120,12-48] [40-160,16-64]

Deadline Window (seconds)
- AND . CMH _._NDD W01 W05 _.-W10

Figure 7.12: Deadline Guarantee Ratio, AND Model System, Non-Real-Time
Scheduling, DB Size 1000 Pages '

Deadline Guarantee Ratio
DB size = 1000 pages (EDF)

100% e "
80% |- —A
60% |-
40% |-
20% |-
0% Lt : : .
[10-40,4-16} {20-80,8-32] {30-120,12-48] (40-160,16-64]

Deadline Window (seconds)
-=AND _CMH __NDD W01 W05 W10

Figure 7.13: Deadline Guarantee Ratio, AND Model System, EDF Scheduling,
DB Size 1000 Pages

235

Deadline Guarantee Ratio
deadline window = [20-80,8-32]

100%

80%

60%

40% |-

20% |

% 500 1000 1500 2000
DB Size (pages)

—-AND . CMH _._NDD W01 W05 W10

Figure 7.14: Deadline Guarantee Ratio, AND Model System, Non-Real-Time
Scheduling, DL Window [20-80,8-32]

Deadline Guarantee Ratio

deadline window = [20-80,8-32] (EDF)
100% _ ——

80%

60% -

40% |-

20% I

00 Il 1
* 500 1000 1500 2000
DB Size (pages)

-«-AND . CMH __NDD W01 _.WO05 _, W10

Figure 7.15: Deadline Guarantee Ratio, AND Model System, EDF Scheduling,
DL Window [20-80,8-32]

236

. 3 3

13 3 3

—3

Record Throughput
DB size = 1000 pages
30.00
25.00 |-
= —o—
S 20.00 —w — —2
"‘: o 4
@ — *
& 1500 -;\ o— —— —a
=
8 10.00 |-
g 1o
o
5.00 |-
0.00 4 . .
[10-40,4-16] [20-80,8-32] [30-120,12-48) [40-160,16-64)

Deadline Window (seconds)
-«-AND o CMH __NDD W01 W05 W10

Figure 7.16: Record Throughput, AND Model System, Non-Real-Time Scheduling,
DB Size 1000 Pages

Record Throughput
DB size = 1000 pages (EDF)

30.00

25.00 |-
g — o
o 20.00 ‘Rg—\f —a
2 —= —2
m M~
& 1500 |
B —o— —a
8
$ 10.00 |- .
e —A

5.00 |-

0.00 = ol d l

[10-40,4-16] [20-80,8-32] {30-120,12-48] [40-160,16-64)

Deadline Window (seconds)
-+ AND . CMH __NDD W01 _, W05 _. W10

Figure 7.17: Record Throughput, AND Model System, EDF Scheduling, DB Size
1000 Pages

237

30.00

25.00

20.00

15.00

10.00

Records/second

5.00

Record Throughput
deadline window = [20-80,8-32]

Il) A

500 1000 1500 2000

DB Size (pages)

—--AND _.CMH __NDD W01 _-WO05 W10

Figure 7.18: Record Throughput, AND Model System, Non-Real-Time Scheduling,
DL Window [20-80,8-32]

30.00

25.00

20.00

15.00

10.00

Records/second

5.00

Record Throughput
deadline window = [20-80,8-32] (EDF)

500 1000 1500 2080

DB Size (pages)

- AND . CMH __NDD W01 W05 _. W10

Figure 7.19: Record Throughput, AND Model System, EDF Scheduling, DL Win-
dow [20-80,8-32]

238

—3 .3

3

Probe Statistics
DB size = 1000 pages

Thousands
F-9

[10-40,4-16] [20-80,8-32] [30-120,12-48] [40-160,1 6-64]
Deadline Window (seconds)

- Probe Initiation (AND) Qlobal Probs Msg. (AND) Looal Probe Mag. (AND)

Probe Inftiation (CMH) I___] Global Probe Meg. (CMH) D Loaal Probe Mag. (CMH)

Figure 7.20: Probe Statistics, AND Model System, Non-Real-Time Scheduling,
DB Size 1000 Pages

Probe Statistics
DB size = 1000 pages (EDF)

Thousands
+a

[10-40,4-16] [20-80,8-32] [30-120,12-48] [40-160,16-64]
Deadline Window (seconds)

Sy

i

Probs Initiation (AND) lobal Probe Meg. (AND) Looal Probe Mag. (AND)

Probe Inftiation (CMH) D Qlobsl Probe Msg. (CMH) EI Looal Probe Mag. (CMH)

Figure 7.21: Probe Statistics, AND Model System, EDF Scheduling, DB Size 1000
Pages

239

Thousands
F-9

Figure 7.22

Thousands
F-9

Figure 7.23

Probe Statistics
deadline window = [20-80,8-32]

500 1000 1500 2000
DB Size (pages)
- Probs Initistion (AND) Qlobal Probe Msg. (AND) 55 Loasl Probe Mag. (AND)

mum-nongmn Donumm[m) Dmmumqwm

: Probe Statistics, AND Model System, Non-Real-Time Scheduling,
DL Window [20-80,8-32]

Probe Statistics
deadline window = [20-80,8-32] (EDF)

500 1000 1500 2000
DB Size (pages)

- Probe Initistion (AND) Qlobal Probs Meg. (AND) Losal Probe Mag. (AND)

Probe Inttiation (CMH) D Qlobel Probe Mg, (CMH) D Local Probe Meg. (CMH)

: Probe Statistics, AND Model System, EDF Scheduling, DL. Window
[20-80,8-32]

240

3 T3 T3 T3

3

Deadline Guarantee Ratio

DB size = 1667 pages
100%

80% |-

60% | C

40% |-

20% I

0% 1 1 L 1

[20-80,6-24] [40-160,12-48] (60-240,18-72] [80-320,24-96]

Deadline Window (seconds)
- AND . CMH __SRD _. NDD

Figure 7.24: Deadline Guarantee Ratio, Single-Resource System, 2 Slave Sites,

DB Size 1667 Pages

Deadline Guarantee Ratio

[N/A,N/A]

DB size = 1667 pages
100%
80% I
— 'u]
oo fo—
40% I
20% |-
0% { L 1 1 1

[20-80,6-24] [40-160,12-48] (60-240,18-72] [80-320,24-96]

Deadline Window (seconds)
—«AND o CMH _..SRD o NDD

Figure 7.25: Deadline Guarantee Ratio, Single-Resource System, 1 Slave Site,

DB Size 1667 Pages

241

[N/A,N/A]

80%

60%

40%

20%

0%

Figure 7.26:

100%
80%
0%
40%
20%

0%

Figure 7.27:

Deadline Guarantee Ratio
deadline window = [40-160,12-48]

mmsa— R]
-
1000 1667 2333 3000
DB Size (pages)

-=-AND . CMH _-SRD _--NDD

Deadline Guarantee Ratio, Single-Resource System, 2 Slave Sites,

DL Window [40-160,12-48]

Deadline Guarantee Ratio
deadline window = [40-160,12-48]

—— -
1000 1667 2;33 30'00
DB Size (pages)

—--AND .CMH _.—SRD o NDD

Deadline Guarantee Ratio, Single-Resource System, 1 Slave Site,
DL Window [40-160,12-48]

242

3 3 _3 .3 _13

-3

3

=)

!_L’_'g r’—‘g f ,% g T % f % r § I_‘§

3 3 3%

Record Throughput
DB size = 1667 pages
30.00
25.00 |-
2
O 2000 |
Q
(]
0n
@ o0 ~N‘%
E .
8
@ 10.00 |-
[
5.00 |-
0.00 . . . 4
[20-80,6-24} [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]

Deadline Window (seconds)
—-AND . CMH ___SRD _.NDD

Figure 7.28: Record Throughput, Single-Resource System, 2 Slave Sites, DB Size
1667 Pages

Record Throughput

DB size = 1667 pages
30.00

25.00
2000 —%‘E‘M‘

15.00 |-

10.00 |

Records/second

5.00 |-

o.m 4 il 1 /]
[20-80,6-24) [40-160,12-48] [80-240,18-72] [80-320,24-96] [N/A,N/A]

Deadline Window (seconds)
-+ AND o CMH _.—SRD - NDD

Figure 7.29: Record Throughput, Single-Resource System, 1 Slave Site, DB Size
1667 Pages

243

30.00

25.00

20.00

15.00

10.00

Records/secdnd

5.00

0.00

Record Throughput
deadline window = [40-160,12-48]

1000 16.37 2333 3000
DB Size (pages)

