AN INTEGRATED APPROACH
TO DYNAMIC TASK AND RESOURCE MANAGEMENT
IN MULTIPROCESSOR REAL-TIME SYSTEMS

A Dissertation Presented

by

CHIA SHEN

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DocToRr OF PHILOSOPHY

September 1992

Department of Computer Science

(© Copyright by Chia Shen 1992

All Rights Reserved

This work is funded in part by the Office of Naval Research under contracts N00014-
85-K-0398 and N00014-92-J-1048, and by the National Science Foundation under
equipment grants DCR-8500332 and CCR-8716858.

AN INTEGRATED APPROACH
TO DYNAMIC TASK AND RESOURCE MANAGEMENT
IN MULTIPROCESSOR REAL-TIME SYSTEMS

A Dissertation Presented
by

CHIA SHEN

Approved as to style and content by:

Krithi Ramamritham, Chair

John A. Stankovic, Member

James F. Kurose, Member

James M. Smith, Member

Arnold L. Rosenberg, Department Head
Department of Computer Science

Dedicated to
MY PARENTS
and
THE MEMORY OF MY GRANDPARENTS
THE MEMORY OF MARGE M. MOLESKY

ACKNOWLEDGMENTS

Obtaining a Ph.D. is a long task that could not have been accomplished without
the many people to whom I am indebted.

I would like to express my deepest gratitude to my advisor, Prof. Krithi
Ramamritham, for his essential guidance and encouragement. Through the years
of working on this dissertation, and other research problems, I have learned from
him what research is and how to be a researcher. His standards of research and
professionalism have set the best example for me and have always given me goals to
strive for in my own work and professional life. I will always be grateful to him for
his patience and open-mindedness in letting me explore my own ideas, and for his
prompt support even in trying times.

I also would like to thank Prof. Jack Stankovic for the past years of co-directing
the Spring Project of which my dissertation is a part, and for his direction and
support on my Ph.D. research. Technical discussions with Jack have always been a
challenge — they have greatly sharpened my argumentation skills. I have learned
a great deal about real-time systems research from working on the various research
problems in the Spring Project.

My gratitude also goes to the other two members, Profs. Jim Kurose and Jim
Smith, of my dissertation committee. I am privileged to have Prof. Jim Kurose
as my master’s thesis advisor, as well as on my Ph.D. dissertation committee. His
enthusiasm in both research and teaching has been an inspiration for me. I thank
him for his careful reading of the dissertation draft. His invaluable comments have

greatly benefited the dissertation, especially in making the introduction chapter

more informative. I am thankful for the time Prof. Jim Smith has spent in carefully
reading my thesis, especially in correcting the proof of Theorem 4 in Chapter 3.

My officemates, colleagues, and friends have been a great source of help, dis-
cussion, and friendship during my graduate student years. I would like to express
my special thanks to Goran for always reminding me there is life besides research,
to Fuxing for providing me with the Workload Generator and for sharing Chinese
culture in the office with me, to Panos for answering all my questions on the logistics
in completing a Ph.D. and the UMass thesis style file which saved me weeks of
formatting, to Victor for his great sense of humor which made my working hours
more bearable, to Carol for all the tennis matches and AmChi lunches, to Doug for
all the Advocates, and to Cris for all the MCI and AT&T information. I would
like to thank all the secretaries of the Computer Science Department, and the staff
members in the RCF, particularly Betty Hardy, Valerie Caro and Sharon Mallory
for being patient when answering my endless questions.

My special thanks go to Mr. C. T. Shen, without whose financial support,
my education in the U.S.A. would have not been possible, and to Y. P. Liu, who
taught me the English language that has been essential in my technical and social
communication.

I will always be thankful to my family. I am grateful for my parents for their
understanding and support, and for enduring the long years of not seeing me. I
thank the Molesky’s — Ben, Marge, Dennis, Todd, and Anna, for making me feel
at home in a foreign land.

Last, but not least, I want to thank my husband, Lory Molesky. In life one may
have a best friend, a close colleague, or a dear spouse, but rarely all three in one. I
am very fortunate to have Lory as such a person who knows all my ups and downs,
sorrow and joy throughout my graduate student life. His understanding, love and

support have made sense out of my life.

vi

ABSTRACT

AN INTEGRATED APPROACH
TO DYNAMIC TASK AND RESOURCE MANAGEMENT
IN MULTIPROCESSOR REAL-TIME SYSTEMS

SEPTEMBER 1992
CHIA SHEN
B.S., STATE UNIVERSITY OF NEW YORK, STONY BROOK
M.S., UNIVERSITY OF MASSACHUSETTS
Pu.D. UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Krithi Ramamritham

In a dynamic real-time environment, predictability needs to be provided in the
face of unpredictable dynamic task arrivals and asynchronous concurrent sharing
of system resources. Consequently, the underlying computer system for dynamic
real-time systems needs to manage time explicitly as a resource in order to support
applications’ timing constraints. Such time management requires that the system
be time comscious, time conscientious, and time conserving. These three properties
encompass the complezity, correctness and performanceissues of algorithms designed
for a dynamic real-time system. In this dissertation, we take an integrated approach
to attack the problems of algorithm design for dynamic multiprocessor real-time
systems that require these three properties in the context of on-line scheduling,
dispatching, and resource reclaiming.

Real-time scheduling algorithms require the use of worst case execution times
of tasks. However, the worst case execution time is an upper bound, and the actual
execution time of a task at run time varies between some minimum value and this
upper bound due to the variabilities inherent in both the computer architecture

and the software. The problem of on-line resource reclaiming in a multiprocessor

vil

real-time system has not been addressed previously. The research presented in this
dissertation represents an initiative effort in characterizing and solving this dynamic
resource reclaiming problem. We analyze the worst case run time anomalies that
can occur in a multiprocessor schedule where real-time tasks have both resource and
processor constraints. We have developed two resource reclaiming algorithms that
are correct — guaranteed not to cause run time anomalies, and have bounded com-
plexity. The effectiveness of the algorithms has been demonstrated via simulation
and implementation on a multiprocessor kernel.

Predictable integration of multiple functional components i1s a challenge unique
to real-time systems. This challenge is exacerbated by the difficulties brought
about by the concurrent and asynchronous nature of multiprocessor systems. We
demonstrate that, for a dynamic real-time system, it is not sufficient to simply
analyze and prove the static properties of an on-line algorithm in isolation of the rest
of the system components. The sharing and contention of resources, such as memory,
shared system buses, and more importantly tzme, require the algorithm designer to
take an integrated view of the system as a whole, considering the interrelationships
of all the system components (be it software, or hardware) that have an effect on
the dynamic timing properties of the algorithm at hand. We discuss a predictable
integration of scheduling, dispatching, and resource reclamation for a distributed

memory real-time multiprocessor system.

viil

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS e e e e e e e e e e e e e s e e e v
ABSTRACT . . . ottt e i e e e vil
LIST OF TABLES ottt ittt e e e e e xii
LIST OF FIGURESo ittt ittt e e e e e xiil
Chapter
1. INTRODUCTIONottt e e e 1
1.1 Motivation 1
1.2 Contributions of This Dissertation 6
1.3 Dissertation Outline 9
2. Dy~NnaMIC TASK AND RESOURCE MANAGEMENT: PROBLEM CHARACTER-
IZATION . . o oo 12
2.1 Necessary Properties of On-line Real-Time Task and Resource Man-
agement Algorithmso o oo 12
2.2 The Problems and Related Work 13
2.2.1 Scheduling and Dispatching 14
2.2.1.1 Feasibility Checking 14
2.2.1.2 Schedule Construction 17
2.2.1.3 Dispatching oL 18
2.2.1.4 Current Research 20
2.2.2 Resource Reclaiming 26
2.2.2.1 Multiprocessor Scheduling Anomalies 28
2.2.2.2 Stability Algorithms for Static Scheduling 29
2.2.2.3 Beyond Stability 0oL 30
2.3 Notation and Assumptions 31
2.3.1 Multiprocessorso 32
2.3.2 Tasks, Resources, and Scheduling 32
2.3.3 Notations 33

X

3. RESOURCE RECLAIMING: THEORETICAL ISSUES 35

3.1 Preliminaries 35
3.2 Timing Anomaly Analysis: 2 Case Studies 38
3.2.1 Greedy Resource Reclaiming Scheme 39
3.2.2 Bounded Greedy Resource Reclaiming Scheme 44
3.3 Timing Anomaly Analysis: General Results 48
3.4 Complexity and Optimality 52
3.5 A Correctness Criterion 57
3.6 Summary 58
4. RESOURCE RECLAIMING: THE ALGORITHMS 60
4.1 Imntroduction 60
4.2 Two Algorithms for Multiprocessor Resource Reclaiming 62
4.2.1 Calculation of Reclaimable Time 64
4.2.2 A Resource Reclaiming Algorithm without Passing 66
4.2.3 A Resource Reclaiming Algorithm with Partial Passing 68
4.3 Properties of the Resource Reclaiming Algorithms 70
4.3.1 Complexity Analysis of the Algorithms 70
4.3.2 Correctness 71
4.3.3 Discussion Through an Example 73
4.4 Applicability of the Resource Reclaiming Algorithms 76
4.4.1 Centralized Memory vs. Distributed Memory Multiprocessor
Models 76
4.4.2 Precedence Constraints among Tasks (e
4.4.3 Tasks with Explicit Start Time Constraints [
444 Other Typesof Tasks 78
4.5 Summary 78
5. SCHEDULING AND DISPATCHING WITH RESOURCE RECLAIMING: A CON-
CURRENT, ON-LINE, BOUNDED-TIME IMPLEMENTATION 80
5.1 Introduction 81
5.2 Computation Time Comparison of Centralized vs. Concurrent Im-
plementation 83
5.3 Multiprocessor Synchronization with Bounded Waiting 89
5.3.1 A Semaphore Implementation with Bounded Waiting and Ef-
ficient Resource Usage 91
5.4 Predictable Construction of Concurrent Scheduling and Dispatching . 94
5.4.1 Potential Incorrectnesso 96
54.2 A Solution 97
5.5 Predictable Resource Reclaiming with On-Line Scheduling 101

5.5.1 Potential Inconsistency of reclaimedé 101

552 A Solution 102
5.6 Summary 105
6. PERFORMANCE EVALUATION 106
6.1 Simulation Method oL 107
6.2 Simulator Validation 0oL 110
6.3 Post-Run Timing Verification: Understanding the Dynamic Behavior
of the Algorithms oo 112
6.4 Simulation Results 0oL 115
6.4.1 Performance comparison of the two resource reclaiming algo-
rithmso 115
6.4.2 Performance Comparison with Rescheduling 117
6.4.3 Effects of Task Laxaty 119
6.4.4 Effects of Worst Case Execution Time 120
6.4.5 Effects of Average Processor Load 121
6.4.6 Effects of Actual Computation Time to Worst Case Compu-
tation Time Ratio. 122
6.4.7 Positive Side Effects of Resource Reclaiming 124
6.5 Summary 127
7. RESOURCE RECLAIMING: NOT JUST AT TASK COMPLETION 129
7.1 The Task Execution Time Life Cycle 129
7.2 Early Notification of Reduction in WCET® 131
7.3 Integrating Early Notification with the Reclaiming-with-Early-Start
Algorithm oL o 133
7.4 Performance Implications 135
7.5 Early Notifications of WC ET® Reduction for More Than One Task . 136
7.6 Summary 140
8. CONCLUSION AND FUTURE WORK 141
8.1 Dissertation Summary oL 141
8.2 Future Work 143

8.2.1 Resource Reclaiming for Tasks with Communication Constraints144
8.2.2 Distributed Resource Reclaiming with Fault Tolerance Con-
straints Lo 144

BIBLIOGRAPHY . . . o i ot e e e e e e e s e e e 146

x1

Table

2.1

3.1

3.2

3.3

3.4

3.5

3.6

5.1

5.2

6.1

6.2

LIST OF TABLES

Page
Characterization of Scheduling Approaches 21
Example 3.1: Task Parameters. 37
Example 3.1: Start Times and Finish Times produced by no re-
source reclaiming. Lo 37
Task Parameters: pid = processor id, ¢; = worst case computation
time, ¢, = actual computation time, d; = deadline, for 1 <7 < m. 43
Task resource requirements. 43
Task Parameters: pid = processor id, ¢; = worst case computation
time, ¢, = actual computation time, d; = deadline, for 1 <7 < m
and 2 <7<m. 47
Task resource requirements for the worst case construct of the Bounded
Greedy algorithm. oL 47
Computation Time Comparison for Centralized vs. Concurrent Im-
plementation 84
Execution times (us) of Step2.BASIC on a VMEbus based Motorola
68020 multiprocessor. Lo 88
Simulation Parameters oL 108
Simulator Validation. NR = no resource reclaiming; BR = basic
reclaiming; ES = early start. o000 111

xi1

Figure

3.1

3.2

3.3

3.4
3.5
3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

LIST OF FIGURES

Page
Example 3.1: A feasible schedule S according to tasks’ worst case
computation times. Lo 37
Example 3.1: A post-run schedule S’ when tasks execute only up
to their actual execution times and no resource reclaiming is done. . . 37
A post-run schedule S’ produced by a work-conserving scheme with
a timing anomaly. L L oL 38
A feasible schedule S. oo 43
The worst-case post-run schedule produced by the Greedy scheme. . . 43
A feasible schedule S. oo 47
The worst-case post-run schedule produced by the Bounded Greedy
scheme when tasks execute only up to their actual computation times. 47
The form required of a sequence meeting the constraints of an instance
of the resource and processor constrained multiprocessor scheduling
problem obtained by transforming an instance of 3-PARTITION. 55
The resource reclaiming algorithm. 64
Step 1: Calculation of reclazmed d. 65
Step 2 of the Basic Reclaiming Algorithm. 67
Step 2 of the Early Start Algorithm. 69
The values of reclaim_§ at each task completion when the Basic
Reclaiming Algorithm isused. 74
The post-run schedule S’ produced by the Basic Reclaiming Algo-
rthm. 74
The values of reclaimed_§ at each task completion when early start
isallowed.o 74

xiil

4.8 The post-run schedule S’ produced by the Reclaiming with Early

Start Algorithm. L o 74
4.9 The post-run schedule S’ produced by the Basic Reclaiming with the

addition of Tg. 74
5.1 The resource reclaiming algorithm for concurrent implementation. . . 85

5.2 Step 2 of the Basic Reclaiming Algorithm for Concurrent Implemen-
tation.o 86

5.3 Step 2 of the Early Start Algorithm for the Concurrent Implementation. 87

5.4 Extended Burns Solution with Bounded Waiting. 93
5.5 The scheduler and dispather interactions on a multiprocessor node. . 95
5.6 The current feasible schedule. 96
5.7 The current feasible schedule with the cutoff-line. 98
5.8 Scheduling Dynamic Real-Time Tasks with Resource Reclaiming . . . 99

6.1 A post-run schedule when the actual execution times are known. 113

6.2 A post-run schedule generated by the Early Start reclaiming algo-
rithms. oL 113

6.3 A post-run schedule generated by the Basic reclaiming algorithm. . 113
6.4 A post-run schedule generated by the rescheduling strategy. 113
6.5 A post-run schedule generated with no resource reclaiming. . . . 113

6.6 Performance of Basic Reclaiming and Reclaiming with Early Start . 115

6.7 Guarantee (GR) ratio difference: GR of Early Start — GR of Basic

Reclaiming. L 116
6.8 Effects of Scheduler’s Runtime Cost 118
6.9 Effects of Task Laxity, 119

6.10 Effects of worst case execution time to resource reclaiming cost ratio. 120
6.11 Effects of Average Processor Load 122

6.12 Effects of different actual to worst case execution time ratios 123

xiv

6.13 Guarantee Ratios: wcet-min = 450, weet max = 600. 125

6.14 Guarantee Ratios: wecet_min = 50, wecet_-maz = 1000. 125
7.1 The life-cycle of the execution time of a task. 130
7.2 Example of Early Notification 134
7.3 Three possible task decompositions of program P. 137

XV

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the ever increasing demands of real-time applications, next generation
real-time systems will be dynamic, large and complex [87], operating in environments
that can be constantly changing. The correctness of such real-time applications
depends not only on the logical or functional results of the computation, but also on
the timeliness of the results. In such environments, predictability — the ability to
reliably determine whether an application’s computations can meet their deadlines
— needs to be provided in the face of unpredictable dynamic task arrivals and
asynchronous concurrent sharing of system resources.

Examples of such real-time applications include flexible manufacturing [19], mul-
timedia communication [29, 40, 74], space shuttle and aircraft avionics [13, 32|, and
multirobotic systems [58]. A common feature of these real-time applications is that
timing constraints are associated with many of the application activities. Moreover,
many real-time applications demand multiprocessor computer systems to meet their
requirements of concurrent control and computation [7, 17, 19, 44, 58, 59, 78, 85].

Consequently, the underlying computer system for dynamic real-time systems
needs to manage time explicitly as a resource in order to support applications’ tim-
ing constraints. Such time management requires that the system has the following

three properties:

o Time conscious — knowing “what time it 1s”, and “how long a computation is

going to take”.

Twme conscientious — ensuring that one computation never impinges on the
time constraint of another computation if both have been guaranteed by the

system to meet their deadlines.

Time conserving — utilizing time effectively and efficiently.

These three properties encompass the complexity, correctness and performance

issues of algorithms designed for a real-time system. To possess these properties,

solutions from the following interrelated areas of real-time system research are

needed:

(1)

DERIVING THE WORST CASE EXECUTION TIMES AND RESOURCE REQUIRE-

MENTS OF APPLICATION TASKS.

To be time conscious, we must know the execution time of application tasks
and operating system functions. A real-time task with a deadline needs to be
guaranteed to complete execution before its deadline even if it executes for its
worst case execution time. Thus the derivation of the worst case execution time
and resource requirements of real-time tasks is one of the prerequisites for the

predictability of a real-time application.

SCHEDULING TASKS TO MEET THEIR DEADLINES WITH RESPECT TO TASKS’

WORST CASE EXECUTION TIMES AND RESOURCE REQUIREMENTS.

Scheduling is necessary to ensure the time conscientious property of a real-time
system. The scheduling algorithms used by a real-time system must take tasks’
worst case execution time and resource requirements into account, such that
the ordering of the tasks in the schedule satisfies each task’s time constraint

and maintains the consistency of the resources.

(3) DEALING WITH THE NEGATIVE EFFECTS ON SYSTEM PERFORMANCE CAUSED
BY THE VARIANCE IN TASKS’ EXECUTION TIMES DUE TO WORST CASE AS-

SUMPTIONS.

Real-time scheduling algorithms require the use of worst-case execution times
of tasks. However, the worst case execution time is an upper bound, and the
actual execution time of a task at run time varies between some minimum value
and this upper bound. The variance in task execution time can be caused by

both the computer architecture and the software features.

— architecture features— Certain architecture features, such as cache, pipelin-
ing, as well as shared system bus and shared memory in multiprocessor
systems, introduce variability in a task’s execution time. For example, a
memory reference will exhibit a high variance depending on whether the

referenced data is cache resident or not.

— software data dependencies — The execution time of many program con-
structs, such as conditional branches and loop iterations, depend on the
volume and values of input data at each invocation of a task. For instance,
suppose a program iteration construct has dependencies (directly or indi-
rectly) on input parameters of the program. With an upper bound of one
thousand, one may not be sure if the loop condition would be true once,
ten times, or one thousand times. In turn, because of this program data
dependency, there are variabilities in the amount of time needed to access
shared resources, such as shared memory and the system bus, and these
variabilities in accessing shared resources may affect the actual run time

execution time of other tasks that also use these shared resources.

To be time conscious, time conscientious, and time conserving, a real-time
system must be able to deal with the negative effects on the performance and

system correctness caused by such variance in tasks’ execution times.

DESIGNING EFFICIENT OPERATING SYSTEM FUNCTIONS THAT HAVE bounded

AND low EXECUTION TIMES.

Typically, general purpose (multiprogrammed) operating systems strive for low
average case execution times of operating system functions. This is motivated
by the desire to achieve high throughput and to minimize the average case
response times of application tasks. In contrast, real-time systems require
predictability. Since any computational resources devoted to the execution
of operating system functions will be reflected (directly or indirectly) in the
execution time of an application task, the execution time of operating system
functions must be bounded in order for the application task’s execution time
to be bounded. Predictable operating system functions and algorithms are the
fundamental building blocks for next generation real-time computer systems.
The mutual (but often conflicting) goals of designing efficient (average case)
operating system functions with bounded and low worst case execution time
is a challenge unique to real-time systems, and is required to support the
time conscientious and time conserving properties of a real-time system. This
challenge is exacerbated by the difficulties brought about by the concurrent and
asynchronous nature of multiprocessor systems. The sharing of resources, such
as memory and shared buses, mandates that the algorithm designer to take an
integrated view of the system as a whole, considering the interrelationships of
all the system components (be it software, or hardware) that have an effect on
the timing properties of the algorithm at hand. For example, in designing the

scheduler, one must ensure that the scheduling activity itself must not impinge

on the time already allocated to the guaranteed application tasks. This is
in contrast with the kind of functions provided by the current commercially
available real-time kernels, such as the VRTX kernel [39, 75], — the execution
time of the functions are in general bounded only when isolated from the other

components of the system.

Many ongoing real-time research efforts have been reported in solving various
problems in the areas of (1) [43, 63, 64, 66, 69, 82] and (2) [21, 37, 48, 50, 51, 53,
54, 70, 72, 84, 86, 93] above. On the other hand, little research has been done
in solving problems in the areas (3) and (4), and the research described in this
dissertation represents a methodical approach to the design and development of
algorithms in these research areas in the context of multiprocessor real-time systems.
Some interesting questions we would like to ask with respect to research area (3)

are:

o Is the processor and resource time allocated to a task in a schedule always
reclaimable when the real-time system discovers that an application task ex-
ecuted only for a fraction of its worst case execution time? The amount of
processor and resource time left by the early completion of a task is said to

be reclaimed if the time is used for the execution of other real-time activities

(instead of being left idle).

e What are the fundamental theoretical issues in solving the resource reclaiming

problem in a multiprocessor system?

e What should be the correctness criterion for the design of multiprocessor re-

source reclaiming algorithms?

e What performance impact, in terms of both overhead cost and performance

gains, can a resource reclaiming algorithm have on the system?

With respect to research area (4) the following questions are pertinent:

e What are the requirements for designing concurrent, on-line, predictable real-

time algorithms?

o Can we design predictable operating system functions in the face of concurrency

and resource sharing?

In this dissertation, we provide answers to the above questions dealing with the
real-time operating systems and resource reclaiming. Our research entails theoretical
analysis, algorithm development, and performance evaluation via both simulation

and implementation.
1.2 Contributions of This Dissertation

In addressing the general problems of constructing predictable dynamic multi-
processor real-time systems with respect to the open problems described in research
areas (3) and (4) in the previous section, this dissertation makes the following specific

contributions:

e DEALING WITH THE NEGATIVE EFFECTS CAUSED BY THE VARIANCE IN

TASKS’ EXECUTION TIMES DUE TO WORST CASE ASSUMPTIONS.

The variance in tasks’ execution times may result in some tasks completing ear-
lier, compared to their worst case execution times. Resource reclaiming refers
to the problem of utilizing resources left unused by a task when it executes less
than its worst case execution time, or when a task is deleted from the current
schedule. When resource reclaiming is not done correctly, tsming anomalies can
arise at run time in a dynamic real-time multiprocessor schedule with resource
and processor constraints. These anomalies may jeopardize the deadlines of the

tasks that have already been guaranteed. In particular, one cannot simply use

any work-conserving scheme, i.e., any scheme that will never leave a processor
idle if there is a dispatchable task, without verifying that task deadlines will
not be missed. The problem of on-line resource reclaiming in a multiprocessor
real-time system has not been addressed previously. The research presented
in this dissertation represents an initiative effort in characterizing and solving

this dynamic resource reclaiming problem.

