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Abstract

Fagin et al. characterized those symmetric Boolean functions which
can be computed by small AND/OR circuits of constant depth and
unbounded fan-in. Here we provide a similar characterization for d-
perceptrons — AN D/OR circuits of constant depth and unbounded
fan-in with a single M AJORITY gate at the output. We show that
a symmetric function has small (quasipolynomial, or 9log”n size) d-
perceptrons ¢ff it has only poly-log many sign changes (i.e., it changes
value logo(l) n times as the number of positive inputs varies from zero
ton). A consequence of the lower bound is that a recent construction
of Beigel is optimal. He showed how to convert a constant-depth un-
bounded fan-in AN D/OR circuit with poly-log many M AJORITY
gates into an equivalent d-perceptron — we show that more than poly-
log MAJORITY gates cannot in general be converted to one.
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1 Introduction

1.1 The d-Perceptron Model

The power of constant-depth circuits of unbounded fan-in AND and OR
gates (e.g. the well-known AC? circuits) is by now fairly well understood
[FSS, Aj, Ha, Ya]. One of the major open problems of complexity theory is
to place any non-trivial bounds on the computing power of constant depth
circuits of unbounded fan-in threshold or MAJORITY gates. The class
T(C°, of languages recognized by polynomial-size families of such circuits,
might be equal to NP for all we can prove. A natural approach to bridging
the gap between AND/OR circuits and threshold circuits is to consider
models which combine the two kinds of gates.

One very old example of such a model is the perceptron of Minsky and
Papert [MP], which can be viewed as a MAJORITY gate whose inputs are
AN Ds of the input variables. These original perceptrons are rather limited
and their computing power is well understood. But recently, perceptrons have
been revived in a new form [BRS]. Along with a probabilistic version, there
has emerged what we will call the d-perceptron, a constant-depth unbounded
fan-in circuit which has AN D and OR gates except for a single MAJORITY
gate at the output. It has been shown that such circuits require exponential
size (exponentially many gates) to compute the MOD, function [Gr], to
approximate the MOD, function [ABFR], or to compute or approximate
the MOD, function for any constant ¢ [BS]. These d-perceptrons are closely
linked to a model of computation which is interesting in its own right, where
one evaluates a multilinear polynomial in the input variables, with coefficients
in the integers or the reals, and outputs the sign of the result. (This can be
extended to polynomials over the complex numbers, using an ad hoc notion
of “sign” [BS].) Furthermore, the d-perceptron model is robust, in that other
circuit models with a limited use of threshold gates can be mapped into it
[BRS, ABFR, Be].

In the study of threshold computations, harmonic analysis has found

many interesting applications (for some recent examples, see [Br, KKL,
LMN]). Of particular interest to us is the work by Linial et al. [LMN],



where they showed that any AC° function (any function computable by a
poly-size constant-depth AND/OR circuit) can be closely approximated by
a low-degree polynomial, a result which has consequences for the learnability
of AC® functions. This work, together with [ABFR, BS], has been the chief
inspiration for our work. However, our proof of the lower bound result is

based on the random restriction technique [FSS, Ha, Ya].

1.2 Complexity of Symmetric Functions

The symmetric boolean functions are those which are invariant under any
permutation of the inputs. We can describe a symmetric boolean function
by giving its spectrum, which is the sequence (f(0),..., f(n)), where each
f(2) is the value of the function when 7 of the n inputs are one. All sym-
metric functions are in T'C?, because they have linear-size depth-2 threshold
circuits. In any model the complexity theory of the symmetric functions
forms a subtheory of that of all boolean functions, and in some models this
theory can be interesting and beautiful.