—--AND _.CMH _.-SRD _--NDD

Figure 7.30: Record Throughput, Single-Resource System, 2 Slave Sites, DL Win-
dow [40-160,12-48]

30.00

25.00

20.00

15.00

10.00

Records/second

5.00

0.00

Record Throughput
deadline window = [40-160,12-48]

1000 1 6l87 23I33 3000
DB Size (pages)

—--AND _.CMH _-SRD --NDD

Figure 7.31: Record Throughput, Single-Resource System, 1 Slave Site, DL Window
[40-160,12-48]

244

.32 3 .3 __2

—1

) .-5‘ . 3

Locking Statistics

DB size = 1667 pages

60

T 0
i C
]

2 30
Q
r E

1 20

r; 10

0 B i
[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)
I Lock Blocked (AND) Lock Blocked (CMH) B4 Lock Blocked (SRD)

Lock Requested (AND) D Lock Requested (CMH) D Lock Requested (SRD)

Figure 7.32: Locking Statistics, Single-Resource System, 2 Slave Sites, DB Size 1667

W Pages
Locking Statistics
i DB size = 1667 pages
r’ 60
_____ 50 —
5 B T .
40 o
r £
g a0
g
W\ 20
| 10 f:f_ e
r‘ o, LmE s | [| el
(20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
. Deadline Window (seconds)
F_M I Lock Biocked (AND) 1 Lock Blocked (CMH) E& Lock Blocked (SRD)
Z:5] Lock Requested (AND) D Lock Requested (CMH) D Lock Requested (SRD)
W Figure 7.33: Locking Statistics, Single-Resource System, 1 Slave Site, DB Size 1667

Pages

245

Locking Statistics
deadline window = [40-160,12-48]

60
50
(-]
b -3
[
3
3
(-]
E
1000 1667 2333 3000
DB Size (pages)
d Lock Blocked (CMH) 58 Lock Blocked (SRD)

- Lock Blocked (AND) &
4 Lok Requested (AND) D Lock Requested (CMH) D Lock Requested (SRD)

Figure 7.34: Locking Statistics, Single-Resource System, 2 Slave Sites, DL Window
[40-160,12-48|

Locking Statistics

deadline window = [40-160,12-48]
60

50 =~

40

30

Thousands

20

10

1000 1667 2333 3000
DB Size (pages)

- Lock Blocked (AND) ock Blocked (CMH) 5 Lock Blocked (SRD)
Lock Requested (AND) D Lock Requested (CMH) D Lock Requested (SRD)

Figure 7.35: Locking Statistics, Single-Resource System, 1 Slave Site, DL Window
(40-160,12-48]

246

3 3 3 __3

—4 1

3 1 3

| 1 | 3 E| i 3

— 13

Probe Initiations
DB size = 1667 pages

Thousands
N

[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)
- Probe Initiated (AND) robe Initiated (CMH) Probe Initiated (SRD)
Lock Blocked (AND) D Lock Blocked (CMH) I:] Lock Blocked (SRD)

Figure 7.36: Probe Initiations, Single-Resource System, 2 Slave Sites, DB Size 1667

Pages
Probe Initiations
DB size = 1667 pages
4
3 7] A
§ 2
E
1
0

[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)
- Probe Initiated (AND) Probe Initiated (CMH) EZiil Probe Initiated (SRD)
Lock Blocked (AND) [:I Lock Blocked (CMH) D Lock Blocked (SRD)

Figure 7.37: Probe Initiations, Single-Resource System, 1 Slave Site, DB Size 1667
Pages

247

Probe Initiations
deadline window = [40-160,12-48]

4 .
. 1
0
©
&
o 2
o
=
1
0
1000 1667 2333 3000
DB Size (pages)

- Probe Initiated (AND) Probe Initiated (CMH) Probe Initiated (SRD)
Lock Blocked (AND) D Lock Blocked (CMH) D Lock Blocked (SRD)

Figure 7.38: Probe Initiations, Single-Resource System, 2 Slave Sites, DL. Window
[40-160,12-48]

Probe Initiations

deadline window = [40-160,12-48]
4 =

Thousands

1000 1667 2333 3000
DB Size (pages)
- Probe Initiated (AND) EZ Probe Initiated (CMH) Probe Initiated (SRD)
Lock Blocked (AND) D Lock Blocked (CMH) I:I Lock Blocked (SRD)

Figure 7.39: Probe Initiations, Single-Resource System, 1 Slave Site, DL, Window
[40-160,12-48|

248

Probe Messages

DB size = 1667 pages
15

10

Thousands

[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)

- Local Probe Mag. (AND) Loocal Probe Mag. (CMH) Looal Probs Meg. (SRD)

alobal Probe Msg. (AND) D Qlobal Probs Msg. (CMH) D Qlobal Probe Msg. (SAD)

Figure 7.40: Probe Message Statistics, Single-Resource System, 2 Slave Sites,
DB Size 1667 Pages

Probe Messages

DB size = 1667 pages
15

10

Thousands

[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96] [N/A,N/A]
Deadline Window (seconds)

- Looal Probe Mag. (AND) Looal Probe Meg. (CMH) Looal Probe Mag. (SAD)

Qlobal Probs Msg. (AND) EI Qlobal Probe Msg. (CMH) D alobal Probe Msg. (SRD)

Figure 7.41: Probe Message Statistics, Single-Resource System, 1 Slave Site,
DB Size 1667 Pages

249

Probe Messages
deadline window = [40-160,12-48]

Thousands

1000 1667 2333

DB Size (pages)

- Looal Probe Mag. (AND) Looal Probe Mag. (CMH) Local Probe Mag. (SRD)

Qlobal Probe Msg. (AND) D Qlobal Probe Msg. (CMH) D Qlobal Probe Msg. (SRD)

/s

Figure 7.42: Probe Message Statistics, Single-Resource System, 2 Slave Sites
DL Window [40-160,12-48]

]

Probe Messages -
deadline window = [40-160,12-48]

15
10
3
&
Z
Q
e
5
0 ;)
1000 1667 2333
DB Size (pages)

- Looal Probe Msg. (AND) Loaal Probe Meg. (CMH) Looal Probe Meg. (SRD)

Qlobal Probe Mag. (AND) I:l Global Probe Msg. (CMH) D alobesl Probe Msg. (SRD)

Figure 7.43: Probe Message Statistics, Single-Resource System, 1 Slave Site,
DL Window [40-160,12-48]

250

—3 —~— 3 — 3 —3 3 T3 "3 3§ -3 3 —3 T3 —T3 T3 —31 3 —3 ~—3 T3

Deadline Guarantee Ratio
DB size = 50 pages

100%
—
T /- "
60% |
40% |-
20% |-
0% 4 L 1 1
[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96}

Deadline Window (seconds)
—-=-ORD _.__NDD _--WO01 W05 W10

Figure 7.44: Deadline Guarantee Ratio, OR Model System, Random Accessing Pat-
tern, DB Size 50 Pages

Deadline Guarantee Ratio

DB size = 50 pages
100%

80% -

60% |-

40% |-

20% I

o%] Il 1]
[20-80,6-24] [40-160,12-48] [60-240,18-72] [80-320,24-96]

Deadline Window (seconds)
—-+ORD __NDD W01 W05 W10

Figure 7.45: Deadline Guarantee Ratio, OR Model System, Contiguous Accessing
Pattern, DB Size 50 Pages

251

80%

80%

40%

20%

0%

Figure 7.46:

100%

80%

60%

40%

20%

0%

Figure 7.47:

Deadline Guarantee Ratio
deadline window = [40-160,12-48]

- L 1 (]

30 50 70 : 90
DB Size (pages)

-+-ORD _NDD W01 W05 W10

Deadline Guarantee Ratio, OR Model System, Random Accessing Pat-

tern, DL Window [40-160,12-48]

Deadline Guarantee Ratio
deadline window = [40-160,12-48]

1]] 2

30 50 70 90

DB Size (pages)
—--ORD _._NDD W01 W05 W10

Deadline Guarantee Ratio, OR Model System, Contiguous Accessing

Pattern, DL Window [40-160,12-48]

252

3 __3

—3 13

_J J

—_d 3

9| [_%l

3

Record Throughput
DB size = 50 pages

40.00 .
T 3000 |
=
o
(3
@
(7
& 20.00 —\
2 —
5 W °
o ~
Q =1 s}
@ 10.00 \ T

o.oo i 1 . 1

[20-80,6-24]) [(40-160,12-48] [60-240,18-72] [80-320,24-96]

Deadline Window (seconds)
—=-ORD _._NDD W01 W05 _.-W10

Figure 7.48: Record Throughput, OR Model System, Random Accessing Pattern,
DB Size 50 Pages

