Information Flow Transfer

in the RELAY Model

Margaret C. Thompson*
Debra J. Richardson!
Lori A. Clarke*

COINS Technical Report 92-62
August 1992

* Software Development Laboratory
Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

! Department of Computer and Information Science
University of California
Irvine, California 92717

This material is based upon work sponsored by the Defense Advanced Research Projects Agency under Grants #
MDA972-91-J-1009 and #MDA972-91-J-1012. The content does not necessarily reflect the position or the policy of
the U.S. Government, and no official endorsement should be inferred.

1 Introduction

Software testing is concerned with the selection of test data to produce incorrect output
or “failures”. When a program produces a failure for some test execution, one knows the
program contains at least one mistake or “fault”. When a program produces correct output
for all executions, one hopes to have selected the test data so as to gain some confidence in
the correctness of the program. Unfortunately, it is possible for faulty code to be executed
but not cause a failure. This phenomenon, known as coincidental correctness, is very
common. If it were not, a test data set that covers all statements in a program would be
adequate to detect most faults. To understand how to select test data to avoid coincidental
correctness, we must understand how a fault may or may not cause a failure on execution
of some test datum. The authors have been developing a model of faults and failures,
called RELAY, that describes this process. The model provides insight into the difficulty
of guaranteeing fault detection, suggests an approach to fault-based testing that, although
computationally expensive, may be warranted for critical software, and serves as a basis for
evaluating fault-based testing approaches as well as highlighting areas requiring empirical
study.

RELAY is related to fault-based test data selection methods, which attempt to se-
lect test data that would expose a set of faults if they existed in the code. Some fault-
based testing methods focus on introducing an initial incorrect “state” at a faulty expres-
sion [Fos80, How82, Bud83, Zei83]. This is generally known as “weak mutation testing”
[How82, Bud83]. Weak mutation, however, does not guarantee a failure will result. Sub-
sequent execution may mask the effect of incorrect values and produce correct final re-
sults. Several researchers have considered what must happen to cause a failure after an
initial incorrect state has been introduced, thereby satisfying what is known as “strong
mutation testing” [DLS79, Bud83]. Morell describes a model of fault based testing that
introduces the ideas of “creating” an initial “error” for a fault and “propagating” it to the
output [Mor84]. Offutt describes a method, called constraint-based testing [Off88], which
defines three conditions: a “reachability” condition to force execution of the hypothetically

faulty node, a “necessity” condition for introducing an error, and a “sufficiency” condi-
tion for then producing a failure. Offutt’s necessity condition and sufficiency condition are
similar to Morell’s creation condition and propagation condition, respectively. Neither of
these models fully captures how once an incorrect state is introduced, it remains incorrect
until a failure is revealed as an output value.

The RELAY model augments bofh the weak and strong mutation testing approaches
and related models. RELAY formalizes the weak mutation testing method by describing
the conditions required to “guarantee” that a fault in some subexpression of a statement
produces an incorrect state for the whole statement; this work is described in [RT88, RT86).
RELAY extends Morell’s model by identifying and describing the ways an incorrect state
may “transfer” through execution. RELAY identifies three types of transfer: “computa-
tional transfer”, “data dependence transfer”, and “control dependence transfer”. An in-
correct state transfers from a faulty statement to output along “information flow chains”.
RELAY recognizes the possibility that several information flow chains may be transferred
along at the same time and models this with “transfer sets” and “transfer routes”. Trans-
fer sets, transfer routes, and control dependence transfer are unique to the RELAY model.
The transfer aspects of the RELAY model are the subject of this paper.

This paper is organized as follows. Section 2 provides some general terminology along
with an overview of the RELAY model. Section 3 discusses the components of information
flow transfer and how these components fit together in the model. Section 4 presents two
applications of the model: testing of critical software systems and evaluation of fault-based
testing methods. Section 5 summarizes the major contributions of RELAY and concludes

with research directions suggested by this work.

2 Foundations

This section lays the foundation for describing information flow transfer in the RELAY
model. In particular, we provide an overview of the entire RELAY model as context. We

also define some related terminology and give the underlying assumptions of the model

and some additional assumptions that greatly simplify the presentation.

2.1 Terminology

We consider the analysis of a module, where a module is a procedure or function with a
single entry point. A module, M, is represented by a control flow graph, which is a directed
graph (N, E), where N is a (finite) set of nodes and E C N x N is the set of edges. Each
node in N represents a simple statement or the predicate of a conditional statement in M.
For each pair of distinct nodes m and n in N where control may pass directly from the
statement represented by m to that represented by n there is an edge (m,n) in E. A node
with more than a single successor node is called a branching node.

A path in a control flow graph Gy = (N, E) is a finite, possibly empty, sequence of
nodes p = (ny,7na,...,nyp) ! such that for all 3, 1 < i < |p|, (ni,ni41) € E. A path formed
by the concatenation of two paths p; and p; is denoted p; - p». A path p may be executed
on some input z ?; this execution is denoted p(z). A state Sy() is a vector of values for all
variables after execution of path p on input z. If the last node in p is a branching node,
then Sp(z) includes a dummy variable BP that holds the value for the branch predicate
associated with this node.

RELAY uses information derived from program dependences, which are syntactic re-
lationships between nodes. Program dependences capture 'potenﬁia.l flow of information
between nodes and include both control flow and data flow information. The definitions
presented here are informal. See [PC90] for a more complete discussion of dependences.

Let V be a variable in a module M. A definition of V is associated with each node n
in Gpr that represents a statement that can assign a value to V; this definition is denoted
def(V,n). A use of V is associated with each node n in Gy that represents a statement
that can access the value of V; this use is denoted use(V,n). With each node n in a control

flow graph, we associate the set defined(n), which is the set of all variables to which a value

1We denote the length of (the number of elements in) a sequence s by |s|.
3The input z includes the values of all variables at the start of execution of path p and any data input

during execution of the path.

may be assigned by the statement represented by n, and the set used(n), which is the set of
all variables whose value may be referenced by the statement represented by n. To simplify
our discussion, we assume at each node there is at most a single variable in defined(n). A
definition-clear path with respect to a variable V is a path p such that for all nodes n in
p, V ¢ defined(n) 3. A definition def(V,m) reaches a use use(V,n) if and only if there is
a path (m) - p - (n) such that p is definition-clear with respect to V.

A node n is (directly) data dependent on a node m if and only if there is a def(V,m)
that reaches a use(V,n). Since this is the only data dependence relationship we use, we
will refer to it simply as “data dependence”. Consider the control flow graph shown in
Figure 1 . Node 9 is data dependent on node 2 because A is defined at node 2, used at
node 9, and there is a def-clear path with respect to A from node 2 to node 9.

Information may also flow by one node controlling execution of another. The :mmediate
forward dominator of a (branching) node b is the node where all paths leaving b first come
together. A node n is (indirectly strongly) control dependent on m if and only if there
exists a path from m to n that does not include the immediate forward dominator of m.
Intuitively, this relationship characterizes the nodes that are in the “body” of a structured
branching construct. Since this is the only control dependence relationship we use, we refer
to it as “control dependence”. In Figure 1, nodes 6, 7, 8 and 9 are control dependent on
node 5.

An information flow chain is a sequence of nodes such that each node in the chain
is either control dependent or data dependent.on the previous node in the chain. We
represent an information flow chain X in a control flow graph Gy = (N, E) as a sequence
of tuples (*,d;,n,), (uz,da,n2), ..., (¥x}, dix|, nix|), Where |X| is the number of tuples in
the chain and Vi, 1 <i < |X|, n; € N and d; € defined(n;), and Vk,1 < k < |X|, ux €
used(ng), ur = di—1, and ny is either control dependent or data dependent on n;_;. At the

first node in a chain, the symbol ‘*’ is used in place of the used variable. For branching

3For languages where a variable may be “undefined” at a node, V must also not be undefined at any
node n in p.
*Nodes 2' and 3’ are not part of the control flow graph and are discussed in subsequent sections.