— The analysis of the run time anomalies that can occur in a resource con-
strained multiprocessor schedule when a work-conserving scheme is used

to dispatch tasks from the schedule at run time.

The purpose of this analysis is two fold — (1) to determine the extent to
which performance can degrade when timing anomalies occur, and (2) to
demonstrate that care must be taken to design correct resource reclaiming
algorithms, since using simple greedy (i.e., work-conserving) schemes may
lead to incorrect run time behavior. Existing worst case analysis has been
shown only with respect to shared memory multiprocessor schedules, i.e.,
where task-to-processor assignment is done at run time. Our analysis
extends the existing results to multiprocessor schedules in which tasks are

statically bound to individual processors.

— The proof of the necessary conditions under which timing anomalies can
occur in a resource constraint multiprocessor schedule if a work-conserving
scheme i1s used. Moreover, we prove the worst case performance degra-
dation in terms of the maximum number of tasks missing deadlines when

work-conserving resource reclaiming schemes are used.

— The analysis of the complexity and optimality of multiprocessor resource

reclaiming.

— The development of two resource reclaiming algorithms.

While these two algorithms have bounded execution time, they vary in com-
plexity. These two algorithms employ strategies that are a form of on-line
local optimazation of a feasible multiprocessor schedule. The correctness of

these algorithms is also proved.

— The performance evaluation via simulation of the two algorithms.

To understand the performance impact of these algorithms, we have done
extensive simulation studies of the resource reclaiming algorithms for a five
processor multiprocessor system. We tested a wide range of task param-
eters, including different worst case execution times and actual execution

times of tasks, task laxities, and task resource usage probabilities.

— Demonstration of the feasibility of on-line resource reclaiming in a mul-
tiprocessor real-time system via an implementation on a prototype (Non-

Uniform Memory Access) multiprocessor real-time kernel — the Spring

Kernel [89].

e DESIGNING OPERATING SYSTEM FUNCTIONS THAT HAVE bounded EXECUTION

TIMES IN A DISTRIBUTED MEMORY MULTIPROCESSOR SYSTEM.

Few previous research efforts have addressed the problem of how to construct
time conscientious schedulers in a concurrent multiprocessor real-time system,
1.e., schedulers whose executions are guaranteed not to impinge on the execu-
tions of application tasks. In this dissertation, we present schemes to solve this

problem.

— The identification of a set of requirements for the design and development

of on-line algorithms for real-time systems.

— The development of schemes to construct predictable concurrent on-line

scheduler and dispatcher processes in a multiprocessor real-time system.

— An integration of the scheduler, dispatcher and the resource reclaiming

algorithms.

By focusing on these two research areas in building a time conscious, time
conscientious, and time conserving real-time system, that have seen little work, this
dissertation endeavors to advance the state of the art in building complex dynamic

real-time systems.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows.

Chapter 2 presents a characterization of the problems in dynamic task and re-
source management in the context of scheduling, dispatching and resource reclaiming
in a real-time multiprocessor system. In Section 2.2, a set of requirements for the
design of on-line real-time task and resource management algorithms is specified.
Section 2.3 defines the task and multiprocessor model, as well as the terminology
used throughout the dissertation.

The theoretical issues connected with the resource reclaiming problem are stud-
ied in Chapter 3. After introducing some preliminary concepts and definitions, we
present the analysis of the run time anomalies in resource constrained multiprocessor
resource reclaiming in Section 3.2. In Section 3.3 we prove the necessary conditions
under which timing anomalies can occur in a resource constraint multiprocessor
schedule if a work-conserving scheme is used. Moreover, we prove the worst case
performance degradation in terms of the maximum number of tasks missing dead-
lines when work-conserving resource reclaiming schemes are used. Section 3.4 deals
with the complexity and optimality issues. In Section 3.5, a correctness criterion is
established for the design of on-line multiprocessor resource reclaiming algorithms.

In Chapter 4 we present the two resource reclaiming algorithms. The complex-

ity and the correctness of the algorithms are analyzed in Section 4.2. We also discuss

10

the dynamic properties of the algorithms in that section. Section 4.3 describes the
applicability of the resource reclaiming algorithms with respect to different task and
system characteristics.

In Chapter 5, we attack the problem of how to construct concurrent, on-
line, bounded-time scheduler and dispatchers, and how to integrate the scheduler,
dispatcher and resource reclaiming predictably. In Section 5.1, we motivate our
concurrent implementation of the resource reclaiming algorithm by demonstrating
quantitatively the advantage of a concurrent implementation versus a centralized
implementation. In any concurrent real-time system in which shared access to
resources exists, it is necessary to design predictable synchronization mechanisms.
We present one such multiprocessor concurrency control synchronization algorithm
in Section 5.2. An issue that is crucial to the construction of any on-line real-time
function is the maintenance of the time conscientious property of the system —
that is how to make sure the system function will not impinge on the time already
guaranteed to the application tasks. In Section 5.3, we demonstrate one such
construction of the scheduler and the dispatcher processes. Finally, in Section 5.4,
we integrate the resource reclaiming algorithms with the scheduler and dispatchers.

The performance of the resource reclaiming algorithms is evaluated and the
simulation results are discussed in Chapter 6. Since it is difficult to collect elaborate
performance statistics without affecting the true performance of the actual real-time
system, we have implemented our resource reclaiming algorithms not only on the
Spring Kernel, but also on a software simulator which simulates the multiproces-
sor Spring Kernel. In this evaluation, the overhead costs of the scheduling and
dispatching activities measured on the real system are incorporated.

So far, we have only considered reclaiming the resources when a task completes
its execution. However, the system can be notified of a change in a task’s worst case

execution time not only at task completion time, but also during the execution of

11

a task, for example, when the evaluation of some branching condition is known. In
Chapter 7, extensions to resource reclaiming are presented to deal with the latter.
Chapter 8 summaries the dissertation and points out future research direc-

tions.

CHAPTER 2

DyYNAMIC TASK AND RESOURCE
MANAGEMENT: PROBLEM
CHARACTERIZATION

In this chapter, we first establish the requirements for the design of on-line real-
time resource management algorithms in Section 2.1. With these requirements in
mind, we introduce the problems in the dynamic management of tasks and resources
in multiprocessor real-time systems in the context of task and resource scheduling,
dispatching, and resource reclaiming. In introducing the problems, we also review
related research results. At the end of the chapter, the system and task model, as

well as the notation used throughout the dissertation are defined.

2.1 Necessary Properties of On-line Real-Time Task and
Resource Management Algorithms

The unique and challenging problems in real-time applications demand new
design criteria for algorithms that are to be used on-line in a real-time system.
Towards this end, we have identified and established the following four requirements

for on-line real-time task and resource management algorithms:

(1) correctness: An algorithm is correct only if it can be shown that it is logically
correct, and it satisfies the time conscientious property, i.e., if it can be shown
that the algorithm does not cause time constraint violations. An example of a
time constraint violation is an impingement on the time that has already been

promised to other real-time activities.

13

(2) bounded complexity: If an algorithm is to be invoked as part of the execution of
an application task, then it must have a complexity that can be bounded. This
way its cost can be incorporated into the worst case execution time of a task.
For example, the complexity of a dispatcher should not depend on the number
of tasks in the schedule if the number of instances of tasks to be invoked at run

time cannot be bounded.

(3) tnezpensive: To achieve time conservation property, we must be able to con-
struct time efficient algorithms and functions. The overhead cost of an algo-
rithm should be very low compared to tasks’ execution times since an on-line

algorithm may be invoked very frequently at run time.

(4) effective: An algorithm should improve the performance of a system. For ex-
ample, an effective resource reclaiming algorithm should increase the number of
task deadlines a real-time system can satisfy, given that the system performance

is measured by the number of task deadlines met.
2.2 The Problems and Related Work

Integrated dynamic task and resource management consists of three identifiable
but inter-related components — scheduling, dispatching, and resource reclaiming.
These are discussed in this section. To be tzme conscientious, each of the components
cannot be studied in isolation, since the scheme used in one component may greatly
affect the complexity, timing properties, performance, and strategies of another.
Moreover, the properties and inter-relationship of these three components influence
both the software structure of the resulting real-time system and the architecture

features necessary to support the system.

14

2.2.1 Scheduling and Dispatching

In a real-time system, the scheduling of tasks and resources entails three basic
steps: feastbility checking, schedule construction, and dispatching. Depending on
the type of applications for which the system is designed, the programming model
adopted, and the type of scheduling algorithms used, each of the three steps may
or may not be present in a system, and the boundaries of these three steps may
not always be clear. In this section, we characterize these three steps with respect
to the characteristics of real-time systems, and review current scheduling research

according to this characterization.

2.2.1.1 Feasibility Checking

The central theme and uniqueness of real-time scheduling (as opposed to schedul-
ing in non-real-time systems) is the consideration of tasks’ timing requirements,
usually reflected in the deadline attribute of a task, by the scheduling process.
Feasibility checking of a set of tasks is the process of verifying whether the timing
requirements of these tasks can possibly be satisfied, usually under a given set of
constraints, such as resource requirements and precedence constraints. The set of
tasks is feastzble if and only if all of their constraints can be met given their timing and
resource requirements. Feastbility checking is also termed as schedulability analysis
in some real-time literature [43, 49].

However, different scheduling approaches may or may not have this feasibility
checking step. The scheduling approaches that provide feasibility checking can be
characterized as guarantee-oriented [73], and the ones that do not are best effort
[29, 41, 56]. In a guarantee-oriented approach, the feasibility of a set of tasks is
examined by some scheduling policy (i.e., a scheduling algorithm), such as shortest
deadline-first, least-laxity-first, and rate monotonic scheduling algorithms, prior to

the execution of the entire set of tasks. In contrast, a best effort approach is not

15

unlike the scheduling found in a traditional (non-real-time) operating system, except
that ready tasks may be queued with queueing policies that are deadline-based, e.g.,
in nondecreasing deadline order.

Feasibility checking can be carried out either statically or dynamically. In a
static approach, the set of tasks is examined for feasibility off-line, assuming no
other task arrivals will ever occur at run time, i.e., the set of tasks to be executed
at run time will never change. On the other hand, the dynamic approach does the
feasibility checking on-line as tasks arrive (i.e., tasks are dynamically invoked) at
run time. In many cases, there exist optimal scheduling algorithms for static task
systems, while none exists for dynamic task systems!. There is a cost associated
with on-line feasibility checking, i.e., it takes time to examine whether the worst case
requirements of a set of tasks can be met. However, it is generally believed that,
for a real-time system, feasibility checking is necessary to ensure the predictability
of the application, and this cost is well spent.

The complexity of feasibility checking depends on the task programming model
assumed in the application. If tasks are independent with neither precedence con-
straints, nor resource constraints, then feasibility checking is not very complicated.
On the other hand, if tasks have resource constraints, feasibility checking can be

much more complicated. Two different approaches have appeared in recent real-time

research efforts to deal with resource constraints among tasks:

e One approach is to analyze the resource requirements of each task, and the
resource conflicts among all the tasks, i.e., among all the tasks that can interfere
with each other given a specific scheduling algorithm, in the system. This
analysis can provide the worst case blocking time due to resource contention

for each task, and this worst case blocking time can be incorporated into a

! A dynamic scheduling algorithm is said to be optimal if it always produces a feasible schedule
whenever a static scheduling algorithm with complete prior knowledge of the tasks can do so.

16

task’s worst case execution time. Then the scheduling algorithm can assume
the tasks are preemptable [70, 80]. This approach requires schemes for the run
time management of the resources that correspond to the assumptions made
at analysis time. For example, priority ceiling protocols must be implemented
to guard resources for systems in which the schedulability of tasks is analyzed
using the rate monotonic scheduling algorithm with the priority ceiling proto-

cols.

e The other approach is to analyze and derive a set of worst case resource
requirements for each individual task only. Then the scheduling algorithm takes
into account the resource requirements of the tasks during feasibility checking.
Assuming tasks are nonpreemptable, the scheduling algorithm will not schedule

two tasks with resource conflicts in parallel [63, 72, 93].

A tremendous amount of research efforts in the past decades has been devoted
to the development and analysis of real-time scheduling algorithms by not only
computer scientists, but also by researchers from operations research, and by math-
ematicians. The main concern here is to be able to design approximation /heuristic
scheduling algorithms that have provably good performance and have polynomial
time complexity, as the majority of the real-time scheduling problems have been
proven to be NP-hard or NP-complete in the strong sense [5, 11, 18, 25]. In this
section, we will not attempt to review the rich set of available literature on this
subject. For some of the more recent work on scheduling algorithms that are suitable
for the guarantee-oriented approach, a reader may refer to [6, 8, 9, 10, 21, 33, 37,
47,48, 50, 51, 53, 54, 65, 70, 72, 84, 86, 92, 93, 95]. For queueing theoretic analysis
and simulation studies of scheduling algorithms suitable for best effort approaches, a
reader may refer to [27, 36, 46, 62, 97]. Some good surveys on scheduling algorithms
can be found in [14, 16, 24, 42, 93].

17

2.2.1.2 Schedule Construction

The schedule construction step depends on the model used in the feasibility
checking step, and defines the operations and the complexity of the dispatching
step. Schedule construction is the process of ordering the tasks to be executed and
storing this ordering in a representation that can be used by the dispatching step.
This schedule construction is usually a direct consequence of feasibility checking.
The schedule construction of different scheduling approaches can be characterized
as either explicit or implicit. By explicit schedule construction, we mean that the
tasks to be executed are ordered and stored in the form of a plan such that the tasks’
ordering in the plan is the order in which the tasks should be executed. In contrast,
tmplicit schedule construction does not provide such an explicitly laid-out plan.
Instead, the tasks to be executed are only ordered by ranks with respect to each
other so that, at run time, the task in execution is always the highest ranking one.
An example of the explicit schedule construction is the cyclic scheduling approach
[1, 4, 55] and the heuristic nonpreemptive scheduling approach [88, 72, 96], while
an example of the implicit schedule construction is the fixed priority scheduling
approach, such as rate monotonic scheduling [53].

Whether the schedule construction step is explicit or implicit depends on the
scheduling algorithm used in the feasibility checking step, and the characteristics
of the tasks. If the scheduling approach is preemptive, i.e., the tasks can be
preempted during execution, the schedule construction will be smplicit. Since a task
can be preemptive, and if the exact preemption points in a task program cannot
be predicted, it is impossible to generate an explicit plan for the tasks. On the
other hand, a nonpreemptive scheduling approach can always generate an ezplicit
schedule for the dispatching step. However, in some nonpreemptive scheduling
approaches, the explicit schedule is used only as a reference point for ensuring the

run time correctness (i.e., the time conscientious property) of the set of tasks already

18

guaranteed [38, 83] (this point will be clarified in the characterization of dispatching

in the next section).

2.2.1.3 Dispatching

Dispatching is the final step in our characterization of the scheduling process.
It 1s the process leading to the specific decision of exactly which task to execute
next 2. The complexity and requirements for the dispatching step depend on (1)
the scheduling algorithm used in the feasibility checking step; (2) whether explicit
or tmplicit schedule construction is done; (3) the types of tasks, i.e., whether the
tasks are preemptive or nonpreemptive, and whether the tasks are independent
or precedence constrained; and (4) the types of systems, i.e., uniprocessor versus
multiprocessor systems.
Preemptive Scheduling

Although feasibility checking is made easier by preemptive scheduling, (in terms
of theoretical optimality and complexity), the checking generally either ignores the
dispatching cost, or assumes it is a negligibly small constant. However, in an
actual system, dispatching is more complicated. Dispatching in this case involves
preemption, context switching and possibly placing the preempted task back in the
schedule according to its rank for future resumption. The dispatching process must
incorporate timer interrupts, and the context switch time is not negligible (saving
the context is pure overhead, typically takes 10 to 100 microseconds [68]).
Nonpreemptive Scheduling

In nonpreemptive scheduling, the complexity of the dispatching process depends

on whether the tasks are independent and whether there are resource constraints.

ZNote that, in this dissertation, we are not concerned with the specific operating system
functions necessary to start the actual ezecution of a task, e.g., loading the context of a task. The
aspects of these functions that do differ from one system to another are, in general, architecture
dependent.

19

e If the tasks are independent (with no precedence constraints), and have no

resource constraints, dispatching can be extremely simple.

— Implicit schedule construction:

The task to be executed is the next in rank. Since no explicit schedule is

available, searching may be required.

— Fzplicit schedule construction:

The task to be executed is the next task in the laid-out schedule, and this

task can always be executed immediately.

e On the other hand, precedence constraints and resource constraints may increase

the complexity of dispatching.

— Implicit schedule construction:

If there are precedence constraints among tasks, mechanisms need to be
built into both the run time task description (usually called a task de-
scriptor) and the dispatching process to verify the eligibility (i.e., all the

predecessors have completed execution) of a task to be dispatched.

— FEzplicit schedule construction and multiprocessor scheduling:

If tasks have resource constraints and/or precedence constraints, and the
resource conflicts and precedence constraints are scheduled away, e.g., as
in [93], then the dispatching process must not violate the resource usage
integrity and precedence constraints in the given explicit schedule. There

are two possible schemes for constructing the dispatcher in this case.

* Dispatching ezactly according to the given schedule. In this case,
at the completion of a task, the dispatcher cannot simply dispatch
a task zmmediately because there might be idle time intervals in the

multiprocessor schedule inserted by the scheduler to conform to the

20

precedence constraints/resource constraints. One way to construct a
correct dispatcher is to use a hardware (count down) timer in order to

enforce a start time constraint.

* Since, as we have discussed in Section 1.1, the variance in tasks’ execu-
tion times may result in some tasks completing earlier than expected
by the scheduler with respect to their worst case execution times, the
dispatcher can try to reclaim the time left by such early completion. In
this case, correct resource reclaiming algorithms must be designed to

be incorporated with the dispatching process.

2.2.1.4 C(Current Research

Having characterized scheduling using the above three step process, in this
section, we review current real-time research according to this characterization. In
Table 2.1 we have summarized the research according to our characterization of the
three scheduling steps presented in the previous sections. The review is divided into

static task systems and dynamic task systems?®

. In a static real-time task system,
feasibility checking and schedule construction are done off-line. Once it 1s verified
that the timing constraints of the set of tasks can be satisfied, at run time only
dispatching has to be carried out. On the other hand, in a dynamic task system,
feasibility checking and schedule construction must be done on-line since tasks can
be invoked at unpredictable times. However, some real-time research includes both

static and dynamic task systems. For these research projects, both the static and

dynamic columns are marked in Table 2.1.

3All the research listed in Table 2.1 will be reviewed in this section except the Hawk [35] and
MARUTI [52] operating systems since their scheduling-dispatching models are similar to that of
one more of the others.

21

Table 2.1 Characterization of Scheduling Approaches

Feasibility Schedule
Checking Construction Dispatching
NF G ‘ static ~dynamic | implicit explicit | pre. nonpre.
Cyclic X X X X
RMS X X X X
MARS X X X X
MAFT X X X X
RMS-MC X X X X
TDS X X X X
GT X X X X
Spring X X X X X
Hawk X X X X
MARUTI X X X X X
NF = No feasibility checking, i.e., Best Effort
G = with feasibility checking, i.e., Guarantee-oriented
TDS = Time-Driven Scheduling RMS = Rate-Monotonic Scheduling
GT. = Georgia Tech. RMS-MC = RMS with Mode Change.
pre. = preemptive, nonpre. = nonpreemptive

Static Task Systems:

Most of static real-time systems assume that real-time tasks are periodic, and
non-real-time tasks in the system can either be serviced by periodic servers, or
only use the idle CPU cycles. By definition, static real-time systems are guarantee-
oriented systems. There are three basic approaches to static task scheduling: cyclic
executive, fized priority, and heuristic.

The cyclic executive approach is nonpreemptive. The tasks are ordered in an
explicit schedule, and each task is invoked in a fixed order throughout the execution
history [55]. The explicit schedule is repeated at a specific rate called the major

cycle. The frequency of the major cycle is set to be the least common multiple

22

of the set of task periods. The feasibility checking is done during the schedule
construction. A major cycle is divided into minor cycles, and the execution of each
individual task is done within a minor cycle. To simplify the implementation, the
minor cycles are generally set to the same value. In this case, the software structure
and architecture support needed are very simple — A count down timer is loaded
with the period of the minor cycle; once the timer reaches zero, an interrupt is
generated which triggers the dispatcher to dispatch the next task in the schedule.
At each task completion, if the timer interrupt has not been generated yet, the
dispatcher can either dispatch a background task or enter a wait state. However,
what this implies is that all the task periods must be harmonically related, i.e.,
every task must operate at integer multiples of the timer interrupt frequency. So,
during the schedule construction, if the periodic requirements of the tasks are not
harmonically related, the periods must be adjusted. This adjustment often leads to
some increase in the frequency of execution of one or more tasks, resulting in a loss
of available processor load. Examples of cyclic executives can be found in [1, 4, 55].

The second static scheduling approach uses fized priority schedulers. One of the
fixed priority scheduling algorithms that has been widely studied in the past years
in the real-time research community is the rate monotonic scheduling (abbreviated
as RMS in the rest of this section) [3, 48, 53, 70, 81, 90]. The RMS has been proven
to be optimal among fixed priority scheduling by Liu and Layland [53]. RMS is a
preemptive scheduling approach. Simply stated, the RMS gives the highest priority
to the task with the shortest period, and always executes the highest priority task
whose period has started. During the execution of a task, preemption occurs if
a task with a higher priority becomes ready. Due to its preemptive nature, the
schedule construction in RMS is #mplicit, and the dispatching step must incur the
costs involved in task preemption, as well as task resumption. However, RMS does

not require that the periods of all the tasks to be harmonically related.

23

Lawler in [47] proved that, for periodic tasks, there exists a feasible schedule if
and only if there exists a feasible schedule for the LC' M (the least common multiple)
of the set of periodic tasks. Therefore, the heuristic scheduling approach in general
employs various heuristic techniques for scheduling non-periodic tasks to schedule
periodic tasks within the LOCM. Heuristic scheduling is especially necessary in
systems where the task system contains dependencies and complex requirements,
rather than simple independent tasks.

One of the examples of static real-time scheduling research using heuristic schedul-
ing is presented in [71]. In this approach, components of precedence-related peri-
odic tasks are allocated and scheduled across sites in a distributed system and
a schedule can be constructed statically. The scheduling algorithm can deal with
tasks’ precedence constraints, communication costs, replication requirements, as well
as periodicities, and is based on the branch-and-bound method. This scheduling
algorithm is particularly suitable for determining the allocation and scheduling of
complex periodic tasks at preallocation time [89], or in a static system such as MARS
for the feasibility checking and schedule construction steps. MARS (MAintainable
Real-Time System) [45] is a distributed fault-tolerant real-time system developed
at the Technical University of Vienna, Austria. The real-time research in MARS
is designed for real-time process control (e.g., the control of a steel rolling mill) in
which all the control tasks and their timing and resource requirements are known a
priori. The system is designed for peak load conditions, i.e., all possible worst case
frequencies of events are considered at design time. All the tasks must complete
within a duty cycle*. Feasibility checking is done off-line, and explicit schedule
construction is required. Using a special hardware supported global clock, all CPU

schedules and communication bus schedules are synchronized exactly to the message

“MARS is designed for process control in which a set of controlling activities with precedence
constraints must finish within a single deadline. So a duty cycle is equivalent to the LCM and is
the period within which all the tasks must be completed.