Record Throughput
DB size = 50 pages
40.00

- 3000 |

c

o

(3]

Q

]

% 2000 |

°

™

]

o

Q

& 10.00 -%ﬁ o

B e
\
0.00 L ' i 2
[20-80,6-24] [40-160,12-48] (60-240,18-72) [80-320,24-96]

Deadline Window (seconds)
-«-ORD _._NDD W01 W05 _-W10

Figure 7.49: Record Throughput, OR Model System, Contiguous Accessing Pat-
tern, DB Size 50 Pages

253

Record Throughput
deadline window = [40-160,12-48]

40.00

Records/second
N [2]
S o
- 8
1 1

-h
(-]
b
(-]
Qo
1

0.00 e .
30 50 70
DB Size (pages)

—--ORD __NDD W01 W05 W10

DL Window [40-160,12-48]

90

Figure 7.50: Record Throughput, OR Model System, Random Accessing Pattern,

Record Throughput
deadline window = [40-160,12-48]
40.00
T 3000 |-
=
Q
(2]
(7]
L
® 2000 |
2
Q
o
@
@ 1000 |
e * X
0.00 .
30 50 70 90

DB Size (pages)
-+ ORD _._NDD W01 W05 W10

tern, DL Window [40-160,12-48]

254

Figure 7.51: Record Throughput, OR Model System, Contiguous Accessing Pat-

i 3 ___& 3

1 3 3 .3 3 __1 1 3

CHAPTER 8

SUMMARY AND FUTURE DIRECTIONS

8.1 Summary of Conclusions

Many complex systems will be built using highly parallel and distributed com-
puter technology. Many of these systems will require that various types of timing
constraints be met, and that they be highly dependable. For this to occur many
advances are required. In this dissertation we did not attempt to address the entire
problem, rather we focused on a single but important problem - deadlock — that

must be solved in a cost-effective manner.

To deal with the deadlock problem, we may pessimistically try to “prevent”
or “avoid” deadlock situations in a system. These two strategies ensure that the
system will never enter a deadlock state. In real-time systems, deadlock prevention
and avoidance methods have received most of the attention and are the current
strategies of choice. However, these strategies may work successfully in relatively
simple systems, but may be inefficient and very difficult to design and verify in

more complex systems such as multiprocessors or distributed systems.

Another option is to optimistically assume that the system rarely deadlocks
and allow it to enter a deadlock state, which will then be detected and recovered
from. Although the problem of deadlock detection may be very complex when
the underlying system is distributed and when tasks have timing constraints, the
solution (i.e., the detection aléorithm) could perform very efficiently. A deadlock
detection procedure may be invoked only when a system suspects the existence of
deadlock states. A well designed deadlock detection algorithm should not signifi-
cantly incur overhead in a system where deadlock situations are rare. Moreover,
a deadlock detection algorithm can be used in a system where simple local dead-

locks are prevented or avoided. Consequently, if a system is able to detect and

255

recover from deadlock states both with or without the prevention or the avoidance

strategies, the dependability of the system has increased.

To apply deadlock detection techniques in real-time systems, we first analyzed
and identified the problems and the issues of deadlock detection in distributed

real-time applications. Some of the important conclusions from this analysis are:

o In real-time systems, timing constraints are attached to the tasks. A task
may be timed out from a state in which it is waiting. Deadlocks may not be

stable if timing constraints are considered. Three types of problems: “Stable

Deadlock,” “Temporal Deadlock,” and “Non-deadlocked Blocking” were iden-

tified and discussed. A stable deadlock in real-time systems is the same as a
traditional deadlock in non-real-time systems. A temporal deadlock, on the
other hand, is a special kind of deadlock which is not treated as a deadlock or
is assumed not to exist in non-real-time systems. Such a deadlock is temporal
and hence not stable. The stable property which is assumed in most of the
traditional deadlock detection algorithms can no longer be used to detect
temporal deadlocks in real-time systems. Timing constraints must be taken
into consideration in detecting temporal deadlocks. The timing information
collected for detecting temporal deadlocks can also be applied to resolve many

of the the problems associated with non-deadlocked blocking.

o It is generally too expensive to completely achieve both the Safety and the
Progress criteria when designing algorithms for distributed real-time systems.
These criteria may be violated due to timing constraints in real-time systems
(e.g., a temporal deadlock may not be detected if one of the participant has a
very tight deadline). Also, these criteria may not be fulfilled due to synchro-
nization difficulties in distributed real-time systems (e.g., in the AND deadlock
model, to break one of the nested cycles at the common part may cause the
detection of false deadlocks). For soft real-time systems where violations will
not cause any severe permanent faults, these two criteria can be relaxed to an
acceptable level. When making trade-offs, in general, the Progress criterion

should be considered more seriously than the Safety criterion. This is because

256

. ____ﬁ L1 | ____j L3

3

_ 3

[

leaving the system in a deadlocked state is usually an uncontrollable fault
whereas recovering from a false deadlock is a type of compensating action

which usually impacts the system less severely.

e In real-time applications, when a deadlock is detected, the resolution decision
should consider timing constraints. A deadlock is a cyclic wait situation.
Depending on where a deadlock is broken, different timing dependencies might
be formed. A bad resolution may cause more tasks to miss their deadlines even
if they are not chosen as the victims to break the deadlock. Our experimental
study also confirms the phenomenon that when a deadlock cycle is long, to
break it at one point is sometimes not good enough to allow the remaining

tasks to complete by their deadlines.

The deadlock detection algorithms proposed in the literature are designed for

the detection of the Stable deadlocks. When these algorithms are applied to real-

time applications, they may either ignore the existence of Temporal deadlocks or
treat the Temporal deadlocks as Stable ones. Using the former approach a system
is allowed to enter a Temporal deadlock state and then relies on some tasks to
relinquish their requests to break the deadlock. This approach will cause a system
to perform poorly if most of the tasks have long deadlines. On the other hand, the
latter approach attempts to detect every deadlock without distinction. A Temporal
deadlock may be detected after it is broken or a detected deadlock may never exist.
Consequently, timing constraints should be taken into consideration in detecting

deadlocks in real-time systems.

To extend an algorithm to real-time applications, we need to understand the ‘
principles and the properties of the algorithm. After completing a study of several
existing algorithms in the literature, we have found that a better understanding of
distributed deadlock detection is necessary for the extension of an algorithm to real-
time applications as well as for the improvement (or the correction) to the original
algorithm. We have derived a methodology for the development of distributed
deadlock detection algorithms and some of the important results are summarized

as follows.

257

e A good distributed deadlock detection algorithm should confine its knowledge
about the global system state to local views that any individual site can see.

It should also assume no physical common global clock.

The problems of distributed deadlock detection can be divided into two parts,
i.e., (1) how to correctly recognize a deadlock structure and (2) how to syn-
chronize a deadlock detection computation with the underlying dynamically
changing system. The first problem can be studied via static graphs and a
“local view of a deadlock” is recommended for the definition of deadlocks
and is suggested to be used in the development of “static” algorithms. To
deal with problem (2), we have developed a systematic method to derive a
“synchronization mechanism” which can be coupled with a known “static”

deadlock detection algorithm to produce a “dynamic” algorithm.

The deadlock detection computation and the underlying system were for-
mally modeled based on Chandy and Lamport’s notion of distributed “snap-
shots” [21]. Two consistency criteria must be fulfilled to maintain the “mean-
ingfulness” of a deadlock detection computation. Based on the Stable property
of the deadlocks, we derived “local” conditions for a synchronization mech-
anism to satisfy the Safety and the Progress concerns. By “local” we mean
these conditions only require information that is local to each participant of
a DDC. Consequently, these conditions provide a feasible way to realize a

synchronization mechanism.

Based on the understanding of the meaningfulness of deadlock detection com-
putations, we know how to satisfy the Safety and the Progress concerns when
developing an algorithm. An algorithm can be pushed to detect all the existing
deadlocks as early as possible by preserving the meaningful computations in
the system as much as possible. Also, by analyzing the implications of the
timing constraints in the meaningfulness of the deadlock detection computa-
tions, deadlines can be properly incorporated in an algorithm for real-time

applications.

258

3

|

—4 3 _1 _3

According to our methodology, distributed deadlock detection algorithms can

be developed in refinement steps as follows.

1. Static Algorithm: Develop principles for deadlock detection in a static graph.

2. Dynamic Algorithm:

e To satisfy the Safety concern, avoid the detection of white edges (i.e.,
discard the probes received from a non-existing edge) and maintain the

connectivity between adjacent probe operations.

o Examine the situations when a new computation should be initiated to

ensure the Progress concern.

