A Survey of Reactivity?
Srinivas S. Ravela

Laboratory for Perceptual Robotics
Department of Computer Science
University of Massachusetts

Technical Report #92-61
September, 1992

Abstract

This report is a survey of reactive systems. Horizontally decomposed architectures employing the
classical planning paradigm confront problems associated with timeliness, flexibility, robustness,
and are sensitive to non-stationary, uncertain, and incompletely modeled environments. In
contrast, reactive architectures attempt to provide a timely respanse, do not rely on detailed
or complete world models and generate actions triggered by the current perceptions of the
agent. However, reactive architectures are often “short-sighted.” This letter examines reactive
architectures, as well as architectures that integrate reactivity and classical planning paradigms
and presents the salient features from a subset of currently available literature. Papers are drawn
from the domain of robotics, specifically robot navigation, path planning, and grasping in order
to provide an analysis of Al methodology in real world situations. An attempt is also made
to maintain a consistent definition of various terms, such as reflezive, reactive, and deliberative

behavior, behavior composition, and world models, among others, used widely in the realm of
planning and control in Al research.

! This study was conducted as part of an independent study under the supervision of Prof. Rod Grupen

Contents
1 Introduction

2 Literature Survey
2.1 An Overview

.....................

2.1.1 Intelligent Architectures and Reactivity

2.2 Reactive architectures .
2.3 Reactivity and Planning

3 Observations

4 Conclusion

.....................

54

60

.List of Figures

O 00 I O UV W N =

P b b b b b b
AN LN -=O

Layerzerocontrol 10
Avoid obstaclemodule 20
Layer zero augmented with Layerone 20
Payton’s vertical architecture 21
An activation set behavior N 21
Abehavior o 0. 22
The local planningmodule. 22
Planning Hierarchy-Arkin 23
Motor-schema definitions 24
Potential field from multiple instantiations 25
An independent agents architecture. 26
First harmonic models are sufficient for ellipsoidal objects . . 44
First harmonic models may not be sufficient 44
Reactive Architecture as a Finite State Machine 45
The terrainandgoals 49
Fine grained primitives. 63
Plans guide behaviors 63

1 Introduction

This letter is a report on a study in reactivity. The aim of this study is to un-
derstand the construction methodology, the advantages and disadvantages
of reactive systems. The papers discussed here are chosen from the domain
of robotics, because this domain provides an ideal platform to study the
application of AI methodology in the real world. The real world is an inter-
action of multiple agents. For this reason it is dynamic and unpredictable.
Also, the real world cannot be completely observed due to the uncertainty in
the environment and the limitations of sensors. Agents operating in the real
world should cope with these limitations. Classical planning approaches are
known to be time consuming, require a relatively complete world model and
assume the state of the world changes only due to the actions of the agent
under control. This is not true as the study of various papers indicate.

In contrast reactive control offers the advantage of guaranteed response
and hence the ability to quickly react to a changing environment. The
control system is modeled as reacting directly into the current situation.
The behavior of the agent is specified in such a system as situation action
rules that are evaluated at frequent intervals. Thus, Reactivity may be
defined as actions that are a function of current percepts. This definition is
qualified by the following properties:

1. Reactive behavior is declarative.
2. Is dynamically composable.
3. Is context activated.

4. Filters bounded noise in the environment.

Response to temporal constraints imposed by the environment on the
agent is one of the factors that necessitates design of reactive systems. This
study strongly suggests that actions based on local knowledge alone is prone
to failure in a complex world. Most of the architectures described in this
letter employ more than local knowledge. Architectures that do not employ
more than local knowledge have been observed in this study to be inade-
quate, i.e these architectures do not cater to issues pertaining to the real
world.

In this study we will observe the above mentioned properties of reactive
systems. The letter is organized in three sections. Section 2 is the most

significant part of this study and contains a literature survey of papers that
deal with reactivity. Section 2.1 gives us a brief overview of the environment,
describes a characterization of the environment along three dimensions and
the relation between these dimensions and the types of internal state that
an agent may be endowed with. Section 2.1.1 is an overview of architec-
tures for intelligent systems that employ a reactive component. Section 2.2
studies reactive architectures, models of interaction and behavior composi-
tion. Section 2.3 considers the issue of merging reactive and deliberative
(planning) approaches to building intelligent systems. We sum up with our
observations in section 3 and a conclusion.

2 Literature Survey

2.1 An Overview

The real world may be considered as a complex interaction of multiple of
agents. For this reason the real world is considered dynamic and unpre-
dictable. The world is never completely observable. These aspects are de-
scribed in Chrisman’s paper [Chrisman,1991], who then argues that inter-
nal state is essential to compensate for perceptual incompleteness. He also
characterizes the environment along three dimensions, namely, complexity,
predictability and density of choice points and ascribes a relation between
these dimensions and the type of internal state that an agent might require.
This paper is discussed below: .

Chrisman et al. in their paper [Chrisman,1991], argue that perception
is incomplete when at any instant relevant features of the world cannot be
observed. Features are relevant when the appropriate ¢hoice of action for
a situation depends upon those features. Therefore for perception to be
complete, the world must be completely observable at every instant of time.

Perceptual incompleteness arises due to a number of reasons including
sensor limitations, physical obstructions, monetary costs of sensing, com-
putational costs of sensing, mutually exclusive sensing and uncertainty,
[Chrisman,1991]. An example from their paper illustrates perceptual in-
completeness at several places. There is a broken object in the middle of
a room near a toolshed. An agent whose job is to repair broken objects
enters the room and discovers the object. To repair the object the agent
must go to the toolshed select an appropriate tool and return to the object.
The object is invisible the moment the agent turns away from the object.
If actions were based on current percepts only, then the agent would not be

able to pick the right tool. To compensate for perceptual incompleteness
the authors propose the following types of internal state:

1. Model Reactive Agent: A model reactive agent records only informa-
tion that represents some aspect of the current world state. In the tool
shed example, the agent memorizes the state description of the object
and uses this description to fetch a tool.

2. Ezpectation utilizing agent: An expectation utilizing agent uses the
current percepts to select a plan to act through spans of incomplete
perception. That is it selects a schedule of behaviors and reschedules
when any future percept indicates a failure of the currently chosen
schedule.

3. Contingency Anticipating Agent maintains a contingency state. This
state changes as a result of the current percepts and has the effect of
triggering particular decisions in the future. Such an agent does not
make expectations about the future. In the tool shed example when
the agent sees the broken object it records the fact that whenever it
sees a phillips screwdriver it should pick it up.

Next, they characterize the environment under three mutually orthogo-
nal dimensions. These dimensions are:- Complexity, Predictability , Density
of critical choice points. Complexity of the world state relates to the length
of enumeration required to describe all pertinent aspects of the world state.
If enumerations are long complexity is high. The environment is predictable
when the agent’s expectations about the future are reliable. Density of
choice points in the face of all possible future execution paths, are those
points where an actual decision impacts the effectiveness of the agent. A
model-reactive agent is sensitive to the world state complexity since it must
maintain longer descriptions as the world gets complex. The contingency
anticipating agent is sensitive to the density of choice points since it must
make potential decisions at a time when relevant observations are available.
In the tool shed example, the world is not complex because it would require
very little memory to represent the fact that the object is broken . The
world is predictable because it is assumed static within this example. Given
the example, the density of choice points is low, because the problem does
not define the presence of obstacles or other processes.

The salient features of this paper are:

o Perception is incomplete in the real world.

o Internal state is required to compensate for perceptual incompleteness.

e The three types of internal states are: Model reactive, Expectation
utilizing and Contingency anticipating states. Note that such an ex-
plicit classification is not always possible. In the papers studied here,
as in [Brooks, 1986), such classification is not possible. I believe it is
the notion of state that is important. The classification presented here
is a good explanation for the notion of state and the significance of
'state’ in the context of this study.

e The environment can be characterized along the following dimensions.
Complexity, Predictability and Density of Critical choice points.

e Model reactive agents are sensitive to the world state complexity, Ex-
pectation utilizing agents are sensitive to the predictability of the world
and Contingency anticipating agents are sensitive to the density of
critical choice points.

The observations from this paper are: model reactive agents primarily
are reactive in nature. This goes by the definition since model reactive agents
generate actions based on their current perceptions only. Expectations about
the future are plans. Therefore, a reactive agent is sensitive to a complex
world. This conjecture at this point is supported in all the papers studied.
Expectation utilization or. planning is sensitive to the predictability of the
environment. The real world is unpredictable, therefore uncertain. The
.presence of uncertainty causes plans to fail. Therefore we can conclude
that since the real world is unpredictable, planning alone may not generate
solutions. Since the real world is complex a model reactive agent may not
be sufficient. This letter addresses precisely these issues and we study the
domains in which reactive approaches are suitable and if not, why not.

2.1.1 Intelligent Architectures and Reactivity

This section gives us an overview of intelligent systems that operate in the
real world. All the papers described in this section pertain to architectures
for mobile robot navigation which employ a reactive subsystem. Further,
the study of reactivity in the context of planning gives us important informa-
tion about the advantages of reactivity. The papers described in this section
help us understand the scope and construction methodology of reactive sys-
tems. These papers also give us sufficient information to come up with a

working definition of the term behavior widely used in Al research. The pa-
pers that are described in this section are [Brooks, 1986],[Payton,1986] and
[Arkin,1988, Arkin,1987]

e The subsumption architecture

Brooks, in [Brooks, 1986] proposes an alternative to the classical horizontal
decomposition of architectures for intelligent systems. Classical systems
are horizontally decomposed into a series of functional units. They are: 1.
Perception, 2. Modeling, 3. Planning, 4. Task Execution and 5. Motor
Control. This architecture is fraught with several disadvantages, that are
listed below:

1. Classical architectures do not support timely action. This is because
information is assimilated from several sensors to construct a com-
posite representation of the world, before any planning or execution
takes place (Sensor fusion problem). This process is computationally
expensive and time consuming.

2. Classical architectures are not flezible. This is because, any modifi-
cations to a functional unit, would cause significant changes in the
interface. That is, this decomposition method does not support incre-
mental development of a system.

3. Horizontal decomposition is not robust. This is because, the process of
planning is based on the availability of a complete world model. Since
the real world cannot be modeled completely(This is because the real
world is never completely observable. See discussion on [Chrisman,1991]),
planned-action may not result in changes in the world state as ex-
pressed in a plan. That is, plans do not account for the uncertainty in
the real world, that results from the presence of unmodeled processes
in the environment. For example consider the mobile robot navigation
issue. It is possible that the robot, while following a supposedly safe
path (a plan), may encounter obstacles (unmodeled processes) which
are not accounted for in the world model. In this sense the plan fails
and may require plan modification or replanning.

Brooks develops a robust, flexible, real-time software architecture for
mobile robot navigation called the Subsumption architecture, that is con-
structed as a hierarchy of behaviors. This paper states criteria for evaluating
an architecture, describes the control hierarchy, the construction procedure

L3

for individual control layers and an inter-layer communication protocol. All
these aspects are studied and certain observations are made.

The requirements for an autonomous system in this paper are stated as
follows: '

1.

Multiple Goals: The robot might have multiple (possibly conflicting)
goals to satisfy. For example to stay on path and avoid an obstacle on
path.

Multiple Sensors: A robot will have multiple sensors. Errors occur
both due to lack of observability and noise. A robot must cope with
these limitations.

Robustness A robot must be robust. When some sensors fail it should
be able to adapt and cope by relying on those that are still effective.

. Eztensibility: As more capabilities are added to a robot, more process-

ing power would be required; otherwise the original capabilities of the
robot will be impaired with time.