24

sending and receiving times. The run time dispatching of the real-time tasks is
precisely according to the stored schedule table, although CPU idle time can be
used for non-real-time tasks.

Another example of static real-time scheduling using heuristic is the MAFT
(a Multiprocessor Architecture for Fault Tolerant) [38] system. MAFT is a real-
time fault-tolerant multiprocessor system, developed by the Allied-Signal Aerospace
Company, for high-reliability, critical control applications. The entire set of tasks
in the system are fully ordered by fixed priorities. Tasks may have precedence
constraints, and all the tasks are periodic. External events may be polled at pre-
defined time intervals. The scheduling approach is nonpreemptive, and uses a
variation of the list-scheduling algorithm [16] for feasibility checking. After the initial
feasibility checking, tasks are only maintained in a priority list. The dispatching
process must incur a variable amount of overhead to decide which task to execute
next, due to precedence constraints. The fault-tolerance of the system is achieved
through replication of tasks and voting on the start and completion of tasks. In
the next section, we will return to discuss MAFT with respect to the schedule

stablization problem.

Dynamic Task Systems

Research in dynamic real-time scheduling has only emerged in recent years. In
a dynamic system, tasks can be invoked at unpredictable times, and thus run time
scheduling must be provided by the real-time system. One of the crucial issues
unique to a dynamic system is the problem of ensuring the time conscientious
property in the face of concurrent execution of the scheduling process and the
application tasks. One must carefully quantify the costs for each of the steps in
the scheduling process so that it can be proven that the scheduling activity will

not impinge on the time already guaranteed to the application tasks or the other

25

system activities. We will show in Chapter 5 that if care is not taken, this kind of
undesirable impingement will happen. Except the Spring Kernel [89], none of the
research reviewed in this section correctly addresses this issue.

In [56], a Time-Driven Scheduling model (abbreviated as TDS) is proposed. It
is a best effort approach in which the system tries to maximize the sum of the values
of the tasks completed under overload conditions. Since preemptive scheduling
is employed in this model, the schedule construction is ¢mplicit. The feasibility
checking step is done at the task dispatching time, instead of task arrival time, and
this checking is only applied to the single task to be executed next. The dispatching
step may use various policies to decide the next task to be executed, and to decide
which task to be discarded in the case of an estimated overload.

There have been a number of extensions to the rate monotonic scheduling
model, including one to deal with mode changes [81]. The execution of a real-time
application may progress through one mode of execution to another. With the
mode change protocol, additions and deletions of tasks, as well as changes in tasks
parameters (e.g., increasing the execution frequencies of some tasks) in a task system
using the rate monotonic scheduling model can be used in dynamic real-time systems
for periodic tasks. In this case, feasibility checking can be done on-line. So whenever
a task addition is desired, a feasibility check must be carried out. As in the original
RMS approach, the schedule construction is still smplicit here and dispatching must
be able to take care of task preemption.

A multiprocessor scheduler used with real-time robotics applications has been
described in [7, 98]. (Since this research is being mainly developed at the Georgia In-
stitute of Technology, we use the abbreviation GT in Table 2.1.) This multiprocessor
scheduler i1s guarantee-oriented, employing a variation of the preemptive deadline-
first scheduling algorithm for its feastbility checking. In addition to deadlines, tasks

may have start time constraints. The schedule construction is #mplicit since, once

26

it is verified that a set of tasks can meet their deadline requirements, tasks are
only maintained in a list in nondecreasing deadline order. Besides the preemption
costs for the preemptive scheduling, the dispatching process (a multiplexor in their
terminology) also incurs a cost linear in the number of tasks in a current schedule
in order to decide which task to execute next. This is because the task with the
smallest deadline does not necessarily have a start time less than or equal to current
dispatching time. The costs of the scheduling activity, including both the costs
of feasibility checking and dispatching, are not carefully quantified. Also it is not
shown that the scheduling will not impinge on the time already guaranteed to the

application tasks.

The Spring Kernel [89] is an on-going real-time research project in building
distributed multiprocessor real-time systems for large and complex real-time ap-
plications. The research presented in this dissertation is part of this on-going
research, and concentrates on the on-line scheduling-dispatching-resource-reclaiming
aspect of the system. In the Spring Kernel, scheduling is guarantee-oriented. Both
static and dynamic feasibility checking are supported. The static scheduling uses
the heuristic scheduling algorithm proposed in [71], and the dynamic scheduling
employs the heuristic scheduling algorithm proposed in [72, 95]. For both static and
dynamic tasks, the schedule construction is ezplicit and nonpreemptive dispatching
is assumed. As we demonstrate in the rest of the chapters in this dissertation, the
costs of the scheduling activities are carefully quantified and accounted for in the
Spring Kernel. Thus, one of the goals of this dissertation is to demonstrate that
real-time scheduling research must address the problem of how to construct time

conscientious schedulers and dispatchers in an integrated fashion.

2.2.2 Resource Reclaiming

In a guarantee-oriented real-time system with either émplicit or explicit schedule

construction, in order to guarantee that real-time tasks will meet their deadlines

27

once they are scheduled, most real-time scheduling algorithms schedule tasks with
respect to their worst case execution times. Since this worst case execution time is
an upper bound, the actual execution time may vary between some minimum value
and this upper bound, depending on the various factors that cause variance in a
task’s execution time, such as the system state, the volume and value of input data,
the amount of resource contention, and the task’s semantics.

Resource reclazming refers to the problem of utilizing resources left unused by
a task when it executes less than its worst case execution time, or when a task is
deleted from the current schedule. Task deletion occurs either during an operation
mode change [81], or when one of the copies of a task completes successfully in a
fault-tolerant system and the fault semantics permits deletion of the other copies
from the schedule [15]. Resource reclaiming is an important issue especially in
dynamic guarantee-oriented real-time systems, in which overload with respect to
the worst case assumptions of task execution times can occur, and it has not been
addressed in practice.

Resource reclaiming is straightforward given a uniprocessor nonpreemptive sched-
ule because there is only one task executing at any moment on the processor.
However, resource reclaiming on multiprocessor systems for tasks with resource
constraints is much more complicated. This is due to the potential parallelism
provided by a multiprocessor system, and the potential resource conflicts among
tasks. Resource conflicts mandate the system to either employ nonpreemptive
scheduling, or to restrict the preemption of a task within critical sections. At run
time when the actual execution time of a task differs from its worst case computation
time in a given nonpreemptive multiprocessor schedule with resource constraints,
timing anomalies may occur. These anomalies may cause some of the already

guaranteed tasks to miss their deadlines.

28

In the rest of this section, we review previous research on two topics: (1) the
analysis of the worst case timing anomalies in multiprocessor scheduling, and (2)

schedule stablization algorithms for static multiprocessor scheduling.

2.2.2.1 Multiprocessor Scheduling Anomalies

Multiprocessor scheduling anomalies have been studied previously in the context
of list scheduling for task systems with precedence constraints. The objective has
been to minimize schedule lengths and a shared-memory multiprocessor system
has been assumed. Graham [30] studied the anomalies that can arise when any
of the following four parameter changes occur in a given multiprocessor schedule:
(1) reducing execution times of some tasks, (2) weakening some of the precedence
constraints, (3) increasing the number of processors, and (4) using a different
priority list. Since cases (1), (3), and (4) were first discussed, qualitatively, by
Richards [76], we call them Richard’s anomalies.

A change in the last parameter, i.e. a different priority list, causing an increase
in the schedule length is easy to understand. This simply corresponds to using a
different scheduling algorithm. Intuitively, one would expect the first three param-
eter changes to decrease the length of the original schedule. However, examples in
[30] demonstrate that this is not always the case and the opposite can happen. It
was further proven that such an anomaly is not necessarily caused by a poor choice
of the schedule for the task set, but is inherent in the greediness of the scheduling
model. A general worst case bound on the difference between the schedule lengths

of two runs of the same set of tasks was proved by Graham in the following theorem:

29

GRAHAM’S THEOREM: Given two runs of the same task set, which are related

by varying any one of the four parameters stated above, we have the following bound:

m—1
I

wl
=<1+
w m

where w and w' are the schedule lengths of the two runs respectively, and m and m’
are the number of processors used in the two runs. It was shown that this bound
was the best possible. Here, if we use the same number of processors for both runs,
the above bound becomes:

<2-—
m

w' 1
w
Thus, with the same number of processors, the same precedence constraints and
priority list, by reducing the computation times of some of the tasks, the schedule

length may increase by as much as 1 — 1/m times the schedule length with all tasks

running to their worst case computation times.

2.2.2.2 Stability Algorithms for Static Scheduling

If the possibility of timing anomalies exists in a static real-time system, the
problem is referred to as the stablization of the schedule. For static task systems with
precedence constraints, Manacher [57] proposed a stablization algorithm. Given a
schedule, precedence constraints, in addition to the existing precedence constraints,
are imposed upon tasks to preserve the order in which they can run in parallel;
thus preventing the occurrence of the timing anomalies. The additional precedence
constraints serve as stablizing conditions for the schedule. The algorithm only
ensures the sufficiency of the additional precedence constraints, i.e., some of the
added precedence constraints are superfluous. The question of how to reduce or
minimize the set of additional precedence constraints imposed is left open.

In recent years, there has been a resurgence of interest in studying the multipro-

cessor scheduling anomalies and designing stablization algorithms in the real-time

30

community [26, 38, 22]. This resurgence follows from the fact that in any guarantee-
oriented real-time system, since run time conditions cannot guarantee the invariance
of the actual execution times of tasks, worst case assumptions need to be made
when scheduling real-time tasks. Thus it 1s crucial to the correct functioning of the
system to ensure that the timing anomalies will not jeopardize the guarantee made
to application tasks.

In [38], a set of stablization algorithms are presented for a fault-tolerant multi-
processor real-time system (the MAFT system that we reviewed in Section 2.2.1.4).
In MAFT, for fault-tolerance purposes, each task is fully replicated on all proces-
sors, and each processor executes the entire task set. Tasks can have precedence
constraints, and the operations of task start and completion are contingent on a
voting strategy. Therefore, the multiprocessor schedule in such a fully replicated
task system is a set of uniprocessor schedules, one per processor, coordinated by the
run time voting actions. Timing anomalies can occur due to the variations in the
time the voting actions take, and thus cause variations on the order in which tasks
become eligible to be started. The algorithms are designed to stablize the static
multiprocessor schedule. The mechanisms used in the algorithms are variations of
Manacher’s solution, i.e., imposing additional precedence constraints among tasks

in a given schedule.

2.2.2.3 Beyond Stability

Graham’s bound described in Section 2.2.2.1 applies only to task systems with-
out resource constraints. The research on stability algorithms reviewed in the
last section is for static real-time systems only. In the context of our research on
dynamic resource reclaiming, we have taken a step further in both of these areas.

In particular:

31

Our objective is to ensure the guarantee of tasks in the face of dynamic task

arrivals.

e We assume tasks are bound to individual processors (i.e., prohibiting certain
processors from executing certain tasks — the analysis of this model is posted

as an open question at the end of [31].).

Tasks may have arbitrary resource constraints.

Tasks can arrive dynamically, therefore rescheduling at run time is required.

In the next chapter, we analyze the timing anomalies in multiprocessor schedul-
ing for real-time tasks with arbitrary resource and processor constraints, and prove
the existence of Richard’s-anomaly-(1) in such a multiprocessor task setting. Al-
though Graham has also developed other worst case bounds on scheduling lengths
for multiprocessor scheduling with resource constraints (but without processor con-
straints) [31], these bounds were only derived for the case of using different schedul-
ing algorithms (i.e., Richard’s-anomaly-(4)). Our analysis provides the worst case
bounds when tasks’ worst case execution time is decreased (i.e., Richard’s-anomaly-
(1)). The purpose of this study is to demonstrate the necessity of designing correct
on-line resource reclaiming algorithms that can both (1) ensure the correct dispatch-
ing of tasks already guaranteed in a given schedule, and (2) alleviate the negative
effects of worst case assumptions in tasks’ execution time to improve the performance

of the real-time system.
2.3 Notation and Assumptions

In this section we define the multiprocessors, real-time tasks and resources, as
well as the scheduling model assumed in this dissertation. We also introduce the

notation used.

32

2.3.1 Multiprocessors

Multiprocessors are asynchronous parallel machines with multiple instruction-
streams and multiple data-streams [77]. A distributed memory multiprocessor is one
in which the physical memory is divided into modules with some placed near each
processor (which allows faster access time to that memory); while in a centralized
memory multiprocessor, access time to a physical memory location is the same for
all the processors [34]. For both of these physical memory models, shared memory
access (i.e., implicit communication among tasks via shared memory address space)
is possible. ®

In this dissertation, we adopt the distributed physical memory multiprocessor
model with the capability of shared memory access, since this is a more general
model — algorithms developed for distributed memory can also be implemented on

centralized memory multiprocessors, but the converse is not always true.

2.3.2 Tasks, Resources, and Scheduling

The tasks and resources have the following characteristics:

o Tasks are well-defined schedulable entities.

A task is independent, i.e., there are no precedence constraints among tasks,

and is not preemptable.

e Resources that can be required by a task include variables, data structures,

memory segments, files, and communication buffers.

e Resources can either be used in exclusive mode or shared mode [94].

SWe adopt the terminology used in [34] that the terms distributed/centralized memory refer to
the physical memory architecture, while the term shared memory refers to the programming model.

33

e Two tasks conflict on a resource if both of them need the same resource in
exclusive mode, or one of them needs a resource in exclusive mode while the

other needs the same resource in shared mode.

e Two tasks with resource conflict(s) cannot be scheduled in parallel on the

multiprocessor.

e Tasks have processor constraints, i.e., each task must be scheduled and executed
on the processor(s) where its code and private data are allocated. In this

dissertation, we assume each task can be executed only on one processor.

e However, tasks on different processors may share resources; thus all the tasks

and their resource needs must be considered together at schedule time.

e Task invocations are dynamic — this is termed dynamic task arrivals.

The processor constraint of a task abstracts the following two types of systems:

o A distributed memory multiprocessor system in which static binding of tasks

to processors is done.

o A heterogeneous multiprocessor system in which a task may require some

particular processor(s).

In a context of a real-time multiprocessor system with the above tasks and

resources, we adopt the guarantee-oriented scheduling model in this dissertation.

2.3.83 Notations

e n: the number of tasks {73, T, ... Tn}.
e m: the number of processors {Py, Py, ... P,,}.

e s: the number of resources {ry,rs, ... 7,}.

34

Each task T; has the following attributes:

C;

: the worst case execution time of 7;. At scheduling time, this value is known
to the scheduling algorithm. But at execution time, a task may have an actual

computation time ¢, < ¢;.
: the deadline of Tj;

]: a vector of resource requirements for 1 < j < s, denoting the set of
resource requirements of T;; each element of the vector indicates ezclusive_use,
shared_use, or no_use. A task aquires all the resources it needs at the beginning

of its execution, and the resources are not release until task completion.

: a processor id for 1 < ¢ < m; this is the processor constraint attribute of task

T;.

CHAPTER 3

RESOURCE RECLAIMING: THEORETICAL
ISSUES

Given a feasible schedule, resource reclatming refers to the problem of utilizing
resources left unused by a task when it executes in less than its worst case execution
time, or when a task is deleted from the current schedule. This chapter establishes
the theoretical foundations for the on-line multiprocessor resource reclaiming prob-
lem. After some preliminary definitions, we illustrate the timing anomalies that may
arise in a multiprocessor schedule with resource constraints when tasks may execute
in less than their worst case execution times. To demonstrate the importance of the
design of correct resource reclaiming algorithms, we analyze the worst case behavior
of two seemingly simple and intuitive resource reclaiming schemes. We also prove
the general conditions under which dynamic timing anomalies exist. The complexity
and optimality of on-line resource reclaiming in a multiprocessor system are then
analyzed. With the results of this theoretical analysis of the resource reclaiming
problem, we establish a correctness criterion for the design of resource reclaiming

algorithms.

3.1 Preliminaries

In this section, we introduce preliminary concepts and formal definitions that

are needed for the analysis carried out in the rest of the chapter.

Definition 1: A feasible schedule S is a task schedule in which tasks’ worst case

execution times and resource constraints are all guaranteed to be met. In this

36

dissertation, we consider nonpreemptive feasible schedules in which a scheduled
start time (st;) and scheduled finish time (ft;) are assigned to each task T; in the

schedule such that Vi, ft; < d;.

Definition 2: Given a feasible schedule S, a post-run schedule S’ is a layout of
the tasks in the same order as they are executed at run time when they execute
only up to their actual execution times ¢}, where Vz, ¢} < ¢;. Associated with
each task T; in a post-run schedule S’ is a start teme st. and a finish teme ft..
st; and ft, are the actual times at which 7; starts and completes execution,

respectively, and they may be different from st; and ft;.

Definition 3: Given a feasible schedule S, a projection list PL is an ordered
list of the tasks in the feasible schedule, arranged in nondecreasing order of st;.
If st; = st; for some tasks T; and T}, we place the task with the smaller processor

id in the PL first. Thus PL imposes a total ordering on the guaranteed tasks.

Definition 4: Given a feasible schedule S, a processor projection list PPL,
is an ordered list of all the tasks scheduled on processor P,, also arranged in

nondecreasing order of st;, for 1 <1 <nand 1 <g<m.

We define a timing anomaly as a scenario in which given a set of tasks with a
feasible schedule, a decrease in the execution time of some task results in the missing

of deadline(s) of one or more tasks at run time in a post-run schedule.

Definition 5: Given a feasible schedule S of tasks, a timing anomaly occurs

in a post-run schedule §' if 3T}, ¢; < ¢;, and for some T}, ft’ > ft;.

Definition 6: A work-conserving dispatching scheme is one that will never

leave a processor idle if there is a dispatchable task.

Table 3.1 Example 3.1: Task Parameters.

37

Tasks | pid ¢ cl d; 71 st; ft;
Ti 2 225 125 225 - 0 225
T, 2 175 100 400 shared 225 400
T3 1 175 150 175 - 0 175
Ty 1 25 25 200 exclusive 175 200
T 1 150 75 350 - 200 350
T 2 100 100 500 - 400 500
T 1 150 125 500 shared 350 500
p2 Tl T2 T6
P T, T, T, T,
| | | | |] | | | | | | | | | |

25 50 75 100

125

150

175

200

225

250

275 300

325

350

375 400

425

450 475

500

Figure 3.1 Example 3.1: A feasible schedule S according to tasks’ worst case

computation times.

Table 3.2 Example 3.1: Start Times and Finish Times produced by no resource

reclaiming.
Tasks T1 TZ T3 T4 T5 T6 T7
st} 0 225 0 175 200 400 350
fti | 125 325 150 200 275 500 475
¢ 225 175 175 25 150 100 150
c 125 100 150 25 75 100 125
P, T, T, Ty
P, T, T, T T,
I] I | I | I | l I | l I l

0 25 50 75 100

125

150

175

200

225

250

275 300

325

350

375 400

425

450 475

500

Figure 3.2 Example 3.1: A post-run schedule S’ when tasks execute only up to
their actual execution times and no resource reclaiming is done.

38

P, T, T, T,

P, T, T, T, T,
[T WY N T N N T Y I (S Y O A T

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Figure 3.3 A post-run schedule S’ produced by a work-conserving scheme with a
timing anomaly.

We illustrate the terminology introduced so far through Example 3.1 in Figures
3.1 and 3.2. Table 3.1 provides the attributes of a set of seven tasks. Each task
requires a processor (indicated by the processor id, pid), and some need an additional
resource r1. The table also includes the worst case and actual execution times (¢; and
c;), deadlines (d;), and scheduled start times (st;) and scheduled finish times (ft;)
for each task. Figure 3.1 shows a two processor feasible schedule S corresponding
to the table entries. For the feasible schedule given in Figure 3.1, the projection list
of Sis PL = {T3,T1,T4,Ts,T5,T7,Ts}. The processor projection lists are: PPL; =
{T3,T4,Ts,T7}, and PPLy = {T1,T>,Te}. Table 3.2 and Figure 3.2 show one of the
possible post-run schedules S’ and the corresponding start times st; and finish times
ft! of the tasks. Figure 3.3 demonstrates one of the possible post-run schedules with

a timing anomaly — T, missed its deadline.
3.2 Timing Anomaly Analysis: 2 Case Studies

When resource reclaiming is not done correctly, anomalies can arise at run
time in a dynamic real-time multiprocessor schedule with resource and processor
constraints. These anomalies may jeopardize the deadlines of the real-time tasks
that have already been guaranteed. In particular, one cannot simply use any work-
conserving scheme, defined as any scheme that will never leave a processor idle if
there is a dispatchable task, without verifying that task deadlines will not be missed.

In this section, we examine two simple work-conserving resource reclaiming schemes

39

and the possible anomalies they can cause at execution time to a resource constrained
multiprocessor task schedule. The worst case bounds on these anomalous cases are

presented.

3.2.1 Greedy Resource Reclaiming Scheme

The first is the Greedy Resource Reclavming Scheme.

Definition 7: When a task completes execution earlier than its scheduled
finish time, the Greedy Resource Reclaiming Scheme scans the Projection List

PL from left to right, and dispatches the first task 7j, if any, such that the

resources and the processor T; needs are all available.

The Greedy Resource Reclaiming Scheme reclaims resources by not intentionally
leaving any processor or resource idle at run time. Figure 3.3, which is the post-run
schedule produced by the Greedy Resource Reclaiming Scheme, demonstrates the
timing anomaly that can occur when the Greedy Resource Reclarming Scheme is
used. Although all the tasks’ timing and resource constraints are satisfied in S in
Figure 3.1, Ty misses its deadline in S’ in Figure 3.3. One is prompted to ask the

following two questions:
(1) Why (i.e., under what conditions) does this anomaly occur?

(2) How much performance degradation results from this anomaly?
There are two types of performance degradation that we are concerned with in
a real-time system:
(2.1) The first is the maximum amount of time by which a task misses its
deadline, and

(2.2) the second is the number of tasks that miss their deadlines.

40

We will delay the answer to questions (1) and (2.2) until Section 3.3. In this
section and the next, we provide answers to question (2.1). The following theorem
quantifies performance degradation type of (2.1) with respect to the Greedy Resource

Reclaiming Scheme.

Theorem 1: Let m be the number of processors and n the number of tasks.
Given a feasible schedule S of length L, when the execution times of some task(s)

decrease !, in the worst case, the length L’ of the resulting post-run schedule S’

produced by the Greedy Resource Reclaiming Scheme is ’"T"'l x L, 1.e.,
LI
I m+1
L— 2
ProoOF.? Recall that ¢; is the worst case computation time of task 7} in the

feasible schedule, and ¢} is the actual computation time of 7; in the corresponding
post-run schedule.

Let e(t) = the set of tasks being executed at time t, and |e(¢)| be the
cardinality of the set. If X = {¢| |e(t)| = 1}, i.e., X is the set of time intervals ¢
in which only one task is being executed in L', then let 7(X) denote the sum of

all the time intervals in X, and let 7(X) denote the sum of the rest of the time

intervals in L'. Then we have
L' =7(X) + 7(X)

Define
T = U e(t)

T;,eX
i.e., T is the set of tasks executed in 7(X).

Since no two tasks T;, T; in 7 can execute in parallel due to their resource

13T;, such that ¢ < ¢;.

2The proof of this bound is inspired by a similar proof given in [23]. However their bound was
not derived in the context of a decrease in the task execution time at run time.