3. Real-Time Applications: Associate deadlines with the probes to reflect the
meaningfulness of a deadlock detection computation with the presence of the

timing constraints in a system.

4. Maintain the principles developed in the first step throughout the rest of the

design procedure.

Based on the above procedure, algorithms for the Single-Resource, the AND,
and the OR deadlock models were developed. In the first step, cycle detection
techniques were used for the Single-Resource and the AND deadlock models while
a knot detection technique was used for the detection of the OR deadlocks. Some
of these techniques are well known in the literature. In the second step, the static
algorithms were adapted for use in dynamic systems. The development involves
the improvements to the previously proposed algorithms. Finally, these algorithms

were extended to the real-time applications.

For each of these three deadlock models, we have put together a practical
algorithm (named the Single-Resource, the AND, and the OR Algorithms) which
can be used in a general resource modeled system (i.e., Holt’s General Resource
System [66]). In particular, for the OR deadlock detection, we developed an inte-
grated algorithm (the OR Algorithm) for the detection of both the Ada rendezvous

deadlocks and the task termination conditions in distributed environments. One

259

unique feature of this OR Algorithm is that it is able to properly handle both
the delay and the terminate statements in Ada rendezvous which has never been

addressed before.

To verify the algorithms and to study their performance, we have implemented
the following schemes in the RT-CARAT system where transaction timing con-

straints and soft real-time scheduling protocols are supported [67]:

1. Break by deadline: No deadlock detection algorithm is used in this scheme.

A deadlock will be broken when one of its participant transactions is aborted
by deadline.

2. Timeout and retry: In this scheme, a transaction will rollback and restart if

its request cannot be granted in a preset short timeout period.

3. Deadlock detection/resolution: Together with a previously implemented AND
deadlock detection algorithm (proposed by Chandy, Misra, and Haas [27]),
three proposed algorithms for the Single-Resource, the AND, and the OR
deadlock models are implemented for the verification and the performance
study. If a transaction is chosen as the victim of the resolution of a deadlock,

it will rollback and restart until its deadline expires.

Our experimental results show that distributed deadlock detection can be very
efficient. Compared to the baseline scheme, i.e., break by deadline, any of these
deadlock detection algorithms can significantly improve the system performance
in terms of the deadline guarantee ratio and the throughput. Also, compared to
the timeout and retry, the detection/resolution scheme performs better when the
deadlocks are simple and short (e.g., the Single-Resource and the AND deadlocks).
However, the detection/resolution scheme performs worse than timeout and retry
when the average deadlock length is long (e.g., the OR deadlocks). The reason for
the latter case is twofold: (1) the rollback is simple in RT-CARAT which favors
timeout and retry scheme and (2) the resolution that break a long complex deadlock

at one point is not good enough for real-time applications.

260

3 3 ___3

3 __3

-

3

13 3 3 _13

— 3

-~ 31 _32 _3 __3

3

8.2 Future Directions

Our research work can be extended in several directions. First, the design of
the algorithms for the AND-OR and the C(n,k) models is not complete. These two
deadlock models are mathematically equivalent in that any AND-OR request can
be transformed into C(n,k) request and vice versa. As discussed in Chapter 2, there
is no simple construct of graph theory to describe the condition of the AND-OR or
the C(n,k) model deadlocks. Similar to the problem in the AND deadlocks, several
“deadlock core sets” may be nested which makes the Safety concern very difficult
to be satisfied.

In principle, deadlock in the AND-OR model can be detected by applying the
knot detection repeatedly, where each invocation operates on a subgraph of the
AND part of the model. However, this strategy is not very efficient. Hermann
and Chandy [63] proposed a more efficient algorithm for AND-OR deadlock. Their.
algorithm is based on a hierarchy of diffusing computations which they called a
tree computation. The central idea of their algorithm is that when a diffusing
computation reaches a blocked task: (1) the diffusing computation is propagated to
its dependent set if it is an OR task, or (2) it initiates a separate tree computation
if it is an AND task. This algorithm is not practical in that it detects “deadlock

sets” instead of “deadlock core sets” which complicates the resolution procedure.

Bracha and Toueg [13] proposed to process a global system snapshot to find
deadlocks in the C(n,k) model. The graph reduction techniques suggested by
Holt [66] are used to determine the existence of deadlocks in a snapshot. Each
of the active tasks in the snapshot can be scheduled to terminate and to release the
resources it holds. The snapshot system state thus can be reduced to a new state
(see Section 2.4.2). A snapshot is said to be completely reducible if there exists a
sequence of graph reductions that reduces it to a set of isolated vertices. A task T;
is not deadlocked in state S if and only if there exists a sequence of reductions in

the corresponding snapshot that leaves T; unblocked. If a snapshot is completely

261

reducible, then the state it represents is not deadlocked. Again, this approach is

not efficient.

The existence of cycles is a necessary condition for any type of deadlock. As
our experimental results show, it is not worth it to detect and resolve large sized
complex deadlocks in real-time applications. In real-time systems, a better way of
dealing with the deadlocks in the AND-OR, the C(nk), and even the OR model
may be to quickly detect and break every cycle. A performance study could give

us a better understanding of all these approaches.

In our study, the resolution of a detected deadlock is treated as a separate
problem. However, the experimental results indicate that without good resolution
schemes a system with deadlock detection may not perform very well. There are
many issues involved in deadlock resolution. For example, as discussed in Chapter 2,
depending on how a deadlock is broken, different timing dependencies among the
surviving tasks might be formed. A bad resolution will cause more surviving tasks
to miss their deadlines. Also, cértain resolution schemes simply make the detection

of the deadlocks unnecessary. For example, in a real-time system where deadlines

are tight, a resolution policy requires that a deadlock should be broken into small °

pieces of wait-for paths with a length less than 3 transactions. In such a system, it
is not necessary to detect a deadlock longer than 3 transactions. Any wait-for path
in the system should be broken when it reaches a length of 3. This also suggests
that an integrated solution can be developed for both the Non-deadlocked Blocking
situations and the Temporal deadlocks in a real-time system. It is interesting to
investigate various deadlock recovery schemes in a distributed environment both

with and without timing constraints.

Another issue that has not been addressed well to date is the integration of the
resolutions for the deadlock related problems. There is a class of deadlock related
problems, such as livelock (a.k.a. effective deadlock or starvation), task termination
problems, and orphan tasks, which must be detected dynamically at runtime. There
is a commonalty among these problems and the deadlock problem that indicates

that an integrated set of solutions may be possible. We believe that any large,

262

S

—3 1 __3

i1 __ 1

— 3

3 _3 _A1

— 13

complex, long-lived, distributed system is susceptible to these problems. Moreover,
some of these problems, e.g., task termination, even have the same property as the
deadlock problem. (As an example, we have successfully integrated the detection
of global task termination condition with Ada’s rendezvous deadlock detection.)
Consequently, if a system is able to detect and recover from deadlock and related
problems both under timing constraints and not, then the dependability of the

system has increased.

263

APPENDIX A

LIST OF ABBREVIATIONS

Following is a list of abbreviations which are frequently used in this dissertation.

CDC : Cycle Detection Computation (p. 116).

CSP : Communicating Sequential Processes (p. 15).
DDC : Deadlock Detection Computation (p. 70).
DGRG : Dynamic General Resource Graph (p. 69).
DP : Distributed Processes (p. 16).

GRG : General Resource Graph (p. 12).

GRS : General Resource System (p. 25).

KDC : Knot Detection Computation (p. 142).

TRG : Task(Transaction)-Resource Graph (p. 11).
TWFG : Task (Transaction) Wait-For Graph (p. 11).

264

35 -3 3 _3 _3 _1

1

34 3 _3

—3 3 _3 3

—3

APPENDIX B

LIST OF NOTATIONS

Following is a list of notations which are frequently used in this dissertation.

RN(v) : A set of directly reachable neighbor vertices from a vertex v (p. 13).
TN(v) : A set of neighbor vertices which can directly reach vertex v (p. 13).
RS(v) : A set of reachable vertices from a vertex v (p. 13).
TS(v) : A set of vertices which can reach vertex v (p. 14).

u — v) : An edge from a vertex u to another vertex v (p. 71). The notation
g P
(¥ — v) denotes that the edge is locally recorded at the vertex u. Similarly,

(v — ¥) denotes that the edge is locally recorded at the vertex v.

OP, : An operation in a DDC (p. 81). The operation O P, consists of three steps:
(1) the evaluation of a trigger predicate try, (2) the execution of the operation
procedure opg, and (3) the result predicate re;.