The control hierarchy depicted below, corresponds to levels of compe-
tence. A level of competence is an informal description of a desired class
of behaviors of a robot over all the environments it will encounter. These
levels are:

LEVEL 0: Avoid contact with other obstacles.,
LEVEL 1: Wander aimlessly without hitting things.
LEVEL 2: See places at a distance and head for ‘them.

LEVEL 3: Build a map of the environment and plan routes from one
place to the other. .

LEVEL 4: Notice changes in the static environment.

LEVEL 5: Reason about the world in terms of identifiable objects
and perform tasks related to certain environments.

LEVEL 6: Formulate and execute plans that involve changing the
state of the world in some desirable way.

LEVEL T7: Reason about behavior and modify plans accordingly.

Each level of competence includes as a subset an earlier level of competence.
The construction of the hierarchy proceeds in a bottom-up manner described
below:

Layer zero is constructed to implement a level 0 competence. Layer one
control can examine the data from layer zero and can suppress the normal
data flow of layer zero. With the aid of layer zero, layer one achieves level 1
competence. By suppressing the data flow of layer zero, layer one can sub-
sume the role of layer zero. Thus, higher layers can subsume the role of lower
layers and the architecture is called the subsumption architecture. Figure
1 shows layer zero. Brooks argues that in the subsumption architecture:-

force heading

T
o B o B o [
T

rodat
=

halt

collide

Figure 1: Layer zero control

o Multiple goals can be satisfied with different layers working simultane-
ously on different goals. Suppression mediates action and the ultimate
decision may be made by using the results of pursuing all of them to
some level of conclusion.

e Each layer uses only those sensors that determine the output of the
layer. Perception is shared among behaviors. Only those sensors which

are identified by the perception processing unit to be extremely reliable
are used.

10

e The system is robust because lower levels which have been debugged
thoroughly continue to run when higher levels fail to generate an out-
put in time, but at a lower level of competence.

¢ Each layer can be made to run on an independent processor making
the system extensible.

Brooks then describes the internal structure of a layer and a protocol for
communication between different layers. Each module is a finite state ma-
chine. Input lines are single element buffers; one input line holds the percep-
tion datum, and the other functions as a reset line. The machine begins in
the nil state and either of the following events causes a transition to another
state.

1. Output: The result of computation of a function of the input, instance
variables and buffers.

2. Side-effect: Instance variable being set to a new value.

3. Conditional dispatch: A predicate computation based on the module’s
instance variables.

4. Event dispatch: A monitor that monitors the input line and triggers
a transition on a change in input.

For example consider the avoid module shown in Figure 2.

The force input line inputs a force with a magnitude and direction found
by treating each point found by the sonar as a site of repulsive force decaying
as the square of distance. Function select direction takes this and combines
it with the input on the heading line considered as a motive force. It selects
an instantaneous direction by summing up the forces acting on the robot.
If this resulting force is above a threshold,(which is the force value that will
result in a motion that takes more than a second) follow force is activated and
converts the desired direction and force magnitude into velocity commands.
If the force is less than the threshold the dispatch logic ignores it.

Communication between different layers is done asynchronously over a
low bandwidth channel. A higher level control can either suppress the input
line or inhibit the output. A lower level can also be reset by a higher control
layer. The lines are held for a certain amount of time, typically is the time
required for the higher layer of control to initiate motor control. Figure 3
shows layer zero augmented with layer one control.

11

e Definition and types of behavior

This paper demonstrates that an intelligent control system may be decom-
posed in terms of behaviors. In this paper behavior is observed as action
generated by a functional unit called an agent in response to perception of
the environment. In the subsumption architecture, each layer of control is
a behavior because it generates action. For example layer zero is a behavior
that determines output solely in response to the perception of the world,
therefore it reacts. Layer one and layer two similarly react to their envi-
ronments. Layer three and above are behaviors that generate action after
deliberation. For example the function of layer three is to build maps and
plan routes from one place to another. Therefore in part layer three plans
i.e. deliberates. Therefore action, in this architecture, results both from re-
action and deliberation. Thus, the subsumption architecture is decomposed
into a hierarchy of deliberative and reactive behaviors. Note that in this
sense the classical architecture is a purely deliberative behavior.

e Reactive behavior can be used to attain real time performance

But why is such a decomposition needed ? As discussed in the beginning
of this section, classical architectures, may not generate timely action. This
is because of the computational requirements associated with sensor fusion.
Further the process of planning may not generate action (i.e. a complete
executable plan) , within the temporal constraints imposed by the environ-
ment. Consider the following simple example. The mobile robot approaches
an unexpected obstacle in the course of following a trajectory. Planning,
with the associated sensor fusion problem may not generate action in time
to avoid this obstacle. This demand for real time performance in general is
not addressed by the classical decomposition method. In the subsumption
architecture, real time performance is generated by the low level behaviors,
or as we classify them, the reactive behaviors. This is because, of two rea-
sons. First, the problem of sensor fusion is avoided by predetermining the
sensory requirements associated with each behavior. Second, reactive be-
haviors are procedural units that generate action from the perception of the
immediate surroundings. No planning is performed.

e Hierarchical behavior decomposition is robust and flezible

The decomposition also provides a mechanism to build robust and flexible
systems that facilitate incremental development of a system. This decompo-
sition technique is robust because in the event of failure of a module action is

12

still generated by the other modules, possibly at’a lower level of competence
or at a slower speed. Since each layer exhibits behavior independently, addi-
tion of new behaviors does not alter the existing behaviors in any significant
way.

e Behavior composition is achieved via subsumption

This paper also suggests a mechanism for composing behaviors. This com-
position is necessary in order to generate unique actions. A control layer
with a higher degree of competence can subsume a behavior of lower com-
petence. Thus, behavior composition is achieved through a priority based
arbitration, in which a behavior with a higher degree of competence has
greater priority. This paper discusses issues pertaining to levels 0,1 and 2
only. This paper does not show how deliberative behavior may be achieved.

e Tertical Decomposition: Payton

Payton in [Payton,1986] proposes an architecture

based on vertical decomposition of control, different from [Brooks, 1986:.
This paper is different from [Brooks, 1986] because, instead of considering
levels of competence, this architecture is based on a hierarchy of levels of
abstraction. This architecture uses plans at a symbolic level to constrain
- the choice of reflexive behaviors that implement the plan. These beharviors
guarantee real time performance. However we will observe a coarse corre-
spondence between both these architectures.

Payton in this paper develops an architecture for an Autonomous Land
Vehicle(ALV).The author specifies the requirements of the system, the vari-
ous design tradeoffs and presents an architecture with an emphasis on local
and reflexive planning. Together these two modules constitute a reactive
subsystem.

This architecture is designed to handle diverse terrain requirements through
a library of reflexive strategies. Payton argues that since, the vehicle is in
continuous motion, therefore sensor data that were to result in an action
based on a detailed assimilation and planning process, would be obsolete
by the time action is produced. Hence a short reaction time is essential.
Secondly, unlike simple road following, the vehicle needs to tackle diverse
terrain and adversary threats. Thus, a wide variety of planning strategies
may be required. This means a variety of sensing capabilities are required.
The problem of assimilation of sensor data or senscr fusion to produce plans,

13

for a real world would lead to an overwhelming computational load. There-
fore, the process of assimilation may have to be sacrificed in order to achieve
immediacy required for real time response.

Assimilation of data is advantageous because it gives a relatively com-
plete view of the world. This is of value to planning because, features that
are critical to plan execution may not be otherwise discovered. However,
this may not be timely. For example as a sample of data is going through
analysis, the robot might have already run into an obstacle. Immediacy on
the other hand as Payton argues is of value to control. The perception ac-
tion cycle may be viewed as a feedback control unit, with the environment
providing the feedback. Greater stability results if there are fewer delays
between sensing and action. Greater immediacy should therefore result in
a more stable system. However, data that may not have gone through suf-
ficient assimilation may not provide the system with critical information.

Payton also discusses the advantages of a vertical decomposition based
on levels of abstraction over horizontal decomposition. In this paper, Pay-
ton addresses the issues of flexibility and sensor fusion. In a horizontally
decomposed system fusion of data is performed through the generation of
a composite representation of the local environment. This would cause
considerable delay between sensing and action. This delay can be reduced
by increasing the throughput of the system or by bypassing certain mod-
ules, in which case the generality of the approach is lost. As discussed in
[Brooks, 1986] this is inflexible because it would require changes at the in-
terfaces. The vertical decomposition scheme proposed by Payton is shown
in Figure 4. Sets of sensors generate specialized representations for use
by the behaviors. The task then is to arbitrate among these behaviors or
compose them. This is termed by Payton as command fusion. He argues
that although command fusion needs to be resolved, this scheme is much
better since specialized pathways for action have already been generated, to
ensure a quick vehicle response. The organization of the system in terms of
behaviors makes the system flexible because addition of modules does not
significantly alter the other interfaces.

In Payton’s architecture the planning hierarchy consists of
mission planning , map-based planning, local planning and reflexive plan-
ning. The mission module translates abstract goals into a set of geographic
goals and has a response time of a few minutes. The map based planner
translates geographic goals into route plans, also has a response time of a
few minutes. The local planning module ensures that the route plan is exe-
cuted properly. The reflexive planning module has the task of maintaining

14

real time vehicle control. This requires a response of less than a second.
Note that assimilation is provided by higher levels and immediacy by the
lower two. While commands are passed downwards failure and other status
reports are passed upwards. Each individual module is organized as follows:

A module consists of expert sub-modules or agents. New agents can be
added without affecting the performance of the system significantly. How-
ever, simultaneous activation of a number of agents may not be meaningful
, due to redundant or conflicting actions that can be generated. There-
fore, the agents are partitioned into activation sets, with each activation
resulting in a meaningful action. Payton’s architecture is different from
[Brooks, 1986] because it is not organized as a hierarchy of behaviors. How-
ever, in the subsumption architecture higher levels of competence require an
increasing degree of assimilation. Hence there is a correspondence between
both the architectures. Payton also organizes each module differently. In
the subsumption architecture each module is organized horizontally, i.e. as a
perception action cycle, where action is a function of the perception. Payton
organizes each module laterally.

Each module is a collection of expert agents that communicate through
a common blackboard. Each expert agent receives some combination of
processed sensor data. An agent constitutes a sequence of ; 1. A perceptual
element (called virtual sensor) and an action component called the behavior.
Behaviors are procedural specifications and an activation set is a group
of behaviors. An activation set is selected by the local planning module
during task execution from a pool of reflexive behaviors. When an activity
is initiated each of the individual behaviors are parameterized and initiated
as independent processes. These processes as stated above communicate
through a black board. Now, each behavior places a métor command with
an integer priority. Command fusion is done via arbitration based on the
priority values. If a particular behavior fails, control is transferred to another
behavior which acts as a failure handler. Figure 5 shows an activation set,
Figure 6 shows a behavior.

The local planning module based on the map based planning module’s
output and local perception generates a sequence of activities to be per-
formed. It is responsible for selecting and instantiating activities, instan-
tiate behaviors, detect and handle failures. Figure 7 shews the functional
elements of the local planning module.

e Observations

15

In Payton’s paper a noticeable feature is that the definition of behavior
(expert agents producing action) is consistent with the definition of the term
introduced in our discussion on [Brooks, 1986]. In Payton’s paper action is
produced by expert agents. These behaviors are reflexive, for the following
reason. Expert agents generate actions in response to the immediate percep-
tion. These are based on simple computations on the inputs in the nature
of the slow-for-obstacle shown in figure 6. Alternately, they are highly pro-
cedural units. Actions generated by these behaviors independently cannot
execute a task In a broad sense, these behaviors have a metabolic commit-
ment in preserving the constitution of the agent. This means that activity is
generated only to avoid undesirable states that may arise as a result of the
current interaction of the agent with the environment. For example slow-
for-obstacle is a reflex essential to prevent the agent from running into the
obstacle. Reactive behavior however, employs the current local perception
as the basis for a choice of action to pursue a goal. The line of difference
is very thin and frequently this difference arises due to the difference in the
time required for local assimilation. Reflexes may not assimilate sensory
data at all. They may be thought of as triggers which are activated when a
sensor values cross certain predetermined bounds . See [Grupen,1991d].