3! E:=G*H 2! A :=G+l
1 inputGHI
Y
2 A:=G+H
y
3 E:=G+H
'
4 F:=E%(I-3)
)
l T 5 F<G-6 F &
6 B:=A**G-] 8 B:=A*G-1
Y '
7T C:=A**H 9 C:=A*H
I
Y
10 D:=B*C
y
11 output D

Figure 1: Example Module

nodes, the dummy variable BP, which represents the branch predicate, is used in place of
the defined variable. For a tuple that represents control dependence, BP is used in place of
the used variable. For nodes where a value is communicated to the external environment,
the symbol ‘out’ is used in place of the defined variable. Note that due to loops a node
could appear more than once in an information flow chain. In Figure 1, one information

flow chain from node 3 to node 11 is

(+, E,3),(E, F,4),(F, BP,5),(BP, B,6), (B, D, 10),(D, out, 11).

2.2 Model Overview

RELAY is a model of faults and failures. A fault is a mistake in the source code and
represents a syntactic difference between the given and correct modules. A faslure is an
observable incorrect program behavior. For this paper, we only consider failures that
consist of incorrect output. For a fault to cause a failure, execution on some test datum
causes intermediate incorrect values that eventually result in observable incorrect output
values. An intermediate incorrect value is termed a potential failure, since these values may
or may not cause a failure. Potential failures occur when a subexpression of a statement
or an entire statement evaluates to an incorrect value. In this paper, we will be interested
in tracking potential failures that occur at statement boundaries, called state potential
failures. A potential failure variable is a state variable whose value is incorrect after
execution of a path.

In RELAY, a potential failure originates, or is introduced, in the smallest evaluable
subexpression containing the fault. If this smallest subexpression is not the outermost
expression in the statement, the potential failure must transfer through all subsequent
operations in the node that depend directly or indirectly on the faulty value. Transfer
through operators within a node is called computational transfer. When computational
transfer occurs through all operators, the entire statement evaluates to an incorrect value,
and an original state potential failure is introduced.

For a fault to cause a failure, a potential failure must transfer from a faulty node to an

oﬁtput node along an information flow chain. At each link in the chain, data dependence
transfer and/or control dependence transfer occurs. This process is called information flow
transfer. Computational transfer, similar to that described above for introduction of an
original state potential failure, is a component of data dependence transfer and control
dependence transfer. Information flow transfer can occur simultaneously along more than
one chain to the same output node at the same time. Transfer along multiple information

flow chains is captured with the concepts of transfer sets and transfer routes.

2.3 Model Assumptions

We assume the module being tested is almost correct. This assumption is similar to the
“competent programmer” hypothesis [ABD*79, BDLS78|, which says that the module
being tested differs from the correct module by some small set of faults. Although the
concept of transferring potential failures along information flow can be applied to faults
that affect larger portions of code, the faults considered in this presentation are contained
within a single node in a control flow graph. Further, the faults we consider in this
presentation are restricted to those that do not change the control flow graph and do
not change the set defined(n) for any node. This last requirement is necessary because
changes in defined(n) alter the information flow from the faulty node and thus the transfer
requirements. This last restriction, however, may be relaxed with additional information
flow analysis that takes into account the difference in information flow introduced by the
fault.

We also assume there is either a single fault in the module or that multiple faults do
not mask each other. Two faults mask each other if a test datum that would have caused a
failure for one of the faults occurring alone, fails to cause a failure for the module containing
both faults. This assumption allows us to consider faults one at a time. This “non-masking

faults” assumption is discussed further in Section 4.2.

Table 1: Illustrative Test Data Set for Fault at Node 3 in Example

(l test data evaluated variables
[[module [GTH|IT|A[E[F[F<G-6] B | C | D |output|
'P faulty [1] 2 3’HTTO F 2(8) [6(9)] 12 12]’
correct [1]2[3]3[2]0 F 2(8) [6(9)] 12 12
2 faulty 1| 24333 F 2(8) [6(9) [12 12 |
correct | 1 [2 | 4 " 3[27]2 F 2(8) |6(9)] 12 12 |
(3] faulty 1] 1[-12]2]-8 T 1(6) [2(T)] 2 2 H
| Jcorrect [1|1 [-1]2]1]-4 F 1(8) |2(9)| 2 2
(4] faulty 121 3]3]-6 T 2(6) [9(7)[18] 18
correct | 1|2 | 1[3]|2]|4 F 2(8) [6(9)] 12 12
5[faulty [4 [0 2[44]-4 T [255(6)[1(7)]255] 255
correct (4 | 0| 2[[4(0]0 F 11(8) j0(9)| O 0

3 Information Flow Transfer

3.1 Introduction of Concepts

To illustrate the components of information flow transfer, we examine several test data for
the module in Figure 1 and see how potential failures do and do not transfer. Table 1 lists
five test data along with partial execution traces. Suppose that the module contains a fault
and node 3 should be E := G * H. That is, the addition operator should be multiplication.
This correct node is labeled 3’ in the figure. For each test datum, there are two lines in
the table. The first line for a test datum records the variable values on execution of the
faulty module, while the second line records the values for the correct module. When the
modules execute different paths, whereby a variable is defined at different nodes, the node
where the value is assigned is shown in parentheses. For all test data in this set, an original
state potential failure is introduced, since E has an incorrect value after execution of node
3.

Consider test datum 1. At node 4 where E is referenced, we see that the incorrect

value for E is masked out by multiplication, and thus F has the same value in both the
correct and the incorrect module. Although node 4 is data dependent on the (incorrect)
value held in E, data dependence transfer does not occur. Note that E is the only variable
that holds an incorrect value at this point and is not referenced at any subsequent nodes;
thus, no failure results for this test datum.

For test datum 2, execution of node 4 assigns an incorrect value to F; thus, data
dependence transfer does occur. F' is used at node 5, where the branch predicate evaluates
to False in both the correct and faulty modules. Thus, data dependence transfer fails, and
the same branch is selected in both the correct and faulty modules. Since there are no
subsequent uses of either E or F, which are the only variables with faulty values, no failure
results.

For test datum 3, data dependence transfer succeeds from E to F' at node 4 and from
F to BP at node 5; thus, an incorrect branch is selected. Since nodes 6, 7, 8, and 9 are
control dependent on node 5, we consider whether a potential failure transfers through this
incorrect branch selection. After an incorrect branch is selected, transfer occurs when a
value is assigned to some variable that is distinct from that which would have been assigned
along the correctly selected branch. In this case, one or both of B or C would need to be
assigned an incorrect value. For this test datum, however, both B and C are assigned the
same value on the incorrectly selected branch as on the correctly selected branch, which
masks out the effect of selecting the incorrect branch. In this case, control dependence
transfer does not occur.

Consider test datum 4, for which data dependence transfer occurs at nodes 4 and 5,
and control dependence transfer to B fails at node 6. Control dependence transfer to C
does occur at node 7, however, since C is assigned a different value at node 7 on the
incorrectly selected branch than at node 9 on the correctly selected branch. C is used
at node 10, where D is assigned different values in the correct and faulty modules, thus
data dependence transfer occurs. An incorrect value is output at node 11, thus revealing
a failure for execution of the module on test datum 4.