For example, consider the well-understood model of constant-depth un-
bounded fan-in AND/OR circuits. A theorem of Fagin et al. [FKPS], using
the exponential lower bound for PARITY due to Yao [Ya, Ha|, gives an
elegant characterization of the symmetric functions which have polynomial
size in this model (are in the class AC?). These functions are those whose
spectra are constant except for a poly-log section at either end. That is,

there is some function g(n) = log®™M n such that for each n, f(7) is constant
in the range g(n) < i < n — g(n). Our principal result is that a similar

characterization holds in the d-perceptron model we consider.

1.3 The Main Result
In the d-perceptron model we add a single MAJORITY gate tothe AND/OR

circuit, and thus we immediately allow new symmetric functions, such as
MAJORITY itself, to be computed. In previous work in this model [ABFR],
two key parameters of a boolean function have proven to be its strong degree

and weak degree. These are based on a space of polynomials over the real



numbers, where the boolean domain is taken to be {—1, 1} rather than {0, 1}.
The strong degree is the minimal degree of a polynomial whose sign always
agrees with the target boolean function. The weak degree is the minimal de-
gree of a polynomial, not identically zero, whose sign agrees with the target
boolean function whenever the polynomial is nonzero. For symmetric func-
tions, these two degrees are equal [ABFR], and furthermore they are equal
to the number of sign changes of the spectrum (the number of 7 for which
f(@) # f(3+1)). It turns out that this parameter of symmetric functions give
us an exact characterization of the symmetric boolean functions computable

in the d-perceptron model as stated below.

Theorem 1 A symmetric boolean function can be computed by a quasipoly-

nomaal size d-perceptron iff it has only poly-log many sign changes.

The organization of the paper is as follows. In section 2 we define some
notations and terminologies. In section 3 we give the easier part of the proof
of Theorem 1 — the upper bound. In section 4 we give the harder part of
the proof of Theorem 1 — the lower bound. Finally in section 5 we conclude

our work and present some open problems.

2 Preliminaries

We will consider functions from {—1,1}" to the reals R (with boolean func-
tions being the special case with range {—1,1}) as multilinear polynomials
over R with input variables {zi,...,z,}. The size of a polynomial is the
number of nonzero coefficients, and the degree is the maximum number of
variables appearing in any term with nonzero coefficient. We use [n] to de-
note the set {0,1,2,...,n}, and by |z| we mean the number of —1’s in z (in
general we think of —1 as “true” and 1 as “false”).

A symmetric boolean function is a boolean function whose value only
depends on |z|. It can be proved that, over the reals, we can regard a
symmetric boolean function as a function of z = |z|. Hence, in this way, we
convert a m-variable symmetric boolean function f(z) (where z € {—1,1}")

into a univariate real function f'(z) (where ¢ = |z|) such that deg(f) =
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deg(f'). In the sequel, we will use f to denote f(z) and f'(z) interchangeably.
If 7 € [n], we say i is a sign change of a symmetric function f if f(3) # f(i+1).
The number of sign changes of f is equal to the cardinality of the set {z|f(3) #
F(E+1)}. We will call (£(0), f(1),..., f(n)) the sign change spectrum of f.

Following [ABFR], we define strong and weak representations of boolean

functions as follows.

Definition 1 We say a polynomial F(z) over the reals R strongly represents
a boolean function f(z) if sgn(F(z)) = f(z) for all z € {—1,1}". Here
sgn(F(z)) =14 F(z) > 0 and sgn(F(z)) = —1 if F(z) < 0.

We say a polynomial F(z) over the reals R weakly represents a boolean
function f(z) of F(z) is not identically zero and for all z € {—1,1}" such
that F(z) # 0, sgn(F(z)) = f(z).

Definition 2 Let f(z) be a boolean function. The strong degree of f(z)
(denoted d,(f)) is the minimum degree among all polynomials strongly rep-
resenting f(z), and the weak degree of f(z) (denoted d,(f)) is the minimum

degree among all polynomials weakly representing f(z).

Notice that in general the weak degree of a boolean function may well be
smaller than its strong degree. However, the following fact as first observed

in [ABFR] says that this cannot happen for symmetric boolean functions.