¢ Reactive behavior makes plans robust

In this architecture, action is generated by these behaviors. The choice of
behaviors is made by the local planning module, in response to the local
environment. Further, this choice is constrained by the plan specified by
the map-based planner. But why should a map plan not be implemented
directly. The reason is because, the success of plans depends on the com-
pleteness of the world model. Since a complete world model cannot be
maintained for the real world, plans may fail in the presence of unmodeled
objects. These behaviors therefore, make the plans robust by accounting for
uncertainties in the environment. Thus reactive behavior filters out bounded
noise, where noise arises due to the presence of unmodeled processes , and
in this sense make plans robust.

e redundant behaviors makes the system robust

Payton also argues that since the system is required to handle diverse ter-
rains, redundant behaviors in the repertoire would make the system robust
and generate actions that can handle a wide variety of situations.

e composition via arbitration

16

Payton also suggests a mechanism for composing behaviors, that is by arbi-
tration. Each agent outputs an integer priority and the behavior with the
highest priority is chosen as the successor. One problem with this scheme
is the resolution would be required in case two behaviors, that may possi-
bly result in conflicting behaviors put out the same priority values. Such
problems have been resolved using random selection methods for example.
However Payton does not discuss this issue.

e Command fusion is betier than sensor fusion

Payton also suggests that the command fusion above is better than sensor
fusion. Sensor fusion is a time consuming process. Instead each behavior
has an associated set of sensors, that are determined from the action require-
ments of the agents. The issue then is to arbitrate among the behaviors,
and this is better because pathways for action have already been generated.

¢ Reactive navigation

The next set of papers that are discussed in this section is work done by
Arkin in [Arkin,1988), [Arkin,1987]. The architecture is very similar to Pay-
ton’s architecture. We know that a behavior is an interaction of the world
based on local perception. This requires a transformation of the world model
into a domain that facilititates actuator commands. This transformation de-
fines a model of interaction with the world. Both Brooks and Payton did
not deal with this issue in detail. Arkin employs artificial potential fields as
a mechanism for interacting with the environment. The transformation as
we call it, is done by representing the objects in the world by their ascribed
attributes. For example an obstacle is represented by a repulsive field. In
this sense this model represents both the local environment and plans (stay
on path for example) in a domain that is conducive to generate actuator
commands.

Arkin [Arkin,1988, Arkin,1987]) describes an architecture for reactive
navigation for an autonomous vehicle. The system is decomposed vertically
into five major components: the planning, cartographic, perception, motor
and homeostatic subsystems. The planner consists of a mission planner,
navigator, pilot and motor-schema mangers. The cartographer, whose task
is to maintain the information stored in long term and short-term memory,
provides this information on demand to the planning and sensory mod-
ules. Long-term memory (LTM) contains a priori knowledge about the
world, while Short-term memory contains an acquired perceptual model of

17

the world overlaid in the LTM context. The perception subsystem struc-
tures information in a coherent and consistent manner from sensory inputs
available to the cartographer and motor schema manager. The motor sub-
system is the means by which the vehicle interacts with it’s environment.
This interaction is in response to sensory stimuli and the high level plans.
The homeostatic control is concerned with the maintenance of a safe internal
environment for the robot. The concentration in this paper is on a behavior
based planning subsystem for robot navigation and is the issue of interest
to this study.

The planning subsystem has two distinct levels of information for path
planning; the map based in the long term memory and sensor data. Plan-
ning is decomposed vertically as a hierarchical control system. The Mission
planner takes mission commands in conjunction with the cartographer and
the homeostatic subsystems and directs an output to the navigator via a
blackboard. The output contains particular mission goals that must be sat-
isfied. The navigator, uses this information in conjunction with the LTM
and constructs vertex graphs, that represent the free space. It also issues
status reports to the mission planner. The world at this point is modeled ge-
ometrically and objects are represented by polygonal approximations. The
navigator moves the appropriate local e¢ priori information available into
the STM, based on the robot’s current world position. The output of the
navigator is a point to point path and is directed to the pilot. The pilot, uses
this path and instantiates suitable behaviors from a repertoire of behaviors
and passes them to the motor schema manager. It is important to note that
the pilot operates based on the current perception of the robot. It is guided
by the point to point path and monitors the execution by determining the
success or failure of the motor schemas instantiated. The pilot is responsible
for producing timely action. If the motor schemas to perform the desired
activity, the pilot is invoked to compose (or instantiate) alternate behav-
iors. The motor schema manager maintains a model for interaction with
the environment. Control for the execution path actually occurs within the
confines of the motor schema manager. Figure 8 shows the decomposition
of the planning hierarchy.

The local world is represented as a potential field to provide the appro-
priate velocity commands to the robot. This field is constructed from the
schemas that are instantiated by the pilot, in the context of the Short-term
memory. This potential field is constructed by composing the individual
fields that are ascribed to individual behaviors. This is possible because of
the property of superposition holds in potential fields. The potential field

18

concept is dealt in detail in [Khatib,1985]

Figure 9 shows the various schemas and their definitions. Figure 10
gives a snapshot of multiple instantiations.

We begin our observations on these papers by identifying the reactive
subsystem in this architecture. The reactive subsystem, comprises of the
- pilot and motor-schema manager. The pilot is effectively a monitor of plans

and a composer of behavior. Behavior in this paper is a motor schema.
The salient features in Arkin’s work are:

e The use of potential fields to model the interaction of an agent with
the world.

¢ Composition of behavior as a superposition of primitive behaviors.

o The potential field representation may fail to generate the desired tra-
jectory. This is because in the presence of unmodeled obstacles that
form a cluttered environment, local minima may arise in the composite
field [Khatib,1985]. This would require recomputation of the vertex
graph to include these new set of obstacles and replan, i.e specify a
path based on global observation. In Khatib’s paper we note that
this method of potential fields to generate reactive behavior therefore
fails in the presence of local minima, in the surface that represents
the interaction of the agent with the world. Also, I refer the reader
to our discussion on work done by [Connolly,1992] who uses harmonic
functions to resolve this problem.

With this broad overview of reactive systems, that have been employed
in architectures for intelligent behavior, we now proceed to study the is-
sues in reactivity. Section 2.2 describes reactive architectures, described in
[Grupen,1991a, Yamauchi,1991], and models of interaction to achieve reac-
tive control, described in [Khatib,1985], [Connolly,1992] . One of the con-
clusions that result from this study is that reactive behaviors alone may not
find solutions. They require a certain amount of global information to be
effective.

19

(defmodule avoid |
:inputs (force heading)
:outputs (command)
:instance-vars sresultforce)
:states .
St((nil (event-dispatch (and l'nrce.hem.iing) plan)))
(plan (setf resultforce (select-direction force heading))
o i igni Ttfi 1.0)
(go (conditional-dispatch (significant-force-p resultforce 1.
) start
. nil))
(start (output command (follow-force resultforce))
nil)))

Figure 2: Avoid obstacle module

wander —J_-.

heading avold

heading

20

forward

I
tumn

heading
T

collide

Figure 3: La;?er zero augmented with Layer one

20

L

MISSION
PLANNING J

CONTROL : STATUS & FAILURE

\

- o o-

I

" MAP-BASED ".:
.. PLANNING =~

L 3

CONTROL STATUS & FAILURE

;

" o A
: LOCAL PLANNING
- (High Lovel Maneuvering)

STATUS & FAILURE

LAYERED PERCRTION SYSTEM

e ™\ VEHICLE
LEXIV
PLANNING | (ACTUATORS

1dence) - | m——

]
1]
]
]
]
]

P T I I AR 2 R i

Figure 4: Payton’s vertical architecture

Sensor
Data

Vehicle
Status Data

LEGEND:
] = vitual sensor

O = rllexive behavior

Figure 5: An activation set behavior

21

BEHAVIOR: slcw-for-obstacle
parameters: slow-distance = 20:
stop-distance = S;
deceleration = 1
virtual sensors:
pdate: 2) =>distance

{sensor-type: obstacle-detection u
{sensor-type: speedometer update: 3) «>vehicle-speed

DO Forever:
PAUSE
Wait For New Data 1F TIMEQUT, Put Command SPEED =)
1F distance < slow-distance
THEN: g
IF distance < stop-distance
THEN: Put Command SPEED = 0

ELSE: Put Commaqd
SPEED = vehicle-speed - deceleration

Figure 6: A behavior

\MAP-BASED PLANNING MODULE,

= ROUTE DESCRPTION -

‘ ": 2 LOCAL PLANNING
: : : CONSTRAINTS STATUS & FAILURES
lc [}

' £, LOCAL PLANNING

P MODULE

¢t T -
[] ')

[]

o)

¢ ’

c'.‘ '

] L

1S

1Y

ls '

[] [)

IT ’

«E

1 W STATUS & FALURES

¢
+ REFLEXIVE PLANNING MODULE :

Figure 7: The local planning module

22

Human

Commander
. ™M
Spatial c:-:: s
Resolution
“
:,- festyres and 5 MISSION Parameter Settngs Homeostalic
o| Symbolic data Control
g PLANNER (safety, energy, otc)
(Lren) .
“
thisson
Commands Status
and
Parameters
3
=
3| e
8dow
E Mao — NAUIGATOR
1
2 (LTHM)
£
Pomt 1o Point Status
commands (Successful completion or
intelligent disobedience)
o Motor Schema instantistion: rom
Short-term or
'E memory 2 pILOT Schems
Status Mansqer
Perception
Sutsystem

Figure 8: Planning Hierarchy-Arkin

23

Avoid-obstacle

maygnitude =

0 for d> S
§24 «G for R<d< S
oc for d< R
where:
S = Sphere of Influence (radial extent of force
from the center of the obstacle)
R = Radius of obstacle
G = Gain
d = Distance of robot to center of obstacle
“arection = along a line from robot to center of obstacle

e Stay-on-path

Vmcynilude =
P for d > (W/2)
W‘Tﬂ sGfor d< -‘;
where:

W = Width of path
P = Off path gain
G = On path gain
d = Distance of robot to center of path
Viirection = along a line from robot to center of path
heading toward centerline

e Move-ahead

Vinagnitude = Fixed gain value
Viireetion = A specified compass direction

* Move-to-goal

Vmagnitude = Fixed gain valye
Viirection = In the direction towards perceived goal

e Noise

Vinagnitude = Fixed gain value
Viirection = In a random direction for a specified persis-
tence (time interval) :

Figure 9: Motor-schema definitions

24

..

o s o 0 e e e % S e
N s e o e

D e oy T e ane T2 ek oo e g
W R T T T T
3.