Test datum 5 is another case where a failure occurs. For this test datum, data depen-

Table 2: Information Flow Chains from Node 3 to Node 11 in Example

|| information flow chains _ |
i [(+.E,3),(&,F,4),(F, BP,5),(BP, B,6), (B, D, 10), (D, out, 11)
i (. 2.3),(8,F.4),(F, BP,5),(BP,C,7),(C, D, 10), (D, out, 11)
(
(C,

& || (=, ,3),(E, F,4),(F, BP,5),(BP, B,8),(B,D,10), (D, out, 11)
iv | (=, 2,3)(8, F,4), (F, BP,5), (BP,C,9), (C, D, 10), (D, out, 11)

REE
bu

dence transfer occurs up to node 5. Control dependence transfer occurs both to B at node
6 and to C at node 7. At node 10, data dependence transfer occurs from both B and C to
D, and a failure is revealed at node 11.
These example test data illustrate two types of transfer ~ data dependence transfer and
control dependence transfer. We define these concepts as follows.
Data dependence transfer occurs from a node m that defines a potential failure

variable V to a node n that uses V when the use of V results in computing an
incorrect value at n.

Control dependence transfer occurs from a branching node m to a node n that is
control dependent on m when n is incorrectly selected and defines an incorrect
value for some variable V that reaches the immediate forward dominator of m.

For a fault to cause a failure, transfer must occur from an original state potential failure
along some information flow chain(s) to output. Transfer along an information flow chain
involves data dependence transfer and/or control dependence transfer at each link in the

chain. In the example, for test datum 4, transfer occurs along the information flow chain
(+, E,3),(E, F,4),(F, BP,5),(BP,C,7),(C, D,10), (D, out, 11).

In general, there may be several information flow chains from a faulty node to a failure
node. In the module in Figure 1, there are four information flow chains from node 3 to
node 11, which appear in Table 2. Notice that more than one information flow chain may

be executed by the same test datum. In this example, any test datum that selects the

10

True branch at node 5 executes both chains i and ii. Execution of a chain, however, does
not imply that transfer occurs along it. In fact, transfer may occur along some, all or none
of the executed chains. For test datum 4, both chains i and ii are executed but transfer
only occurs along chain . On the other hand, for test datum 5, transfer occurs along both

chains z and i:.

3.2 Transfer Sets and Transfer Routes
3.2.1 Motivation

To fully model the process of how a fault becomes a failure, RELAY must model transfer
of potential failures along multiple information chains. T.o illustrate the importance of
determining all chains along which transfer may occur and distinguishing between potential
transfer and actual transfer, let us consider the conditions that would guarantee transfer
of an originated potential failure.

Consider first the simplest case where there is only a single information flow chain along
which transfer could occur. In this case, there is at most one potential failure variable used
at each node in the chain, since a node using multiple potential failure variables indicates
transfer has occurred along a second information flow chain up to that node. The condition
to guarantee transfer along a single chain from some faulty node to a particular failure node
is the conjunction of the conditions to transfer the potential failure within each node in
the chain along with the condition to execute the chain.

The necessary and sufficient condition to guarantee transfer within a single node is
called a computational transfer condition. Here, we briefly overview the construction of
computational transfer conditions when only a single potential failure variable is referenced
at a node, first when the single potential failure variable is other than the dummy variable
BP and then when it is BP. See [RT88, Tho9la] for a more complete discussion of
computational transfer conditions.

At nodes where the potential failure variable is other than BP, the computational

transfer condition is the conjunction of the transfer condition for each operator containing

11

the potential failure variable in an operand. For example, consider the statement

L3

X = (U +W)*(V + 2).

When V is the only potential failure variable at this statement, the faulty value must
transfer through the addition operator (true) and then through the multiplication operator
(U + W # 0). The computational transfer condition at the node is simply the conjunction
of these individual conditions.

When the single potential failure variable used at a node is BP, indicating control
dependence transfer, the computational transfer condition is EX P, # EX P, where EXP,
is the value of the computation selected and EXP; is the value that would have resulted
were the correct branch selected. For example, in Figure 1, if node 5 incorrectly selects the
branch containing node 6 and G and A are not potential failure variables, the computational

transfer condition at node 6 is A * *G — 1 # Ax G — 1, which is
(A#20rG#2)and (A#0o0r G #1).

Intuitively, we may argue by induction that Athe; condition formed from the conjunction
of computational transfer conditions at each node in the chain (along with the path condi-
tion to execute the chain) is sufficient to transfer an original state potential failure along
the entire single chain. When there is not another chain that could be transferred along
from the same faulty node to the same failure node, we may also argue that the condition
formed from the conjunction of the computational transfer conditions at each node in the
chain (along with the path condition to execute the chain) is necessary to transfer along
this single chain. Thus, the conjunction of the computational transfer conditions is both
necessary and sufficient to transfer along the entire chain, when there is a single chain.

When more than one chain exists along the same path, the conditions to guarantee
transfer for information flow chains are more complicated. Consider again the module
shown in Figure 1, and suppose that node 2 is faulty and should be A := G + I. This
correct node is labeled 2’ in the figure. From node 2 to node 11, there are four information

flow chains, which appear in Table 3. If we construct the condition to transfer along a

12

Table 3: Information Flow Chains from Node 2 to Node 11 in Example

[# T information flow chains | transfer set ||
i [[(=A42),(4,B5,8),(B,D,10),(D,out,11) | T5x
i || (x,4,2),(4,C,9),(C,D,10),(D, out,11)
ii || (%, 4,2),(A4, B, 6), (B, D, 10), (D, out,11) | T Sy
iv || (%, 4,2),(4,C,7),(C,D,10),(D, out, 11)

chain as described above — that is, as if it were the only chain and thus without taking into
consideration other chains that might be transferred along concurrently — we find that this
approach is inadequate. Consider the condition to transfer along chain i. To transfer at
node 8 from A to B, we must guarantee that G # 0. To then transfer from B to D at node
10, we must guarantee that C # 0. The condition that should “guarantee” transfer along
this single chain is the conjunction of these two conditions along with a path condition to

execute the chain:
G # 0 (at node 8) and C # 0 (at node 10) and F > G — 6 = (at node 5).

Similazly, we could construct the conditions that should guarantee transfer along the single

chain ii:
H #0 (at node 9) and B # 0 (at node 10) and F < G — 6 = False (at node 5).

Both test data in Table 4 satisfy the original state potential failure condition for this
fault (H # I) . Test datum 1 satisfies the “transfer” conditions derived above for both
chains but fails to reveal a failure. Thus, the condition is not sufficient to transfer for either
chain, nor are the conditions for the two chains together sufficient. On the other hand, test
datum 2 does not satisfy the transfer condition for either chain but does reveal a failure;
thus, the conditions for the chains are also not necessary to transfer.

From this example, we see the simple approach described above, which works when

there is only one chain along which transfer could occur, is inadequate in the more general

13

Table 4: Ilustrative Test Data Set for Fault at Node 2 in Example

“ test data evaluated variables
I module"G’|H|I A|E|F|FiG—6 B | CJDIoutput“

17 faulty J1T7-3]1]-2]-2] 4 F -3(8) [6 (9) |-18] -18
[lcorrect [1[-3]1[[2[-2{4] F 1(8)[-6(9)]| -6 -6
[27 faulty J1[-1J2]JOJOJO] F_ 08) [0(9) [0 0
[[correct [1[-1]2][3[0]0]| F 2(8)[-3(9)] -6 6|

context. This is because at nodes where more than one potential failure variable is used,
the computational transfer condition must take into account all potential failure variables.
Otherwise, when combined, two or more potential failure variables may “interact” and mask
out all the potential failures referenced at the node. Thus, to determine the necessary and
sufficient conditions to transfer a potential failure and to fully model transfer behavior,
we must take into consideration all chains transferred along as well as know along which

chains transfer actually occurs.

3.2.2 Definitions

A transfer setis a collection of information flow chains with the following prop-

erties:

1. all chains start at the same faulty node;

2. all chains end at the same failure node and with output of the same des-
ignated variable;

3. there is a set of paths such that each path executes all the chains in the
transfer set;

4. all chains executed by such a set of paths are included in the transfer set.