Lemma 2 ([ABFRY]) Let f(z) be a symmetric boolean function with k sign
changes, then d,(f) = du(f) = k.

We call this quantity the degree of a symmetric boolean function.

The above lemma was proved in [ABFR] by exploring the duality re-
lationship of certain function spaces. We note that it has a simpler proof
using the symmetrization technique [MP]: Let F(z) be a strong or weak rep-
resentation of a symmetric boolean function f(z). Note that F(z) is not
necessarily symmetric itself; however, we can easily use F/(z) to construct a
symmetric function G(z). Formally, G(z) = Y ,cs, F7(z), where S, is the
nth symmetric group and F7(z) = F(z7) = F(2o1), ..., Zo(n)). Obviously
G(z) strongly (weakly) represents f(z) if F'(z) strongly (weakly) represents
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f(z), and G(z) has the same degree as F(z). Since G(z) is symmetric, G(z)
can be written as a univariate real function of |z|. Therefore the degree of
G(z) is at least the number of sign changes of f(z), and thus that of F(z).
But it is easy to construct a real polynomial strongly representing f(z) such

that its degree equals the number of sign changes of f(z).

3 The Upper Bound
We first define the d-perceptron model as introduced in [ABFR, BRS].

Definition 3 A d-perceptron is a circuit with a MAJORITY gate at the
top and depth-d unbounded fan-in AND/OR subcircuits feeding into the
MAJORITY gate. The size of a d-perceptron is the number of gates in

the circust.

We will be interested in d-perceptrons of polynomial and of quasipolynomzal
(2l°g0(1)”) size. Note that by [FKPS], ordinary constant-depth AND/OR
circuits of quasipolynomial size can compute no more symmetric functions
than can circuits of polynomial size. For more on quasipolynomial size circuit
classes, see [Ba].

Consider a polynomial strongly representing a boolean function on {0, 1}
such that the coefficients are positive integers bounded by a quasipolynomial
in n. It is easy to see that such a polynomial corresponds to a quasipolynomial
size 1-perceptron whose gates on the first level are poly-log fan-in AN Ds. In
the following lemma we show that any symmetric boolean function with
only poly-log degree (i.e. sign changes) has such a low degree polynomial

representation, and hence can be computed by such 1-perceptrons.

Lemma 3 Any symmetric boolean function with only poly-log degree can be
computed by a quasipolynomaal size 1-perceptron with AN Ds of poly-log fan-

m.



Proof: Let 0 <¢; <ey <...< ¢ <n be the positions of the sign changes
of f(z), where k = log®®)n. Then the following function

= fl s - s {1 110

i=1 i=1
agrees with f(z) in sign (note here z € {0,1}").
F(z) is a poly-log degree polynomial with rational coefficients, but we can
easily make F(z) a polynomial with integer coeflicients (without changing

its sign) by multiplying it by an appropriate positive constant.
The problem left now is to convert the polynomial into one with only
positive coefficients. Reversing the procedure used in [MP] to prove the
Positive Normal Form Theorem, we can eliminate all the negative coefficients

without blowing up either the degree or the size of the coefficients. n

4 The Lower Bound

In this section, we will prove that any symmetric boolean function with more
than poly-log sign changes cannot be computed by any quasipolynomial size
d-perceptron. The proof makes use of some key observations by Linial, et al
[LMN], and uses the very technique of random restriction, first introduced
in [FSS] and refined in [Ya, Ha|, that gave the first exponential lower bound
for AND/OR circuits.

A random restriction is a random mapping of the input variables to 0,
1 and * according to some probability distribution. The function obtained
from f(zi1,...,2,) by applying a random restriction p is denoted by f*,
and its variables are those z; for which p(z;) = *. For our purpose, we
will assume that p assigns values to each input variable independently and
Pr[0] = Pr1] = =2

A simple observation is that any random restriction of a symmetric boolean
function is still symmetric; furthermore, its sign change spectrum is a subin-
terval of that of the original function.