--
s ~v
T nTin - it
e e L o taoes tv e et raasoan o Te seane
e vy v oo,

- —

AR AT ST § L

PPty

I

N
I..wunm»
P»-

tantiations

ins

Potential field from multiple

Figure 10

25

2.2 Reactive architectures

In this section we study the construction methodology of reactive systems.
Reactive behavior as stated earlier uses it’s current perceptions to generate
action. In [Yamauchi,1991] we observe that the dynamics of the real world
are not modeled to determine behavior. In [Grupen,1991a}, [Grupen,1991b]
we observe that an object model is refined to employ reactive behavior.
[Khatib,1985] and [Connolly,1992] describe methods of modeling interaction
with the world to generate reactive behavior. Each method has been possible
due 'to some observable feature of the environment. In [Yamauchi,1991]
for example the dynamics of the environment are slow enough to employ
qualitative models, in [Grupen,1991a] the object is stable. We will also
observe that reactive behavior alone may not be sufficient to find solutions
to complex problems.

o The juggler: a reactive system

Yamauchi [Yamauchi,1991], describes a reactive architecture,
called the Independent agents architecture. The behavior based architecture
is shown if figure 11.

Motor Control

Figure 11: An independent agents architecture

The task is to implement a juggler that juggles a balloon off a paddle
fixed to a Puma 761 robot arm. Sensing is done through a pair of cameras.

26

Perception uses sensor data to generate a point in stimulus space. The
behaviors use this point in stimulus space to compute a point in a response
space. The balloon is observed through two cameras and their horizontal
centroids are computed. This is given by:

= __Zz,yET. X
| T3]

T, = Za‘.yGT'X
i 7|

where, I; and T, are pixels above the intensity threshold of the lefty and
right cameras respectively. The range is given by

_ krange

21—3,-

where krange is a constant relating image disparity to balloon range. The
stimulus space is a 3-tuple (z, y, potd), Where

e x: is the centroid from the left camera [Zmin, Zmaz)
e y: is the range of the balloon from the robot (Ymin, ¥maz]
® pold : is the old robot arm extension. [pmin, pm.,f,_.]. _
The behaviors are : ‘
1. Rotational Tracker: Rotates the robot so it faces the balloon.

2. Extensional Tracker: Extends arm so that the paddle is located di-
rectly under the balloon.

3. Hitter: Swings the arm when the balloon is directly over the paddle.

They independently determine a response in the response space. The
response space is a 3-tuple (A0, pnew, k), Where

o A#: is the rotation about the base [A0pin. Amac)
® Prew : is the new robot arm extension. [pmin, Praz)-

e h: is the hit command [0, 1]

27

Each behavior results in a change in one of these three dimensions and
the behaviors are mutually independent. Secondly, all three behaviors are
required to determine the response at any given point in time. Action then
is stated as follows. The rotational tracker tracks the balloon and causes the
robot to face the balloon. Simultaneously, the extensional tracker, extends
the arm so that the paddle is under the balloon. The hitter hits when the
balloon is close to the paddle.

These behaviors are highly procedural and the current perception de-
termines the output. The architecture is reactive and does not incorporate
a planning component. Yamauchi argues that he uses a vertical decompo-
sition strategy. I think this is incorrect. The decomposition is horizontal.
Since perception uses sensor data to generate a point in stimulus space and
the behaviors (independently) use this point to generate a point in response
space. the decomposition is effectively horizontal. In terms of the architec-
tures in [Brooks, 1986),(Payton,1986] , Yamauchi has presented a low level
of control. :

o Pure reactivity is sufficient if the environment is completely observable

In this paper Yamauchi argues that he does not model the dynamics of
the world (balloon) to generate effective action. This is right but has been
possible only because the balloon is filled with helium. Therefore, the juggler
operates in a domain where the dynamics of the environment can be observed
at all times. I presume the cameras continuously track the balloon. In this
paper Yamauchi has primarily described a reactive architecture, that uses
current perception to guide actions.

o parallel composition of behaviors

Behavior composition is achieved through parallel execution, because the
behavior is decomposed into three mutually exclusive and collectively in-
clusive behaviors. The model of the world used (using the notation in this
paper) is qualitative, and this is possible only because the dynamics of the
world have been slowed down to make the world observable at all times. I
believe in case the balloon were to drop faster, a more rigorous mathemati-
cal model would have to be maintained. An argument however against this
could be that faster rate of drops can be accounted for, if greater computa-
tional speed is available. I think this argument would place us at the same
disadvantage that classical planning does by assuming a static world. The
aim in part, in building an intelligent system is to achieve the best possible

28

results, given a real world and limitations in the present computational and -
sensory powers. Clearly, Yamauchi in this paper develops an architecture
that reacts to the environment. However, the functions of the perception in-
puts which he terms the stimulus space, to determine the reactive response
of the juggler have been possible because the environment has been slow
enough to observe the motion of the balloon.

o Grasping

In [Grupen,1991a),(Grupen,1991b] , however, the environment is static.
The uncertainty arises due to the lack of a predefined model for the object
to be grasped. At no stage is the object completely observable. This paper
is discussed below:

Grupen in [Grupen,1991a)] , [Grupen,1991b] , [Grupen,1991c] , describes
a reactive grasp formation strategy for an unknown object. He describes an
incremental technique for grasp formation from an incomplete world model.
He describes a multiple resolution model of the environment, a model for
the grasping task and a model for an agent that represents the manipulator,
which complies with the changing contact geometries that occur during task
execution.

The Jacobian is a linear transform that describes the cartesian tip ve-
locities resulting from joint velocities. If a unit sphere from R* (describing
the joint space) into R3, the result is a manipulability-ellipsoid. The manip-
ulability index is a scalar metric describing the conditioning of the manip-
ulator. This is proportional to the volume of the manipulability ellipsoid.
Since the volume of the ellipsoid increases as it becomes spherical, there is
correlation between high manipulability and isotropic conditioning. Grupen
then presents a weighting coefficient which penalizes extreme joint configu-
rations. The product of this coefficient over all joint configurations in the
manipulator’s work space is a scalar field. The product of this field with
the manipulability index is a weighted manipulability isogram. Hence given
a contact geometry we know the configuration for which the manipulability
metric is maximized. The Manipulability index for the hand is empirically
given by the following formula.

I1; A;
> M;

This is analogous to the parallel resistance equation. Thus the manipulabil-
ity of the hand tends to associate itself with the smallest finger index 1/, .

Mhpand =

29

Given contact geometries and the present hand index candidate hand frame
movements can be enumerated and the grasp which improves the hand index
the most is as the successor state. Let us call this the conditioning behavior,
that models the manipulator’s response to a task.

Now, the task is specified relative to the object coordinate frame as a

set of wrenches
r={(at:ar) -4}

where, {; € R™ (m is the dimensionality of the wrench space) is the task ba-
sis and a is the associated magnitude in the positive and negative directions.
Grupen initially constructs a geometric model of the object represented by
a set of planar facets. The geometric model is transformed in to a force
domain model. This model is the model for interaction that determines the
effector commands. The geometric object is maintained to ensure consistent
interpretation of the sensor data. Given a local planar surface and an asso-
ciated contact model, the forces transmitted by the surface are enumerated
at the contact locations, using unit normal and frictional forces. i.e.

F= {fl fe R"}
These forces map onto a set of object frame wrenches
W = {w|w C R™}

W C R™ through a linear mapping G . Assuming no contact torques are
applied to the object’s surface we have

G:R"— R™
defined as ,
6 (F) = (% (7 x %))
i.e.
G(F)=W

7 is the position vector relative to the task frame. An error is then computed
with respect to the task specification 7 . This requires that W be projected

along the task basis i, i.e. _
= {(a07) 1)

30

The error then is a difference in magnitude along each task basis vector i.e.

o= {(eter) 4}

The grasp solution consists of simultaneously reducing the components of
E by modifying the set of contact sites. The trajectory selected is one that
minimizes the quadratic metric defined for each contact as

Zi (%%7e:>
Z.-(%‘,%%%)

where dg‘g expresses how the contact wrench changes in the neighborhood of
the current contact position as a function of the surface coordinate @ . The
local force domain surface elements are smoothed and interpolated to obtain
a global force domain hypothesis, by projecting the wrench surface fragments
onto a finite series of fourier basis functions. The series approximation is
given by:

A'U.opg =

A(0)

g(uv)=55"

m
+ Z [A (n) x cos (nu) + B (n) x sin(nu)]

n=1
Initially a global model that behaves like a low pass filter is considered by
using the first harmonic in the fourier series model. A gradient descent is
performed to minimize the above mentioned error term. The first harmonic
model is convex and there are no local minima. For objects that are ellip-
soidal this is sufficient. This is shown in Figure 12 . However this may not
be sufficient. See Figure 13. Therefore, local information is employed to
perform reflexive adjustment to optimize the grasp locally. In Figure 13
for instance the contact location of the right location is held fixed and the
left contact location is migrated to construct a null grasp. The conditioning
behavior is responsible to reposture the hand to suit this contact migration.
Grupen’s technique can be summed up in the following manner:

1. Describe the task
2. Construct a force domain model.

3. Use a low pass model of the object in the force domain. Compute
error w.r.t. task and minimize this error

4. The hand should comply with the finger migrations.

- 31

LY

5. If the goal has not been reached, increase the resolution of the force
model. Repeat.

In this paper Grupen has implemented a reactive control layer. The control
layer is specified by a finite state automaton shown in Figure 14 and has
been described above. There are several observations to be made from these
papers:

o The reactive process

Grupen’s architecture demonstrates an important technique to achieve
reactive control. This process is described below:

1. Specify a goal. In Grupen’s approach, it is the state which minimizes
the error with respect to the task. In Arkin’s paper this is represented
by specifying the stay on path behavior.

2. Present the apriori information as the world model. This is global
information. In grasping for example, the first harmonic of the force
model serves this purpose. In Arkin’s paper this is achieved by instan-
tiating behaviors from the STM.

3. Employ local perception to account for unmodeled processes. In Gru-
pen’s approach, this is observed as the local optimization of the con-
tact. In Arkin’s paper this is used to instantiate behaviors based on
the pilots local perception. Note that the information contained in the
STM is the world in so far as the reactive module in Arkin’s paper is
concerned. Also note that the model of interaction uses some attribute
of processes in the perceived or represented local model. In Arkin’s
approach these are potential fields. In grasping, these are object frame
wrenches projected along the task basis.

o Working approaches to reactive control employ more than local infor-
mation

Though reactive behavior is defined as actions based on current perceptions
only, from this study we observe that working models employ more than
local information. I think there is a reason for this:

In Grupen’s approach a purely reactive approach would have terminated
by placing the contacts at one of the local minima. In Arkin’s approach this

32

problem still remains in the presence of cluttered obstacles in the composite
field. By employing a low pass global model Grupen uses the apriori infor-
mation to construct trajectories free of local minima. In Arkin’s approach
this is specified by the vertex graphs. I therefore submit that reactive ap-
proaches can fail, in the presence of stable local minima that arise due to
the complexity(non-convexity) in the environment. This entails the use of
a global strategy and apriori information serves to reduce this uncertainty
by reducing the complexity of the world. This is done by planning safe
trajectories from the knowledge about the world.

e Reactive approaches may fail

Reactive behavior is akin to valley descent and is an opportunistic pro-
cess. Actions based on current perceptions determine a transition to the
next best state. This is a potential problem if local minima are present in
the state space. Hence, reactive approaches may require global information
in the form of plans or safe trajectories.

o Composition via parallel aclivation

It can be said that Grupen’s architecture uses primitive behaviors. The
reduction in error term results in a contact migration. This is one behav-
ior, Secondly, the hand is adjusted to comply with the contact migration.
This is a second primitive behavior which we have termed as the condition-
ing behavior. No composition is necessary since both these behaviors are
necessary to achieve a particular task. '

o Reactive approaches respond to temporal constraints

Grupen’s technique can also respond to temporal constraints. By re-
stricting the model refinement process within the temporal constraints im-
posed, a solution is obtained albeit at a lower level of competence.