ST : A snapshot of the global system state (p. 88). A subscript is used to specify
the situation a snapshot is taken. For example, STS™ denotes a snapshot which
is taken after the evaluation of the trigger predicate try of an operation OF;.

Superscripts are used to number a sequence of snapshots in time order, e.g.,

ST'<ST?%*< ... <ST™.

tre(STL®) : A trigger predicate tr, which is examined (i.e., re-evaluated) in the
snapshot ST7¢ (p. 89).

ALGOp : A deadlock detection algorithm for dynamic systems (p. 101).
ALGOs : A deadlock detection algorithm for static systems (p. 101).

DDDCp(ST?,ST?) : A dynamic deadlock detection computation performed by a
dynamic algorithm from the system state ST* to the state ST (p. 104).

265

SDDCp(ST!) : A projected static deadlock detection computation performed by
a dynamic algorithm in the syatem state ST/ (p. 104).

SDDCs(ST?) : A static deadlock detection computation performed by a static
algorithm in the syatem state ST/ (p. 105).

CSDDCs(STY) : A complete static deadlock detection computation performed by
a static algorithm in the syatem state ST (p. 105).

266

3 _3 3 _3

? 3 3

3

3

BIBLIOGRAPHY

[1] Afek, Y. and Saks, M., “Detecting Global Termination Conditions in the
Face of Uncertainty,” in Proceedings of the Sizth Annual ACM Symposium on

Principles of Distributed Computing, (Vancouver, B.C., Canada), pp. 109-
124, ACM SIGACT-SIGOPS, Aug. 1987.

[2] Agrawal, R., Carey, M. J., and McVoy, L. W., “The Performance of Al-
ternative Strategies for Dealing with Deadlocks in Database Management
Systems,” IEEE Transactions on Software Engineering, vol. SE-13, no. 12,
pp- 1348-1363, Dec. 1987.

[3] Andrews, G. R. and Levin, G. M., “On-the-fly Deadlock Prevention,” in
Proceedings ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, (Ottawa, Ontario, Canada), pp. 165-172, Aug. 1982.

[4] Andrews, G. R. and Schneider, F. B., “Concepts and Notations for Concurrent
Programming,” ACM Computing Surveys, vol. 15, no. 1, pp. 3-43, Mar. 1983.

[5] Apt, K. R., “Correctness Proofs of Distributed Termination Algorithms,”
ACM Transactions on Programming Languages and Systems, vol. 8, no. 3,
pp- 388-405, July 1986. :

[6] Apt, K. R. and Francez, N., “Modeling the Distributed Termination Conven-
tion of CSP,” ACM Transactions on Programming Languages and Systems,
vol. 6, no. 3, pp. 370-379, July 1984.

[7] Awerbuch, B. and Micali, S., “Dynamic Deadlock Resolution Protocols,”
in Proceedings of the Foundations of Computer Science, (Toronto, Canada),
pp- 196-207, IEEE, 1986.

[8] Badal, D. Z., “The Distributed Deadlock Detection Algorithm,” ACM Trans-
actions on Computer Systems, vol. 4, no. 4, pp. 320-377, Nov. 1986.

[9] Bal, H. E., Steiner, J. G., and Tanenbaum, A. S., “Programming Languages
for Distributed Computing Systems,” ACM Computing Surveys, vol. 21, no. 3,
pp. 261-322, Sept. 1989. -

[10] Balter, R., Berard, P., and Decitre, P., “Why Control of Concurrency Level in
Distributed Systems is More Fundamental than Deadlock Management,” in
Proceedings ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, (Ottawa, Ontario, Canada), pp. 183-193, Aug. 1982.

[11) Barbosa, V. C., “Strategies for the Prevention of Communication Deadlocks in
Distributed Parallel Programs,” IEEE Transactions on Software Engineering,
vol. 16, no. 11, pp. 1311-1316, Nov. 1990. -

[12] Bernstein, P. A., Hadzilacos, V., and Goodman, N., Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

267

[13] Bracha, G. and Toueg, S., “A Distributed Algorithm for Generalized Deadlock
Detection,” in Proceedings of the Third Annual ACM Symposium on Princi-
ples of Distributed Computing, (Vancouver, B.C., Canada), pp. 285-301, ACM
SIGACT-SIGOPS, Aug. 1984.

[14] Bracha, G. and Toueg, S., “Distributed Deadlock Detection,” Distributed
Computing, vol. 2, no. 3, pp. 127-138, Dec. 1987.

[15] Brinch Hansen, P., “Distributed Processes: A Concurrent Programming Con-
cept,” Communications of the ACM, vol. 21, no. 11, pp. 934-941, Nov. 1978.

[16] Brookes, S. D. and Roscoe, A. W., “Deadlock Analysis in Networks of Com-
municating Processes,” Distributed Computing, vol. 4, no. 4, pp. 209-230,
Apr. 1991.

[17) Burns, A., Concurrent Programming in Ada. Cambridge University Press,
1985.

[18] Burns, A., Lister, A. M., and Wellings, A. J., A Review of Ade Tasking,
vol. 262 of Lecture Notes in Computer Science. Berlin Heidelberg, Germany:
Springer-Verlag, 1987.

[19] Carriero, N. and Gelernter, D., “How to Write Parallel Programs: A Guide to
the Perplexed,” ACM Computing Surveys, vol. 21, no. 3, pp. 323-357, Sept.
1989.

[20] Ceri, S. and Pelagatti, G., Distributed Databases: Principles and Systems.
McGraw-Hill, 1984, '

[21] Chandy, K. M. and Lamport, L., “Distributed Snapshots: Determining Global
States of Distributed Systems,” ACM Transactions on Computer Systems,
vol. 3, no. 1, pp. 63-75, Feb. 1985.

[22] Chandy, K. M. and Misra, J., “Asynchronous Distributed Simulation via a
Sequence of Parallel Computations,” Communications of the ACM, vol. 24,
no. 11, pp. 198-206, Apr. 1981.

[23] Chandy, K. M. and Misra, J., “A Distributed Algorithm for Detecting Re-
source Deadlocks in Distributed Systems,” in Proceedings ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, (Ottawa, On-
tario, Canada), pp. 157-164, Aug. 1982.

[24] Chandy, K. M. and Misra, J., “The Drinking Philosophers Problem,” ACM
Transactions on Programming Languages and Systems, vol. 6, no. 4, pp. 632-
646, Oct. 1984.

[25] Chandy, K. M. and Misra, J., “How Processes Learn,” Distributed Computing,
vol. 1, no. 1, pp. 40-52, Jan. 1986.

(26] Chandy, K. M. and Misra, J., “An Example of Stepwise Refinement of Dis-
tributed Programs: Quiescence Detection,” ACM Transactions on Program-
ming Languages and Systems, vol. 8, no. 3, pp. 326-343, July 1986.

268

1 3 3

3

—a _ 3

[27] Chandy, K. M., Misra, J., and Haas, L. M., “Distributed Deadlock Detection,”
ACM Transactions on Computer Systems, vol. 1, no. 2, pp. 144-156, May
1983.

[28] Chang, E. J. H., “Echo Algorithms: Depth Parallel Operations on Gen-
eral Graphs,” IEEE Transactions on Software Engineering, vol. SE-8, no. 4,
pp- 391-401, July 1982.

[29] Cheng, J., “A Classification of Tasking Deadlocks,” Ada Letters, vol. X, no. 5,
pp- 110-127, May/June 1990.

[30] Cheng, J., “Task-Wait-For Graphs and Their Application to Handling Task-
ing Deadlocks,” in TRI-Ada '90 Proceedings, (Baltimore, MD), pp. 376-390,
ACM/SIGAda, Dec. 1990.

[31] Cheng, J., “A Survey of Tasking Deadlock Detection Methods,” Ada Letiers,
vol. XI, no. 1, pp. 82-91, January/February 1991.

[32] Choudhary, A. N., “Two Distributed Deadlock Detection Algorithms and
Their Performance,” Master’s thesis, University of Massachusetts at Amherst,

Feb. 1986.

[33] Choudhary, A. N., Kohler, W. H., Stankovic, J. A., and Towsley, D., “A Pri-
ority Based Probe Algorithm for Distributed Deadlock Detection and Resolu-
tion,” in The 7th International Conference on Distributed Computing Systems,
(Berlin, West Germany), pp. 162-168, IEEE-CS, Sept. 1987.

[34) Choudhary, A. N., Kohler, W. H., Stankovic, J. A., and Towsley, D., “Per-
formance Evaluation of Two Distributed Deadlock Detection Algorithms,”
COINS Technical Report 89-13, University of Massachusetts at Amherst, Nov.
1988.