41
constraints, (otherwise they would have been dispatched in parallel by the Greedy
Resource Reclaiming Scheme),

L > 7(X)

This i1s because the scheduling algorithm that produced the feasible schedule
with length L could not have scheduled any of the tasks in 7 in parallel either
due to their resource constraints. For example, 7 = {43, B;} for the post-run
schedule in Figure 3.5.
Since
ml > ici and ¢; > c.,
i=1

and

z”:q > 7(X)+27(X)

(since there are at least 2 tasks executing in 7(X)), we have

mL >7(X)+ 2T(X)

Also since
L' = 7(X)+7(X),
2L = 7(X)+7(X)+27(X),
and so
7(X) + 27(X)=2L —1(X)
Then

42

mL

Y

2L’ — L,

(m+ 1)L > 2L,

and thus

Q.E.D.

The following example demonstrates that the worst case ratio of Theorem 1 is
tight.
Example Greedy:

Let n = 4m —1, and » > m. The tasks and their parameters are specified in
Table 3.3. The table is formulated with variables for ¢;, ¢}, and d; to illustrate a class
of schedules which may produce this worst case anomaly. Table 3.4 contains tasks’
resource requirements. An ‘e’ indicates ezclusive resource usage, and ‘s’ shared
resource usage. Figures 3.4 and 3.5 illustrate this worst case example with table
variables m = 3, Z = 10, ¢ = 2, and § = 1. Here L' is 43 and L is 26, i.e.

L'<’"T+1*L. Wenowshowthatif6—>0and5—>0,L'—>’"TH*L.

e CALCULATION OF THE ASYMPTOTIC WORST CASE RATIO OF L'/L:

Let L be the schedule length of the feasible schedule S, and L’ be the schedule

length of the post-run schedule L’. We have

L = me+27
L' = mZ+7Z+ m(e—Y9)

= (m+1)Z 4+ m(e—9)
Then as € > 0 and § — 0,

L = me+27Z — 27

43

Table 3.3 Task Parameters: pid = processor id, ¢; = worst case computation time,

¢, = actual computation time, d; = deadline, for 1 <7 < m.

Task Type # of Tasks pid ¢ ¢ d;
A m i yA yA me + 7
B m 1 y/ y/ me + 27
E m 1 e €—9§ me
F m—1 1 € € me

Table 3.4 Task resource requirements.

resources Fl F3 El E2 E3 Al Ag Ag Bl Bg Bg
R e e e e s
R, S e S e e s
R3 s s s e s s
P3 F3 E3 A3 83
P2 E2 AZ BZ
PY ET FY AY BY
I I R L

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 4

Figure 3.4 A feasible schedule S.

PL' F3 B.'i A.? ES
P2 BZ E2 AZ
PY E1 AY F1 BY
T N T Y TN I o A

0

N
S
o
@

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 4

Figure 3.5 The worst-case post-run schedule produced by the Greedy scheme.

44
L' = m+1)Z+m(e—§) — (m+1)Z

Thus,
L' (m+1)Z ~m+1

L 2Z 2

From the above construction of the worst case bounds for the Greedy Resource
Reclaiming Scheme, the following corollary, which quantifies the performance degra-
dation in terms of the maximum amount of time a task can miss its deadline by,

can be derived.

Corollary 1: Given a feasible schedule S of length L, in the case of decreasing
execution times of some task(s), a task 7} can miss its deadline by as much as
L' — L in the resulting post-run schedule S’ produced by the Greedy Resource
Reclaiming Scheme, where L' is the length of the post-run schedule.

PrOOF It follows directly from Example Greedy.

Observation 1: The worst case of L'/L, i.e. when L'/L is maximum, occurs
when § is produced by an optimal scheduling algorithm such that L is smallest.
Here by optimal we mean an algorithm that can always find a feasible schedule
if one exists, and if more than one feasible schedule exists, it will always find the
shortest one. Since any practical dynamic scheduling algorithm is likely to be
heuristic, the resulting L will be larger than the optimal schedule length. Thus,

in general, the worst case ratio of L'/L will be smaller than ™}

3.2.2 Bounded Greedy Resource Reclaiming Scheme

One may suspect that the Greedy Resource Reclaiming Scheme performs so
poorly because it is too greedy. We now examine a second simple resource reclaiming
scheme, the Bounded Greedy Resource Reclaiming Scheme, that is seemingly less

greedy.

45

Definition 8: The Bounded Greedy Resource Reclaiming Scheme only dis-
patches a task T; if (1) T; is the very first task in a processor projection list
PPL;

;j, and (2) the resources that 7; needs are all available.

The Bounded Greedy Resource Reclaiming Scheme limits the greediness by only
examining the first task of each PPL;. However, even though the greediness is
bounded, run time anomalies can still occur when the Bounded Greedy Resource
Reclaiming Scheme is used. The worst case ratio bound of L'/L resulting from
using the Bounded Greedy Resource Reclazming Scheme is even worse than what
results from using the Greedy Resource Reclaiming Scheme, as shown in the following

theorem.

Theorem 2: Given m processors, if the Bounded Greedy Resource Reclavming
Scheme 1s used, when task execution time decreases at execution time, the length
L of the feasible schedule S and the length L’ of the post-run schedule S’ can
have a worst case ratio of Lf’ = m.
ProoF Any feasible schedule S must have a schedule length L > Z";L—lﬁ,
so we have mL > Y7 | ¢;. Since there is no time at which all processors and
resources are idle in S’ and ¢} < ¢;, we must have

L'<Y g <mxL

=1

where m is the number of processors and n is the number of tasks. Q.E.D.
The following example demonstrates that the worst case ratio in Theorem 2 is

tight for our multiprocessor scheduling model.
Example Bounded Greedy:

Let m = the number of processors, n = the number of tasks = 3m — 1, and
r = the number of resources, » > 1. The tasks and their parameters are specified
in Table 3.5. Table 3.6 contains tasks’ resource requirements. Figures 3.6 and 3.7

illustrate this worst case example with m = 3, Z =20, e =2 and § = 1.

46

e CALCULATION OF THE ASYMPTOTIC WORST CASE RATIO OF L'/L:

Let L be the schedule length of the feasible schedule S, and L’ be the schedule

length of the post-run schedule S’. We have

L = me+ Z

L' = mZ+m(e—9)
Then as ¢ > 0 and § — 0,

L = me+ 7 — 7

L' = mZ+m(e—8) — mZ

Thus,

The above construction of the worst case bounds for the Bounded Greedy Re-

source Reclaiming Scheme leads us to the following corollary.

Corollary 2: Given a feasible schedule S of length L, in the case of decreasing
computation times of some task(s), a task 7} can miss its deadline by as much
as L' — L in the resulting post-run schedule S’ produced by the Bounded Greedy
Resource Reclaiming Scheme, where L' is the length of the post-run schedule.
PrOOF It follows directly from Example Bounded Greedy that fta, = da,
+ (L' —da,) = L' and d4, = L, where ftu, and du, are the finish time and
deadline of task A;. Q.E.D.

Discussion

m+1

Why is the worst case bound of the Greedy Resource Reclaiming Scheme ™,

but the Bounded Greedy Resource Reclaiming Scheme m? By re-examining the

construction techniques demonstrating these bounds, we can intuitively answer this

47

Table 3.5 Task Parameters: pid = processor id, ¢; = worst case computation time,
¢, = actual computation time, d; = deadline, for 1 <7 <m and 2 < 7 <m.

Task Type # of Tasks pid ¢ ¢ d;
A m i yA yA me + 7
E m 1 € €—96 1€
F m—1 J € € 1€

Table 3.6 Task resource requirements for the worst case construct of the Bounded
Greedy algorithm.

resources | K1 | By | Es | Fy | F5 | A; | Ay | As
R e e e s s
R, s s e s s
P3 F3 E3 AS
P2 F2 E2 A2
PY E7 A7
| NN N TN T M N (O A I I A N MO B
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
Figure 3.6 A feasible schedule S.
P, F, F A,
P2 F2 E‘ AZ
P, E A
N N N R B N Y Y I N N Y N IR N N N

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
Figure 3.7 The worst-case post-run schedule produced by the Bounded Greedy
scheme when tasks execute only up to their actual computation times.

48

question. First observe that the worst case examples are generated by maximizing
the parallelism of the feasible schedule, while minimizing the parallelism of the
post-run schedules. Given m processors, we know that the worst bound we could
possibly construct is m — where the feasible schedule has m tasks in parallel, the
post-run schedule will have m tasks in serial. Because the Bounded Greedy Resource
Reclaiming Scheme can only “look ahead one task” per processor, it can miss all
potential optimal parallelism among the tasks, thereby making it straightforward to
produce a feasible schedule for which it exhibits this worst of the asymptotic worst
case bounds (m) (see figure 3.5). However, producing a feasible schedule for which
the Greedy Resource Reclatming Scheme produces a post-run schedule length bound
of m i1s impossible. This is because the Greedy Resource Reclavming Scheme will
look ahead an “arbitrary” number of tasks. Given that some task B is currently
executing, if there is any task B’ that has been scheduled in parallel with B in the
original feasible schedule that has not been dispatched yet, then the Greedy Resource
Reclaiming Scheme will find B’ unless it finds some other task B” to execute before
B’ can be dispatched. Although B and B” can execute in parallel, B” may have
resource conflicts with all other tasks, thus making the parallel execution of m tasks
in the feasible schedule into the parallel execution of only two tasks. Thereby, the
worst case occurs for the Greedy Resource Reclaiming Scheme when it consistently
finds the wrong tasks to execution in parallel, limiting the parallel execution to only

two tasks at a time, yielding the ’"T"'l schedule length bound.

3.3 Timing Anomaly Analysis: General Results

Having demonstrated the run time anomalies via the analysis of the worst case
behavior of two greedy schemes, in this section, we prove the conditions necessary
for the timing anomalies to occur in a resource constraint multiprocessor schedule if

a work-conserving scheme is used. Moreover, in contrast to the worst case analysis

49

with respect to the schedule lengths in the last section, we show the worst case per-
formance degradation in terms of the maximum number of tasks missing deadlines
as a result of using work-conserving resource reclaiming schemes. We first need the
following definitions.

For each T; in a feasible schedule, we can divide the rest of the tasks in the

schedule into three disjoint subsets with respect to 7; defined as follows:

Definition 9:
Tei = {Tj: ft; < st;}
Ts: = {Tj: st; > ft;}
Tei ={T;:T; € T<; and T; ¢ Ts}

Thus, T«; is the set of tasks that are scheduled to finish before T; starts. T5; is
the set of tasks that are scheduled after T; finishes. T.; is the set of tasks whose

scheduled execution times overlap with the execution time of 7;. For example, in

Figure 3.1, T 5 = {T3;T4}; Tss = {T67T7}7 and Ty = {T1;T2}-

Definition 10: A task T; totally passes task T; if st; < fti, but ft; < st;.
Thus total-passing occurs when a task T; starts execution before other task(s)

that are scheduled to finish execution before T; was originally scheduled to start.

Assume that tasks never execute longer than their worst case execution times,
there is no preemption during the execution of the tasks in S, and no arbitrary

idle times are inserted. We have the following lemma which will be used in proving

Theorem 3.

Lemma 1: Given a feasible real-time multiprocessor schedule S, if 37}, such
that ft. > d;, in a post-run schedule S’ then total-passing must have occurred.
PROOF. Since T; does not finish by its deadline, then ft. > ft;. And

since ¢; < ¢;, then st. > st;. Assume the contradiction, i.e., assume that no

50

total-passing occurred. Then the tasks in T; must have been dispatched before
T; started and the tasks in 7%; must have been dispatched after T; finished
execution. By definition of a feasible schedule, the tasks in 7T~; have no resource
conflicts with Tj, therefore, no matter what order these tasks were dispatched
with respect to the dispatching time of Tj, they would not have delayed the
dispatching of 7;. This contradicts the premise that 7; did not start by its

scheduled start time st;.

Q.E.D.

Theorem 3: Given a feasible schedule, S, a timing anomaly occurs such that
some task 7} misses its deadline in S’ only if the following conditions are true

at some time ¢.

Condition 1: ITyecr and Tpasser such that Tyoer 1s executing at ¢, and

st! =1.

passer

Condition 2: There is a chain of tasks 78 = {71, ..., Tx_1} that have not
started execution at time ¢, such that (1) Tpesser € T>; for some 2,1 < 3 <

k—1, and (2) none of the tasks can execute in parallel due to mutual resource

] 3

conflicts, and (3) none of them can start execution until ¢' > ft. ...

Condition 3: Y% . ¢ + (ft! — 1) > dy.

passer

Conditions 1 and 2 state that there must be an occurrence of total-passing
among a chain of tasks with mutual resource conflicts. Condition 3 gives the
length of the chain in terms of execution times that may induce the missing of
the deadline of task 7%.

Proor Given Lemma 1, we only need to prove (2) and (3) in Condition 2,

and Condition 3. Assume the contrary. Then d7; € 7 B such that T; could be

3Note here that resource conflicts may include both resource and processor conflicts.

51

executed in parallel with some T; € 7B, or T; could have started before ft,,,,e,-
However, if this were true, the lefthand side of Condition 3 could have been

reduced to be less than di. Then the timing anomaly would not have occurred

since Y81 ¢} 4 (Fthasser — t) < di-

Q.E.D.

Conditions 1, 2, and 3 are necessary, but not sufficient because the chain of tasks
in 7B is a set, i.e., conditions 2 and 3 do not impose any specific ordering among
the tasks in 7 B. Therefore, it is easy to construct examples in which conditions 2
and 3 are true, but no timing anomaly occurs. The next corollary follows from the

above theorem.

Corollary 3: Given n tasks remaining unfinished in a feasible schedule S, if a
timing anomaly occurs in a post-run schedule S’, in the worst case, the number
of tasks that miss their deadlines is n — 2.
ProoF It follows from Theorem 3 that in the worst case, all the tasks would
miss their deadlines, except tasks Tyiocr and Tpgsser in the following scenario:
The worst case occurs when Vi,1 <1 < mn, ft; = d;, 1.e., all the tasksin S have
their scheduled finish times equal to their deadlines. Without loss of generality,
let Thoiock = 11, Tpasser = Iny and TB = {15, T3, ..., Tp—1}. Let Tpasser € Tsn — 1.
Assume all the tasks in 7 B execute up to their worst case execution time. Since
Tpasser 1s scheduled to start after all the tasks in the feasible schedule, if it totally
passes the tasks in 7B in the post-run schedule, all the tasks in 7B would miss

their deadlines.

Q.E.D.

Even the necessary conditions proved in Theorem 3 are difficult to detect effi-

ciently. The checking of Condition 2 can be combinatorially explosive since tasks

52

with mutual resource conflicts form a clique, and finding a clique in a graph is
well-known to be NP-complete [25, 91]. In this case, one not only has to find the
cliques, but must also test Condition 3 for each such clique. We would like to
point out that conditions that are both necessary and sufficient are difficult, if not
impossible, to construct because these conditions depend on the actual execution
times of tasks. We conjecture that, even if sufficient conditions could be derived, it
would require the examination of all possible interleavings (combinations) of task
orderings.

Given the inherent difficulties in determine the necessary and sufficient condi-
tions, we must develop alternative strategies to prevent timing anomalies during
resource reclaiming. How to accomplish this is the subject of the remainder of this

chapter and the next chapter.
3.4 Complexity and Optimality

Predictability is of paramount concern in a real-time operating system. The
system overhead incurred in scheduling, dispatching, and resource reclaiming should
not introduce uncertainty into the system. Since we are working in a dynamic
real-time environment, time conscientious and time conserving properties are of
major importance for on-line resource reclaiming algorithms. There are two extreme
cases that provide the lower and upper bounds on the cost in terms of time.

EXTREME CASE 1. Dispatching tasks strictly according to their scheduled start
times (st). This implies no resource reclaiming and, obviously, the cost of resource
reclaiming is zero.

EXTREME CASE 2. Total rescheduling of the rest of the tasks in the schedule
whenever a task executes in less than its worst case execution time. Suppose the cost
of a particular scheduling algorithm is f(n) for each instance of scheduling involving

n tasks. Then, the cost of total rescheduling would be O(f(n)), assuming no new

53

task arrivals. Total rescheduling can only be used if the cost of this rescheduling is
less than the time left unused by a task.

Since every task might complete early (i.e., execute in less than its worst case
computation time), every task might incur resource reclaiming overhead. Hence,
the resource reclaiming cost must be low (i.e., inexpensive) so that it is insignificant
compared to the worst case execution time of a task. Moreover, the entire dispatch-
ing cost, which includes the resource reclaiming cost, should be included in the
worst case computation time of a task. Consequently, the overheads of a resource
reclaiming algorithm must be bounded so that its maximum run time cost does not
vary. The straightforward approach to resource reclaiming by rescheduling will not
be beneficial if the rescheduling cost exceeds the time reclaimed. Further, most
scheduling algorithms have time complexities that depend on the number of tasks
to be scheduled, i.e., use of these algorithms for resource reclaiming would result
in unbounded overhead costs. Even if one can associate a cap on the maximum
number of tasks the scheduler would ever consider, this maximum number can be
very large compared to the average case, thus resulting in very large variance in
the execution time of the scheduler. Thus a resource reclaiming algorithm which
employs rescheduling does not meet the requirements of predictability. One of the
challenging issues in designing resource reclaiming algorithms is to reclaim resources
with a bounded complexity and low overhead, in particular, a complexity that is not
a function of the number of tasks in the schedule.

Before we discuss optimality issues, let us define optimal resource reclaiming.

Definition 11: A resource reclaiming algorithm is optimal if it will always

dispatch a task as long as the dispatching cannot result in any timing anomalies.

Although rescheduling can be used as an upper bound on the time cost for

resource reclaiming, it does not provide optimality. In the following, we prove

54

that the multiprocessor scheduling problem with resource constraints, under the
assumption that each task has already been assigned to a particular processor prior

to scheduling, is NP-complete in the strong sense’.

Theorem 4: The problem of deciding whether it is possible to schedule a
set of tasks with resource constraints, deadlines and processor constraints is
NP-complete in the strong sense.

Proof: It is easy to see that the problem is in NP, since a nondeterminis-
tic algorithm need only guess a schedule, and check in polynomial time whether
the schedule satisfies the deadlines and resource constraints of the tasks. We
shall now give a polynomial transformation of an instance of the 3-PARTITION
problem to an instance of our scheduling problem as follows.

We construct an instance of our scheduling problem such that the resource
constraints of one subset of the tasks force the remaining subset of tasks to be
scheduled in a number of equal sized “holes” left in the schedule. The scheduling
of 3m tasks into the m holes of size B directly maps to the 3-partition problem.

An arbitrary 3-PARTITION instance: Let A = {A4;, A,,...A3,,} be a set of
3m elements, B a positive integer, and W; for : = 1,2,...3m the weights of the
elements in A, such that % < W, < g and Ef”:"l W; = mB. The problem is to
decide whether A can be partitioned into m disjoint subsets such that each of
which has a sum of weights of its elements equal to B.

The corresponding instance of our multiprocessor scheduling problem has

two processors P; and P, two resources R; and R,, and two sets of tasks,

A={A Ay, .. Az} and T = {11, T, ... Tom_1}, a total of 5m — 1 tasks with the

*In existing literature [24, 25], the resource constrained multiprocessor scheduling problem
has been proved to be NP-complete in the strong sense only for shared memory multiprocessor
cases. Here we provide the proof for the special case in which tasks have been statically bound to
Processors.

4Y)

following parameters and processor constraints (Let ¢ be the computation time,

d the deadline, and r the resource requirement vector):

o All the tasks in the set 7 are allocated to processor P, and all the tasks in

A are allocated to Ps.
oVA; 1 =1.3m, c(A;) =W, d(A;) =mB+m—1, r(4;) = (Ry).

oTii=1.2m—1,
= WB + L]

if 7 1s even
otherwise
(R,
Ry

r(Ti):{(7)2 if 7 is even

otherwise

< 3k 2 <~ —

Figure 3.8 The form required of a sequence meeting the constraints of an instance of

the resource and processor constrained multiprocessor scheduling problem obtained
by transforming an instance of 3-PARTITION.

This transformation can clearly be done in polynomial time. Now notice that

all feasible schedules for the scheduling problem instance must run the tasks in

7T in the exact order of increasing deadlines as shown in Figure 3.8, since T}

has zero laxity (the laxity of a task T; equals to d; — ¢;) and, once T; is placed

in a schedule, T;,; has zero laxity. Moreover, with this ordering of tasks in 7,

56

the m — 1 even numbered T;’s divide the time on resource R, into m separate
slots, each of which is of length B. There can be no idle time in any of these
m slots since the sum of the computation times of the tasks in A equals to mB.
Now the question is how to partition the tasks in A into m disjoint subsets such
that the sum of the computation times of the tasks in each subset equals to B.
Thus a feasible schedule exists iff the 3-PARTITION problem has a solution.
Since 3-PARTITION is NP-complete in the strong sense, we have proved that
the problem of deciding whether it is possible to schedule a set of tasks with
resource constraints, deadlines and processor constraints is NP-complete in the

strong sense as well. Q.E.D.

Because the resource constrained multiprocessor scheduling problem is NP-
complete in the strong sense, any practical scheduling algorithm used in dynamic
real-time systems must be approximate or heuristic. This implies that it is not
always the case that the same scheduling algorithm will definitely find a feasible
schedule when a task is removed from the original set of tasks when the task finishes
execution. Thus, even though extreme case 2 provides us with an upper bound on
the time complexity of the resource reclaiming problem, it does not represent the
optimal solution in terms of being able to find feasible schedules whenever they
exist, and to reclaim resources effectively. It does provide an indication of the best
a system can do in reordering tasks according to available resources. Clearly, a
useful resource reclaiming algorithm should have a complexity less than the total
rescheduling extreme, while being just as effective.

We distinguish between two classes of resource reclaiming algorithms. One is
resource reclaiming with total-passing, and the other is resource reclaiming with-
out total-passing. A resource reclaiming algorithm that allows total-passing will
inevitably incur higher complexity in terms of time than another that does not

allow total-passing. This is because total-passing implies altering the ordering of

57

tasks imposed by the feasible schedule, and thus is similar to rescheduling. As we
have shown in Section 3.3, checking the conditions under which timing anomalies
may occur could be an extremely complicated and time consuming process. To
determine which task in the remaining schedule can utilize an idle period involves
searching (since the scheduling problem is in fact a search problem [94]). Any search
will have a complexity of at least O(logn), where n is the number of tasks to be
scheduled. Since we are interested in designing resource reclaiming algorithms with
bounded cost that can be used for dynamic real-time systems, we are motivated to

concentrate on resource reclaiming algorithms without total-passing.
3.5 A Correctness Criterion

It 1s clear from Figures 3.5 and 3.7 that both of the Greedy and Bounded
Greedy schemes allowed total-passing. Timing anomalies occur using greedy resource
reclaiming schemes because tasks are not dispatched in the same order as in the
given feasible schedule, and this run-time reordering is done without verification of
the resource conflicts and timing constraints among tasks. For example in Figure
3.3, since the Greedy Resource Reclaiming Rule always keeps a processor busy (i.e.
work-conserving) whenever possible. When T; executes less than its worst case
execution time, T3 is dispatched immediately since both the processor and resource
it needs are available. Because of the resource conflicts between 75 and Ty, T, misses
its deadline. A correct resource reclaiming algorithm must be able to guarantee that
this kind of run time anomaly does not occur in a post-run schedule.

From Lemma 1 and Theorem 3, we know that total-passing is a necessary
condition for timing anomalies to happen. So one strategy to ensure the correctness

of the given feasible schedule during resource reclaiming is to prohibit total-passing.