Another approach to modeling the world is described in [Y. Gat,1991],
where a generalized Vornoi diagram, using a 'medial axis transform gives
a skeleton representation of the free space. This approach is based on the
assumption that exteroceptive description of the trajectory is sufficient and
that there is no necessity to describe the trajectory in proprioceptive terms,
to produce an executable trajectory. The skeleton model is used to construct
a graph in which the vertices are junctions and the edges represents paths.
The graph thus encapsulates the free space. A search is performed on the
graph to generate an optimal path. However, I do not think this paper is

33

of direct consequence to reactivity as the title of this paper states. By as-
suming sufficiency of exteroceptive description the authors implicitly ignore
proprioceptive requirements which is fundamental to building a reactive sys-
tem. They do describe path following using their model of the world but
based on the assumptions that there are no limitations either in the sensory
quantity or quality. A third aspect is that they do not consider presence of
dynamic obstacles. I believe this could mean recomputation of the graph
which is expensive. They have devised a simple and elegant procedure but
Gat’s model is applicable for very simple domains where reactive behavior is
not required. I have used this paper to bring out certain implicit properties
of the the term reactivity, by citing what in general need not be reactivity .

e Potential fields as a model for interaction

The technique that Grupen suggested by using models, and task specifi-
cations that are consistent with actuator commands is termed as analogic
planning [Bizzi,1991]. Khatib’s work on artificial potential fields is an exam-
ple of such planning methods. Khatib’s technique has been used as a real
time control method for manipulators. This paper is significant from the
perspective of reactivity because, of it’s utility as a model for interaction in
domains of study such as robotics. Khatib’s method represents objects by
their attributes, i.e. analogicaly. The attribute is a potential field ascribed
to obstacles or goals and since potential fields are linearly superposable,
composite behavior is determined by by the linearly superposed potential
field. The problem is the presence of local minima that may arise. In this
sense a reactive approach may fail and global techniques may have to be em-
ployed. These issues are studied in Khatib’s paper described below. Khatib,
[Khatib,1985] develops a method for real time obstacle avoidance for manip-
ulators and variations of this method have been used in a number of papers.
Some of them that are also important from the perspective of reactivity have
been included in this study such as [Payton,1990, Arkin,1988, Arkin,1987)
. Khatib’s paper is important to this study because it defines a method
for modeling the world and this can be developed, as shown in this paper,
into a reactive control strategy.Since, this is a method to model the world,
it can be applied as an algorithm that construct trajectories to the goal or
one that avoids obstacles or both. A brief description of the paper is given
below:
The end-effector equation can be expressed as

d (6L 8L
E(E)'H“F

34

, Where L (z,%) is the Lagrangian and
L(z,2)=T(z,2) - U(z)

where,

1

2

and A (z) is the symmetric kinetic energy matrix. U(x) is the potential en-

ergy. This is defined in a space that is a set x of mg independent parameters
describing the end-effector position and orientation in a frame Rq . Further,

T(z,2) = =zTA(z)z

r=JT.F

, where F is the command vector (in cartesian space) and 7 the joint torques.
J is the Jacobian matrix. Khatib describes the equivalent form of the de-
coupled' end-effector equation i.e.

F=A()F +p(z,2) +p(c)

where, i (z, &) represents the centrifugal and coriolis forces and p(x) gravity.
F* is the command vector.
The artificial potential field approach is illustrated as follows:-

The manipulator moves in a field of forces. The goal is an at-
tractive pole and obstacles are sites of repulsive forces

Now, consider a goal z4 and an obstacle O. Then,
Uare (z) = Uzy () + Uo (2)

and then U(x) as used in the Lagrangian is given by
U(z) = Uare (2) + Uy ()

where, U, (z) is the potential due to gravity. The command vector F~
therefore is given by
Fr=F; + Fp

where,
F;d = —vUzd (z)

and
FE) = —VUCI (:L')

35

Now,)
Ues(2) = 5K (& - 24’

and K is the position gain. The artificial field is defined as:

2 3
V=1 1(3-%) ir<po
0 if p> po

Here, 7 is a constant gain, pp is the limit distance of influence of the potential
field and p is the shortest distance to the obstacle O . A point subjected to
this potential (called psp) experiences a force

1 1 1 § .
{ n(l-%) %% ifr<ro
0

F-
° if p> po

pep =

and

5_p_[6p5p §p1T

§X |6z’ 6y’ 6z

The joint torques can be computed for the psp using,
T -
T(0,pep) = Jpsph (=) F (O.psp)

The objects are modeled using primitives which are convex, such as the
point, line, plane, cone and cylinder. Thus for an object, the force acting
on it is the sum of the forces acting on all the primitives that are used to
compose the object. This is given by

Fopw = Z Fpppep
3
,where p, is a primitive. for several obstacles we sum the forces for all the

obstacles. This is,
Fow = Z Fo,pep
P

where O) is an obstacle. There are in general several points to be considered
along a link. The joint forces for the obstacles over all these points is given
by :
Tobstacles = Z Jg;pA (z) F;:p,-
i

36

Further, joint limits can be avoided using the same concept. Let g; min and
gi,maz be the minimal and maximal bounds of a joint ¢; . Then

1 1 1 1 i o .
Taimin P'z’m‘_nﬂ (P-‘.min - Po.-'.-m'n) P nim lf Pimin < Po,imin

0 if Pimin > £0,i,min
Tgimae iS defined similarly. This method fits potential barriers at the hy-
perplanes ¢; = g; min and ¢; = gi maz - Po,i,min and Poi,ma= are the distance
limits of the potential field and po i maz = ¢i — ¢i;ma= a0d Po,imin = % — Gi,min

The joint torque then is given by

T = Tmotion + Tobstacles + Tjointlimit

Tmotion iS given by the applying the Jacobian and the energy matrix to the
F7, i.e. matrix product. The coriolis ,centrifugal and gravitational forces
also need to be considered for the joints in computing 7 . This completes
the description of the paper. The following observations can be made from

Khatib’s paper:

1. Given the shortest distance to an obstacle and from the knowledge of
the obstacles range of influence, force and hence the joint velocities
can be computed in real time.

2. Given a potential surface a path can be computed by computing the
the net joint force (or torque) continuously along the field.

3. This method may fail when the obstacle space is cluttered. Also, local
minima can exist in the potential field when a number of obstacles are
present. Therefore, the manipulator may not reach the goal.

4. Khatib demonstrates that using a potential field approach an agent
can reactively find a path to the goal. This is because the gradients
are assumed to direct the manipulator to the goal. However due to the
problems mentioned in the last point a result cannot be guaranteed
using a purely reactive approach. In order to reach the goal global
methods must be applied to find an alternate path. This suggests
that reactive approaches can in general fail due to local minima being
present in the state space. Thus, there is a requirement for a plan,
that is based on a global observation of the world. This point was
mentioned in out discussion on Brook’s and Payton’s work. At the
same time the pitfalls of classical planning based on a world model

37

(which cannot be complete for a real world) are known. [Payton,1990]
[Kaebling,89] explain this concept in detail and propose a plan guided
reaction as a paradigm for intelligent systems.

e Generating robust models of the world incrementally

The primary problem with using potential fields to model the world is
that the potential field may contain local minima.
Connolly, [Connolly,1992] proposes a technique based on harmonic functions
to implement potential field path planning. These functions produce smooth
vector fields which are free of local minima. This paper describes the imple-
mentation of velocity based control using harmonic functions. This paper
shows that paths constructed from models of the world based on harmonic
functions will always lead to the goal, since they lack spurious local minima.
However this still requires that the environment be modeled completely. If
the manipulator encounters an unknown object (not modeled) in this envi-
ronment then this algorithm may potentially fail, as will be clear from the
study of this paper.

Harmonic functions are solutions to the Laplace’s equation

n_ c2
> 52 =
i=1 O i
The properties of a harmonic functions are:
e Lack of spurious local minima
o Linearly superposable
¢ Continuity and smoothness of C-space trajectories
¢ Robustness with respect to geometrical uncertainties

e Completeness up to discretization error

The first property ensures that the gradient vectors or streamlines will al-
ways terminate at the goal. Linear superposition is suggestive of the nature
of composition that may be applied, given a set of harmonic functions. The
third property ensures that gradients can be computed. This is true for two
reasons : If the world model contains spurious minima, the computation
of a harmonic function smoothes them out, secondly in the face of unmod-
eled processes introduced into the geometrical m~del (an unknown ob ject)

38

harmonic functions provide a platform for strategies that could still take
the manipulator to the goal. This paper concentrates on such a strategy
called equipotential following. Completeness up to discretization error is an
issue of sampling limitation. This means that in the discrete representation
of the C-space (as a grid) objects smaller than the sample size cannot be
identified, unless the object happens to lie on one of the vertices of the grid.
However all objects that are larger than the sample size can be identified
and accordingly relaxation is not performed over these objects (harmonic
functions are compute via relaxation over the free space in the grid) and
hence is complete.

Harmonic functions are computed using relaxation over the free space
in a grid. After convergence, the value of the function (representing the
C-space) in the free space portion is an average of the values at the grid
neighbor. The only extrema occur at the obstacles and the goal point(s).
This process is applied when the boundary potential of the surface are fixed
ie.,

¢(z|bwndnf') =¢

The harmonic function used to compute a path is a potential function
denoted by ¢ . Streamlines are trajectories obtained by following the gradi-
ent of this function, denoted by i . Equipotential surfaces are orthogonal
to the these streamlines every where. Since there are no local minima, these
streamlines always terminate at the goal (the global minima) point. Unmod-
eled obstacles, which are a source of uncertainty, obstruct the streamlines,
there by cutting of the path to the goal. The solution according to this pa-
per is to use the equipotential surface to transfer to an alternate streamline
and continue towards the goal. Let vy, = c¢V¢ be the velocity vector along
the stream line. Further, the obstacle exerts a contact force f, which can
be observed from the normal component f, and a frictional component f;
generated at the contact site. Since we know that the equipotential surface
is orthogonal to the streamline, the dot product of the new velocity vector
along the equipotential surface to a new streamline vy and the gradient vec-
tor of the potential function is zero. i.e. V¢@-vg = 0. This is not sufficient to
compute the new velocity command. Connolly, uses the following equation
to determine the new velocity command.

v = c(vy 7/ (f 7 vy))

where ¢ is the speed limiting factor. This produces a velocity such that
Uphi * Upsi = 0 satisfying the above constraint. The path indicated by this

39

velocity is followed, till a new streamline is found.

Connolly’s paper provides a simple and elegant method to implement
path planning using velocity control. The use of harmonic functions rids the
world model of local minima and the manipulator can reactively progress
to the goal. However this method can fail. It fails when the above cross
product returns a zero magnitude, which occurs when fis tangent to the
streamline currently being followed (i.e. the surface at the contact site is
almost normal to the streamline, assuming a very small frictional compo-
nent). Since the velocity commands are computed in real-time, Connolly’s
method provides a way to reactively control the manipulator’s motion. This
has been possible because of a robust world model and real-time algorithm,
to cope with uncertainties introduced by unmodeled obstacles.

We have observed composition of behaviors via subsumption, priority
based arbitration, parallel activation(no composition) , and linear super-
position of primitive behaviors. In the next paper that is described here
interaction models are treated as vector fields instead of potential fields.
It is true that a potential field has a vectorial equivalent, but constructing
a potential field from a generalized vector field is may result in complex
representations. Consider for example a simple circulating pattern of vec-
tor fields. It’s equivalent potential function would be complex as Bizzi in
[Bizzi,1991], argues in his paper presented below. Further, in this paper the
repertoire of behaviors is considered to be limited. This repertoire is used
to approximate a planned field, which may be constructed from the local
perception to generate the actuator commands. Bizzi’s method suggests
composition based on summation of vector fields . This paper is described
below.