[35] Choudhary, A. N., Kohler, W. H., Stankovic, J. A., and Towsley, D., “A
Modified Priority Based Probe Algorithm for Distributed Deadlock Detection
and Resolution,” IEEE Transactions on Software Engineering, vol. 15, no. 1,
pp- 10-17, Jan. 1989.

[36] Choudhary, A. N., Kohler, W. H., Stankovic, J. A., and Towsley, D., “Correc-
tion to “A Modified Priority Based Probe Algorithm for Distributed Deadlock
Detection and Resolution”,” IEEE Transactions on Software Engineering,
vol. 15, no. 12, p. 1644, Dec. 1989.

[37] Cidon, 1., Jaffe, J. M., and Sidi, M., “Local Distributed Deadlock Detection
with Finite Buffers,” in I[EEE INFORCOM ’86, (Miami, Florida), pp. 478-
487, Apr. 1986. -

[38] Cidon, 1., Jaffe, J. M., and Sidi, M., “Local Distributed Deadlock Detection
by Cycle Detection and Clustering,” IEEE Transactions on Sofiware Engi-
neering, vol. SE-13, no. 1, pp. 3-14, Jan. 1987.

269

[39] Cohen, S. and Lehmann, D., “Dynamic Systems and Their Distributed Ter-
mination,” in Proceedings ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, (Ottawa, Ontario, Canada), pp. 29-33, Aug. 1982.

[40] Dijkstra, E. W., “Co-operating Sequential Processes,” in Programming Lan-
guages (Genuys, F., ed.), pp. 43-112, New York: Academic Press, 1968.

[41] Dijkstra, E. W., Feijen, W. H. J., and van Gasteren, A. J. M., “Derivation
of a Termination Detection Algorithm for Distributed Computations,” Infor-
mation Processing Letters, vol. 16, no. 5, pp. 217-219, June 1983.

[42] Dijkstra, E. W. and Scholten, C. S., “Termination Detection for Diffusing
Computations,” Information Processing Letters, vol. 11, no. 1, pp. 1-4, Aug.
1980.

[43] Elmagarmid, A. K., “A Survey of Distributed Deadlock Detection Algo-
rithms,” SIGMOD RECORD, vol. 15, no. 3, pp. 37-45, Sept. 1986.

[44] Elmagarmid, A. K. and Datta, A. K., “Two-Phase Deadlock Detection Al-
gorithm,” IEEE Transactions on Computers, vol. 37, no. 11, pp. 1454-1458,
Nov. 1988.

[45] Elmagarmid, A. K., Sheth, A. P., and Liu, M. T., “Deadlock Detection Al-
gorithms in Distributed Database Systems,” in International Conference on
Data Engineering, (Los Angeles, California), pp. 556-564, IEEE-CS, Feb.
1986.

[46] Elmagarmid, A. K., Soundararajan, N., and Liu, M. T., “A Distributed Dead-
lock Detection and Resolution Algorithm and Its Correctness Proof,” IEEE

Transactions on Software Engineering, vol. 14, no. 10, pp. 1443-1452, Oct.
1988.

[47] Eswaren, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., “The Notions of
Consistency and Predicate Locks in a Database System,” Communications of
the ACM, vol. 19, no. 11, pp. 624-633, Nov. 1976.

[48] Francez, N., “Distributed Termination,” ACM Transactions on Programming
Languages and Systems, vol. 2, no. 1, pp. 42-55, Jan. 1980.

[49] Francez, N., “Corrigendum: Distributed Termination,” ACM Transactions
on Programming Languages and Systems, vol. 2, no. 3, p. 463, July 1980.

[50] Francez, N. and Rodeh, M., “Achieving Distributed Termination Without

Freezeing,” IEEE Transactions on Software Engineering, vol. SE-8, no. 3,
- pp. 287-292, May 1982.

[51] Gehani, N., Ada: Concurrent Programminj. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1984.

[52] German, S. M., “Monitoring for Deadlock and Blocking in Ada Tasking,”
IEEFE Transactions on Software Engineering, vol. SE-10, no. 6, pp. 764-777,
Nov. 1984.

270

3 3

3

32 __3

[53] German, S. M., Helmbold, D. P., and Luckham, D. C., “Monitoring for Dead-
locks in Ada Tasking,” in Proceedings of the AdaTEC Conference on Ada,
(Arlington, Virginia), pp. 10-25, ACM, Oct. 1982.

[54] Gligor, V. D. and Shattuck, S. H., “On Deadlock Detection in Distributed
Systems,” IEEE Transactions on Software Engineering, vol. SE-6, no. 5,
pp. 435-440, Sept. 1980.

[55] Gray, J., Homan, P., Obermarck, R., and Korth, H., “A Straw Man Analy-
sis of Probability of Waiting and Deadlock,” Research Report RJ3066, IBM
Research Laboratory, San Jose, California, Feb. 1981. Also appeared in Fifth

International Conference on Distributed Data Management and Computer
Networks, 1981.

[56] Gray, J. N., “Notes on Database Operating Systems,” in Operating Systems:
An Advanced Course (Bayer, R., Graham, R. M., and Seegmuller, G., eds.),
pp- 393-481, Berlin: Springer-Verlag, 1978.

[57] Haas, L. M. and Mohan, C., “A Distributed Deadlock Detection Algorithm
for a Resource-Based System,” Research Report RJ 3765, IBM Research Lab-
oratory, San Jose, California, Jan. 1983.

[58] Hao, K. and Yeh, R. T., “Detection of Inherent Deadlocks in Distributed
Programs,” in The 3rd International Conference on Distributed Computing
Systems, (Miami/Ft. Lauderdale, Florida), pp. 518-523, IEEE-CS, Oct. 1982.

[59] Hélary, J.-M., Jard, C., Plouzeau, N., and Raynal, M., “Detection of Stable
Properties in Distributed Applications,” in Proceedings of the Sizth Annual
ACM Symposium on Principles of Distributed Computing, (Vancouver, B.C.,
Canada), pp. 125-136, ACM SIGACT-SIGOPS, Aug. 1987.

[60] Helmbold, D. and Luckham, D., “Debugging Ada Tasking Programs,” Tech-

nical Report No. 84-262 (Program Analysis and Verification Group Report
No. 25), Stanford University, July 1984.

[61] Helmbold, D. and Luckham, D., “Debugging Ada Tasking Programs,” IEEE
Software, vol. 2, no. 2, pp. 47-57, Mar. 1985.

[62] Helmbold, D. and Luckham, D. C., “Runtime Detection and Description of
Deadness Errors in Ada Tasking,” Technical Report No. 83-249 (Program

Analysis and Verification Group Report No. 22), Stanford University, Nov.
1983.

[63] Hermann, T. and Chandy, K. M., “A Distributed Procedure to Detect
AND/OR Deadlock,” Technical Report TR LCS-8301, Department of Com-
puter Sciences, University of Texas, Austin, Texas, 1983.

[64] Ho, G. S. and Ramamoorthy, C. V., “Protocols for Deadlock Detection in
Distributed Database Systems,” IEEE Transactions on Software Engineering,
vol. SE-8, no. 6, pp. 554-557, Nov. 1982.

271

[65] Hoare, C. A. R., “Communicating Sequential Processes,” Communications of

the ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

[66] Holt, R. C., “Some Deadlock Properties on Computer Systems,” ACM Com-
puting Surveys, vol. 4, no. 3, pp. 179-196, Sept. 1972.

[67) Huang, J., Stankovic, J. A., Towsley, D., and Ramamritham, K., “Experimen-
tal Evaluation of Real-Time Transaction Processing,” in Proceedings of the
10th Real-Time Systems Symposium, (Santa Monica, California), pp. 144-153,
IEEE-CS, Dec. 1989.

[68] Huang, S.-T., “A Distributed Deadlock Detection Algorithm for CSP-Like
Communication,” ACM Transactions on Programming Languages and Sys-
tems, vol. 12, no. 1, pp. 102-122, Jan. 1990.

[69] Ichbiah, J. D., Barnes, J. G. P., Firth, R. J., and Woodger, M., Rationale for
the Design of the Ada Programming Language. United States Government,
1986. The Ada Rationale was developed by Alsys and Honeywell under a
contract from the United States Government (Ada Joint Program Office).

[70] Isloor, S. S. and Marsland, T. A., “The Deadlock Problem: An Overview,”
IEEE Computer, vol. 13, no. 9, pp. 58-78, Sept. 1980.