Recall that a manterm of a boolean function is a set of variables such that a

partial assignment to the variables in the set makes the function identically



1, but no partial assignment to any subset of the set makes the function
identically 1. Similarly, a mazterm is a set of variables such that a partial
assignment to the variables in the set makes the function identically 0, but
no partial assignment to a subset of the set makes the function identically 0.

A useful fact, which was independently discovered in [BI,HH, Ta|, and
explicitly stated in [LMN], states that if all the minterms and maxterms of
a boolean function f have size at most s and t respectively, then f can be
evaluated by a decision tree of depth at most st. Since each branch of the
decision tree corresponds to a monomial over the reals, we see that f can be
represented as a real polynomial of degree at most st. This observation will
be used in the proof of lemma 5 below.

It is well-known that with high probability, a random restriction of an
AC"® function will have small minterm size and maxterm size. This can be
proved by a repeated applications of Hastad’s switching lemma [BoS, LMN].
We state this fact formally as follows.

Lemma 4 ([LMN]) Let f be a boolean function computed by an AND/OR
circuit of size M and depth d. Then

Pr[f? has a minterm or a mazterm of size >t] < M27*
where p is a random restriction such that Pr[x] = 1/(10¢)%.

Lemma 5 Let f be a symmetric boolean function on n variables. Suppose f
can be computed by a d-perceptron such that the fan-in of the MAJORITY
gate is N, the size of each AND /OR subcircuit is at most M, and the depth
s at most d, where N, M < 2¢='. Then for a positive fraction of the random
restrictions p in a distribution with Pr[x] = p = (1(7)1—t)d’ f? is a function of at
least np = (1(7)1—t)d variables, the number of sign changes of f* is at most O(t?),
and the sign change spectrum of f? is a subinterval with its center at most
O(y/n) off the center of the sign change spectrum of f.

Proof: Let p be a random restriction with Pr[x] = p = (1(}—t)d' Denote by f;,

1 <1 < N, the subfunctions computed by the AND/OR subcircuits, and by



ff, 1 <1 < N, the functions obtained by the random restriction. Applying

Lemma 4 to each f;, we have
Pr[ff has a minterm or maxterm of size > 2t] < M2 %,

Hence,

N
Pr[\ f/ has only minterms and maxterms of size < 2t]
=1
N

> 1—Y_ Pr[f{ has a minterm or maxterm of size > 2¢]
=1

Z 1 — NM2—2t Z 1— 22t—22—2t Z

NN

On the other hand, the expected number of variables assigned * is np =
(1(7)1—t)d' By the normal approximation to binomial distribution, for n large, we
see that with probability at least %, p will assign *’s to at least np variables
and an almost equal number of 0 and 1’s to the rest of the input variables.

Therefore, there must be a p such that f* = MAJORITY(f,..., f¥)
is a function on at least np variables, and each ff has both minterms and
maxterms of size < 2¢. It follows that ff can be represented by a (—1,1)-
valued real function of degree at most 4¢2, hence g = YN, f7 — % is a strong
representation of f*. Since g” has degree at most 4t%, f? can have at most
4t? sign changes. u

o(1)

Remark: If we choose t = log”'"/ n, then f* can have only poly-log many

sign changes. Therefore for the original function f, there must exist a subin-

terval of length at least logo’zl)n, near the center of the sign change

=
spectrum of f, such that(ljg)has at most poly-log many sign changes in that
interval.

To prove the result that any symmetric function of more than poly-log
sign changes cannot be computed by any quasipolynomial size d-perceptron,
we need to use a shifting technique to locate an interval in the sign change
spectrum of the function such that we can apply the above lemma to obtain

a contradiction.



Lemma 6 If f is a symmetric boolean function of more than poly-log sign
changes, then f cannot be computed by a quasipolynomial size d-perceptron

for any constant d.