Bizzi et al in [Bizzi,1991] consider the issue of transforming motor plans
into actions as a field-approximation problem. Their approach is based on
the use of force fields as a representation of the manipulator’s interaction
with the environment. The manipulator is considered to be operated by a set
of impedance controllers that operate in parallel. Each controller modulates
an output-force field according to a predefined control law. Given a plan
that is specified as a vector field, the problem is to approximate this plan by
fields generated by the controllers. The fields generated by the controllers
are elementary behaviors termed basis fields. Note that the problem is one of
approximation because, the manipulator’s repertoire of basis fields is limited
by the structure of the controllers. Therefore at best an approximation can
be achieved. This paper therefore demonstrates a technique to compose
primitive behaviors (which are controllers that operate the manipulator) to

40

approximate a plan. Note that the plan is specified in the same domain
as that of the controller responsible for motor actions, i.e. as force fields.
This was observed in [Grupen,1991b, Khatib,1985, Connolly,1992]. We now
proceed with a brief description of the method suggested in this paper: A
manipulator is a mechanical system. Bizzi restricts his discussion to time
invariant systems and the output of a time invariant system is expressed as

y=g(z,u)

where y is the output, x the state and u the input. The output may be
an effort variable. In the case of a manipulator the output effort is a vec-
tor variable. If the input is held at a constant value the output equation
describes the behavior of a mechanical impedance:

¥ = go(z) = g(z,uo)

This impedance can be designed to be passive so that the manipulator’s
behavior is equivalent to that of a passive physical system. Bizzi in this A
paper deals with the static component of the impedance which describes
the relation between effort and position at steady state. As stated above
the output effort of a manipulator is a vector variable. Therefore, the static
impedance established by the value of the input (a vector in the manipulator
workspace) is a field whose domain is the work space. If U is the set of all
possible input values, the repertoire is a set of output fields generated by all
possible input values.

X ={y=g(z,u)lue U}

Now, the planner specifies a field that represents the desired impedance
of the manipulator at a set of work space locations. Call this P(x). The
objective is to find a field F (z) € X which minimizes the norm

IP (=) - F (=) I*

defined over the manipulator’s work space. This derivation is studied in
greater detail below:

Let z = (z1,...,2n) represent a generic point in the manipulator’s work
space. The planned filed is expressed as a finite set of D force vectors
(as opposed to a continuous field to make the problem easier) which are
represented as { P’} (i = 1,..., D) associated with D work space locations.
The character of the vector field features are shown in Let the manipulator be

41

operated by K impedance controllers each operating a joint stiffness function
g(q), where q(x) the inverse kinematic function The force modulated can be
determined by Q; = u;g;(g) Now let

$i(z) = JTg:i(q(z))

Then the end-effector torque field is given by F; = u;¢; (z) where u; is a
control input. The end-effector repertoire is the linear span

K
X = {zui(zm (z)}

i=1

The task now is to minimize
D . .
SIIF () - P2
=1

If P is rewritten as P such that

-

P = (Pll,...,PlD,le,-”s-Ple)

then P is expressed in the form

Py

du=P

Now if ND= K and ¢ is not ill conditioned then a solution for u exists,
However since the repertoire is limited in general a least square solution for
u is obtained by alternate methods. % determines the values of the basis
fields at D locations.

Bizzi has shown that the additive property of vector fields can be used to
determine a net field that approximates a plan by the appropriate choice of
control inputs. Contrast this with the potential field method based on scalar
fields as proposed by [Khatib,1985] There it was assumed that the gradients
along the planned field could be implemented directly by the manipulator.
Given that the basic fields are irrotational then each basis filed is a gradient
of a potential function. The repertoire is the linear sum of these potential
functions. The advantage in using a vector field approximation approach is
that they are more general. This is because, a simple set of rotating fields
would require a complex potential filed surface with multiple minima and
maxima. Then approximation by the irrotational basis fields may result in
a large error.

Let us briefly sum up the study to this point.

42

e A reactive architecture may be viewed as a composition of reactive
behaviors. Each behavior perceives the local world and responds to
this perception.

¢ Representation of the local world and task in a domain consistent with
the space of actuator commands, facilitates the construction of a model
for interaction with the world.

e As cited in Khatib, reactive approaches may fail in the presence of
local minima in the state space. In such a situation a global search
may have to be employed to find a solution. This compromises the
requirement for real time performance.

e In the papers studied in this section, behaviors were composed by
executing them in parallel (as in [Yamauchi, 1991}, [Grupen,1991a]),i.e
these behaviors were mutually exclusive and are collectively inclusive,
based on a linear superposition of primitive behaviors. (as suggested
by Arkin, Khatib), and superposition of vector fields, that approximate
a plan [Bizzi,1991).

43

=m I ey I

=

:@’

|

|

Figure 12: First harmonic models are sufficient for ellipsoidal objects

global local
strategy _ refinement

Figure 13: First harmonic models may not be sufficient

44

Manipulator
PKA’s

Manipulator
Manipulability

Figure 14: Reactive Architecture as a Finite State Machine

45

2.3 Reactivity and Planning

We have seen that planning is sometimes impractical for it is not timely.
Further planning depends on a complete world model, that cannot be con-
structed due to the incompleteness of perception. Reactive approaches aim
to offer a solution by generating timely actions. They also make plans robust
by accounting for unmodeled processes. However reactive approaches may
fail to reach the goal state based purely on current perceptions due to the
presence of global minima. This is because, reactive approaches are short
sighted since they take opportunistic advantage of the current situation
to chose the next step. This is akin to the disadvantages of hill climbing.
Therefore, these approaches require more than local information to gener-
ate successful solutions. This suggests an effective merger between reactive
approaches and deliberative approaches may be required. These issues are
studied in this section, in [E. Gat,1991, Payton,1990, Kaebling,89].

Gat’s paper [E. Gat,1991] extends the arguments presented in {Chrisman,1991]
by showing that the internal state is necessary for coping with incomplete
perception. He discusses the problem associated-with maintaining internal
state and suggests ways to overcome them. He also demonstrates through
a control architecture, that neither a purely reactive approach nor planning
in the on-line sense, where planning takes place during task execution, are
solutions to design problems associated with intelligent systems. Instead,
the solution may be to maintain internal state, construct plans at a high
level of abstraction that guide the actions of an agent, not control them.
The control of actuators is reactive, which is a moment by moment control
of the robot’s actuators.

Online planning according to Gat is problematic for three reasons: -

1. Planning is time consuming.

2. Planning requires a world model at a level of completeness and fidelity
that sensor technology cannot provide at the moment.

3. The world state may change while the robot is planning.

These problems manifest themselves only when the information maintained
in the internal state does not match the current world state. If a world model
is feasible and correct always, then on-line planning is perfectly feasible.
Therefore, any time consuming computation would encounter problems if
the world state changes while the computation is going on.

46

Gat points out that reactive approaches try to eliminate time consuming
computations and minimize the amount of stored information about the
world. However, viewed this way, avoiding internal state is tantamount to
assuming that very few things about the world can be usefully predicted.
This is not the case either. Gat’s solution to this problem is to use internal
state and represent plans at a high level of abstraction. Abstraction is an
inverse measure of precision of description. Abstraction is useful in making
predictions with a greater degree of success because, they are unaffected by
small variations in state. However plans may go wrong even when stored at
a high level of abstraction.

The ATLANTIS architecture developed by Gat et al., has three compo-
nents: the controller, the sequencer and the deliberator. The controller is a
purely reactive control system that is responsible for a moment by moment
control of the robot. The sequencer is responsible for selecting which of the
several transfer functions the controller is to compute, as well as parameter-
izing the appropriately chosen transfer function. The sequencer is responsi-
ble for taking corrective actions in the event of failures. The deliberator is
responsible for maintaining the world models and constructing plans to be
used by the sequencer. The design methodology adopted is bottom-up. First
a set of transfer functions, which produce a set of useful primitive behaviors
is constructed. Deliberative computations are performed when information
is required by the sequencer, that requires time consuming computations.

Gat’s paper in essence argues the following;

1. Internal state is required to perform on-line planning

2. Planning must be done at an abstract level to ensure a higher level of
predictability

3. Since the robot must deal with a real world, Plans must act as a guide
to the robot’s actions.

4. Actions are controlled by a sequence of behaviors.
5. A mechanism must be provided to detect and recover failures.

Gat in [E. Gat,1991] has suggested that the shortcomings of classical
planning do not mandate the design of a purely reactive system. Instead
an alternative is to design plans at a high level of abstraction, that guide
the reactive unit to perform actions. Gat makes a lot of intuitively con-
vincing arguments but does not provide justifications to his statements. For

47

example he does not explain how failures are handled. The explanation of
ATLANTIS is very brief. He does not explain how behaviors can be com-
posed. He also does not explain, how planning at a high level of abstraction
may guide the reactive component. I make this statement because, the
greater the degree of abstraction the harder would be the communication
problems between the planning and reactive sub-systems. However Gat’s
paper serves an important guide at a systems level. In this paper and in
every paper we have observed that pure reactivity is insufficient. We have
also argued that planning is impractical at times. Gat’s paper actually sums
up these observations. Most of the architectures studied at the beginning
in section 2.1 also use a similar hierarchy to the ATLANTIS architecture.
Since these observations also surface in the papers discussed elsewhere I be-
lieve these arguments to be true and that indeed the solution to building
an intelligent system may be in developing a hierarchy of reflexive, reactive
and deliberative behaviors , with increasing immediacy, reduced reasoning
and abstraction as the character of this architecture when progressing down
the hierarchy.

In the previous paper studied Gat argues about maintaining plans at
a high level of abstraction and to use plans to guide behavior. In this
paper Payton et al., convincingly argue that while plans must guide and not
constrain behavior, abstraction of plans results in loss of information along
the pathways in the systems hierarchy. They instead suggest that plans
must not abstract information so as to hide them but make them accessible,
so that they can be used to allow for opportunistic action, which contributes
to the intelligence of the system.

The authors site two cases where such abstraction leads to disadvantages.
The first is at the behavior level. In a previous paper discussed in this letter
in section 2.1 [Payton,1986] Payton argued that the arbitration of behavior
is based on a priority. This fusion of behavior commands termed command
fusion supplants sensor fusion and avoids the delays caused by sensor fu-
sion. However, by arbitrating, a great deal of information that is contained
within each individual decision process, is lost. The process of selecting an
appropriate command in many cases requires that several alternatives be
weighed. When multiple behaviors are evaluating their alternatives on the
basis of different criteria it may be impossible tu arrive at a compromise.
This inability as stated above is because a great deal of information con-
tained within each behavior is unavailable. Consider the following example
from this paper. A robot is in motion and is currently following a road.
There is an obstacle on this road that partially obstructs the path. The

48

robot is endowed with a follow road behavior and avoid obstacle behavior.
Both these behaviors are capable of giving turn commands, as part of their
decision making process. In this case it is required that the vehicle move
left in order to avoid the obstacle and stay on the path. However, the ar-
bitration mechanism completely subsumes the road following behavior and
the robot turns right veering of the road. The problem of information loss

oy GOAL 2

ROCK QUTCROP ‘\\

Figure 15: The terrain and goals.

occurs from modularity as much as it occurs from arbitration. Modularity
typically hides the internal state within behaviors. Hencé the authors argue
that information is lost when it is hidden or contained in commands which
are subsumed.