[71] Jagannathan, J. R. and Vasudevan, R., “A Distributed Deadlock Detection
and Resolution Scheme: Performance Study,” in The Ird International Con-
ference on Distributed Computing Systems, (Miami/Ft. Lauderdale, Florida),
pp. 496-501, IEEE-CS, Oct. 1982.

[72] Jagannathan, J. R. and Vasudevan, R., “Comments on “Protocols for Dead-
lock Detection in Distributed Database Systems”,” IEEE Transactions on
Software Engineering, vol. SE-9, no. 3, p. 371, May 1983.

[73] Kamel, R. and Lo, S.-L., “Design Issues in the Implementation of Remote
Rendezvous,” in Proceedings of the 10th International Conference on Dis-
tributed Computing Systems, (Paris, France), pp. 245-251, IEEE Computer
Society, May 28-June 1 1990.

[74] Karam, G. M. and Buhr, R. J. A., “Temporal Logic-Based Deadlock Anal-
ysis for Ada,” IEEE Transactions on Software Engineering, vol. 17, no. 10,
pp. 1109-1125, Oct. 1991.

[75] Katz, S. and Shmueli, O., “Cooperative Distributed Algorithms for Dynamic
Cycle Prevention,” IEEE Transactions on Software Engineering, vol. SE-13,
no. 5, pp. 540-552, May 1987.

(76] Kawazu, S., Minami, S., Itoh, K., and Teranaka, K., “Two-Phase Deadlock
Detection Algorithm in Distributed Databases,” in Proceedings 5th Interna-
tional Conference on Very Large Databases, pp. 360-367, 1979.

[77] Knapp, E., “Deadlock Detection in Distributed Databases,” ACM Computing
Surveys, vol. 19, no. 4, pp. 303-328, Dec. 1987.

272

3 3

3

—34 3 3 __3

[78] Korth, H. F., “A Deadlock-Free, Variable Granularity Locking Protocol,” in
Proceedings of the 5th Berkeley Conference on Distributed Data Management
and Computer Networks, pp. 105-121, Feb. 1981.

[79] Korth, H. F., “Edge Locks and Deadlock Avoidance in Distributed Sys-
tems,” in Proceedings ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, (Ottawa, Ontario, Canada), pp. 173-182, Aug. 1982.

(80] Korth, H. F., “Locking Primitives in a Database System,” Journal of the
ACM, vol. 30, no. 1, pp. 55-79, Jan. 1983.

[81] Korth, H. F., Krishnamurthy, R., Nigam, A., and Robinson, J. T., “A Frame-
work for Understanding Distributed (Deadlock Detection) Algorithms,” in
Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems, (Atlanta, Ga.), pp. 192-202, Mar. 1983.

[82] Kshemkalyani, A. D., Characterization and Correctness of Distributed Dead-
lock Detection and Resolution. PhD thesis, The Ohio State University, 1991.

[83] Kshemkalyani, A. D. and Singhal, M., “Characterization and Correctness
of Distributed Deadlocks,” Tech. Report OSU-CISRC-6/90-TR15, The Ohio
State University, 1990.

[84] Kshemkalyani, A. D. and Singhal, M., “Invariant-Based Verification of a Dis-
tributed Deadlock Algorithm,” IEEE Transactions on Software Engineering,
vol. 17, no. 8, pp. 789-799, Aug. 1991.

[85] Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[86] Ledgard, H., ADA: An Introduction/Ada Reference Manual. New York:
Springer-Verlag, 1981/1980. The Part II — Ada Reference Manual, July
1980, was also published by the United States Government.

[87] Li, H. F., Radhakrishnan, T., and Venkatesh,; K., “Global State Detection in
NON-FIFO Networks,” in The 7th International Conference on Distributed
Computing Systems, (Berlin, West Germany), pp. 364-370, IEEE-CS, Sept.
1987.

[88] Lin, W.-T. K. and Nolte, J., “Communication Delay and Two Phase Lock-
ing,” in The 3rd International Conference on Distributed Computing Systems,
(Miami/Ft. Lauderdale, Florida), pp. 502-507, IEEE-CS, Oct. 1982.

[89] Liu, L., “Comments on “A Distributed Scheme for Detecting Communication
Deadlocks”,” IEEE Transactions on Software Engineering, vol. 15, no. 7,
p. 926, July 1989.

[90] Lomet, D. B., “Coping with Deadlock in Distributed Systems,” in Proceedings
of IFIP Working Conference on Data Base Architecture, pp. 95-105, Venice,
Italy: North-Holland Publishing Company, June 1979.

273

[91) Lynch, N. A. and Tuttle, M. R., “Hierarchical Correctness Proofs for Dis-

tributed Algorithms,” in Proceedings of the Sizth Annual ACM Symposium
on Principles of Distributed Computing, (Vancouver, B.C., Canada), pp. 137-

151, ACM SIGACT-SIGOPS, Aug. 1987.

[92] Maekawa, M., Oldehoeft, A. E., and Oldehoeft, R. R., Operating Systems

[93]
[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

- Advanced Concepts. The Benjamin/Cummings Publishing Company, Inc.,
1987.

Marsland, T. A. and Isloor, S. S., “Detection of Deadlocks in Distributed
Database Systems,” INFOR, vol. 18, no. 1, pp. 1-20, Feb. 1980.

Mattern, F., “Algorithms for Distributed Termination Detection,” Distributed
Computing, vol. 2, no. 3, pp. 161-175, Dec. 1987.

Menasce, D. A. and Muntz, R. R., “Locking and Deadlock Detection in Dis-
tributed Data Bases,” [EEE Transactions on Software Engineering, vol. SE-5,
no. 3, pp. 195-202, May 1979.

Misra, J., “Detecting Termination of Distributed Computations Using Mark-

ers,” in Proceedings of the Second Annual ACM Symposium on Principles of
Distributed Computing, (Montreal, Canada), pp. 290-294, ACM SIGACT-
SIGOPS, Aug. 1983.

Misra, J. and Chandy, K. M., “A Distributed Graph Algorithm: Knot De-
tection,” ACM Transactions on Programming Languages and Systems, vol. 4,
no. 4, pp. 678-686, Oct. 1982.

Misra, J. and Chandy, K. M., “Termination Detection of Diffusing Compu-
tations in Communicating Sequential Processes,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 4, no. 1, pp. 37-43, Jan. 1982.

Misra, J., Chandy, K. M., and Smith, T., “Proving Safety and Liveness of
Communicating Processes with Examples,” in Proceedings ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, (Ottawa, On-
tario, Canada), pp. 201-208, Aug. 1982.

Mitchell, D. P. and Merritt, M. J., “A Distributed Algorithm for Deadlock
Detection and Resolution,” in Proceedings of the Third Annual ACM Sym-
posium on Principles of Distributed Computing, (Vancouver, B.C., Canada),

pp. 282-284, ACM SIGACT-SIGOPS, Aug. 1984.

Moss, J. E. B., “Nested Transactions: An Approach to Reliable Distributed
Computing,” Report MIT/LCS/TR-260, Laboratory for Computer Science,
MIT, Apr. 1981.

Muhanna, W. A.; “Composite Programs: Hierarchical Construction, Circu-
larity, and Deadlocks,” IEEE Transactions on Software Engineering, vol. 17,
no. 4, pp. 320-333, Apr. 1991.

274

[103] Murata, T., Shenker, B., and Shatz, S. M., “Detection of Ada Static Deadlocks
Using Petri Net Invariants,” IEEE Transactions on Software Engineering,
vol. 15, no. 3, pp. 314-326, Mar. 1989.

(104] Murphy, S. L. and Shankar, A. U., “A Note on the Drinking Philoso-
phers Problem,” ACM Transactions on Programming Languages and Systems,
vol. 10, no. 1, pp. 178-188, Jan. 1988.

[105] Natarajan, N., “A Distributed Scheme for Detecting Communication Dead-
locks,” IEEE Transactions on Software Engineering, vol. SE-12, no. 4,
pp. 531-537, Apr. 1986.

[106] Obermarck, R., “Distributed Deadlock Detection Algorithm,” ACM Trans-
actions on Database Systems, vol. 7, no. 2, pp. 187-208, June 1982.

[107] Owicki, S. and Lamport, L., “Proving Liveness Properties of Concurrent Pro-
grams,” ACM Transactions on Programming Languages and Systems, vol. 4,
no. 3, pp. 455-495, July 1982.

[108] Papadimitriou, C., The Theory of Database Concurrency Control. Principles
- of Computer Science Series, Rockville, Maryland: Computer Science Press,
1986.