58

Definition 12: Given a post-run schedule S’, a task 7 starts on-time if
st; < st;, that is, if the task T; starts execution by or before its scheduled start

time.
Definition 13: A post-run schedule S’ is correctif Vi 1 <1 <mn, ft. < d,.

Lemma 2: If Vi1 <1 < n, T; starts on-tsme in a post-run schedule S’, then
S’ is correct.

ProoF Given nonpreemptive task executions, by definition 12, if 7} starts
on time, i.e., st; < st;, then ft. < ft; < d;. So the resulting post-run schedule

S’ is correct.

Q.E.D.

This lemma forms the basis for the correctness of our reclaiming algorithms.
Note that the lemma gives us a sufficient condition for task starting times. Our
reclaiming algorithms will be designed to start tasks on-time. As we shall see, this

strategy results in reclaiming algorithms that have bounded reclaiming overhead.
3.6 Summary

In this chapter, we addressed the various theoretical issues in dealing with the
problem of on-line resource reclaiming. It was demonstrated that timing anomalies
could occur if resource reclaiming was not done correctly, and possible performance
problems were quantified via worst case analysis. Previous research on worst case
analysis of multiprocessor schedules has not considered systems in which static
binding of tasks to processors is assumed. Our analysis extends the previous results
in this direction.

A set of necessary conditions for the occurrence of timing anomalies has been

developed. As we have discussed, the complexity of examining these conditions is

59

prohibitive, not to mention the fact that they would have to be done on-line in a
dynamic real-time system. Moreover, the complexity of on-line resource reclaiming
also comes from the difficulty of the scheduling problem itself — we proved that
multiprocessor scheduling with resource and processor constraints is NP-complete
in the strong sense. This implies that even the scheduling algorithm cannot be used
as an optimality measure for the resource reclaiming problem.

At the end of the chapter, considering the theoretical results developed through-
out this chapter, we have established a correctness criterion for on-line resource
reclaiming algorithms. In the next chapter, we will present two resource reclaiming

algorithms.

CHAPTER 4

RESOURCE RECLAIMING: THE ALGORITHMS

4.1 Introduction

In this section, we present our two multiprocessor resource reclaiming algo-
rithms, the Basic Reclaiming algorithm and the Reclaiming with Early Start algo-
rithm. Before the details of the algorithms are presented, we would like to motivate
the ideas behind the algorithms.

Let us reexamine the correct post-run schedule portrayed in Figure 3.2. Actually,
this post-run schedule is a result of not doing any run time resource reclaiming.
Notice that between time 150 to 175 all the processors are idle. Clearly, every task
in the remaining feasible schedule, i.e., tasks Ty, Ty, Ts, Te, and 1%, could have been
started at least 25 time units earlier than their scheduled start times without the
risk of a deadline violation. However, with a more careful inspection of Figure 3.2.
one can see that we can do even better in utilizing the idle time left in the post-run
schedule. For example, T5 could start as soon as T3 completes execution, because
T, € Tws (see Definition 9 in Section 3.3). This can be accomplished if we can in
some way represent and utilize the information given in Definition 9. Our second
resource reclaiming algorithm, Reclaiming with Early Start, does precisely this.

Thus the two resource reclaiming algorithms are based on the idea that a feasible
multiprocessor schedule provides task ordering information that is sufficient to
guarantee the timing and resource requirements of tasks in the schedule. If two

tasks T; and Tj are such that T; € T.; (i.e., T; does not have any resource conflict

61

with T; as defined in Definition 9) in a schedule, then we can conclude that no matter
which one of them is dispatched first at run time, they will never jeopardize each
other’s deadlines. On the other hand, if T; € T; or T; € T\;, we cannot make the
same conclusion without re-examining timing and resource constraints or without
total re-scheduling.

While the information encoded in the PL and the set of {PPL,,...,PPL,}
is necessary for the construction of correct resource reclaiming algorithms, timing
anomalies may result due to a naive use of these lists (this was demonstrated in
Chapter 3). Since the PL and the set of {PPLy,...,PPL,} are linear lists, they
cannot represent information pertaining to concurrency and resource conflicts in a
multiprocessor schedule with resource constraints.

Thus, our resource reclaiming algorithms utilize the scheduled start time st; and
scheduled finish time ft; to infer the information used in Definition 9 in Chapter 3
at run time, 1.e., to identify tasks in T..; where T 1s such that st; < st; Vi, and to
reclaim resources using these tasks. By using such a local optimization scheme, we
do not have to explicitly examine the availability of each of the resources needed by
a task in order to dispatch a task when reclaiming occurs. This keeps the complexity
of the algorithms independent of the number of tasks in the schedule and the number
of resources in the system — a desirable property for any algorithm that has to be
used in dynamic real-time systems at run time. In the following, we assume the

existence of:

(1) a feasible schedule for n tasks {7%,73,...,T,}, which have been guaranteed
with respect to their timing and resource constraints (e.g., using the algorithm

presented in [72]),

(2) the corresponding projection list PL and m processor projection lists PPL; ...
PPL,,,

62

(3) scheduled start time st;, and scheduled finish time ft; for each task entry T; in

the feasible schedule.

We also assume that we can associate a constant cost to determine the identity
of and access the first task in the PL and the first task in each of PPL, (These

assumptions are very practical and easily achievable.).

4.2 Two Algorithms for Multiprocessor Resource Reclaim-
ing
In Chapter 3, we defined the concept of total passing, and proved that total

passing may cause timing anomalies. In the following we define passing and partial

passing.

Definition 14: A task T; passes task T if st; < st’, but st; < st;. Thus passing
occurs when a task 7; starts execution before those task(s) that are scheduled

to start execution before T;.

Definition 15: A task T; partially passes task Tj if st; < st}, but st; < st; and
ft; > st;. Thus T; partial-passes T; when it starts execution before T}, that is

scheduled to start execution before T3, but to finush after T; starts.

Observe that passing is the weakest of the three kinds of passings we have
defined so far, i.e., both partial passing and total passing imply passing. Thus an
algorithm that does not allow any passing will be the most restrictive. The two
resource reclaiming algorithms are presented in pseudo code in Figure 4.1, 4.2, 4.3,
and 4.4. Basic Reclaiming is an algorithm without passing, while Early Start is an
algorithm with partial-passing. Throughout the descriptions of the algorithms, we
use processor index g for the processor on which a task just completed execution,
and r for any of the rest of the processors. Following are the variable definitions

used in the algorithms:

63

m — the number of processors.

o reclaimed_§ — the amount of time that has been reclazmed. The value of
reclaimed_§ is cumulative, updated at each task completion, and monotonically

increasing for a particular feasible schedule. reclaimed_6 is set to zero initially.
o T,, — the newly completed task in PPL, for some processor g.
o T,; — the first task in PPL, after T, is removed from PPL,.
o Ty — the first task in the current PL.
o T, — the first task in the current PPL,.

e nst; indicates a new start time for task 7;. This new start time is calculated

for tasks with respect to the value of reclaimed_é.

Figure 4.1 gives the outline of the major steps of the resource reclaiming al-
gorithms. The algorithm is parameterized by the type of resource reclaiming to
perform, either Basic, or Early Start. Resource reclaiming is carried out upon
the completion of each task. A resource reclaiming algorithm must make two
calculations. First, it must calculate the amount of reclazmable tzme, and second, it
must decide which task(s) to apply the reclaimable time to, i.e., which task(s) can
be dispatched next.

Calculating the amount of reclaimable time is performed by Stepl in Figure 4.2.
Details of this step are the same for both the Basic Reclaiming and the Reclaiming
with Early Start algorithms. Given a feasible schedule, reclaimed_§ is the amount
of time that has been reclaimed up to the current time — its value is the cumulative
amount of time during which all the processors and resources would have been idle if
the dispatching were strictly according to the scheduled start times of tasks. Stepl

updates the value of reclaimed_§ at each task completion. Therefore, every task

64

4 N

Whenever a task T, completes execution on a processor g, do

{

original reclaimed_§ = reclaimed_f;
Stepl(Ty,, reclatmed_§, PL, PPL,);
switch (algorithm_choice)
case BASIC_RECLAIMING:
Step2.BASIC(q, reclaimed_§, original_reclaimed.d,
PL, PPL,, ... ,PPLy,),
case EARLY _START:
Step2. EARLYSTART (r, reclaimed.d,
PL, PPLy, ..., PPLy,),

- /

Figure 4.1 The resource reclaiming algorithm.

in the remaining feasible schedule can start execution at least reclaimed_§ amount
of time earlier than their scheduled start time. After the calculation of the current
value of reclaimed_§, the determination of which tasks can use reclaimed_6 is made
by the second step. In the second step, the next task in PPL,, Vr such that P, is
idle, is examined to decide whether it can be immediately dispatched, i.e., whether it
can use the reclaimable time. Figure 4.3 and 4.4 present the second step for each of

the Basic Reclaiming and the Reclaiming with Early Start algorithms, respectively.

4.2.1 Calculation of Reclaimable Time

Stepl in Figure 4.2 calculates the amount of reclazmable time upon each task

completion. This calculation is carried out only if the finishing task executes in less

65

4 N

Stepl (T, reclatmed.§, PL, PPL,);
1. REMOVE(T,, PL, PPL,);

2. Ty « the first task in the current PL;
3. if (current_time < (ft,, — reclaimed.$))
4. then
5. {
6. reclaimable § = st; — (current_time),
7. if reclaimable § > 0
8. then reclaimed_§ «— reclaimable $;
9. end if
10. }
11. end if
end Stepl

- /

Figure 4.2 Step 1: Calculation of reclaimed.$.

than its worst case execution time (since otherwise the value of reclaimed_§ stays
the same.).

The procedure for this calculation in Figure 4.2 is as follows:

e A task scheduled on processor g is not removed from the PL and PPL, until
it finishes execution. This restriction is required to ensure a consistent view of

the amount of time reclaimable. Line 1 accomplishes this task removal.

o As mentioned above, we only need to update reclaimed_6 if the finishing task
executes in less than its worst case execution time. The condition in Line 3
does this checking. Since both resource reclaiming algorithms will always start
every task’s execution at least by its scheduled start time minus the current
value of reclaimed.$, if T,; finished before time (ft,, — reclaimed.§), it must

have executed in less than its worst case execution time.

66

e Potential idle time on all processors and resources is identified by computing
the function reclaimed.§ = st; — current_time (lines 6 to 8 in Stepl); where

sty is the scheduled start time of the current first task in the PL.

e Since the PL imposes a total ordering on the guaranteed tasks, st; must be
the minimum scheduled start time among all tasks in the schedule, including
the task(s) still in execution. Any positive value of reclaimed_§ indicates the
length of the idle period resulting from tasks finishing early. Since a task is
removed from the schedule only upon its completion (line 1 in Figure 4.2),
reclaimable § could have a negative value (if the first task in the PL is still in

execution) and, in this case, reclaimed_§ retains its original value.

For example, let us examine Figure 4.6. At time 125 when task 77 completes
execution, the current first task in the PL is T3 which is still in execution, and so
reclaimable § = 0 — stz = 0 — 125 = —125 since st3 = 0 (refer to Table 3.1 and
Figure 3.1 for the scheduled start times and scheduled finish times of the tasks.).
On the other hand, at time 150 when 73 finishes execution, Ty becomes the first

task in the PL, and so reclaimable § = sty — 150 = 175 — 150 = 25.

4.2.2 A Resource Reclaiming Algorithm without Passing

Figure 4.3 is the pseudo code for the Basic Reclaiming algorithm. This algorithm
does not allow passing, and only starts the execution of a task earlier than its
scheduled start time by as much as reclaimed.$, i.e., the amount of time by which

the entire remaining feasible schedule can be shifted forward.

The Basic Reclaiming algorithm in Figure 4.3 works as follows:

e We immediately start the execution of the first task 7, on processor P, only if
the task is the current first task in the PL (i.e., it is the next task in the total
order of tasks), or if it has the same st (scheduled start time) as the current

first task (line 4 and 5 in Figure 4.3).

67

Step2.BASIC (g, reclaimed.$, original_reclaimed§, PL, PPL,);

1. if reclaimed_§ > original reclaimed_é

2 then

3 for all idle processors r do

4. if (T,.f == Tf) or (St,.f == Stf)
5. then startexecution(7;,);

6 else

7 {

8. nst,, = st,, — reclaimed.§;
9. pend(T;,,nst,,);

10. }

11. end if

12. else

13. {

14. if (sty; — reclaimed_§) == current_time
15. then startexecution(7>,);

16. else

17. {

18. nst,, = sty, — reclaimed.§;
19. pend(Tq,,nst,,);

20. }

21. }

22. end if

end Step2.BASIC

o

~

/

Figure 4.3 Step 2 of the Basic Reclaiming Algorithm.

e Otherwise we compute a function nst,, for T, to decide the new start time (vs.

the scheduled start time given in the schedule) for it, taking into consideration

the reclaimed time accumulated up to now, i.e., the value of reclaimed_§. This

function is nst,, = st,, —reclaimed_ b, where sty is the original scheduled start

time of task Ty

68

e The pend() function takes as its arguments a task id and a time value. This
function wakes up the dispatcher process to start the execution of the task with

the given task id at the specified future time.

e With this pend() function, processor r will idle until (1) either the calculated
nst,, has arrived, or (2) some other task finishes early and reclaimed.§ is

incremented. In the former case, task T;, will be dispatched at time nst,,. In

the latter case, Step2.BASIC will be invoked again (see Figure 4.1).

o Because Basic Reclaiming does not allow any passing, if there is no increase
in the value of reclazmed_§ when a task completes, then the decision made
regarding the tasks’ new start times for those tasks whose processors are still
pending to start them from the last invocation of the resource reclaiming
algorithm 1is still valid. Only the next task in the same PPL as the finished
task needs to be examined. Lines 14 to 19 in Step2. BASIC accomplish this for

task Ty, on processor gq.

4.2.8 A Resource Reclaiming Algorithm with Partial Passing

Notice that the Basic Reclaiming algorithm will start a task early by an amount
of time equal to reclaimed_§ which is the length of time that all the processors
can reclaim. The Reclaiming with Early Start algorithm eases this requirement. It

allows a task 7,

r;> the first task in PP L., to start as long as no total-passing occurs.

More precisely, Reclaiming with Early Start works as follows:

T

», can start iffor1 <v<mandv#r, T, is either in Ter, orin T, . Let

us define that a task T, is being early started if st;f < sty — reclarmed.d.
In Reclaiming with Early Start, we first compute (lines 6 to 11) a Boolean
function can_start_early = st,, < ft,,, Vv such that v # 7 and 1 < v < m,

where st,, is the scheduled start time of the first task on processor » and ft.,

69

Step2. EARLYSTART (1, reclaimed_§, PL, PPL,, ...

1
2
3
4.
5.
6
7
8

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24. }

can_start_early < true;
for each idle processor » do {

if st., # st;
then
{
v« 0;
while (can_start_early and v < m) do
{
v — v+ 1;
if (v # r) and (st., > ft,,)
then can_start_early « false;

end if

}
endif

if can_start_early
then startexecution(7%,);
else
{
nstrf = st

pend(Ty,,

»; — reclaimed. §;
nst,,);

}
end if

end Step2.EARLYSTART

~

, PPL,,);

/

Figure 4.4 Step 2 of the Early Start Algorithm.

is the scheduled finish time of the first task on processor v. This function

identifies parallelism between the first task on processor » and the first tasks

on all other processors by checking to see whether the first tasks on all other

processors are in T, . That is, for any two tasks T;, and T,

B

if st,, < ft,,, then

Tr; € Tawy, ot T,, € Tey,. The task T, will be dispatched if can_start_early

is true. Otherwise, nst,, is computed and pend() is invoked for task T, as in

Step2.BASIC.

70

As mentioned earlier in this chapter, one must be careful about violating resource
constraints when using the the PL and PPL’s as a basis for resource reclaiming.
Intuitively, the Reclaiming with Early Start algorithm does not violate resource
constraints, since a task 7, will not be started early if this early start would result
in T, executing concurrently with another task 7,; that had not been originally
scheduled to execute concurrently with 7, .. Thus, we are using more knowledge to
perform local optimization than in the Basic Reclaiming algorithm. One can expect
that the Reclaiming with Early Start algorithm will perform better than the Basic

Reclaiming algorithm because it makes better use of the reclaimed time.
4.3 Properties of the Resource Reclaiming Algorithms

The two resource reclaiming algorithms presented above guarantee that run time
anomalies as shown in Chapter 3 will not occur. In this section we shall analyze the
complexity of the two algorithms, and prove their correctness. We also illustrate
some interesting properties and behavior of the two resource reclaiming algorithms

through an example.

4.3.1 Complexity Analysis of the Algorithms

In this section, we show that the complexities of the two resource reclaiming
algorithms are bounded and only depend on the number of processors in the system,
rather than the number of tasks or resources. In the following analysis, we use C;
to represent the cost of functions, or operations that are constants, 7() to denote
actual run time cost, and O() the worst case computational complexity.

The computational complexity of the calculation of reclaimed_§ in Figure 4.2 1s
O(C1), where C; is some constant representing the sum of the cost of the conditional

and assignment operations in lines 3 through 9.

Step2.BASIC:

71

The actual run time cost of Step2.BASIC at each invocation depends on the
value of reclaimed_§ from the most recent update in Stepl. If reclaimed_§ has not
been incremented, only lines 12 through 21 are executed, and thus the cost is 7(C5),
where C is the sum of the costs for the operations of line 1 and lines 12 through 21.
On the other hand, if reclaimed_§ has been incremented, lines 4 through 11 must
be executed for all currently pending processors. Let C3 be the sum of the costs for

the operations of lines 4 through 11. In this case, the cost is 7(mCs).
Thus the worst case complexity of the Basic Reclaiming algorithm is: O(C4) +

maz(7(Cy), T (mC3)) = O(m), where m is the number of processors.

Step2. EARLYSTART:
Step2. EARLYSTART in Figure 4.4 is always executed for all currently pending

processors as indicated by the for loop. The function that identifies the parallelism
among the first tasks on all processors (lines 7 through 13) has a complexity of
O(m). Thus the Early Start algorithm has a worst case complexity of O(Cy) +
O(m?) = O(m?). Note that the best case run time cost of Step2. EARLYSTART
is 7(m). This best case occurs in two situations: (1) when there are no currently
pending processors except the processor that just completed a task execution, and
(2) when only one task can start execution and the rest of the pending processors
fail the can_start_early test the very first time the while loop on line 7 in Figure
4.4 is entered.

Since the complexities of the two resource reclaiming algorithms only depend
on the number of processors, which can be assumed to be constant at run time, the

costs of the algorithms are bounded.

4.3.2 Correctness

In the following, we shall prove that the two resource reclaiming algorithms
presented in this section are correct, that is, they will not cause the type of timing

anomalies shown in Chapter 3.

72

Observation 2: A time translation of z time units of a feasible schedule is
an operation that subtracts x time units from all the scheduled start times and
scheduled finish times of the tasks in the feasible schedule. A feasible schedule

remains feasible under time translation.

Theorem 5: Given a feasible multiprocessor schedule S with resource and
processor constraints, the Basic Reclaiming Algorithm will produce a correct
post-run schedule.

PRrOOF By Lemma 2, we only need to prove that all tasks start on-time in
the post-run schedule produced by the Basic Reclaiming Algorithm.

By Definition 12, if tasks are dispatched according to their st in the feasible
schedule, they all start on-time. Note that the value of reclaimed_6 in Stepl
reflects the reclaimed time units on all resources and processors. Therefore, for
reclaimed_§ > 0, we can perform a time translation of reclaimed_§ time units
on the portion of the feasible schedule remaining to be dispatched. Since the fea-
sible schedule remains feasible under time translation, and since Step2.BASIC
dispatches every task at st. = st; — reclaimed_d, it follows that the tasks in the
post-run schedule produced by the Basic Reclaiming Algorithm must have been

started on-time.

Q.E.D.

Theorem 6: Given a feasible multiprocessor schedule S with resource and
processor constraints, the post-run schedule produced by the Reclaiming with
Early Start Algorithm is correct.

ProoF We shall prove that total-passing does not occur when Reclaiming
with Early Start is used. Then by Lemma 1, we know that all tasks start on

time.

73

We prove this by contradiction. Consider a task 7; to be dispatched in
Step2.EARLYSTART. Suppose 3 T; such that T; were dispatched at some
time st < st; while st; > ft;. This implies that T} totally passed T;. But this is
impossible; because if st; > ft;, can_start_early would have become false in line

11 of Step2. EARLYSTART, and hence 7; would not have been dispatched.
Q.E.D.

4.3.8 Discussion Through an Example

Assume we have the same feasible schedule in Figure 3.1 for the set of tasks
defined in Table 3.1. The post-run schedule produced by the Basic Reclaiming
Algorithm is shown in Figure 4.6 and the post-run schedule produced by the Re-
claiming with Early Start Algorithm is shown in Figure 4.8. We show the values
of reclaimed_§ at the time of each task completion in Figures 4.5 and 4.7 for the
two algorithms respectively!. Figure 3.2 is the post-run schedule when no resource
reclaiming is done. Thus from Figures 3.2, 4.6, and 4.8, one can see the effects of
resource reclaiming.

Note that once the new value of reclaimed_§ is determined in Stepl, every task
T; in the rest of the schedule can in fact be started reclaimed_§ time units earlier
than its st;, e.g., at time 150 when T3 completes execution, 7 can start execution
(see Figures 4.6 and 4.8). This is equivalent to a time translation of reclaimed_§
units of time on the remaining feasible schedule, i.e., the st; and ft; of every task
T; in the remaining feasible schedule can be translated to st; — reclaimed_§ and
ft; — reclaimed_§. However, we do not explicitly carry out this time translation in
the remaining feasible schedule because we will incur a time complexity of O(n) to

modify the st; and ft; of each task, thus violating our boundedness premise.

!Note that although there is no task completion at time 300 in Figure 4.8, we include the value
of reclaimed_6 in Table 4.7 for comparison purposes.

74

time 0 125 150 175 250 300 425 450
reclaimedd |0 0 25 26 25 50 50 50

Figure 4.5 The values of reclaim_§ at each task completion when the Basic
Reclaiming Algorithm is used.

P, T, T, T,

P, T, T, T, T,
L1 1 R I S Y T Y T O Ay B

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Figure 4.6 The post-run schedule S’ produced by the Basic Reclaiming Algorithm.

time 0 125 150 175 250 275 300 375
reclaimedd |0 0 25 25 25 25 25 125

Figure 4.7 The values of reclaimed_§ at each task completion when early start is
allowed.

P, T, T, T,

P, T, T, T, T,
L1 1 R I Y I I Y NN O A B

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Figure 4.8 The post-run schedule S’ produced by the Reclaiming with Early Start
Algorithm.

P, T, T, T, T,

P, T, T, T, T,

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Figure 4.9 The post-run schedule S’ produced by the Basic Reclaiming with the
addition of Ts.