Consider again the example module shown in Figure 1. As noted in the previous subsection,
if we consider a fault at node 2, there are four information flow chains to the output

statement at node 11. For these four information flow chains, there are two transfer sets.

14

One transfer set T'Sx consists of information flow chains (i,ii), executed by test data that
select the false branch. The other transfer set T'Sy consists of chains (iii,iv), executed by
test data that select the true branch.

A transfer set defines the set of chains that may be executed together. It is possible,
however, that while a test datum executes all chains in a transfer set, not all chains are
transferred along. This happens when transfer fails at some nodes in a chain. Thus, we
not only need to know which chains are actually transferred along, but more precisely, at
which tuples in the chains transfer occurs. This is defined by “transfer routes”.

Given a transfer set T'S, let Nodes(TS) be the set of nodes that are in tuples in the
information flow chains in T'S. Nodes that could appear more than once in an information
flow chain are disambiguated by a subscript indicating the visit to the node on a path

covering the chain.

A transfer route tr of a transfer set TS is a subset of N odes(T'S) such that:

1. all nodes for at least one information flow chain in T'S are in ir;

2. for every node in tr, there exists a subchain from the faulty node to that
node such that all nodes in the subchain are also in tr.

Given a transfer route tr, a node n € tr is called a transferring node. A node n €
{Nodes(TS) — tr} is called a non-transferring node.

There may be several transfer routes for a particular transfer set. A particular test
datum, however, executes at most one transfer route of a transfer set. At transferring
nodes in the transfer route, data dependence transfer and/or control dependence transfer
occurs. At non-transferring nodes in the transfer route, transfer fails or has failed at
previous points such that the node references no potential failure variables.

Consider again the information flow chains listed in Table 3 for the example module
with a fault at node 2. For transfer set T'Sx consisting of the information flow chains (1,i1),
there are three different transfer routes, which are provided in Table 5. Because a transfer
route is associated with a transfer set, the actual potential failure variable at each node

and sequence of transfers is implicit in the set of nodes. This information has been made

15

Table 5: Transfer Routes for Transfer Set T'Sx of Example

route [explicit transfers
tr, = {8,9,10,11} [transfer from A to B at node 8,
’ transfer from A to C at node 9,
transfer from B and/or C to D at node 10,
transfer from D to output at node 11
tr, = {8,10,11} ” transfer from A to B at node 8,

do not transfer from A to C at node 9,
transfer from B to D at node 10,
transfer from D to output at node 11
trs = {9,10,11} do not transfer from A to B at node 8,
transfer from A to C at node 9,

transfer from C to D at node 10,
transfer from D to output at node 11

explicit in the second column of Table 5 to assist in the discussion. The second test datum
in Table 4 executes the first of the transfer routes enumerated above.

At nodes where two or more variables used at the node are potential failure variables,
we say that “interaction” occurs. A transfer set identifies the nodes where interactions
potentially occur. For ¢r; in Table 5, interaction occurs at node 10 where B and C are
both potential failure variables. No interactions occur for transfer routes tr, and ir3. In
this example, interaction involves only data dependence, although interaction may also
occur with control dependence and data dependence in combination.

It is important for us to note here a subtlety of transfer routes. Transfer routes are
defined at the granularity of whole nodes rather than at the level of computations within

a node. To elucidate this point, consider a statement containing a computation such as
A:=(BxC)+(D*E),

and suppose that both B and D are potential failure variables at a node representing this
statement. This node is either transferring, in which case either B or D or both transfers, or

it is non-transferring, in which case, neither transfers. The different possibilities of transfer

16

within the node are expﬁcitly captured by the specific computational transfer conditions,

not by the transfer route. This convention simplifies the transfer routes, decreases the’
number of routes for each transfer set, and allows tra.nsfer routes to be determined from

an information flow graph.

It is beyond the scope of this paper to present the algorithms for identifying transfer
sets and transfer routes; they may be found in [Tho91b]. The general approach for identi-
fying transfer sets is to generate all information flow chains from a faulty node to a failure
node and then determine the sets of chains with consistent path conditions. Identification
of transfer routes involves a search on a graphical representation of a transfer set to gen-
erate legal combinations of transferring and non-transferring nodes. Identification of these
structures is relatively straightforward when the code contains no loops. When loops are
added, however, there may be a potentially infinite number of information flow chains and
in turn a potentially infinite number of transfer sets. To identify transfer sets and transfer
routes in code involving loops, additional loop analysis must be performed. One approach
to this loop analysis is also described in [Tho91b].

In summary, RELAY models how a fault causes a failure on execution of some test

datum as follows:

1. Introduction of an original state potential failure at the faulty node;
2. Transfer of a state potential failure along potentially many information flow chains:
(a) a transfer set is the set of information flow chains that may be transferred along

concurrently;

(b) a transfer route is a subset of nodes in a transfer set at which actual transfer
occurs;

(c) data dependence transfer and/or control dependence transfer occurs at trans-
ferring nodes;

(d) transfer does not occur at non-transferring nodes;

(e) interaction occurs at nodes where multiple potential failure variables are used.

17

4 Applying Information Flow Transfer

LY

Information flow transfer as captured in the RELAY model may be used in several ways.
Here we discuss two areas of application. First, RELAY may be used to guide testing;
although computationally expensive, this may be useful for critical systems where the
cost of failure is exceptionally high. Second, the rigor provided by RELAY can be used
to evaluate fault-based testing methods and their underlying assumptions. The RELAY
model provides insight to examine and guide empirical studies as well as an analytical

perspective.

4.1 Testing based on the RELAY Model

The RELAY model captures the information required to originate and transfer a potential
failure from fault to failure. Based on the model, we can derive a failure condition, which
guarantees a fault originates a potential failure that transfers to produce incorrect output.
To use such conditions in testing, we hypothesize the existence of a fault, derive the fail-
ure condition for the fault and test the module on test data satisfying these conditions.
This process, under the assumptions discussed in Section 2, guarantees detection of the
hypothetical fault if indeed it is a fault.

When constructing such conditions, we must be concerned with several problems. In
addition to the general difficulty of selecting test data to satisfy a particular set of condi-
tions, the conditions themselves may be fault dependent and thus require reconstruction
for each fault being considered. Fortunately, in some cases fault independent conditions
may exist while at other times sufficient (but not necessary) conditions can be constructed.

Using RELAY as a testing method is computationally expensive and thus applying to
a large set of faults in a program is impractical. For critical software systems, however,
where some failures may be exceptionally costly or intolerable, we can selectively apply a
RELAY-based testing approach by focusing the method on system components that may
affect critical aspects of the system behavior such as critical variables, statements, and

modules. Although an expensive approach, we believe for critical systems, RELAY is a

18

promising method that can provide insight into such systems and allow us to reason about
and test them more effectively.

In this subsection, we demonstrate construction of failure conditions, focusing on in-
formation flow transfer, discuss fault dependence of the conditions, and outline a testing

method based on RELAY.

4.1.1 Failure Condition

The failure condition is the necessary and sufficient condition to guarantee a fault causes
a failure. The formula for a failure condition is summarized in Figure 2. The failure condi-
tion is the conjunction of the original state potential failure condition, which is presented
in [RT88, Tho9la], and the condition to guarantee transfer, which we describe here. As
demonstrated, it is necessary to consider transfer sets and transfer routes when develop-
ing the failure conditions rather than simply single information flow chains in isolation,
because all potential failure variables at each node must be taken into consideration. The
failure condition includes the disjunction of the transfer set conditions for all transfer sets
from the hypothetically faulty node. A transfer set condition is the necessary and suffi-
cient condition to transfer an original state potential failure to output along the particular
transfer set. The transfer set condition is the conjunction of the transfer set path condition,
which guarantees execution of all information flow chains in the set, and the disjunction of
transfer route conditions (for all transfer routes of a transfer set), each of which guarantees
a failure is revealed along the transfer route. The transfer route condition for a particu-
lar transfer route is the conjunction of computational transfer conditions at transferring
nodes in the transfer route and the complement of computational transfer conditions at
non-transferring nodes. The computational transfer condition at a transferring node is the
necessary and sufficient condition to guarantee transfer occurs from at least one of the
potential failure variables at the node to the defined variable at that node.