The second reason for abstraction to be disadvantageous is because it
blocks information flow between the different levels in the control hierarchy.
More specifically it prevents the system from taking opportunistic advan-
tages from unexpected situations, when such situations are not accounted
for in the abstract plan. Consider an example from the paper. The robot
must move from the current position to goal 3 . This is specified in Figure
15 . The abstract plan is depicted by a set of intermediate goals in this case
goal 2. The robot must avoid the RF shadow in order to maintain commu-
nication with the host. From goal 1 the robot was unable to turn towards
goal 2 because of local obstacles. This was an error in the geometric model

49

but the abstract plan did not highlight a possible problem. Fortunately, the
RF contact was not lost, when the robot moved along the indicated path.
However, the agent persisted in moving to goal 2 from this point on and soon
RF contact was lost. It is clear that the agent should have progressed to
goal 3 because that is the objective. The abstract plan failed to give an in-
dication that goal 3 should have been the appropriate course of action. The
system could not therefore take opportunistic advantage of this unexpected
situation.

Both these problems arose due to the information lost due to abstraction.
The authors propose solutions to each of these problems. First they make
the behaviors as fine-grained as possible to minimize their internal state.
Secondly the flow of meaningful information can be maintained across levels
if plans serve as a resource for advice within a single system, rather than
as constraints imposed by one level on another. Each of these is discussed
below.

In the case of behaviors the authors argue that instead of modules with
internal states and instance variables, behaviors are comprised of atomic
functional elements that have no inaccessible internal state. These simple
decision making units and their interconnections together define a behav-
ior. Each unit is a specific concept which the designer establishes through
carefully chosen connections and the functions for each unit are designated
based on the desired output characteristics for that unit. Arbitration then is
distributed and unlike the arbitration scheme is expressed as a fine-grained
connectionist architecture. Consider the road following example again. See
figure 16. The turn for obstacle, is constructed as an interconnection of five
decision processes .

Each unit outputs a value that corresponds to the desirability of that
unit. The desirability of each turn command is now determined by fusing
the outputs of the two behaviors. The turn rate is now determined by
applying a function such as addition of the inputs. In this case a hard left
is chosen in a winner-take-all network. This organization is also flexible
because new units can be added without affecting the existing network.
Thus, the connectionist model makes it possible to simultaneously satisfy
the constraints of multiple independent behaviors. Pavton et al also argue
that in this manner a hierarchy of behaviors can be developed in the style of
Brooks’ architecture, but each new behavior is allowed to bias the decision
instead of subsuming existing behaviors.

Payton et al suggest that plans must not obstruct or constrain the local
decision making process but guide them. In order to do so, all relevant

50

knowledge must be organized and then without any further abstraction must
be presented in full for real time decision making. The plan must therefore
be viewed as a resource and not a program for action. As a resource plans
must serve as sources of advice to agents which are already competent in
dealing with the local problems. In this sense they can be used optionally
to enhance the system

performance. The original state space in which the plans are formed is
retained enabling the plan to provide advice whenever the current state of
the system can be identified within that state-space. Such plans are called
internalized plans which embody the search and look ahead of traditional
planning without providing an abstracted account for an explicit course of
action. Payton suggests that in the robot navigation domain one way these -
plans can be constructed is by representing them as is a gradient description.
This is shown in figure 17.

In this case there is no explicit route plan yet the vectors determine
the the best course of action that may be taken. In the RF example, the
field biases the turn decision against reaching the bottom of the out crop.
However if local circumstances force the robot to move towards the bottom of
the outcrop it will do so. At first the gradient field data may be unavailable
to guide the robot’s motion once it reaches the RF shadow area. Local
sensing would cause the vehicle to possibly move on and pick up the gradient
field again. The gradient field is an ideal example for internalized plans
because the state space in which the original problem was formulated is the
same state-space in which the plan is represented. Another method is based
on the use of potential fields. These methods may seem similar but the
difference lies in the construction methodology of these two representations.
As we know a potential field model is a superposition of charges with the
obstacles being repulsive sites and goals being attractive sites. The vector
at any point is computed by summing up the charges. The resultant field
however may contain local minima. (See discussion on Khatib’s paper). In
contrast the gradient field is constructed through a time consuming graph
search process. This field does not contain local minima and will always
yield optimal paths to the goal. Secondly potential fields are used to control
the robot directly. Gradient fields are not. However, internalized plans
provide an efficiency of interpretation as at the cost of efficiency of space.

Payton’s approach is significantly different from
the classical view adopted. He has argued and suggested the following:

1. Abstraction results in loss of information

51

2. Behavior composition through arbitration does not take into account
the decision making process of other behaviors

3. composition of behaviors is expressed as a network of functional units
in which each unit biases the final decision. Contrast this with sub-
sumption in which a higher layer of control arbitrates by subsuming
a lower layer. This as Payton points out results in loss of critical
information that is necessary to determine the right action.

4. Plans are resources that should guide action not constrain them

5. Reactive architectures may be represented as a set of behaviors which
are composed using a connectionist approach

Rosenschein and Kaebling [Kaebling,89)], in their paper argue that both
planned and reactive approaches have advantages and suggest a way of inte-
grating both of them. They argue that since planning is essentially atemporal
it would be advantageous to incorporate a planner into a reactive architec-
ture, whose response is time bound rather than embed a reactive controller
in a classical planning system. The authors argue that in building such
a system it is important to characterize the semantics of the inputs and
outputs of the planning system. These aspects are studied in this paper.

Rosenschein et al argue that classical AI views generation of behavior as
a two step procedure. That is planning and execution. Planning produces a
data structure; execution is a step-by-step interpretation of this data struc-
ture to produce overt behavior. Planning provides a declarative formalism,
that shifts the burden of reasoning to the machine. Hence in principle the
control system can handle behaviors that are too complex for the program-
mer to anticipate. The problem however is that, since traditional planning
may be considered as a guided search through a space of plans, then de-
pending on the combinatorics of the search which in turn depends on the
complexity of the domain, this process may not succeed in generating an
output in time.

In contrast reactive control offers the advantage of guaranteed response
and hence the ability to quickly react to a changing environment. The con-
trol system is modeled as reacting directly into the current situation. The
behavior of the agent is specified in such a system as situation action rules
that are evaluated at frequent intervals. Infact we may think of this as a
program executing a tight loop, which exhibits high conditionalty. Since
these conditions can be evaluated in parallel, reactive systems can be de-
scribed as circuits or networks, implementing a function, that maps a stream

52

of information from the input to a stream of output commands to the ef-
fectors. The problem is to design this function so that computation may be
performed efficiently and repeatedly.

Rosenschein et al therefore argue that since both these approaches are
advantageous and neither approach dominates the other they must be inte-
grated. One method as they argue is to embed a reactive architecture into
the classical planner-base architecture. Note that this can also be referred
to as execution monitoring. This approach takes the view of downloading
a set of specifications and constraints that must be implemented through a
composition of primitive behaviors. However it is not clear how the time
required for planning can be accounted for. Therefore they argue that it
may be advantageous to embed a planner in a reactive control system. The
authors then discuss as to how the semantics of the inputs and outputs of
the planner may be implemented. They propose that the the machine be
decomposed into three subsidiary variables init, goal, plan and four ma-
chines Ejni¢ Egoq Planner and Ezecution . E;ni maps the input to a set of
initial conditions. Ej.qt maps the input to a goal , Planner maps the goal
and initial conditions to a plan and Ezecution maps the plan to an output.
What makes this different is that the Planner and Ezecution units respond
to the input information concurrently. It may be possible that the Planner
may not have an output, but the Ezecution unit still responds to the input
information. The Planner continuously generates a plan depending on the
observation of the world. The value of a variable provides information about
the external reality. For example consider the use of a data structure to de-
scribe facts about the world. This data structure would be of little use were
it not that the value of the data structure gives conditions that currently
hold true in the environment. Thus they argue that if a’particular variable
has a value then this value contains information about the real world and
any functional unit must exploit this information. The init variable gives
information about the conditions that hold true in the world to the planner,
the value of the goal gives information as to what must hold true. Then
the Planner outputs a plan variable which is a plan that gives information
as to what conditions must be achieved. The Execution unit interprets this
information in addition to its current perception to determine a course of
action so that the plan may be satisfied.

The concept that comes out in this paper is interesting. However, I do
not think functionally embedding a reactive unit in a planner is different
from this scheme. Rosenschein et al. argue that by embedding a planner in
a reactive unit, real time performance can be generated. This is true but

53

not necessary. For example [Arkin,1988], [Brooks 1986}, [Payton, 1986] have
also argued for real time behavior by either constructing behavior hierarchies
or by embedding a reactive unit in a planner. The issue here is the time
required for plan generation. Behavior is abserved in [Arkin,1988], [Brooks
1986), [Payton 1986] even in the absence of a plan albeit the behavior may
not be ’competent’. Extending this argument to the authors proposal, we
observe that the output of the execution unit is incompetent till the time
that an appropriately instantiated plan variable is available. Therefore, this
architecture does not offer any specific advantage.

3 Observations

In this letter, I have presented several features of papers related to reactivity.
The objective has been to understand the definition, scope and limitations
of reactive systems. Intelligent behavior as Brooks points out may be the
manifestation of many simple processes interacting and coordinated by the
environment. This study has shown reactivity to be one such approach.
While reactivity does contribute to intelligent behavior, this approach has
certain short comings. This section tries to encapsulate all the papers stud-
ied in this letter under various heads presented below:

e On the character of the real world. The real world is an interaction of
multiple independent processes or agents. This interaction contributes
to the dynamics and complexity of the environment. State changes in
the world occur not only due to the effect of the action of the agent(s)
that we wish to control but due to the actions of other agents over
which we have no control. Therefore, we cannot predict the dynamics
of the real world. This is true of most papers studied. This character
and working definition of the real world is preserved in [Brooks, 1986},
[Payton,1986, Payton,1990},(Payton,1986, Payton,1990], [Arkin,1988,
Arkin,1987], [E. Gat,1991, Chrisman,1991, Kaebling,89).

o On Perception. The real world cannot be observed completely. This
incompleteness of perception arises not only due to the unpredicdabil-
ity of the real world but due to sensory limitations. These limitations
in part arise because of sensor noise, monetary costs of sensing, the
presence of physical obstructions, computational costs of sensing and -
mutually exclusive sensing. In all the domains that have been stud-
ied and presented in this letter perception is incomplete. This is true of

54 .

Y

[Brooks, 1986],[Arkin,1988, Arkin,1987], [Payton,1986],[Payton,1990],(Grupen,1991b],
[E. Gat,1991},[Kaebling,89] .

e On modeling the world. The real world cannot be completely mod-
eled because it cannot be completely observed. Since a complete
world model cannot be constructed the real world is said to be un-

~ certain. This is true of [Brooks, 1986], [Payton,1986), [Payton,1990)]
,[Arkin,1988], [Arkin,1987] ,[Grupen,1991a).

e On the contraindications of planning The value of horizontally decom-
posed planning based architectures is subject to the following issues:

1. Completeness of the world model. The success of a plan hinges on
the availability of a complete world model. As stated above this
is not possible for a real world. Therefore, uncertainties in the
world arise in the presence of unmodeled processes, which reduce
the predictability of plans. As Chrisman points out expectation
utilization is adversely sensitive to the predictability of the envi-
ronment [Chrisman,1991] . In this sense these architectures are
not robust [Brooks, 1986).

2. Combinatorics of planning. Planning may be considered as a
guided search through a space of plans. Then depending on the
combinatorics of the search which depends on the complexity of
the domain, this process may not succeed in generating an output
in time [Kaebling,89]. Classical planning also assumnes that the
state changes in the world occur only due to the actions of the
agent under control. This is not true of a real world. Therefore
planning is essentially an atemporal process [Kaebling,89]. Ar-
chitectures that are based on a horizontal decomposition scheme
as studied in Brooks’ paper [Brooks, 1986, are time consuming
also because of the associated sensor fusion problem. In these ar-
chitectures the sensors are used to generate a relatively complete
view of the world and Brooks argues this is a time consuming
process.