[109] Rajagopalan, S., “Deadlock Detection Techniques in Distributed Databases,”
Master’s thesis, University of Massachusetts at Amherst, May 1985.

[110] Rana, S. P., “A Distributed Solution of the Distributed Termination Prob-
lem,” Information Processing Letters, vol. 17, no. 1, pp. 43-46, July 1983.

[111] Reif, J. H. and Spirakis, P. G., “Real-Time Synchronization of Interprocess
Communications,” ACM Transactions on Programming Languages and Sys-
tems, vol. 6, no. 2, pp. 215-238, Apr. 1984.

[112] Riccardi, G. A. and Baker, T. P., “A Runtime Supervisor to Support Ada
Tasking: Rendezvous and Delays,” in Ada in use - Proceedings of the Ada
International Conference, pp. 329-342, ACM and Ada-Europe, Cambridge
University Press, May 1985.

[113] Roesler, M. and Burkhard, W. A., “Deadlock Resolution and Semantic Lock
Models in Object Oriented Distributed Systems,” in Proceedings International
Conference on Management Data (SIGMOD Vol. 17, No. 3), (Chicago, Ilki-
nois), pp. 361-370, ACM, June 1988.

[114] Roesler, M. and Burkhard, W. A., “Resolution of Deadlocks in Object-
Oriented Distributed Systems,” IEEE Transactions on Computers, vol. 38,
no. 8, pp. 1212-1224, Aug. 1989.

[115] Roesler, M., Burkhard, W. A., and Cooper, K. B., “Efficient Deadlock Res-
olution for Lock-Based Concurrency Control Schemes,” in The 8th Interna-

tional Conference on Distributed Computing Systems, (San Jose, California),
pp. 224-233, IEEE-CS, June 1988.

275

[116]

[117]

[118]

[119]

[120]

[121)

[122]

[123]

[124]

[125]

[126]

[127]

Rosenblum, D. S., “An Efficient Communication Kernel for Distributed Ada
Runtime Tasking Supervisors,” Ada LETTERS, vol. VII, no. 2, pp. 102-117,
March-April 1987.

Rosenblum, D. S., Design and Verification of Distributed Tasking Supervisors
for Concurrent Programming Languages. PhD thesis, Stanford University,
Mar. 1988. Also appear as Technical Report No. 88-375 (Program Analysis
and Verification Group Report No. 38).

Sanders, B. A. and Heuberger, P. A., “Distributed Deadlock Detection and
Resolution with Probes,” in Proc. of the 8rd International Workshop on Dis-
tributed Algorithms, (Nice, France), pp. 207-218, Sept. 1989.

Shih, C.-S. and Stankovic, J. A., “Survey of Deadlock Detection in Distributed
Concurrent Programming Environments and Its Application to Real-time
Systems,” COINS Technical Report 90-69, University of Massachusetts at
Ambherst, Aug. 1990.

Shih, C.-S. and Stankovic, J. A., “Distributed Deadlock Detection in Ada
Runtime Environments,” in TRI-Ada ’90 Proceedings, (Baltimore, MD),
pp- 362-375, ACM/SIGAda, Dec. 1990.

Shih, C.-S. and Stankovic, J. A., “Deadlock Detection in Distributed Real-
Time Systems and Its Application to Ada Environments,” Computer Science
and Informatics, vol. 21, no. 1, pp. 1-28, July 1991. Invited Paper, CSI
Journal, Computer Society of India. \

Shrivastava, S. K., “On the Treatment of Orphans in a Distributed System,” in
3rd Symposium on Reliability in Distributed Software and Database Systems,
(Clearwater Beach, Florida), pp. 155-162, IEEE-CS/ACM, Oct. 1983.

Shyu, S. C., Li, V. O. K., and Wang, C. P., “An Abortion-Free Distributed
Deadlock Detection/Resolution Algorithm,” in Proceedings of the 10th In-
ternational Conference on Distributed Computing Systems, (Paris, France),
pp. 167-174, IEEE Computer Society, May 28-June 1 1990.

Singhal, M., “Deadlock Detection in Distributed Systems,” IEEE Computer,
vol. 22, no. 11, pp. 37-48, Nov. 1989.

Sinha, M. K. and Natarajan, N., “A Distributed Deadlock Detection Algo-
rithm Based on Timestamps,” in The 4th International Conference on Dis-
tributed Computing Systems, (San Francisco, California), pp. 546-556, IEEE
Computer Society, May 1984.

Sinha, M. K. and Natarajan, N., “A Priority Based Distributed Deadlock
Detection Algorithm,” IEEE: Transactions on Software Engineering, vol. SE-
11, no. 1, pp. 67-80, Jan. 1985. '

Soundararajan, N., “Axiomatic Semantics of Communicating Sequential Pro-

cesses,” ACM Transactions on Programming Languages and Systems, vol. 6,
no. 4, pp. 647-662, Oct. 1984.

276

3 3 __3

3 _3

__3

z—i] ' _;l: . . 2} ‘ __j

[128] Spezialetti, M. and Kearns, P., “Efficient Distributed Snapshots,” in The
6th International Conference on Distributed Computing Systems, (Cambridge,
Massachusetts), pp. 382-388, IEEE-CS, May 1986.

[129] Sugihara, K., Kikuno, T., Yoshida, N., and Ogata, M., “A Distributed Algo-
rithm for Deadlock Detection and Resolution,” in 4th Symposium on Reliabil-

ity in Distributed Software and Database Systems, (Silver Spring, Maryland),
IEEE-CS, Oct. 1984.

[130] Tay, Y. C., Locking Performance in Centralized Databases, vol. 14 of Perspec-
tives in Computing. Academic Press, 1987.

[131] Tay, Y. C. and Loke, W. T., “A Theory for Deadlocks,” Technical Report
CS-TR-344-91, Department of Computer Science, Princeton University, Aug.
1991.

(132] Tsai, W.-C. and Belford, G. G., “Detecting Deadlock in a Distributed Sys-
tem,” in IEEE INFORCOM ’82, (Las Vegas, Nevada), pp. 89-95, Mar. 1982.

[133] Tsai, W.-C., Elmagarmid, A. K., and Hurson, A. R., “Deadlock Detection
and Resolution in Distributed Database Systems,” in IEEE INFORCOM ’87,
(San Francisco, California), pp. 77-86, Mar. 1987.

[134] Tu, S., Shatz, S. M., and Murata, T., “Applying Petri Net Reduction to
Support Ada-Tasking Deadlock Detection,” in Proceedings of the 10th In-
ternational Conference on Distributed Computing Systems, (Paris, France),
pp. 96-103, IEEE Computer Society, May 28-June 1 1990.

[135] Ullman, J. D., Principles of Database Systems. Pitman Publishing Limited,
second ed., 1982.

[136] Volz, R. A. and Mudge, T. N., “Timing Issues in the Distributed Execution of
Ada Programs,” IEEE Transactions on Computers, vol. C-36, no. 4, pp. 449~
459, Apr. 1987.

[137] Volz, R. A., Mudge, T. N., Naylor, A. W., and Mayer, J. H., “Some Problems
in Distributed Real-time Ada Programs Across Machines,” in Ada in use -
Proceedings of the Ada International Conference, pp. 72-84, ACM and Ada-
Europe, Cambridge University Press, May 1985.

[138] Wéjcik, B. E. and Wéjcik, Z. M., “Sufficient Condition for a Communica-
tion Deadlock and Distributed Deadlock Detection,” IEEE Transactions on
Software Engineering, vol. 15, no. 12, pp. 1587-1595, Dec. 1989.

(139] Wuu, G. T. and Bernstein, A. J., “False Deadlock Detection in Distributed
Systems,” IEEE Transactions on Software Engineering, vol. SE-11, no. 8,
pp. 820-821, Aug. 1985.

[140] Zhou, B., Yeh, R. T., and Ng, P. A., “Principle of Deadlock Detection in Ada
Programs,” in The 6th International Conference on Distributed Computing
Systems, (Cambridge, Massachusetts), pp. 572-579, IEEE Computer Society,
May 1986.

277

[141] Zhou, B., Yeh, R. T., and Ng, P. A.-B., “An Algebraic System for Dead-
lock Detection and Its Applications,” in 4th Symposium on Reliability in Dis-
tributed Software and Database Systems, (Silver Spring, Maryland), IEEE-CS,
Oct. 1984.

[142] Zobel, D., “The Deadlock Problem: A Classifying Bibliography,” Operating
Systems Review, vol. 17, no. 4, pp. 6-15, Oct. 1983.

278

—3 3 __3

-1

3 __3 3 .3 3 3 _3

3

13