Here we demonstrate construction of each of these components — computational transfer

conditions, transfer route conditions and transfer set conditions. The conditions are written

19

in terms of a constraint on one or more variables at a particular node - e.g., G # I (at
node 4). To actually find test data to satisfy this condition, symbolic evaluation must be
performed to generate constraints in terms of input variables. We simplify our presentation

below by skipping this step.

failure condition(fault f) =

original state potential failure condition(f)
A (' transfer set condition(T Sr))

TS1(f)

transfer set condition(T Sr) =

path condition(T Sy)
A (V transfer route condition(tre))
tryCNodes(TSr)
transfer route condition(tri) =

(A computational transfer condition(n;))
n;Etransferring nodes (try)

A (I\ -~ computational transfer condition(n;))
nj €non-transferring nodes (try)

Figure 2: Formula for Failure Condition

Referring back to the example in Figure 1, consider node 2 as hypothetically faulty.
There are four information flow chains from node 2 to output at node 11, which are listed
in Table 3. Associated with these information flow chains are two transfer sets, T'Sx
consisting of chains i and ii and T'Sy consisting of chains iii and iv.

To more concisely represent transfer routes, we will use a shortened notation and write

20

Table 6: Transfer Routes for Transfer Set TSx of Example Module

[-] (4, B,8); (4,C,9); (B + C, D, 10); (D, out, 11)
[tr2 : || (4, B,8);-(4,C,9); (B, D,10); (D, out, 11)
" trs : || -(4, B,8);(4,C,9); (C,D,10); (D, out, 11)

a transfer route as a list of tuples of the form (V; + Va + ... + Vi, W, n) for transferring nodes
and of the form ~(V; + V2 + ... + Vi, W, n) for non-transferring nodes, where V; are the
potential failure variables that are used at node n and W is the variable to which transfer
occurs (or does not occur) at node n. Not included in the list of non-transferring tuples
are non-transferring nodes that do not reference any potential failure variables because
transfer has failed along all chains up to that node. For transfer set T'Sx, the transfer
routes, which are described in Table 5, are written in this notation in Table 6.

For each tuple in a transfer route, we must construct the computational transfer condi-
tion, which guarantees transfer to the variable defined at the node from the potential failure
variable(s) referenced at the node. For the transfer routes for TSx, these compqtational

transfer conditions (ctc) are:

ctc(A, B,8) = (G # 0) at node 8

ctc(A,C,9) = (H #0) at node 9

cte(B, D,10) = (C # 0) at node 10

cte(C, D,10) = (B # 0) at node 10

cte(B + C,D,10) = (B * C) # (B' * C') at node 10
cte(D, out,11) = true at node 11

The transfer route condition is formed by conjoining the computational transfer con-
dition for each transferring node in the transfer route and the complement of the transfer
condition for each non-transferring node. For try, the transfer route condition (trc) (drop-

ping the condition true and the node references) is:

S 21

tre(tr) = cte(A, B,8) Acte(A,C,9) A cte(B + C, D, 10)
Acte(D, out, 11)
=(G#O) A(H#0)A((BxC)#(B'*C"))

" The transfer set condition is formed from the conjunction of the transfer set path con-
dition with the disjunction of the transfer route conditions for all transfer routes associated
with the transfer set. The path condition (pc) for T'Sx selects the false branch at node 5

in the module and is:

pe(TSx) = ~(F < G — 6) (at node 5)
= (F > G — 6) (at node 5)

Thus, the transfer set condition (tsc) for T'Sx is:

tsc(TSx) = pc(TSx) A (tre(try) V tre(trs) V tre(tra))
=(F>2G-6)A
((G#0)A (H#O)A((B*C)# (B'*C"))
V((G#0)A (H=0)A (C #0))
V(G=0A (H#0)A (B#0))

We may similarly derive the transfer set condition for T'Sy. The disjunction of tsc(TSx)
and tsc(T'Sy) when conjoined with the original state potenﬁal failure condition (including
the path condition to reach the fault) for some hypothetical fault at node 2 yields a failure
condition, as summarized in Figure 2. The meaning of this condition may be summarized
as follows: .

e Incorrect execution on a test datum that satisfies such a failure condition indicates
that the module contains the fault;

e Correct execution on a test datum that satisfies such a failure condition implies that
the module does not contain the hypothetical fault for any input;

e Inability to satisfy this failure condition means that the module being tested is equiv-
alent to the hypothetically correct module, and the hypothetical fault is not a fault.

22

4.1.2 Fault Dependence

In Section 4.1.1, we demonstrate construction of the failure condition for a single hypothet-
ical fault. Most likely, for a single node, we would want to consider several hypothetical
faults in turn. In constructing the failure condition for each hypothetical fault at a node,
we would like to be able to determine the transfer set condition once and then conjoin that
condition to the original state potential failure condition for each fault that we decide to
consider. Often, however, the transfer set condition is fault dependent, and we cannot do
this.

For a transfer set condition to be fault independent, the computational transfer condi-
tions must be fault independent. In most cases, where only one potential failure variable is
referenced at a node, the computational transfer condition at the node is fault independent.
This is true for transfer through boolean, addition, subtraction, multiplication, division,
assignment operators and combinations of these operators. Computational transfer is fault
dependent through relational, exponentiation and integer operators (e.g., DIV), although
sufficient conditions that do not depend on the value of the potential failure transferring
(and hence the fault) can often be derived. Necessary and sufficient computational transfer
conditions have been derived for those operators where fault independence is possible and
sufficient computational transfer conditions have been derived for some other operators
[RT88, Tho91a]. »

Nodes where multiple potential failure variables are referenced indicate where informa-
tion flow chains in a single transfer set potentially interact. At each interaction node, the
computational transfer conditions at the node are usually fault dependent. In some cases,
depending on the structure of the expression, sufficient fault independent conditions can
be derived. Investigation of sufficient fault independent conditions is an area for further re-
search. Such research might investigate the possibility of applying the results of Howden’s
algebraic testing [How78] or other results in algebra theory.

When the transfer set consists of more than one information flow chain, another ap-

proach for avoiding fault dependent conditions is to select a transfer route that has a fault

23

. independent transfer route condition. A single transfer route condition is sufficient to
transfer a potential failure to output and provides a sufficient transfer set condition. It is
important to remember that inability to satisfy such a sufficient condition, however, does
not imply equivalence for the hypothetical fault since transfer could still occur for some
other transfer route. For example, for T'Sx, the transfer route conditions for ¢r; and tr3 are
fault independent but are not satisfiable, while the transfer route condition for ¢r;, which
is fault dependent, is satisfiable. Thus, to guarantee transfer, we would have to select test

data for trj.

4.1.3 Testing and Analysis with Failure Conditions

The first step in applying RELAY to critical systems is identification of critical components.
This information might be based on safety-critical or mission-critical analyses (such as those
proposed by the British MOD Standard 0055 & 0056 [BMD91a, BMD91b]) or software
safety analysis [LH83].