75

From the description of the algorithms, it seems obvious that Reclaiming with
Early Start should be more effective than Basic Reclaiming. However, there are two
interesting aspects of the Reclaiming with Early Start Algorithm that are not very

intuitive.

o First, Reclaiming with Early Start does not necessarily accumulate a larger
value of reclaimed_§ in the short term. For example, compare the values of
reclaimed_§ at time 300 in Figures 4.5 and 4.7. The value of reclaimed_§ from
using Basic Reclaiming is larger than from using Reclaiming with Early Start
at time 300, even though at time 375, the opposite is true. This is because
reclaimed_§ reflects the time reclaimed on all processors and resources. In
general Reclaiming with Early Start keeps the processor and resource utilization
higher than Basic Reclaiming does. So when using Reclaiming with Early Start,
reclaimable § might be found to be positive less frequently in Stepl. But in
the long run, such as by time 375, Reclaiming with Early Start can have a large

value of reclaimed.$.

e Second, since we are dealing with dynamic real-time systems, tasks can arrive
at any time. Whether a task can be feasibly scheduled depends very much on
the particular time the task arrives at the system, i.e., the current system state
including the number of tasks and their worst case requirements, and which
tasks are already in execution. Therefore, even though Reclaiming with Early
Start can eventually have a larger value of reclaimed_§, it does not outperform
the Basic Reclaiming algorithm with respect to guaranteeing dynamic task
arrivals at every task arrival instance. This is because starting the execution of
a task as early as possible is not necessarily always the best choice in a system
with nonpreemptive scheduling and dynamic arrivals. For example, assume we

have the same feasible schedule as in Figure 3.1 and, for the ease of explanation,

76

let us assume scheduling occurs instantaneously. If a task Tg arrives at time
300 with cg = c§ = 50, ds = 375, and Ry = exzclusive (i.e., having a resource
conflict with 7%), a system using the Basic Reclaiming algorithm will be able to
feasibly schedule T as shown in Figure 4.9, while a system using the Reclaiming
with Early Start will not be able to schedule Ts (since Ts and 77 are already
in execution). Thus we need to examine the effectiveness of Reclaiming with
Early Start and Basic Reclaiming with respect to dynamic task arrivals through

experimental studies. This is done in Chapter 6.

4.4 Applicability of the Resource Reclaiming Algorithms

Here we discuss the applicability of the two resource reclaiming algorithms to

task and multiprocessor systems with various characteristics.

4.4.1 Centralized Memory vs. Distributed Memory Multiprocessor
Models

There are two types of multiprocessor scheduling models. In one type, a global
memory is assumed, enabling the execution of a task on any of the processors, with
access time to a physical memory location the same for all the processors. In the
other type, physical memory is divided into modules with some placed near each
processor (which allows faster access time to that memory), and a task is allocated
to one of the processors, and thus can only be executed on a particular processor
at run time. The former can only model identical multiprocessor systems, while the
latter can model both identical and heterogeneous multiprocessors. In either type
of multiprocessor system, tasks executing on different processors can share the use
of resources, such as shared data structures. Thus the scheduling algorithm used
in either model must consider not only the timing constraints of tasks, but also

the resource constraints. Both of our resource reclaiming algorithms preserve the

(s

processor assignment a multiprocessor scheduler makes in constructing a feasible
schedule; therefore they are applicable for both types of multiprocessor scheduling

models.

4.4.2 Precedence Constraints among Tasks

In this Chapter, we have assumed that tasks are mutually independent. There
are many applications in which tasks are related by precedence constraints. Prece-
dence constraints specify the partial ordering among tasks such that a task can
start execution only when all of its predecessors have completed execution. In a
nonpreemptive scheduling scheme where the schedule construction is explicit and
the precedence constraints are scheduled away (as we discussed in Chapter 2), the
correctness criterion defined in Chapter 3 for resource constrained multiprocessor
resource reclaiming also applies to precedence constrained task schedules. Since
neither of the resource reclaiming algorithms presented in this chapter allows total
passing, they are both directly applicable for task systems with precedence con-
straints. If tasks have precedence constraints in a feasible schedule, the resource

reclaiming algorithms will never violate these precedence constraints.

4.4.8 Tasks with Explicit Start Time Constraints

Some systems may have tasks that cannot be started until after some specific
time, called a ready time. For example, periodic tasks cannot be started until the
beginning of their periods. In such systems, a task with a ready time may have
been placed in the feasible schedule, but it cannot be moved forward to pass its
ready time in the schedule. In this case, our resource reclaiming algorithms needs
to be modified to take into consideration a task’s ready time. In Step 2 of each of
the algorithms, we need to consider the ready time of a task when we try to start a

task. Specifically:

78

o Inlines 4 and 14 in Figure 4.3, and line 16 in Figure 4.4, the following condition
should be added:

— if current time > ready time(T5,).

o At line 8 and line 18 in Figure 4.3, and line 20 in Figure 4.4 we need to modify

the calculation of the new start time of a task to the following:

— nst,, = maz(st,, —reclaimed $, ready time(T,,)).

Tf
4.4.4 Other Types of Tasks

In addition to dynamic hard real-time tasks, a system may have (1) monotone
tasks [84], (2) dual-copy fault-tolerant tasks [15], and (3) non-real-time tasks. Real-
time systems with these types of tasks can all benefit from resource reclaiming.
Instead of using the reclaimed time reclaimed_§ for the tasks that have already
been guaranteed in the feasible schedule, a system can use the time to (1) execute
the optional part of a monotone task, (2) increase the time assigned to the primary
copy of a dual-copy fault-tolerant task in a feasible schedule, or (3) preemptively

execute non-real-time background tasks.
4.5 Summary

In this Chapter, we presented two resource reclaiming algorithms, Basic Re-
claiming and Reclaiming with Early Start. The algorithms utilize the information
given in a feasible schedule to (1) identify reclaimable time intervals, and (2) reason
about the allowable parallelism and potential resource conflicts among the tasks. We
proved the correctness of both algorithms with respect to the avoidance of timing
anomalies. The complexities of the algorithms are shown to be bounded and a

function of the number of processors in a multiprocessor system. The applicability

79

of the algorithms to tasks and multiprocessor systems with various characteristics
was also discussed.

As the goal of this dissertation is to construct integrated solutions for dynamic
real-time systems, we will next present a concurrent, on-line, bounded-time solution
to scheduling and dispatching in a multiprocessor real-time system. We demonstrate
the importance of being time conscientious — being able to operate without unin-
tentional impingement on the time already guaranteed to other real-time activities in
the system. As part of the evaluation of the resource reclaiming algorithms presented
in this chapter, a predictable integration of the resource reclaiming algorithms with

the scheduling and dispatching processes is also presented.

CHAPTER 5

SCHEDULING AND DISPATCHING WITH
RESOURCE RECLAIMING: A CONCURRENT,
ON-LINE, BOUNDED-TIME IMPLEMENTATION

In many real-time applications, the system is required to execute tasks in re-
sponse to external events and signals. Dynamic feasibility checking and scheduling
of real-time tasks are required for such real-time systems. The provision of the tzme
conscientious property is more difficult in these systems because the guaranteed
application activities must be able to continue as the system schedules incoming
task arrivals. In this chapter, we describe the issues and our solutions for the
construction of concurrently executing on-line scheduler, dispatchers, and resource
reclaiming.

After introducing the important issues and considerations in constructing con-
current, on-line, bounded time scheduling and dispatching processes, in Section 5.2,
we motivate our concurrent implementation of dispatching and resource reclaiming
by demonstrating quantitatively the advantage of a concurrent implementation vs.
a centralized implementation. A prerequisite to support concurrent processes on a
multiprocessor with shared data structures is the existence of appropriate synchro-
nization mechanisms. We present a multiprocessor synchronization algorithm with
bounded waiting in Section 5.2. Then the potential timing problems that may occur
at run time are discussed with respect to (1) concurrent execution of the scheduler
and the dispatcher processes, and (2) multiple invocations of the scheduler during
the course of the execution of a feasible schedule. For both problems, Section 5.3

presents solutions that possess the property of being teme conscientious. In Section

81

5.4, we present the issues in the integration of the resource reclaiming algorithms

with the concurrent scheduler and dispatchers. Section 5.5 summarizes this chapter.

5.1 Introduction

In dynamic real-time systems, tasks can arrive at the system at unpredictable
times. In a guarantee-oriented system, we need to schedule tasks as they arrive.
On a distributed memory multiprocessor system where the real-time tasks have
resource constraints, the tasks must be guaranteed in an integrated fashion in order
to account for their resource conflicts. This can be accomplished by scheduling all
the tasks in an integrated fashion — irrespective of which processor on which they
are supposed to execute. For such a dynamic multiprocessor real-time system, there
is more than one choice for the implementation of the scheduler and the dispatcher

processes:

(1) Place both the scheduler and a centralized dispatcher on one and the same

processor.
(2) Place the scheduler and a centralized dispatcher on two different processors.
(3) Place the scheduler and a set of concurrent dispatchers on individual processors.

For each of the above choices, we have a choice of either executing the sched-
uler on the same processor(s) with application tasks, or designating a system pro-
cessor to handle all the system operations, such as scheduling, dispatching, and
communication. To ensure that the system possesses the time-conscientious and
time-conserving properties, the two major concerns here are: predictability, and
efficiency (i.e., low and bounded costs). If the scheduler is on the same processor
with application tasks, the scheduler needs to be either preemptable or periodic,

because guaranteed tasks must be dispatched by their assigned scheduled start time

82

in a feasible schedule in order not to miss their deadlines. To be preemptable, the

following problems must be addressed:

o The execution time of the scheduler must be accounted for: The scheduler can
only be executed during idle periods in a feasible schedule. The preemption
cost of the scheduler needs to be added onto the cost of the dispatcher since
the dispatcher potentially needs to preempt the scheduler every time before
it dispatches a task. This cost must be bounded. If the scheduler is not
preemptable, the worst case execution time of the scheduler needs be included
in the cost of the dispatcher, so that if the scheduler is invoked at the time
the dispatcher needs to dispatch a task, the dispatcher can wait until the
completion of the scheduler. As we have mentioned in Chapter 3, real-time
scheduling algorithms for guarantee-oriented systems usually have run time
costs that depend on the number of tasks, and bounding the worst case cost of
a scheduler results in large variance of the dispatcher’s execution time. This is

not acceptable for our time-conservation requirement.

o The time for the feasibility-checking of each task arrival needs to be considered:
If the scheduler is preemptable, it is difficult to predict how many times the
scheduler will be preempted before the feasibility-checking is completed. Thus
a preemptable scheduler may impose a large variance on the feasibility-checking

response time.

The same problems must also be addressed if the scheduler is a periodic process.
In this case, the scheduler executes for a maximum fixed amount of time, i.e., for
the execution time allocated to it, every period. In this case, we must derive the
worst case execution time of the scheduler with respect to some maximum number
of tasks that will ever be considered at each periodic invocation of the scheduler.

Assuming that a feasibility check can be completed within a single execution, the

83

response time of the feasibility-checking of each task arrival will vary from as little

as the execution time of the scheduler to as much as twice the scheduler’s period.

In order to maximize the potential parallelism provided by multiprocessor sys-
tems, our approach supports the concurrent execution of application tasks and the
scheduling algorithm. This is accomplished by using one processor on a multipro-
cessor node as the system processor to offload task scheduling and other operating
system overhead, therefore eliminating many possibilities of interference with appl-
cation tasks, while using the remaining processors to execute guaranteed application
tasks. The scheduler on the system processor is responsible for dynamically produc-
ing a feasible schedule for the multiprocessor as tasks arrive. Feasibility checking
employs the heuristic scheduling algorithm proposed in [72], which has a complexity
of O(n). There is a dispatcher process on each application processor. Keeping the
issues we have presented in this section in mind, in the rest of the chapter, we present

a systematic construction of this concurrent on-line implementation.

5.2 Computation Time Comparison of Centralized vs. Con-
current Implementation

Given a multiprocessor feasible schedule, two approaches can be taken to imple-
ment the dispatching process with resource reclaiming on a multiprocessor system —
centralized and concurrent. In a centralized scheme, the process can be implemented
on a single processor. In a concurrent scheme, each processor performs its own
dispatching and reclaiming, therefore, all the processors in the multiprocessor system
concurrently dispatch application tasks and reclaim unused time as tasks complete
execution. The parallelism provided by a multiprocessor can be more effectively

exploited with a concurrent implementation.

Table 5.1 compares the computation time of the centralized and the concurrent
implementation under worst case assumptions. The worst case occurs when all m

processors complete their respective current task executions to perform resource

84

Table 5.1 Computation Time Comparison for Centralized vs. Concurrent Imple-
mentation

centralized concurrent
Stepl m * Csiepr | Cstepr + (m — 1)(e+7)
SteszASIC m * CBMZ'C CBMZ'C + 5t
Step2. EARLYSTART m * Cgarty | CEarty + (M + 3)7

reclamation and dispatching at the same time, and all shared variables are ac-
cessed simultaneously by all processors. The effect of this worst case is to serialize
certain portions of the Basic and Early Start algorithms. As illustrated in Table
5.1, substantially more code is serialized in the centralized than in the concurrent
implementation. We discuss the computation of the results in Table 5.1 further
below.

The pseudo code of Step2.BASIC in Figure 4.3, and Step2. EARLYSTART
in Figure 4.4 are presented for a centralized dispatcher. For the concurrent imple-
mentation, the for loops in both algorithms can be eliminated, since all processors
execute concurrently. In addition, the following two modifications must be made for

the resource reclaiming algorithms:

o Step2.BASIC: If a task completion results in an increment of the value of
reclaimed_§, this new value is broadcast to all processors so that all pending
processors may update the new start times they are pending on (see Section
4.2.2 for the definition of the function pend.). To ensure the consistency of the
value of reclaimed_§ that is seen by all the dispatchers in face of simultaneous
broadcast, the actual broadcast is implemented as a trigger of interrupts on
all the processors without any accompanying data. The broadcast recipients

perform a read of reclaimed_§ after receiving the broadcast notification.

o Step2. EARLYSTART: Whenever a task completion occurs, all idle proces-

sors are notified with a broadcast. Since Reclaiming with Early Start allows

85

4 N

Whenever a task T, completes execution on a processor g, do

{

original reclaimed_§ = reclaimed_f;
Stepl(Ty,, reclatmed_§, PL, PPL,);
switch (algorithm_choice)
case BASIC_RECLAIMING:
Step2.BASIC(q, reclaimed_§, original_reclaimed.d,
PL, PPL,, ... ,PPLy,),
case EARLY _START:
broadcast(task_completion);
Step2. EARLYSTART (r, reclaimed.d,
PL, PPL,, ..., PPLy,),

U y,

Figure 5.1 The resource reclaiming algorithm for concurrent implementation.

partial passing, each task completion may result in the early start of one or

more task.

We show the pseudo code for the concurrent implementation of the resource reclaim-
ing algorithms with these modifications in Figures 5.1, 5.2, and 5.3.

In the concurrent implementation, one must ensure consistency when concurrent
conflicting access to shared data is possible. In our approach, we use critical sections
protected by semaphores to enforce consistency. Recall that in our approach to
on-line real-time algorithms, we must ensure a bounded worst case execution time.

In Section 5.3, the details of the construction of semaphores which possess the

86

4 N

Step2.BASIC (g, reclaimed.$, original_reclaimed§, PL, PPL,);
1. if reclaimed_§ > original reclaimed_é

2. then broadcast(reclaimed_$);

3. if (Ty, == Ty)

or (st,, == sty)
or (sty; — reclaimed_§) == current_time
4, then startexecution(7y,);
5. else
6. {
7. nst,, = sty, — reclaimed.§;
8. pend(Tq,,nst,,);

9. }
10. end if
end Step2.BASIC

- /

Figure 5.2 Step 2 of the Basic Reclaiming Algorithm for Concurrent Implementa-

tion.

property of bounded waiting are presented. The use of semaphores with this property
allows us to perform worst case analysis of concurrent reclaiming algorithms.

The formulas in Table 5.1 are derived from the pseudo-code of the Basic and the
Early Start algorithms. Code common to these algorithms (Stepl) is in Section 4.2.1
Figure 4.2. Code specific to the Basic algorithm Step2.BASIC is in Figures 4.3 and
Figures 5.2. Code specific to the Early Start algorithm Step2. EARLYSTART is
in Figure 4.4. The notation and the derivation of the formulas in Table 5.1 are

explained in the following.

Let
o Cstep1 be the computation time of Stepl,
® CBasic the computation time of Step2.BASIC without the for loop, and

o Cgariy the computation time of Step2. EARLY START without the for loop.

87

4 N

Step2. EARLYSTART (r, reclaimed é§, PL, PPL,, ... , PPL,,),

1. can_start_early < true;

2. if st,, # sty

3 then

4. {

5. v« 0;

6 while (can_start_early and v < m) do
7 {

8. v—v+1;

9. if (v # r) and (st,, > ft,,)

10. then can_start_early « false;
11. end if

12. }

13. }

14. endif

15. if can_start_early
16. then startexecution(7>,);

17. else

18. {

19. nst,, = st,, — reclaimed_§;
20. pend(7;, ,nst,,);

21. }

22. end if

end Step2.EARLYSTART

- /

Figure 5.3 Step 2 of the Early Start Algorithm for the Concurrent Implementation.

In a concurrent implementation, lines 7-8 in Stepl must be within a critical section
to maintain the consistency of the value of reclaimed §. Let us define € to be the
computation time plus the lock-request and lock-release time of lines 7-8 in Step1®.

Because it is a shared variable, the access to reclaimed_§ itself incurs additional cost

!The lock-request and lock-release time using the predictable multiprocessor synchronization
mechanisms developed in [60] is 0.05ms in the worst case when the communication bus shared by
four processors is fully saturated.

88

Table 5.2 Execution times (us) of Step2.BASIC on a VMEbus based Motorola
68020 multiprocessor.

number of processors | 1 2 3 4 5
Vs 1

CBasic 20.5

Ve 2.75 | 3.92 | 5.33 | 6.71
centralized 41 61.5 82 102.5
concurrent 29.25 | 35.1 | 42.15 | 49.05

in a concurrent implementation?. Let 7 = V, —V,,,, where V, is the worst case cost of
accessing one shared variable, and V,, the cost of accessing one non-shared variable.
Thus 7 represents the difference in terms of cost of accessing a variable between the
concurrent and centralized implementation schemes. Thus the worst case cost of
executing Stepl is Cgep1 + (m — 1)(e+ 7). This cost is worst case since it accounts
for the cost of m processors sequentially accessing the critical section.

In a concurrent implementation, the first task in PL will be accessed by all the
processors. Moreover, in a concurrent implementation of Step2. EARLYSTART,
the first tasks in all the PPL’s will be accessed by all the processors. However, no
critical sections are necessary in the concurrent executions of Step2.BASIC and
Step2. EARLYSTART since all the shared variable accesses in them are all read-
accesses. S0 without locking, we assume pessimastic resource reclaiming, i.e., we may
mass an update without affecting the correctness. Thus, using similar arguments as
for the derivation of the worst case cost of Stepl in Table 5.1, the expressions
CBasic + 57 and Cgariy + (m + 3)7 model the 5 and m + 3 shared variables accessed
in Step2.BASIC and Step2. EARLYSTART, respectively.

2Time to access a variable located in remote memory over the shared bus can also be bounded
(e.g., by imposing a round robin arbitration on the shared bus access).

89

Table 5.2 illustrates the advantage of the concurrent scheme as implemented of
Step2.BASIC on a VMEbus based Motorola 68020 multiprocessor. V,,, is defined
as the access time of on-board memory. Cpggic1s 20.5us excluding the startexecution
operation®. The values of V, were obtained from the worst case timings when two
to five processors contending for the same remote memory location. The worst case
execution times of Step2.BASIC on two to five processors for the centralized and
concurrent implementation were derived from the formulas given in Table 5.1. It is
evident from Table 5.2 that, for a reasonable number of processors in a shared bus

multiprocessor system, the concurrent scheme is more efficient.

5.3 Multiprocessor Synchronization with Bounded Wait-
ing

In a multiprocessor system in which tasks share information via shared resources,
synchronization mechanisms must be available to coordinate processes [34]. On a
multiprocessor, both the shared memory and the shared bus fall into the category
of shared resources. In a real-time system, this synchronization must possess the
bounded timing property in order to achieve overall predictability.

Although the mutual exclusion problem has been extensively studied in the
non-real-time context, and many hardware and software solutions exist, real-time
systems offer new challenges in dealing with the mutual exclusion issue. As we have
pointed out in Chapter 1, among the most difficult operating system primitives to
construct with the aim of achieving predictability are those which involve concurrent
access to shared resources. For example, concurrent interaction between a scheduler
and multiple dispatchers on a multiprocessor may require mutually exclusive access

to shared data pertinent to a task schedule. This shared access to the scheduling data

3startexecution is the function that performs the actual loading of a task’s context to start up
the execution of a task, this should have the same execution time cost for both centralized and
concurrent schemes.

90

will in turn require the access to the shared bus on a multiprocessor if the scheduler
and the dispatchers reside on different processors. Operations for enforcing mutual
exclusion operations such as P() and V(), if constructed in a bounded fashion, can
provide the framework for other, higher level, bounded operating systems primitives.
This boundedness forms a basis for the predictability of the entire system.

Conventional shared memory multiprocessors often support mutual exclusion
in the form of atomic read-modify-write (RMW) instructions. Systems such as the
Motorola MVME136-a, Sequent Symmetry, and the Ultracomputer [28, 61, 79] fall
into this category. This support of an atomic RMW instruction is also often referred
to as support for test-and-set. On a uniprocessor, test-and-set like hardware support
enables the construction of more concise and more efficient solutions of synchro-
nization primitives, while on a multiprocessor, atomic, test-and-set like operations
make correct synchronization possible [67]. However, in the conventional use of
these hardware implementations on a multiprocessor, one processor may encounter
starvation when contending for a semaphore. This unbounded wazting does not meet
the requirements of predictability for real-time systems.

Another problem with conventional shared memory multiprocessors’ semaphore
implementations is that of resource wastage [20]. The ubiquitous busy wait loop
generates both bus traffic and consumes CPU resources. The bus traffic generated
by the busy-wait can be mitigated by a scheme which busy-waits on a cache memory
address [79]. The Sequent’s approach allows each processor only one attempt (per
semaphore change) to acquire the semaphore. If this fails, the processor will spin
on the cache memory location. In [2], it was noted that this scheme can cause a
cascading of cache invalidations, thus causing additional bus traffic. This resource
wastage 1s detrimental for both non real-time and real-time systems. For real-time
systems in which we desire time consciousness, time conscientiousness, and time

conservation, what is needed is a semaphore implementation that has both the

91

properties of bounded waiting, and efficient usage of system resources (such as the
shared bus).

In order to construct an implementation which achieves these properties, solu-
tions that integrate both hardware and software facilities are needed. First, bounded
access to the shared bus must be ensured. This can be accomplished by requiring
shared bus access with the round robin arbitration mechanism. Round-robin bus
access 1s a necessary, but not sufficient condition for the construction of mutual
exclusion protocols with bounded waiting. Mutual exclusion protocols using this
mode are not guaranteed to be starvation free [60]. Obviously, system services with
the possibility of starvation violate the requirements for predictability. We formally

define bounded waiting as follows:

Definition 16: Bounded waiting is achieved if there is a constant k such that
if a process is in its busy-wait loop, then that process will enter its critical region

before any other process has entered its critical region more than k times [12].

We next present a bounded waiting solution with k=1.

5.3.1 A Semaphore Implementation with Bounded Waiting and Ef-
ficient Resource Usage

In this subsection, we present a resource efficient semaphore implementation
that achieves bounded waiting. Our implementation is based on an algorithm by
Burns ([12]). Burns’ algorithm assumes bounded bus access, as would be provided
with a round robin bus protocol. Burns’ original solution provided bounded waiting
through the use of a global wait queue, containing one bit per processor. Once
a processor fails on the TAS (test-and-set) in its P() operation, it asserts an ap-
propriate flag in a waiting array. When a release of the semaphore occurs in the
V() operation, the next processor (in cyclic order) with its flag set in the waiting

array is allowed to acquire the semaphore. This implementation achieves bounded

92

waiting by imposing a cyclic ordering of waiting processors. Assume a maximum of
m processors contending for the semaphore. Since the waiting array is scanned in
cyclic order, (e.g., from 0, 1, ... , m — 1 back to 0), if processor P; is waiting (e.g.,
has entered P()), it will enter its critical section within at most m — 1 turns.