3. Flenbility and Robusiness of horizontally decomposed architec-
tures.On a systems level, horizontally decompnsed architectures
are not flexible either. {Brooks, 1986]

The advantage of planning is that it shifts the burden of reasoning to
the machine. Hence in principle the control svstem can handle behav-

55

iors that are far more complex than the programmer can anticipate,
[Kaebling,89].

On Behavior. Behavior may be defined as actions generated by a func-
tional unit called agent in response to perception of the environment.
Note that no behavior is observed till action is generated. Behaviors
are known to be of three types:

1. Reflexive behaviors: These behaviors are extremely responsive
to time. Action may involve no internal state and is a result
of a computation on the sensory inputs. These behaviors by
themselves cannot execute a task [Payton,1986, Yamauchi,1991]

2. Reactive behavior: These behaviors generate action in response
to a task from their current perceptions. They are responsive and
can independently pursue a goal.

3. Deliberative behavior: Action generated as a result of a global
representation of the world. In this sense the horizontal decom-
position of planning based architecture generates deliberative be-
havior.

On the definition of Reactivity. Reactivity is defined as actions that
are generated in response to the current perception of the world,
[Chrisman,1991]. Reactivity has also been defined as circuits or op-
erator networks, that map a stream of input information to a stream
of output commands to the effectors (Kaebling,89]. There are other
possible definitions. In a space where a point represents the world
state, reactivity can be a gradient descent process, where action causes
a transition to the next best successor state. This was more for-
mally represented in [Khatib,1985], where the manipulator command
was determined by the gradient of a function in a space of possible
states. Perception defines the current state. As is also pointed out
in [Grupen,1991a], the migration of a contact is an iterative process
where the next contact configuration is one that results in a smaller
state error than the current existing state.

On the advantages and disadvantages reactivity. Reactive behavior is
advantageous for the following reasons.

1. It is responsive to temporal constraints. It can be used to attain
real time performance [Brooks, 1986, Favton.1986]

56

, [Arkin,1988, Arkin,1987, Grupen,1991a, Yamauchi,1991, Khatib,1985i,

[Connolly,1992, E. Gat,1991, Kaebling,89, Payton,1990]

2. Since actions are determined from the current perception of the
environment, reactive approaches account for uncertainty in the
world in the presence of unmodeled processes. This has been the
motivation in [Brooks, 1986, Payton,1986, Arkin,1988, Arkin,1987,
Payton,1990]. Thus reactivity suppresses bounded noise in the
environment {Grupen,1991aj. For the same reason, reactivity in-
creases the robustness of plans, by accounting for unmodeled
processes [Payton,1986, Arkin,1988, Payton,1990, E. Gat,1991,
Kaebling,89. '

The disadvantage of reactivity is that it is an opportunistic approach.
Therefore, action generated is one that causes a transition to the next
best state. This results in a problem if the state space has local minima
in it. In this space, the goal state is the global minima. This is pointed
out in [Grupen,1991b], [Khatib,1985]. Connolly, [Connolly,1992] pro-
vides a solution to this problem, by using harmonic functions. These
functions rid the state space of local minima, therefore gradient de-
scent strategies would lead to the goal. Further, Connolly’s method
suggests that robust control results from incrementally refining the C-
space models and thus, the quality of reactive control can improve with
the addition of more than local information, fused over time. In gen-
eral information may be fused over time to refine a perceptual state,
but reactive forms of control realized as gradient descent still require
convexity in the control surface, which limits the optimality (of the
grasp configuration for example) in the resulting strategies. Refine-
ments to the perceptual state may result both from information fused
over time or from a priori global information (as in [Arkin,1988]).The
failure of reactive approaches as a result of local minima in the state
space may also require a more detailed search or a global search strat-
egy. In this sense reactive approaches would require more than local
information, to execute a task.

On Reactive architectures. Reactive architectures have been expressed
as

1. Finite state machines ([Grupen,1991al).

57

2. A behavior hierarchy ([Brooks, 1986])

3. Alateral decomposition of behaviors ([Payton,1986], [Payton,1990],
[Arkin,1988]).

Hierarchical and lateral decomposition techniques, result in robust and
flexible architectures. All the architectures respond to the real time
requirements. Behavior decomposition is based on the designer’s un-
derstanding of the domain. None of the papers studied describe a
method to construct these primitive behaviors.

Each behavior perceives some aspect of the local world and determines
the appropriate action. This solves the sensor fusion problem, because
each behavior is mapped by design to a small set of sensors. Further,
sensors could be shared [Brooks, 1986, Arkin,1988, Payton,1986].

Reactive architectures are context activated. This activation is in the
context of a task to be performed using the current local perception of
the environment. Second the working models also employ more than
local information to reduce the complexity of the world. This has been
discussed in grasping.

Each behavior determines action through a model for interaction.
These models have been expressed as potential fields, [Khatib,1985,
Connolly,1992, Arkin,1988] , as force domain models [Grupen,1991a].
Grupen states that by representing the task, the world in the do-
main of effector commands, interaction is facilitated between the per-
ception and action. This is the representation scheme adopted in
[(Grupen,1991b, Khatib,1985, Connolly,1992, Arkin,1988). The issue
then is to compose these behaviors to generate the output command
to the effector. We have seen that purely reactive approaches may get
stuck at local minima in the state space. Also, during the study we
noticed that all the papers studied need global information to resolve
this problem. Behavior composition has been expressed as a sequence
of behaviors constrained by a plan. [Payton,1986, Arkin,1988] In the
reactive architectures studied in [Grupen,1991b, Yamauchi,1991], com-
position was observed as aggregate behavior. In Grupen’s example
successful execution of the task required both contact migration and
hand compliance. In Yamauchi’s paper all three behaviors are essen-
tial. So we may view the architecture as a network of operators, each
operating on some aspect of the local world to determine actions that
generate successively better states . The choice of behaviors are made

58

using behavior composition techniques presented below.

e On behavior composition. The following types of behavior composition
techniques have been studied.

1. Subsumption: In a hierarchical decomposition architecture ar-
ranged as a hierarchy of behaviors, a behavior with a greater
degree of competence can subsume the role of a behavior with a
lower degree of competence [Brooks, 1986].

2. Priority based arbitration: A more general form of the above
approach, where each behavior places an integer priority and the
behavior with the highest priority is chosen [Payton,1986].

3. Distributed arbitration: In this case a connectionist architecture
is employed. Each decision process is allowed to bias the final
decision [Payton,1990].

4. Aggregate behavior: All the behaviors are essential to the task
completion and are in a sense mutually exclusive and collectively
inclusive [Grupen,1991a, Yamauchi,1991].

5. Linear superposition: Khatib has pointed out that if the world
is represented as a potential field, then the gradient vector at
any point determines the actuator command. This has been pos-
sible because of the property of superposition that holds true in
potential fields. Bizzi has pointed out that the manipulator reper-
toire may be limited in such a case at best the planned field may
be approximated. He uses a least squares approximation of the

: planned field to determine the control inputs for the basis fields.

e On combining planning and reactivity. The following techniques have
been suggested.

1. Represent plans at a high level of abstraction and use reactive
behavior to control the effectors,(E. Gat,1991] . Plans must guide
the reactive unit. '

2. Abstraction results in loss of information. Therefore, after the
information is completely assimilated, it must be present without
further abstraction, to guide behaviors, not constrain them,[Payton. 1990

3. It is better to integrate a planner in a reactive architecture than
the other way around, because planning is an atemporal process.
[Kaebling,89].

59

4 Conclusion

In this letter a small set of papers pertaining to reactivity has been studied.
These papers have encompassed issues such as, incompleteness of percep-
tion , the contraindications of planning, behavior-based robotics, reactive
architectures, advantages and properties of reactive systems, models of in-
teraction with the world, behavior composition, disadvantages of reactive
systems and a mechanism for integrating reactive and deliberative behav-
iors. All these issues have been studied and presented as part of this one
semester study. Reactive architectures demonstrate the requirement for real-
time action in the real-world. However, reactivity alone may not be able to
find a solution when the world is complex. In such cases a time consuming
combinatorial search for a plan in a space of plans, i.e. planning might be
required to reduce this complexity of the world, by showing direction to this
short sighted process. As Chrisman [Chrisman,1991), points out reaction is
adversely affected by the complexity of the world and expectations fail when
the environment is unpredictable.

60

References

[Arkin,1988]

[Arkin,1987]

[Bizzi,1991]

[Brooks, 1986]

[Connolly,1992]

[Chrisman,1991]

[Chapman,1991]
[E. Gat,1991]

[Y. Gat,1991]

[Grupen,1991a]

[Grupen,1991b]

(Grupen,1991¢|

Arkin R. C. , ” Reactive reflexive navigation for an
autonomous vehicle, AIAA’ 88.

Arkin R. C., "Motor schema based navigation for
a mobile robot”, Proc. of the IEEE Intl. Conf. on
Robotics and Automation, pp264-267, 1987 .

Bizzi E. et al. ” Transforming plans into actions by
tuning passive behavior: A field-approximation ap-
proach”, Proc. of the IEEE Intl. Symposium on In-
telligent Control, pp.101-109, 1991.

Brooks, R. ” A robust layered control system for a mo-
bile robot” , IEEE Jrnl. of Robotics and Automation,
VOL. RA-2, NO.1, 1986.

Connolly, C. I. , "Harmonic Control” , Submitted to
IEEE conf. On Robotics and Automation, 1992.

Chrisman L et al. ”Intelligent agent design is-
sues : Internal agent state and incomplete percep-
tion.” ,AAAI1991

Chapman D., ”Combinatorics and Action”, AAAILQ1

Gat E., "On the role of internal state in the control
of autonomous mobile robots”, AAAI1991.

Gat Y. et al., "Simple world modeling for Reactive
Navigation”, AAAIL 1991

Grupen R. A., "Planning grasp strategies for multi-
fingered robot hands”, In Proc. of IEEE Intl. Conf.
on Robotics and Automation, 1991

Grupen R. A. et al., "Force domain models for multi-
fingered grasp control”, In Proc. of IEEE Intl. Conf.
on Robotics and Automation. ,1991

Grupen R. A. et al. "Sensor-based control for multi-
fingered manipulators”, AAAI1991.

61

[Grupen,1991d]
[Khatib,1985]

[Kaebling,89]

[Payton,1986]

[Payton,1990]

[Yamauchi,1991]

Missing reference

Khatib, O. "Real time obstacle avoidance for manip-
ulators and Robots”, In Proc. of IEEE Intl. Conf. on
Robotics and Automation, pp. 500-505, 1985.

S. Rosenschein et al., ” Integrating planning and Re-
active Control”, Proc. NASA Conf. on space teler-
obotics, vol.2, JPL publ. 89-7,JPL,CA pp. 359-366.

Payton D. W. "An architecture for reflexive au-
tonomous vehicle control”, Proc. of IEEE conf. on
Robotics and Automation, 1986.

Payton D. W. et al., "Plan guided reaction”, IEEE
Transactions on Systems, Man and Cybernetics”,
vol.20, no.6,pp1370-1382,1990.

Yamauchi B. et al.,, A behavior-based architecture
for robots using real-time vision”, Proc. Of the IEEE
Intl. Conf. on Robotics and Automation, pp.1822-
1827, 1991.

62

Tum For Obstacle

TJRN BATE

Track Road Edges

Figure 16: Fine grained primitives

Figure 17: Plans guide behavicrs

63