Given some group of critical portions of the code, we then construct transfer sets and
transfer routes for this code by analyzing a program dependence graph, which includes
control flow and data flow information. Next, failure conditions are constructed as de-
scribed above for a set of hypothesized faults. We may use this failure condition along
with the transfer route condition in several ways. First, a failure condition may be used
to evaluate a previously selected test data set for its fault detection capabilities. Second,
because a failure condition identifies and captures the potential effects of a fault, we can
use the condition to assist us in reasoning about the system’s behavior. We can analyze
this failure condition and transfer route information to determine if a hypothetical fault or
state potential failure could lead to a critical failure. A failure condition leading to a crit-
ical failure is similar to the “failure scenarios” constructed by software fault tree analysis
[LH83]. Third, we may use the failure condition to direct selection of additional test data
for execution.

Several optimization approaches should be considered in implementation. First, as

24

previously noted, a number of faults may be hypothesized at a single node. Costs are
reduced if those parts of the failure conditions that are independent of a potential fault
are isolated and done once for all such hypothetical faults.

In addition, because of the cost of constructing the failure conditions, the failure condi-
tion should be constructed incrementally since it may become infeasible at any point. Thus,
as each condition (path, origination, and computational transfer) is derived, it should be
conjoined to the incremental failure condition and checked periodically for feasibility so
as not to waste computation time constructing an already infeasible condition. There are
several selections to reconsider when infeasibility is determined — e.g., another path seg-
ment to the hypothetically faulty node, another path segment to the node in the transfer
set, another transfer route, or a different transfer set may be required.

Further, infeasibility of a failure condition for one transfer route may provide guidance
as to what other transfer route would be feasible. For instance, if transfer at a particular
node leads to an infeasible incremental failure condition and another transfer route is
identical to this point but does not transfer at this node, that transfer route is likely to
lead to a feasible failure condition. Likewise, differences between transfer sets can guide

the selection of an alternative transfer set. This is an area for additional research.

4.2 Evaluation of Fault Based Testing Methods

The RELAY model can also be used to evaluate the fault detection capabilities of fault-based
testing methods. Previously, we analyzed several methods in terms of their ability to reveal
an original state potential failure [RT86). Here, we analyze the information flow transfer of
two fault-based testing methods that address at least some aspects of transfer. These two
methods rely on various underlying assumptions, which we also analyze to understand the
capabilities of the methods. Analytical evaluation should be complemented by empirical
evaluation. The RELAY model can be used to examine the validity of empirical studies

and their underlying assumptions as well as to suggest further studies.

25

4.2.1 Symbolic Fault-Based Testing

Morell’s symbolic fault-based testing [Mor88] is a test data measurement method which
measures the adequacy of a given test data set, selected by some other means, for detect-
ing faults “seeded” into a module. Symbolic fault-based testing replaces an expression
within a statement with a “symbolic” fault, creating an alternate module. Both the origi-
nal module and the alternate module (with the symbolic fault) are symbolically evaluated
along a particular path. Comparison of the symbolic computation for the original module
and the alternate module yields a “[general] propagation equation”. The propagation equa-
tion identifies hypothetical faults that would not introduce an error (originate a potential
failure) that propagates .(transfers) to output for the given test data set. This equation
suggests additional test data that must be selected to detect the faults that would not have
been detected by the given test data.

Same Path Assumption. Symbolic fault-based testing requires that the original and
alternate modules execute the same path, referred to here as the “same path” assumption.
Morell notes that his approach requires additional analysis to determine what faults would
execute the same paths for the test data being evaluated but does not discuss how such
analysis would be performed. The same path assumption implies that symbolic fault-based
testing does not model control dependence transfer. Thus, this method is unable to measure
" test data adequacy where the chains from a fault to a failure include control dependence.
Empirical studies of the nature of information flow and how often this assumption holds
are needed. _

Despite these weaknesses, Morell’s approach warrants further investigation. Extension
to Morell’s work to capture control dependence would seem feasible by incorporating the
symbolic path condition with the symbolic computation. Hybridization of the transfer
ideas in RELAY with the symbolic fault-based testing ideas of Morell is an interesting area

for further research.

26

4.2.2 Mutation Analysis

Mutation analysis, first described by DeMillo, Lipton and Sayward [DLS78], evaluates a
test data set (for which the module being tested executes correctly) by comparing actual
execution of the module being tested with the execution of alternate modules, each con-
taining a seeded fault. The Mothra mutation analysis system [DGK*88] automatically
introduces a simple syntactic change, or “mutation”, into the source code to produce an
alternate module, or “mutant”. Many different mutations are considered independently
for each location in the module, thus creating hundreds (or even thousands) of mutants
for each module. The system then executes each mutant on the given test data set to
determine whether it produces different output results than the module being tested on at
least one test datum, in which case the mutant is said to be “killed”. Mutation analysis
measures the adequacy of a test data set according to its ability to kill mutants and assigns
a mutation score, which is the ratio of killed to non-equivalent mutants. A tester might
then manually create test data to kill specific mutants that remain live. Mutation testing
consists of augmenting the test data set, verifying output correctness of the module being
tested, and killing mutants until the tester is satisfied with the mutation score.
Recognizing that creating test data is one of the most human-intensive activities in
mutation testing, Offutt developed constraint-based testing which generates conditions that
are “designed specifically to kill the set of mutants” [Off88]. For each mutation, test data is
generated to satisfy the “reachability” and “necessity” conditions, which are necessary and
sufficient to execute the hypothetical fault (mutated statement) and to originate a potential
failure, respectively. No assistance, however, is provided for determining or satisfying the
“sufficiency” condition, which is sufficient for transferring the originated potential failure
to output. Offutt implemented a constraint-based test data generator within the Mothra
system.
Coupling Effect Assumption. Mutation analysis has an underlying assumption, called
the “coupling effect”, which states that “test data detecting simple faults are sensitive

enough to also detect more complex faults. In other words, complex faults are coupled

27

to simple faults” [DLS78, Offi88]. Based on this assumption, mutation analysis extrapo-
lates the mutation score for single, simple mutations as a measure of the ability to detect
complex faults. Thus, the coupling effect serves as the primary justification for the utility
of mutation testing. Although not elaborated in the mutation testing papers, we believe
the intuition being used here is that each complex fault contains at least one atomic fault
and that test data that detect the atomic faults would be sufficient to detect the com-
plex faults. Figure 3 schematically illustrates the coupling effect and how it would justify
mutation analysis. The original module contains a complex fault at j, where the triangle
should be a circle. Introducing simple mutations at every possible location in the program
will result in at least one program that contains a mutated j, indicated by a subscripted
triangle labeled “alternate #1”. Mutation testing would select test data that distinguishes
between alternate #1 and the original module. The coupling effect says that this test
data would also distinguish between the original module with the triangle and the correct

module with the circle.

Alterrite #1 Altornate #1
Correct Modile Correct Module
Original Module) DN O Original Module LA
1O
(AN O
! A Alternate #n | A Alternate #2
r O
I Aa
AN
Schematic of Coupling Effect Schematic of Non-Masking Faults

Figure 3: Comparison of Coupling Effect and Non-Masking Faults Assumptions

Using the Mothra system, Offutt performed an empirical study in an attempt to demon-
strate the coupling effect and justify mutation analysis [Off89]. For the purposes of this

study, he defined a simple fault as a single mutation applied at a single location and a

28

complex fault as some combination of n simple faults, called a n-order fault, thus creating
a nth-order mutant. Offutt studied three small Fortran-77 modules. For each module, he
generated a test data set that killed a subset of the first-order mutants of the module.
Second-order mutants were then constructed by combining the first-order mutants. The
test data set was found to be sufficient to kill over 99% of the second-order mutants for
each of the three modules. Offutt analyzed the second-order mutants that were not killed
and found none that were particularly unlikely to be killed. To verify this, he repeated
the experiment with different test data sets. Again, a high percentage of the second-order
mutants were killed, and different second-order mutants remained live.