We have extended Burns’ algorithm to be resource efficient as follows. Traffic
over the shared bus is reduced by, whenever possible, spinning on a secondary
local semaphore instead of the global (central) semaphore as in Burns’ original
solution. The Extended Burns implementation of P() and V() is illustrated in
Figure 5.4. In order to spin locally, a local semaphore (Lsem) is introduced. In
the P() operation, once the TAS of the global semaphore (Gsem) fails, spinning
will occur on local variables only (the wait queue, T'ry[], and Lsem). Thus, the
wait queue is distributed, with one bit per processor. In Figure 5.4, the integer 2
is a unique processor number between 0 and m — 1. TAS(Gsem), an indivisible
TAS (test-and-set) operation, returns true when the set is accomplished on the
semaphore Gsem (the lock is acquired). The clear(Gsem) operation resets the Gsem.
The broadcast_clear(Lsem) operation clears all local semaphores in a single atomic
instruction (and this operation is necessary to overcome possible race conditions
caused by processor speed difference). This primitive is used for efficiency — a loop
which cleared all Lsems would suffice for correctness. To initialize the algorithm,
the global semaphore Gsem, the local semaphore Lsem, and the wait queue T'ry|]
should all be cleared to zero.

It was demonstrated by Burns in [12] that, since a process in its P() operation
cannot be skipped by any process which enters its critical section at a later point,
a cyclic order of selecting processors is guaranteed. The extended algorithm main-
tains this feature. However, when dealing with both a primary and a secondary

semaphore, one must be careful not to introduce the possibility of livelock into the

93

check:

Lsem = true;

if (TAS(Gsem)) return();
Tryli] = true;

while (T'ry[:] and Lsem) ;
if (T'ryli]) goto check;

'—U
—
p—

o

=== = O
P> suliS

14.

int 7;

Tryli] = false;

7 = (i+1) mod m;

while (!Try[j] and j != 1)
j = (j+1) mod m;

if (== i) {
clear(Gsem);
broadcast_clear(Lsem);

}

else Try[j] = false;

: Y,

Figure 5.4 Extended Burns Solution with Bounded Waiting.

concurrent algorithm. In the following, we prove that the extended algorithm is

livelock free.

Theorem 7: The Extended Burns’ Solution is livelock free.

Proor. As in Burns’ original algorithm, it is clear that if P; is waiting when

P; releases the semaphore, P; will obtain it. A subtlety arises when analyzing

a potential race condition, occurring in P() when one bit in T'ry[] becomes true

only after V() scans the entire waiting array. We must ensure that the semaphore

is granted to some requesting process (therefore ensuring progress is made). This

race condition can occur in two cases (We use P:1 or V:i to mean line 1 in the

P() or V() code of Figure 5.4.):

eCASE 1: Gsem is cleared (V:10) before the TAS (P:5) is executed. Then P;

acquires the semaphore since the TAS on (P:5) returns true.

eCASE 2: Gsem is not cleared before the TAS (P:5) is executed.

For example, P:5 is executed before V:10. Lsem is invariant until V:11 is

executed, at which point the test of Lsem fails in P:7, so a branch is executed

94

to P:3. At this point we know Gsem was cleared by V:10, thus the conditions

for case 1 are true.

In either case, the semaphore is acquired by some processor.

Q.E.D.

5.4 Predictable Construction of Concurrent Scheduling and
Dispatching

Having demonstrated the advantage of using concurrent implementation in Sec-
tion 5.2, and the bounded semaphore implementation presented in Section 5.3, we
proceed to construct the concurrent implementation of the scheduler and dispatch-
ers. As stated in Section 5.1, in our multiprocessor implementation, a scheduler on
the system processor is responsible for dynamically producing a feasible schedule
for the multiprocessor as tasks arrive. There is also a dispatcher process on each
application processor. In our concurrent implementation, effectively, whenever a
task completes, this dispatcher process executes Stepl and Step2 of the reclaiming
algorithm. Thus, reclaiming occurs concurrently on the application processors. This
scheme is illustrated in Figure 5.5. The System Task Table is the current feasible
schedule, organized as the PL and PPL lists.

If the deadline of a task can be met with respect to the task’s worst case
execution time, resource requirements, as well as the needs of other tasks that
have already been feasibly scheduled by the system (i.e., those tasks that arrived
before), then we say this newly arrived task is guaranteed by the system. One of the
challenging issues of this approach is how to maintain the guarantees the system
has made so far in face of dynamic task arrivals, i.e., how to maintain the promises
the system has made to the tasks that have already been feasibly scheduled. The

difficulties stem from the fact that (1) newly arrived tasks need to be scheduled (i.e.,

95

AR}
A
1
ARY
. . .
(RN N .~
. . .
. “
.
. .
[.
[} .
.
M .
" “
.
.
.
.
.
.
.
. .
[} .
[} .
.
.
.
.
.
.
.
) .
.
\ .
[}
)
)
| :

Figure 5.5 The scheduler and dispather interactions on a multiprocessor node.

examined by the scheduler to see if they can be guaranteed), (2) the runtime cost of
a scheduler in general cannot be bounded, i.e., it takes time relative to the number
of tasks to be considered in a schedule for a scheduler to construct a new feasible
schedule including the newly arrived task, and (3) the newly arrived task needs
to be examined together with the tasks already guaranteed in the existing feasible

schedule in order to determine whether the newly arrived task can be guaranteed.

96

VR VAV

Figure 5.6 The current feasible schedule.

5.4.1 Potential Incorrectness

If the system uses the naive method of simply running the scheduler on the
tasks that remain in the schedule (i.e. those whose scheduled start times have not
arrived yet) and the newly arrived task, correct functioning of the system is not
ensured. Suppose the current feasible schedule is the one in Figure 5.6, and current
time 1s 100. In particular, two incorrect consequences may occur with respect to the

following two cases:

e case 1: The execution of the dispatchers continues as the scheduler does the

rescheduling.

The incorrectness here is a result of the asynchronous concurrent access of the
current feasible schedule by both the scheduler and the dispatchers, without
imposing consistency constraints. Time is moving forward as the scheduler
attempts to construct a new feasible schedule with respect to the newly arrived
task and the remaining tasks in the current feasible schedule. The dispatchers,
unaware of the scheduling activity going on, will continue to start the execution
of tasks whose scheduled start times have arrived according to the current

feasible schedule.

97

Suppose the scheduler executes for 30 time units. Currently tasks 77,73, and
Ty are executing on processors P1, P2, and P3. And suppose the scheduling
algorithm has placed the newly arrived task to start at time 120 on processor
P3, i.e. in front of Tg. By the time the scheduler finishes its execution, time
would be 130 already since we assumed the scheduler’s runtime cost is 30 time
units. By this time, task T would have been dispatched on processor P3! Thus
the scheduling result, i.e. the newly arrived task to be started at time 120, is

incorrect.

case 2: The scheduler locks the current schedule, so dispatchers stop dispatch-

ing tasks for the duration of the scheduler’s execution.

The incorrectness here is caused by the unpredicted stoppage in the dispatchers

such that guaranteed deadlines may be missed.

Now suppose, as in case 1, that the scheduler executes for 30 time units, and
currently tasks 74,73, and T5 are executing on processors P1, P2, and P3.
Moreover, suppose task Tg’s deadline is at 140. Since the scheduler has locked
the entire feasible schedule, the dispatchers have to wait until the scheduler to
finish execution at 130 to start dispatching tasks again. However, by that time,
task Ts would have missed its deadline (assuming T¢’s worst case execution time

is 20), and thus the system would have violated it guarantee given to Ts.

5.4.2 A Solution

To construct the correct concurrent execution of the scheduler and dispatchers

we have developed a strategy in which a cutoff_line is used to ensure the correctness

of the previous guarantees the system has made in the feasible schedule. This

strategy works as follows.

Since the cost of a scheduling algorithm depends on the number of tasks it is

going to schedule, e.g. O(n), or O(n?), we can calculate the run time worst

98

VR VAV

Figure 5.7 The current feasible schedule with the cutoff-line.

case execution time of the scheduler online at the scheduler invocation time.
Specifically, we have conducted experiments to derive the worst case cost of the
scheduler in terms of a constant portion and a per_task_cost portion. Upon the
invocation of the scheduler, the worst case execution time of the scheduler (SC)
for this particular invocation can be calculated as: SC = constant portion +
nxper_task_cost, where n is the number of tasks to be rescheduled. This assumes
the scheduling algorithm used is the one presented in [72]. Since we know the
scheduler will definitely complete execution in SC time units, we reserve at

least SC time units of execution time for guaranteed tasks for the dispatchers

99

4 N

Scheduler

Whenever a task T; arrives, do

{

Calculate the run time cost SC of the scheduling
algorithm based on the number of tasks in
the current PL plus the new task arrival,

cutof f _line = current_time + SC,
Tor < {Tj|st; — reclaim_§ < cutof f_line};

Calculate the earliest available time

of each resource and processor,

based on the resource and processor requirements,

and ft; of the tasks 7 in 7,,, and the value of reclaim_§;

T, «—— {Tj|st; — reclaim_§ > cutof f_line};
GUARANTEE(T, T));

If the guarantee is successful
then
{
append the new feasible schedule onto
the remaining schedule at the cutoff-line;
broadcast(guarantee_successful);

- /

Figure 5.8 Scheduling Dynamic Real-Time Tasks with Resource Reclaiming

100

to dispatch. This way the scheduler can run in parallel with the dispatchers,
and tasks that have already been guaranteed will not miss their deadlines. In
particular, the cutoff_-line = current_time + SC. Tasks in the feasible schedule
with scheduled start times less than the cutoff-line will not be rescheduled by

the scheduler. This is illustrated in Figure 5.7.

This approach can be optimized. If too many tasks exist in the feasible schedule,
the scheduler’s cost can potentially become very high. To avoid this, we can set a
value N as the maximum number of tasks the scheduler is ever going to handle per
invocation, i.e., maz(SC) will be capped. At each invocation of the scheduler, if n,
the number of tasks to be considered, is less than N, then SC is calculated as above.
However, if n > N, then SC = constant portion + Nxper_task_cost.

Figure 5.8 gives the algorithm we use to schedule dynamic task arrivals with
resource reclaiming. The first action i1s to calculate the cutoff line. Although the
example in Figure 5.7 illustrates the cutoff line logically as a line, in reality, the
cutoff_line 1s a vector of time values. Since the tasks with scheduled start times less
than the cutoff_line will not be rescheduled by the scheduler, the scheduler cannot
construct a new schedule right at the cutoff_line, i.e., the processors and resources
needed by these tasks should be reserved up to the maximum scheduled finish times
of these tasks. Consequently, based on the cutoff-line, we must calculate a vector
of the earliest available times of all the processors and resources. For example,
suppose processors are the only resources the tasks in Figure 5.7 require. Although
the cutoff_line is logically placed at time 130, the vector of earliest available times
of the processors for processors Py, Py, P3 is <150,160,140>.

After calculating the cutoff-line, 7T,, contains the set of the tasks reserved for
the dispatchers, thus not being rescheduled with the new task arrival. 7, contains
the set of tasks to be rescheduled. The function GUARANTEE() accomplishes both

feasibility checking and schedule construction. The feasibility checking employs the

101

heuristic scheduling algorithm proposed in [72], which has a complexity of O(n). The
PL and PPL are established during the schedule construction. If the guarantee of

the new task is successful, the following two operations are carried out:

o First, we append the new schedule onto the portion of the original schedule
(the portion with the remaining tasks in 7,,) at the cutoff-line. This append
operation involves constructing the PL for the entire schedule, and the set of

PPL’s for each processor.

e Second, we notify (e.g., broadcast to) all the processors that a new schedule
has been constructed. This notification is necessary to deal with the situation
where a dispatcher on processor P; could have been pending on the start time
of a task before the invocation of the scheduler, and the start time of the task
was later than the cutoff-line. Once a new schedule is constructed, the task
that processor P; is pending on may or may not be the first task on PPL;

anyInore.

5.5 Predictable Resource Reclaiming with On-Line Schedul-
ing

5.5.1 Potential Inconsistency of reclaimed_b

When a new task arrives, its worst case execution time, deadline, and resource
and processor requirements are assumed to be known. The system will try to
guarantee the new task arrival together with all the tasks 7}, in the original feasible
schedule, for which st; —reclaimed_§ > cutoff-line. With the knowledge of the value
of reclaimed.§, 1.e., the amount of time that has been reclaimed on all resources
and processors, those tasks T; with st; — reclaimed_§ < cutoff_-line will finish at
least reclaimed_§ time units earlier than their scheduled finish time ft;. Thus,

in calculating the earliest available time of resources and processors in trying to

102

schedule the new task arrival in Figure 5.8, the scheduler takes the current value of

reclaimed_§ into consideration.

If the new task arrival is guaranteed, the newly generated feasible schedule S,
must be appended to the original feasible schedule at the cutoff line. Since the
scheduler’s cost SC is the scheduler’s worst case execution time, it is very likely
that there are still tasks in the original feasible schedule before the cutoff-line at
the time when the scheduler finishes scheduling. Thus for the tasks that are in
the section of the feasible schedule before the cutoff_line, the value of reclaimed_§ is
valid. However, for the tasks that are in the section of the feasible schedule produced
after the cutoff_line, the reclaimed_§ has already been taken into consideration in
calculating the tasks’ scheduled start times. Moreover, there can be more than one
cutoff-line in a feasible schedule since more than one task can arrive, causing the
scheduler to be invoked multiple times during the execution of tasks in a feasible
schedule. We must develop a protocol to maintain the correct view of the value
of reclaimed_§ between the tasks that are before, and that are after, each of the
cutoff-lines, i.e., between any two portions of the current feasible schedule that
have been constructed at two different scheduling instances. Otherwise, inconsistent

usage of the value of reclaimed_§ may result in incorrect post-run schedules.

5.5.2 A Solution

To handle this problem, we have designed the following protocol.
e Each task T; in the feasible schedule has a reset_§ field.

e The value of this field is zero for all tasks except for the task 7%, which is the
first task in the total ordering PL for S,ew,, Where Spey, 1s the section of the
feasible schedule produced by the kth invocation of the scheduler. reset_§(7%,)
is set to be equal to the value of reclaimed_§ that has been assimilated by the

kth invocation of the scheduler.

103

e As soon as Ty, is dispatched, reclaimed_§ = reclaimed_§ — reset _6(T},).

This protocol ensures the correct view of the value of reclaimed_§ throughout
a feasible schedule at any time. One may be tempted to adopt a conceptually
simpler protocol, one that explicitly modifies the st; and ft; of all the tasks after
the cutoff-line by the amount of reclaimed_§ — reset_§(Ty,) at the end of each
scheduler’s invocation. The drawback to this simpler protocol is that its run time
cost is O(n) and reclaimed_§ must be locked while this protocol is in progress to
avoid race conditions between the scheduler and the dispatchers. This means that
the dispatchers may have to wait for an amount of time that is O(n), i.e., it is not
bounded. Because of this, this simple protocol is not acceptable.

To ensure the correctness of the above protocol, none of the tasks in Spey,
can ever be dispatched using the original value of reclaimed_§. Moreover, this
correctness must be achieved with bounded cost. If tasks are dispatched strictly
according to the scheduled start time order given in the PL, then the correctness
is easily achieved with bounded cost since T, is always dispatched before any other

tasks in Spey, is dispatched.

Observation 3: The Basic Reclaiming Algorithm dispatches tasks strictly

according to the order given in the PL.

Although the correctness of the protocol can be ensured with bounded cost by
the Basic Reclaiming Algorithm, this is not true if Reclaiming with Early Start is
used. This is because Basic Reclaiming does not allow any passing, so if st; < st;,
then st; < st;. On the other hand, since Reclaiming with Early Start allows partial
passing, the order of the actual start times of tasks in the post-run schedule produced

by Reclaiming with Early Start may not correspond to the order in the PL.

Observation 4: The Reclaiming with Early Start algorithm may dispatch a

task T; (with st; > sty,) in Spew, before it dispatches T¥,.

104

If a task T} in Spey, is dispatched before T, starts execution, i.e., before the value
of reclarmed_§ has been reset, total passing may occur, thus an incorrect post-run
schedule may be produced. This dispatching anomaly occurs because an incorrect
value of reclatrmed_6 1s used for T; — reclaimed_§ is used before the reset value has
been applied. If the tasks in Sy, use this value of reclaimed_§, the Reclaiming
with Early Start algorithm may see false parallelism among tasks. The following

protocol ensures the correctness of the dispatching by the Early Start algorithm:

e To examine whether a task T; (the task to be dispatched) is scheduled in parallel

with some other task T (line 10 in Figure 4.4 in Step2. EARLYSTART):

If there is at least one task with non-zero reset_d field in the PL between T}
and T;, and if T} is scheduled before T} in the total ordering of PL, the values of
these non-zero reset_§ fields must be summed up and added onto the scheduled

start time st; of T;*.

The number of tasks with non-zero reset_é fields can be greater than one because
there could have been more than one scheduler invocation between tasks T} and T;.
Since there can be an arbitrary number of tasks scheduled between T; and T; in the
PL, we need to bound the cost of this protocol. This can be accomplished by setting
a bound b on the number of tasks the protocol will check for non-zero reset_¢ fields
between T; and T;. We start at task 7;. If 7T} is not reached in less than or equal
to b tasks, we simply will not dispatch 7;. This only results in pessimism in the
reclamation of resources — the correctness of the system is not affected. Note that
task T; may potentially need to be checked against the first task in the PPL of each
processor (see Step2. EARLYSTART in Figure 4.4). To efficiently implement this

prototcol, only one pass through the PL is required, which accumulates the sum of

20f course, in implementing this protocol, one only operates on a copy of st; without modifying
the true value of st; assigned by the scheduler.

105

the reset_§ fields and applies them to each PPL head task (recall that PL is a total
ordering). In this case, a bound b again needs to be set such that if within b tasks,
not all the PPL head tasks have been reached yet (including task T since T; must

be the first task in a PPL too), we simply will not dispatch 7;.
5.6 Summary

In this chapter, we have studied various issues that arise in constructing a
concurrent multiprocessor real-time system. Solutions were presented that ensure
the time conscientiousness of the system. In particular, we quantitatively demon-
strated the advantage of exploiting the parallelism provided by a distributed memory
multiprocessor via a concurrent implementation. A synchronization mechanism with
bounded waiting was described to serve as the foundation for shared resource access
in a concurrent system. We presented the strategies we have developed to implement
the scheduling process, the dispatchers and resource reclaiming in an integrated,
predictable fashion. In the next chapter, using the implementation discussed in this

chapter, we evaluate the performance of the resource reclaiming algorithms.

CHAPTER 6

PERFORMANCE EVALUATION

We demonstrated in the last chapter the applicability of the resource reclaim-
ing algorithms presented in Chapter 4, by discussing their implementation in an
integrated prototype real-time multiprocessor kernel, the Spring Kernel [89]. In
addition, in order to understand the dynamic behavior and performance of the
resource reclaiming algorithms, and to study the tradeoff between system overhead
costs and runtime performance gains due to resource reclamation, we have done
extensive simulation studies. Since it is difficult to collect elaborate performance
statistics without affecting the true performance of an actual real-time system, we
resorted to a software simulator which simulates the multiprocessor Spring Kernel.

In this chapter, in Section 6.1 we first describe our simulation methods, includ-
ing system and algorithm parameters, overhead costs, and baseline schemes. To
verify the validity of the overhead cost measurements of the software simulator,
we conducted empirical tests on the Spring Kernel. In Section 6.2, we present the
simulator validation results. A unique issue in evaluating algorithms designed for
dynamic real-time multiprocessor systems is the problem of how to validate that
the algorithms do not induce incorrect timing behavior in the system. Section 6.3
briefly discusses the schemes we have developed to deal with this issue. Experimental

results are presented in Section 6.4, and Section 6.5 summaries the chapter.

107

6.1 Simulation Method

Simulation Parameters

In our simulations, the system overhead costs are the worst case costs measured
on the Spring Kernel. The scheduler’s cost SC is calculated before each invocation
of the scheduler as follows: SC = overhead_cost + n * per_task_cost, where n is
the number of tasks to be scheduled for the current invocation of the scheduler.
As mentioned in the previous chapter, in order to bound the cost of running the
scheduler, we set a value N as the maximum number of tasks that the scheduler will
schedule at a time, i.e., n < N in calculating SC. In all the experiments, whenever
the resource reclaiming algorithms are used, the cost of the algorithms are added
onto a task’s worst case execution time before the task is scheduled. Table 6.1 lists
the worst case system costs and other simulation parameters respectively used in
our simulation.

A ‘v’ in the value column in Table 6.1 means that the simulation parameter is
a variable. The values listed for the various parameters are the values used in all or
most of the experiments. If a value different from the one stated in Table 6.1 is used,
it will be specified in presenting the results for that experiment. We have tested
two cases for wcet_min and wcet_maz. One is wecet_-min = 50 and wcet_maz = 150.
The other is wecet_min = 50 and wcet_maz = 1000. These two cases represent the
two kinds of task systems in which the worst case execution times of tasks have
small/large variance. We have found that in most cases, the performance of the
resource reclaiming algorithms is almost the same for both cases of tasks’ worst case
execution times. We also present results for which we linearly increase the value
of wcet_min, thereby decreasing the ratio of the cost of resource reclaiming to the
average worst case execution time among tasks to decrease.

Load Estimation

108

Table 6.1 Simulation Parameters

parameter value ezplanation
overhead _cost 4 | The portion of the scheduler’s cost that is constant
for each invocation of the scheduler.
per-task_cost 5 | The portion of the scheduler’s cost dependent on the
number of tasks in the schedule.
Basic Reclaiming 1 | The worst case cost of the Basic Reclaiming algorithm.
Early Start 2 | The worst case cost of the Early Start algorithm.
number of processors 5 | The number of processors used in the simulation.
number of resources 5 | The number of resources used in the simulation.
weet_min 50 | Tasks’ worst case execution times are uniformly
weet_maz 150 | distributed between wcei-min and wcet_maz.
lnin 9 | The laxity of a task is calculated based on the worst case
lnaz 10 | execution time of the task, and it is uniformly distributed
between l,,;n to L4 times the worst case execution time.
Pyse 0.2 | The probability that a task requires any of the resources.
Prode 0.5 | The probability that a task uses a resource in shared or

exclusive mode if the task requires that resource.

actual execution time

(50%,90%)

A task’s actual execution time, uniformly distributed
between 50% and 90% of its worst case execution time.

1.0

The average load of processor ¢ (as explained in this section).

P
3

The mean interarrival time of tasks on processor ¢,
can be calculated for a given Lp; as in formula (6.1).

The combination of the mean interarrival time % of tasks, the value of P,

the number of resources s, and wcet_min and wcet_maz determines the average load

of the system. In our simulation, tasks arrive as a Poisson process. We generate

both continuous and burst arrivals in each simulation run.

Every processor has

the same %, for 1 <1 < m. We use the following three formulas to measure the

average processor load L,;, the average resource load L,;, and the resource conflict

probability P, for two tasks.