Proof: Suppose the opposite is true: there exists a quasipolynomial size
d-perceptron for some constant d. Let ¢ be such that N, M < 21°6°7~1 where
N, M are as in lemma 5. Let s(n) be the sign change function of f, by the
hypothesis s(n) = log®M n.

Consider the interval [sZ(n),n — s2(n)] of the sign change spectrum of
f, the number of sign changes in this interval is Q(s(n)). Without loss
of generality, we assume that there are Q(s(n)) sign changes in [s(n)%, 31
Partition this interval into k intervals of the form [2s2(n), 207152 (n)], where
0<i<k—1and k=1logn — ;logs(n) —1 = O(logn).

We further partition each of the intervals [2¢s7 (n), 20157 (n)] into & subin-

tervals of length % where § = (10¢t)% and t = log®n, i.e. § = (10log®n)? =

O(log®n). We contend that one of the subintervals must have w(¢?) sign

changes, since otherwise, the total number of sign changes in [s%(n), 3] is at
most -2 O(t2)8 = O(t26k) = log® ) n, a contradiction. Therefore for some
1, 0 <7 < k — 1, a subinterval of length leiﬁ = log“) n has w(t?) sign
changes.

By an appropriate partial assignment to the input variables, we obtain
from f a function f’, of 2".5%(11) variables, whose sign change spectrum is
identical to an interval of the sign change spectrum of f which contains the
aforementioned subinterval at center. Note that the circuit for f induces
a circuit for f’ of size at most that for f and thus its N', M’ are bounded
by 2t=1 = 2l°8°n~1  Therefore, applying lemma 5 to f’, we have that there
exists a random restriction p such that f'” contains the subinterval as its sign
change spectrum. However, f’” can have only O(t*) = logo(l)n many sign

changes, hence we arrive at a contradiction. n

We have now completed the proof of our main Theorem 1, by combining
Lemma 3 and Lemma 6. We conclude with a consequence of Lemma 6 —
the optimality of a recent construction of Beigel [Be].

Beigel shows that d-perceptrons serve as a normal form for AND/OR
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circuit s augmented by a small number of MAJORITY gates. In particular,
a circuit of unbounded fan-in, quasipolynomially many AN D, OR, and NOT
gates, and poly-log many MAJORITY gates can be converted into a d-
perceptron of quasipolynomial size. We can now show there is no general

way to eliminate more than poly-log many M AJORITY s in this way.

Corollary 7 Let m = log“’(l)n. There exists a symmetric boolean function
computable by circuits of O(m) MAJORITY gates (with no other gates) but

not computable by any d-perceptron family of quasipolynomaal size.

Proof: By Lemma 6, any symmetric function with exactly m sign changes

will do. n

5 Conclusion and Open Problems

In this paper, we proved an if and only if condition for a symmetric boolean
function to be computable by a quasipolynomial size d-perceptron circuit.
This work extends the line of an earlier work by Fagin, et al [FKPS] where
they gave an if and only if condition for a symmetric function to be com-
putable by a polynomial size AND/OR circuit.

In an attempt to capture symmetric functions in other models, in [ZB]
we also studied the size complexity of symmetric functions in the parity-
threshold model, z.e. circuits consisting of a MAJORITY gate whose in-
puts are PARITY gates. We conjectured that an analogous if and only if
condition exists, but we were only able to partially resolve the problem un-
der a certain technical condition. One particular case of interest is that for
any constant p > 2, MOD, is not computable by any quasipolynomial size
parity-threshold circuit.

The analysis of threshold computation by algebra over fields of character-
istic zero has proved somewhat fruitful. The computation of circuits of AN D,
OR, and MOD, gates has been very well explained using algebra over fields
of characteristic p ([Ra], [Sm]). Is it possible to combine the two methods, or

otherwise place limits on the power of the following perceptron-like model:
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a MAJORITY gate, whose inputs are constant-depth AND/OR/MOD,

circuits?
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