In evaluating this study, we must first ask whether the initial assumption that a complex
fault can be modeled as n simple faults is valid. If one agrees that complex faults can
be modeled as combinations of n simple faults, then the results do indeed provide some
evidence for the coupling effect.

Certainly on some level, complex faults are composed of a set of simple faults. However,
it is probably not true that they are composed of a set of unrelated simple faults. To the
contrary, one would suspect that a complex fault is composed of a set of related atomic
faults. Since it is not clear how this relationship changes the detectability of the complex
fault, this study really does not provide evidence for or against the coupling effect. When
we ask what it means to detect a complex fault, we must consider the dependences between
the atomic faults that comprise the complex fault.

Consider two first-order mutants m, and m, and a second-order mutant (m;,m).
Offutt’s Tesults indicate that a test set T that kills m, (and m,) also kills (m,,m2) 99%
of the time. This means that there is some test datum in T' that kills m,, and 99% of the
time there is also a test datum in T that kills (m,,m;). These results, however, do not
indicate that the second-order mutant (m,,m;) is in any way coupled to the first-order
mutant m,, because we do not know if the same test datum that kills m, also kills (m1, m3).
Further, for this test datum, we do not know whether m; was executed; if it was, we do not
know whether it originated a potential failure; and if it did, we do not know whether that

potential failure transferred to a point where it could interact with some potential failure

29

caused by m;. To answer these questions, we need knowledge of the dependences between
m, and m,. This knowledge is captured by RELAY’s modeling of information flow.
Non-Masking Faults Assumption.

Offutt’s results in the experiment described above do speak more directly to the issue of
fault interaction and masking. An assumption of RELAY as well as most fault-based testing
techniques is that multiple faults in a module do not interact in such a way as to mask
each other (or that there is only one fault). Figure 3 illustrates the non-masking faults
assumption (and how it differs from the coupling effect). The original module contains
two faults at locations 7 and j. The non-masking faults assumption says that a test datum
that would distinguish between the original module and alternate #1 would also distinguish
between the original module and the correct module (and likewise for alternate #2). Note
that in the non-masking faults assumption, it does not matter whether both faults are
executed or if there are dependences between them, only that they do not mask each
other. _

In Section 3, we demonstrate how potential failures from a single fault could interact
to mask out the potential failures and hide the fault. It is not difficult to see how potential
failures from multiple faults could interact in the same way and mask one or both faults.
Clearly, the assumption that multiple faults cannot mask each other does not always hold.
Morell [Mor84] states several theoretical results about fault masking® and shows that in
general it is undecidable whether or not multiple faults mask each other.

Since it is unlikely that a module being tested has a single fault, we must empirically
examine the assumption that multiple faults do not mask each other. Offutt’s results from
the study described above suggest that multiple faults do not mask each other. In particu-
lar, Offutt’s results show that 99% of the time, a test data set that kills a single atomic fault
in isolation will also kill the fault in the presence of a second atomic fault. These results
provide promising although not definitive support of the non-masking assumption. Addi-
tional study on a larger, representative suite of modules is needed. To adequately evaluate

fault masking, it is imperative that this suite have representative patterns of information

5Morell uses the term “coupling”.

30

flow. Further, such studies need to examine the assumption for a single test datum rather
than over a test data set. If such studies demonstrate that multiple faults usually do not
mask each other, this strengthens the case for fault-based testing. If, on the other hand,
the assumption does not hold, then we must consider the effect of additional faults on the
detectability of a particular fault. We feel results from an investigation into sufficient fault
independent computational transfer conditions for single faults may also be applicable to
the problem of multiple faults, perhaps allowing the assumption to be relaxed.

Weak Mutation Hypothesis. .

To justify constraint-based testing, Offutt argues for the “weak mutation” hypothesis,
which states that “it is unlikely that an intermediate incorrect value is masked out at
a later computation” [Off88]. When this assumption holds, a test datum that executes a
faulty expression and originates a potential failure transfers the potential failure to output.

To support the weak mutation hypothesis, Offutt argues probabilistically about p, the
probability that a test datum satisfying the reachability and necessity conditions also
satisfies the sufficiency condition. The probability of not satisfying the sufficiency condition
on n attempts is (1—p)", and the probability of at least one “success” is thus I' = 1—-(1-p)™.
Offutt argues that I' grows very quickly, because p is positive. This, he concludes, means
that even if the probability of detecting a mutant on a test datum is very low, there is
a high probability that if several test data are selected to satisfy the reachability and
necessity conditions, then at least one will also satisfy the sufficiency conditions. Thus,
Offutt argues that selecting multiple test data that o.rigina.te a potential failure implicitly
addresses transfer and no additional techniques are necessary.

This same argument, however, could be applied to selecting test data that satisfies any
portion of the failure condition, for example, just the reachability condition. We could use
Offutt’s argument to conclude that multiple test data that satisfy the reachability condition
have a high probability of detecting fhe fault. Thus, there would be no reason to do more
than statement testing with multiple test data for each statement. It is hard to disagree
with the obvious conclusion that the more testing the higher the probability of detecting
a fault. Although the question of what portions of failure conditions are probably met by

31

random test data [Woi91] is important, Offutt’s probabilistic argument says nothing about
this. The RELAY model and the inherent complexity of failure conditions, on the other
hand, shows how difficult it is to guarantee fault detection. Clearly from the examples in
the previous sections, test data that satisfies the original state potential failure condition
would not always satisfy the transfer conditions. The question is, however, how often does
the weak mutation hypothesis hold in testing. Both Offutt and Marick have undertaken
empirical studies to address this question.

Offutt performed an empirical study' that examines the “precision” P of a test data
set, which Offutt claims estimates p, the probability, discussed above, that satisfying the
reachability and necessity conditions also satisfies the sufficiency condition. He reports P
between .61 and .94 and concludes that, although there is a wide variation of precision, “...
if we satisfy the same constraint [the reachability and necessity constraints] with multiple
test cases ..., then we can achieve a high mutation score with only a few test cases per
constraint” [Off88].

From a testing point of view, these results are reassuring. Because Offutt’s results
involve small modules, however, additional studies are required. Furthermore, examina-
tion of the modules indicates a high proportion of conditional statements. Insight from
RELAY tells us that in this case, transfer of a potential failure involves much more control
dependence transfer than data dependence transfer. It is not clear that these information
" flow patterns and the size of the modules studied are representative. Also, Offutt’s imple-
mentation of constraint-based testing does not handle many types of constraints (such as
conditions involving internal variables or nested conditions) and thus excludes many com-
monly occurring types of faults and forms of transfer. Since transfer conditions are often
fault dependent, it is not clear that the results hold more generally for all faults. Finally,
and most importantly, even if the weak mutation testing hypothesis does hold 61% or more
of the time, we cannot assume that simply selecting multiple test data solves the problem,
without investigating the question of why the weak mutation hypothesis frequently fails.
If the hypothesis fails because for some constructs transfer is particularly difficult, then we

could be selecting a lot of test data that does not transfer.

32

Marick also evaluated the weak mutation hypothesis and addressed some of the factors
involved when transfer fails [Mar91]. Four modules, containing between 9 and 206 lines,
were selected from each of five widely used programs. Several simple faults were seeded
into each module, and the code was analyzed by hand to determine the circumstances
under which the effect of the fault would be observable. Marick found that the weak
mutation hypothesis always holds in 50% of the cases. He also found that the weak
mutation hypothesis almost holds in 20% of the cases — that is, a fault would be detected
in almost all cases by test data that originates a potential failure. In 16% of the cases,
the weak mutation hypothesis does not hold, but branch coverage would detect the fault,
except in rare cases. In 6% of the cases, “specification-based” testing (such as equivalence
class testing with boundary value coverage) would detect the fault where neither weak
mutation testing nor branch coverage would. Combining weak mutation testing, branch
coverage, or specification-based testing would have been inadequate in only 8% of the cases.

Marick further analyzes these results for influencing factors. The factors he considers
are: complexity of the code, type of fault, likelihood of the fault, and type of module
containing the fault. He found the type of module containing the fault to be the only
significant factor. In particular, for modules that only return a boolean value, he found
the percentage of seeded faults detected by weak mutation testing and branch coverage
to be significantly lower than faults in other types of modules. From the point of view of
information flow transfer, this is not surprising because these faults are more likely to be
masked out due to the collapsing of the value space into binary (boolean) values. This
information suggests that one area where constructing the transfer condition is particularly
important is boolean expressions. For these expressions, the transfer conditions are quite
straightforward.

It is difficult to evaluate the validity of Marick’s results because the actual analysis is
performed by hand, the analysis techniques are not fully described, and the results are
somewhat anecdotal. While we feel that the modules examined are more representative
than those used by Offutt, the size of the study is quite modest and must be interpreted as

initial results. Nonetheless, the study asks some very interesting questions. In particular,

33

it asks how different types of constructs effect the weak mutation hypothesis.

Our future research includes empirical studies that investigate whether certain con-
structs in the code are more prone to coincidental correctness by looking at transfer through
different information flow constructs. The RELAY model provides us with a new perspec-
tive from which to analyze the process of transfer of a potential failure to output. Such
studies should provide insight into how to handle different types of code. If such code is
identified, then some partial information flow transfer conditions through such code, result-
ing in a mutation approach between strong and weak, known as a firm mutation approach

[WHS8], may prove sufficient to achieve high fault detection.

5 Major Contributions and Summary

This paper presents the RELAY model of faults and failures, focusing on transfer of an in-
correct intermediate state, or potential failure, from a faulty statement to output. Transfer
occurs along information flow chains, where each link in the chain involves data dependence
transfer and/or control dependence transfer. RELAY models the multiple information flow
chains that may be concurrently transferred along with transfer sets, which identify possi-
ble interaction between potential failures. RELAY models actual interaction with transfer
routes. Transfer sets and transfer routes form the framework that unifies the components
of transfer.

While previous work in fault-based testing recognized the two steps of introducing
an incorrect state and transferring an incorrect state to output, RELAY fully describes
the complexity of these steps. In particular, some previous research recognized data flow
transfer, but RELAY provides an in-depth investigation of the role of control dependence
transfer and of the interaction between control dependence and data dependence transfer.
Moreover, while other research has only considered transfer along a particular path, RELAY
considers how transfer may occur concurrently along several intersecting information flow
chains. Interactions occur at these intersection points and may mask potential failures.

The RELAY model pulls together research in fault-based testing, data flow path selection,

34

program slices [Wei84], and program dependence analysis [PC90].

The RELAY model provides an interesting basis for substantial future work in software
analysis and testing. One application of the model is to determine the condition that
must be satisfied to guarantee detection of a fault. This failure condition may be used to
evaluate previously selected test data, guide selection of additional test data, or analyze
fault propagation through a module. It can be selectively applied, and therefore can be
used in testing highly critical systems by focusing analysis on critical modules, statements,
or variables. Additional research is needed in how the comprehensive transfer information
provided by RELAY may be used in guiding testing. In addition, we suggest extending
Morell’s symbolic fault-based testing, developing sufficient computational transfer condi-
tions for multiple faults, and investigating the weak mutation hypothesis, multiple fault

interaction and complex faults.

References

[ABD*79] A.T. Acree, T. A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Mu-
tation analysis. Technical Report TR GIT-ICS-79/08, Georgia Institute of
* Technology, September 1979.

[BDLS78] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward. The design of a
prototype mutation system for program testing. In Proceedings NCC, 1978.

[BMD91a] The Procurement of Safety-Critical Software in Defence Equipment. British
' Ministry of Defence, Interim Defence Standard 00-55, Issue 1, April 1991.

[BMD91b] Hazard Analysis and Safety Classification of the Computer and Programmable
Electronic Systerm elements of Defence Equipment. British Ministry of Defence,
Interim Defence Standard 00-56, Issue 1, April 1991.

[Bud83] Timothy A. Budd. The portable mutation testing suite. Technical Report TR
83-8, University of Arizona, March 1983.

[DGK*88] R.A. DeMillo, D.S. Guindi, K.N. King,' W.M. McCracken, and A.J. Offutt. An
extended overview of the mothra software testing environment. In Proceedings
of the Second Workshop on Software Testing, Verification, and Analysis, July
1988.

35

[DLS78]

[DLST9]

[Fos80]
[How78]
[How82]
(LHS3)
[Mar91]
[Mor84]

~ [Mor88]

[Offs8]

[Off89)]

[PC90]

[RTS6]

R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection:
help for the practicing programmer. Computer, 4(11), April 1978.

R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Program mutation: A new
approach to program testing. Technical Report v. 2, Infotech International,
1979.

Kenneth A. Foster. Error sensitive test case analysis (ESTCA). IEEE Trans-
actions on Software Engineering, SE-6(3):258-264, May 1980.

William E. Howden. Algebraic program testing. Acta Informatica, 10, October
1978.

William E. Howden. Weak mutation testing and completeness of test sets.
IEEE Transactions on Software Engineering, SE-8(2):371-379, July 1982.

Nancy G. Leveson and Peter R. Harvey. Analyzing software safety. IEEE
Transactions on Software Engineering, 9(5):569-579, September 1983.

Brian Marick. The weak mutation hypothesis. In Proceedings of the Fourth
Symposium on Testing, Analysis and Verification, pages 190-199, October 1991.

Larry J. Morell. A Theory of Error-Based Testing. PhD thesis, University of
Maryland, April 1984.

Larry J. Morell. Theoretical insights into fault-based testing. In Proceedings
of the Second Workshop on Software Testing, Verification, and Analysis, July
1988.

A. Jefferson Offutt. Automatic Test Data Generation. PhD thesis, Georgia
Institute of Technology, August 1988.

A. Jefferson Offutt. The coupling effect: Fact or fiction. In Proceedings of the
Third Workshop on Software Testing, Verification, and Analysis, December
1989.

H. Andy Podgurski and Lori A. Clarke. A formal model of program dependences
and its implications for software testing, debugging, and maintenance. IEEE
Transactions on Software Engineering, 16(9):965-979, September 1990.

Debra J. Richardson and Margaret C. Thompson. An analysis of test data
gelection criteria using the relay model of error detection. Technical Report 86-

65, Computer and Information Science, University of Massachusetts, Ambherst,
December 1986.

36

[RT88]

[Tho91a)

[Tho91b)

[Wei84]

[WHSS)

[Woid1]

[Zei83)

Debra J. Richardson and Margaret C. Thompson. The relay model of error de-
tection and its application. In Proceedings of the Second Workshop on Software
Testing, Verification, and Analysis, July 1988.

Margaret C. Thompson. An Investigation of Fault-Based Testing Using the
RELAY Model. PhD thesis, University of Massachusetts at Amherst, May 1991.

Margaret C. Thompson. Single iteration chain loop analysis and identification
of transfer sets and transfer routes for the RELAY model. Technical Report 91-

22, Computer and Information Science, University of Massachusetts, Amherst,
May 1991.

Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
SE—10(4), July 1984.

M.R. Woodward and K. Halewood. From weak to strong, dead or alive? an
analysis of some mutation testing issues. In Proceedings of the Second Workshop

on Software Testing, Verification, and Analysis, July 1988.

Denise M. Woit. Realistic expectations of random testing. Technical Report
CRL No. 246, Telecommunications Research Institute of Ontario, McMaster
University, Hamilton, Ontario, April 1991.

Steven J. Zeil. Testing for perturbations of program statements. IEEE Trans-
actions on Software Engineering, SE-9(3):335-346, May 1983.

37