Ly =

L, =

A; x Elwcet]

Pye * A; % E[wcet] x m

109
Pc - 1_(2(]— _Puse)*Puse —I'(]-_Puse)z—l'(Pmode *F)use)z)s (63)

Elwecet] is the expected value of the worst case execution time of a task; thus it is
either 100 or 525 for the two kinds of worst case execution times in our simulations.
m 1s the number of processors. The first two formulas are straightforward. Note
that the average resource load L,; goes up as P, increases even if the expected
worst case execution time E|wcet| and the mean arrival rate A; stay the same. In
the third formula, P, is the probability that two tasks will conflict on any of the
given s resources (as opposed to P,z which is the probability that a task will require
a resource). Thus P, is a measure of the resource conflicts in a task load. In order to
simulate task arrivals that have sufficient parallelism to be run on a multiprocessor
system, we must keep the value of P, fairly low. A high value of P, would indicate
the inherent resource conflicts among many tasks. P, is calculated as 1 minus
the probability that the two tasks will not conflict on any of the s resources. With
respect to any one of the s resources in equation 6.3, the first term in the summation
is the probability that only one task will require the resource, the second term is
the probability that none of the two tasks will require the resource, and the third
term is the probability that both tasks will require it in shared mode. P, increases
when the value of P,,. or the value of s increases. So if we keep P,,. the same for
all the tasks, the more resources there are in a system, the more resource conflicts
tasks will have.

Performance Metrics and Statistics
The performance metric we use is the guarantee ratio of an algorithm with

respect to dynamic task arrivals. The guarantee ratio (GR) is defined as

_ the number of tasks guaranteed

GR =

the number of tasks arrived

In all the simulation experiments, each data point consists of five to ten runs.

Our requirement on the statistical data is to generate 95% confidence intervals

110

for the guarantee ratio whose width is less than 5% of the point estimate. To
evaluate the effectiveness of the proposed resource reclaiming algorithms, we have

also implemented the following three schemes for comparison purposes:

e guarantee with actual execution time: This is an ideal scheduling scenario.
In this scheme, when a task arrives, the scheduler omnisciently knows the
actual, rather than the worst case, execution time of the task. Therefore,

resource reclaiming is not necessary.

e rescheduling: In the rescheduling scheme, whenever a task executes less than
its worst case execution time, the scheduler is invoked to reschedule the tasks
in the existing schedule in the same manner as when a new task arrives. The
scheduler is invoked to do resource reclaiming only if the difference between
the worst case execution time and the actual execution time of the completed

task is greater than the scheduler’s cost.

e no resource reclaiming: Here no resource reclaiming is done. Tasks are
dispatched according to their scheduled start times. The case of no resource

reclaiming provides a lower bound on performance.
6.2 Simulator Validation

To verify the validity of the performance and overhead cost measurements of
the software simulator, we conducted empirical tests on the Spring Kernel. Table
6.2 shows the results of two task loads tested with the number of task arrivals and
resources listed in the table. Each task load was tested on the actual Spring Kernel,
as well as on the simulator with respect to no resource reclaiming, using the Basic
Reclaiming algorithm, and using the Early Start algorithm. Two types of system
overhead costs (including the costs of the scheduler and the resource reclaiming

algorithms) were used for the simulator — the average and the worst case costs,

111

both being the measurements from the actual kernel on a VME-bus based Motorola
68020 multiprocessor with a 16.67 MHz CPU. As shown in Table 6.2, when the
average cost is used, the guarantee ratios produced by the simulator is very close to
those of the Spring Kernel. And as expected, when the worst case cost is used in
the simulator, the guarantee ratios are lower than those of the Spring Kernel. Since
the objective of our simulation studies in the rest of this section is to evaluate the
effectiveness of the resource reclaiming algorithms, it is important that the amount
of performance gain/loss obtained in using the simulator is a good approximation
of the actual kernel. Thus in the last two columns in Table 6.2, the difference in
the guarantee ratios between the resource reclaiming algorithms and no resource
reclaiming is shown. It is clear from these two columns that the performance gain
of employing either of the resource reclaiming algorithms in the simulation with the
worst case costs matches closely with the performance gain obtained in the actual

kernel.

Table 6.2 Simulator Validation. NR = no resource reclaiming; BR = basic
reclaiming; ES = early start.

parameters Guarantee Ratios | Performance Gain

test | # tasks # resources NR BR ES | BR—NR ES—NR
Spring Kernel 71.0 73.4 88.6 24 17.6
1 583 5 sim(avg. cost) 71.0 73.4 914 2.4 20.4
sim(worst cost) 58.0 61.0 72.0 3.0 14.0
Spring Kernel 66.8 69.9 80.0 3.1 13.2
2 566 7 sim(avg. cost) 65.7 70.0 84.3 4.3 18.6
sim(worst cost) 55.0 59.0 67.0 4.0 12.0

112

6.3 Post-Run Timing Verification: Understanding the Dy-
namic Behavior of the Algorithms

Besides performance issues (i.e., the statistical aspect of performance), there are

two unique issues in the evaluation of concurrent on-line real-time algorithms:
(1) how to examine and understand the dynamic behavior of the algorithms, and

(2) how to verify the run time correctness of the dynamic behavior of the algorithm

implementation.

The asynchrony and concurrency among the various components in both the al-
gorithms and the integrated system make this examination and verification very
difficult. However, one needs to be sure that tasks’ timing and resource constraints
are not violated by any of the algorithms used. We have designed and implemented
schemes to collect run time task information to enable the understanding of the
dynamic behavior of the algorithms, as well as to accomplish post-run checking of
the correctness of the resource reclaiming algorithm implementation. We record the
times when each task is actually dispatched, and when each task is completed in a

post-run log file. This information is then used by two functions:

e One function, called the Self-Checker, takes as inputs the post-run log file and
the original workload file in which each task’s arrival time, deadline, resource
requirements, and processor requirement are specified. The Self-Checker does

the following two verifications:

— A comparison of each task’s start time and finish time in the post-run log
file with the task’s arrival time and deadline in the workload file. This
comparison reveals whether the dispatching time of the task violates the

task’s timing constraints.

113

P T T, T, [T, T, T, 1.7, T,

P, T, |T,, T, T, T.|T. | T. T,, T.| T.

P T, | Ty T, T, T, T, T, 1, T,
30800 31;300 32:100 33;00 34(|)oo 34z|300

Figure 6.1 A post-run schedule when the actual execution times are known.

P3 Tmz Tzox sz Tlm TNS 127 Tz\x Tm Tzz\
Pz TI@S TZOS T177 sz T!xn 1 24 Tzzs] 228 Tzzl TZH
PL THU T159 TIS‘J Tmﬁ TZOh T|79 1 27 sz sz
]]]]]
30800 31600 32400 33200 34000 34800

Figure 6.2 A post-run schedule generated by the Early Start reclaiming algorithms.

P} T171 TZM TZIS TZ(W T!‘)ﬂ ’I 222 TMZ
PZ TH‘) TI-W TIDR T\m Tl77 T 224 TZZS ‘] 228 TIQS
Pl TISS T184 T\xz T\xx TMU TLSQ ’1227 T\xe
| | | | |
30800 31600 32400 33200 34000 34800

Figure 6.3 A post-run schedule generated by the Basic reclaiming algorithm.

P3 TI74 TI7I TI'/G TZ]-’\ TZ\S TZ()R T\él ’1227 TZ\X
PZ TI‘T\ TH‘? rl‘)ﬂ TH7 T]h] ’IZN Tl77
Pl TISS T]Hl TlﬁX T]HZ T\-'m TZZ7 TlS’:‘
| | !
30800 31600 32400 33200 34000 34800
Figure 6.4 A post-run schedule generated by the rescheduling strategy.
P3 rlﬂli T]74 T215 -[2'22 TWD TZ]}
PZ T]W T]Zﬁ Tl-’ﬂ Tlﬁl
Pl Tlﬁx TISS THM Tléﬂ TMU TIH‘J TlS‘)
| | | | |
30800 31600 32400 33200 34000 34800

Figure 6.5 A post-run schedule generated with no resource reclaiming.

114

— A comparison of the resource requirements among all the tasks whose run
time executions overlap with each other. This comparison reveals whether
any of the resource constraints are violated at run time, i.e., whether any

two tasks with resource conflicts are executed in parallel.

e The second function, called the Post-Run Schedule Generator, takes as
input the post-run log file, and generates a post-run schedule in the forms

shown in Figures 6.1 through 6.5.

This post-run schedule generation is extremely useful in observing and under-
standing the actual run time behavior of an algorithm. For example, Figures
6.1 through 6.5 show the post-run schedules of a portion of the simulation runs
with respect to each of the resource reclaiming schemes we have tested from
one simulation run. In these figures, we have generated each of the post-run
schedules in the same time interval (from time 30800 to 34800)!, so one can
examine the task execution activity of the system in any time interval among
different schemes. In particular, one can observe the following properties in the

post-run schedules in Figures 6.1 to 6.5:

— There is a large difference in the amount of idle time between the post-run
schedule generated by using the Early Start reclaiming algorithm and the

post-run schedule due to no resource reclaiming in Figures 6.2 and 6.5.

— Since Reclaiming with Early Start allows partial passing while Basic Re-
claiming does not allow any kind of passing, the difference in the amount of
time reclaimed between the two resource reclaiming algorithms in Figures

6.2 and 6.3 attests to their effectiveness.

!The total length of this particular simulation is 85000 time units.

115

o 100 &- — —¢ Early Start
)5 S o &= — =& Basic Reclaiming
2 90 ~ . Reclaimi
8 - W —- —HW No Reclaiming
= N
A AN S
=3 N, ¢
© 70| PR ~
~ ~ N
N .\Q\ - N <
60 - ‘-\ ~ \‘. -
N &2 =
50 .. "
40 - .
30 -
20 -
10 |~
0 |]] l
0.1 02 03 04 0.5

resource usage probability P

use

Figure 6.6 Performance of Basic Reclaiming and Reclaiming with Early Start

— When either resource reclaiming algorithm is used, there is no time interval
during which all processors are idle. However, this is not true for the
post-run schedules produced from using the rescheduling strategy or no

resource reclaiming.

Although this post-run schedule generation enables us to better understand the
dynamic behavior of an algorithm, it does not suffice as conclusive evidence to assert
the performance of an algorithm. We proceed next to present statistical evidence

that resource reclaiming greatly improves the performance of the system.

6.4 Simulation Results

6.4.1 Performance comparison of the two resource reclaiming algo-
rithms

In Figure 6.6, the guarantee ratios from using the two resource reclaiming

algorithms are plotted with that of using no resource reclaiming. In this simulation,

116

© 15— a A resource usage probability=0.1
§ A A resource usage probability=0.2
o &— — —e& resource usage probability=0.3
:‘D:
ke
©
o
8
€ 10+
o
I
>
(O]
‘ ~
T~
7~ > ~
» ~
/ e
5 ’
/
/
»
/s
/s
/s
0 s L | l |

0.40 0.50 0.60 0.70 0.80 0.90
Average Load per Processor

Figure 6.7 Guarantee (GR) ratio difference: GR of Early Start — GR of Basic
Reclaiming.

L,; = 0.75, and P,, varies from 0.1 to 0.5. This represents a heavy to overloaded
system. For example, when P, is 0.3, L,; is 1.13, and when P, is 0.5, L,;
1s 1.9. Reclaiming with Early Start is very effective for all the resource usage
probabilities. Its guarantee ratio is 18.4% higher than that of no resource reclaiming
when P, = 0.2. When the resource conflict is small (i.e., when P,,e < 0.3 and thus
P, <0.3), Reclaiming with Early Start performs much better than Basic Reclaiming
since it can exploit more parallelism. When the value of P,,, is 0.5, the performance
of the Basic Reclaiming algorithm approaches that of Reclaiming with Early Start.
When the value of P, 1s too high, P. is even larger, indicating high resource
conflicts among tasks, and thus little parallelism among tasks. For example, for
P, = 0.5, P. = 0.65. In this case there is a very high probability that any two
tasks in the schedule will have resource conflicts. This will result in schedules in
which very few tasks can be run in parallel. Since in using a multiprocessor system,

one would expect a certain amount of parallelism to exist among the tasks, it is

117

more appropriate to keep the value of Py, < 0.3 (thus, P, < 0.3) in the rest of our
experiments.

In Figure 6.7, the difference in guarantee ratios from using the two different
resource reclaiming algorithms is plotted with respect to different processor loads
L,; and resource usage probabilities P,,.. We vary the value of L,; from lightly
loaded (0.4) to heavily loaded (0.9). Then the guarantee ratio from using Basic
Reclaiming 1s subtracted from the guarantee ratio from using Reclaiming with Early
Start. The three curves correspond to simulations with three values of P,,.. Based

on the simulation results, we make the following observations:

o When the system is very lightly loaded, the difference between the two algo-
rithms is negligible. Their difference peaks when L,; ranges from 0.7 to 0.8,
depending on the value of P,,. This is because when the system is lightly
loaded, few tasks are simultaneously in the system, so Basic Reclaiming is just

as effective.

e When the system is heavily loaded, many tasks will be scheduled in parallel.
In this case the amount of resource reclaimed by the Reclaiming with Early

Start algorithm is much larger than by the Basic Reclaiming algorithm.

From the results in Figures 6.6 and 6.7, we see that Reclaiming with Early
Start outperforms Basic Reclaiming for most of processor loads and resource usage
probabilities. Thus in the following experiments, we concentrate on evaluating the

performance of Reclaiming with Early Start.

6.4.2 Performance Comparison with Rescheduling

The scheduler has a more global view of the tasks in the schedule than the
resource reclaiming algorithm does, but it also has a higher run time cost. The

purpose of this study is to answer the following question: ‘Suppose we can reduce

118

100

90

Guarantee Ratio

80

70 A A Actual Computation Time
A——/A Rescheduling
&- — —& Early Start
60 B — - —H No Reclaiming
50 I | I | I
0 1 2 3 4 5

Scheduler’s per task cost

Figure 6.8 Effects of Scheduler’s Runtime Cost

the cost of the scheduler. Will the rescheduling scheme be a better choice?” We
compare the performance of the rescheduling scheme with that of (1) guarantee with
actual execution time, (2) Reclaiming with Early Start, and (3)the no reclaiming
schemes. Here we artificially vary the scheduler’s per_task_cost from 0 to 5, where
5 is the actual worst case cost we have measured on the Spring Kernel.

The simulation results in Figure 6.8 indicate that the performance of reschedul-
ing degrades by 17.1% when the cost of the scheduling algorithm increases from 0 to
5. Only when the scheduler’s per_task_cost is zero, does rescheduling perform better
than Reclaiming with Early Start. In real systems, the cost of the scheduler will
be nonzero. So the rescheduling scheme is not a practical choice. The performance
of Reclaiming with Early Start is very close to the performance of the guarantee
with actual execution time scheme no matter what the cost of the scheduler is. This
demonstrates that low complexity run time local optimization, such as the one used

in Reclaiming with Early Start, can be very effective in a dynamic real-time system.

119

Guarantee Ratio

70 - A——A Actual Computation Time
A——A Rescheduling
&- — —¢ Early Start
60 | B —- —H No Reclaiming
50 | l l] | | | I
100 200 300 400 500 600 700 800 900
task laxity

Figure 6.9 Effects of Task Laxity

6.4.3 Effects of Task Lazity

We now examine the performance of the various schemes with respect to different
task laxities. Figure 6.9 shows the results of the experiments. Here tasks’ laxities
are plotted along the X-axis. At each x point, a task’s laxity is drawn from
a uniform distribution between % * wcet and = + 100% * wcet, where wcet is
the median of the worst case execution time of tasks. With tight task laxities,
e.g., ¢ < 200, resource reclaiming is not very effective, since, in this case, tasks
arrive at the system with very small laxities, thus many of them cannot even be
guaranteed with respect to their worst case requirements. As the laxities of the
tasks are relaxed, the performance of Reclaiming with Early Start approaches the
performance of the guarantee with actual execution time scheme, and is much better
than that of rescheduling and no resource reclaiming. At z = 900, the difference
between the guarantee ratios of using Reclaiming with Early Start and of using

no resource reclaiming is 11%. On the other hand, rescheduling performs as well as

120

Guarantee Ratio

60 — .

& Early Start
O — - —0O No Reclaiming

50 I | I | I | I | I
5 10 15 20 25 30 35 40 45 50
Minimum Worst Case Computation Time

Figure 6.10 Effects of worst case execution time to resource reclaiming cost ratio.

Reclaiming with Early Start only when the laxity is very tight, i.e., when z = 100. It
performs poorly as the laxity increases since the more tasks there are in the feasible
schedule, the more rescheduling will cost. With larger task laxities, more tasks can

be guaranteed, thus the feasible schedule contains more tasks.

6.4.4 Effects of Worst Case Execution Time

In Figure 6.10, we compare the performance of Reclaiming with Early Start

with no reclaiming with respect to different worst case execution times. As the

resource reclaiming cost
worst case execution time

worst case execution times of tasks increase, the ratio
decreases. Recall that the run time cost of Reclaiming with Early Start is 2
(milliseconds). So, for the two kinds of worst case execution times we have tested
so far, i.e., uniformly distributed between (50, 150) and between (50, 1000), the
resource reclaiming overhead cost is at most 0.4% of a task’s worst case execution
time (since the minimum worst case execution time wcet_min = 50 in both cases and

2/50 = 0.4). What happens to the performance of resource reclaiming if weet_min is

121

smaller so that the ratio of the resource reclaiming overhead to the minimum worst
case execution time becomes larger? In this experiment, we vary wcet_-min from 5
to 50, and the worst case execution time of a task is uniformly distributed between
weet_min and 2 x wecet_main. P, 1s set to 0.3. We did not include any scheduling
overhead in this experiment for the purpose of examining the pure effects of the
resource reclaiming overhead costs. In Figure 6.10, we plot the values of wcet_min
on the X-axis. When wcet_min = 5, the resource reclaiming overhead ranges from
20% to 40% of tasks’ worst case execution times. When wcet_min = 50, the resource
reclaiming overhead is only 0.2% to 0.4% of tasks’ worst case execution times. As
one can see, if the resource reclaiming overhead can be more than 10% of tasks’
worst case execution time, i.e., when wcet_min < 20 on the X-axis, the guarantee
ratio using Reclaiming with Early Start can be even worse than without any resource
reclaiming. For the parameter settings tested in this experiment, the results show
that it pays to do resource reclaiming only if one can ensure that the overhead cost
of the resource reclaiming algorithm is below a reasonable percentage of tasks’ worst

case execution times, such as below 10%.

6.4.5 Effects of Average Processor Load

In all the above experiments, we have simulated heavy load situations. In Figure
6.11, we examine the performance of Reclaiming with Early Start with respect to
different average processor loads L,;. We vary the value L,; from heavily loaded
(1.0) to lightly loaded (0.3). A task’s laxity is uniformly distributed between 1
to 10 times its worst case execution time, so that no matter what the average
processor load is, tasks arrive with a large variance of laxities. We compare the
performance of Reclaiming with Early Start with the performance of guarantee
with actual execution time and no resource reclaiming. As the performance graphs

indicate, the guarantee ratio of Reclaiming with Early Start follows closely to that

122

100

90

Guarantee Ratio

80

70

60

50

A A Actual Computation Time
40 - &- — —¢ Early Start
H — - —H No Reclaiming

30 [I N BN AR B
10 09 08 07 06 05 04 03

Average Processor Load L ;

Figure 6.11 Effects of Average Processor Load

of guarantee with actual execution time for all the different loads. Except when
the system is very lightly loaded, i.e., when L,; < 0.4, Reclaiming with Early Start
has a much higher guarantee ratio than with no resource reclaiming. At L,; = 0.8,
the difference between the guarantee ratios of Reclaiming with Early Start and no
resource reclaiming is 14.3. When the load of the system is extremely low, e.g., at

L,; = 0.3, resource reclaiming is not necessary.

6.4.6 Effects of Actual Computation Time to Worst Case Compu-
tation Time Ratio

In all the simulations presented above, the actual execution time of a task
is between 50% to 90% of its worst case execution time, drawn from a uniform
distribution. Figure 6.12 shows the results for the case in which, for each simulation
point, all the tasks in a task load have the same ratio of actual execution time to
worst case execution time. This ratio is varied from 100% to 10%. We plot the

percentage of the unused execution time on the x axis. This test studies the effect

123

o 100 F—:.—-—'ﬂ——fr_—_‘_—ﬁ\‘
= ~. - -
& - - .
8 90 |- u N
E N |
8) |
& 80| N
LN
70 \l\.
1
60 - A—A Actual Computation Time
- — —¢ Early Start

50 B — - —H No Reclaiming

40

30]]]]] l I

0 10 20 30 40 50 60 70
% of unused computation time

Figure 6.12 Effects of different actual to worst case execution time ratios

of the accuracy of worst case execution times upon performance. Note that for each
test, even if all the tasks have the same actual execution time to worst case execution
time ratio, their actual execution times are still very different due to the uniform
distribution of their worst case execution times. P,,. 1s set to 0.2. The average
processor load has been calculated according to tasks’ actual execution times rather
than their worst case execution times, i.e., L,; = A; * E[actual execution time]. At
each simulation point, we generated the same average processor load L,; = 0.6 with
respect to the expected actual execution time, so that if we had known the actual
execution times of tasks, the task load was mostly feasible as demonstrated by the
performance of guarantee with actual execution time. However, since when using
Reclaiming with Early Start and no resource reclaiming we do not know the actual
execution times at schedule time, the smaller the ratio of the actual execution time
to the worst case execution time (as the tasks leave more unused execution time),

the larger the worst case load the system has to handle.

124

The simulation results indicate that

(1) For a large range of the accuracy of worst case execution time estimation (from
50% to 100%), Reclaiming with Early Start performs very close to that of the

guarantee with actual execution time scheme.

(2) The improvement on the guarantee ratio of Reclaiming with Early Start over
no resource reclaiming is substantial. The guarantee ratio improves by 23.9%

when tasks’ actual execution time is 40% of their worst case execution times.

6.4.7 Positive Side Effects of Resource Reclaiming

In this section, we show two positive side effects of resource reclaiming on the

system’s performance.

Limiting the Length of the Schedule

In Figures 6.13 and 6.14, we compare the performance of using the Early Start
algorithm with that of guarantee with actual execution time. All experimental
parameters are the same for these two figures, except the distribution of the worst
case execution times of tasks, and the laxities. In Figures 6.13, tasks’ worst case
execution times are uniformly distributed between 450 and 600, while in Figure
6.14, they are between 50 and 1000. So, the median task worst case execution times
are the same for both experiments, but in one the tasks’ worst case execution times
have much larger variance than in the other. A task’s laxity is uniformly distributed
between 9 to 10 times its worst case execution time, thus smaller tasks would have
much smaller absolute laxities than large tasks.

As Figure 6.14 show, the performance of guarantee with actual execution times
can even drop slightly below that of using Reclaiming with Early Start. This
happens at the higher resource usage probabilities when the values of tasks’ worst
case execution times vary greatly, and with them their laxities. This unexpected

performance ‘anomaly’ is a positive side effect of resource reclaiming. At higher

125

100
90

80

Guarantee Ratio

70

60

40 |-

A

A Actual Execution Time
30~ - - —e Early Start

20 -

10

0 | | | |
0.10 020 030 040 0.50

resource usage probability P,

Figure 6.13 Guarantee Ratios: wcet_min = 450, wcet_maz = 600.

100
90

80

Guarantee Ratio

70

60

50

40 -
A

A Actual Execution Time
30~ - - —e Early Start

20 -

0 | | | |
0.1 0.2 03 0.4 05

resource usage probability P,

Figure 6.14 Guarantee Ratios: wcet_min = 50, wcet_maz = 1000.

126

resource usage probability, few tasks can execute in parallel, and thus guaranteed
tasks would most likely be scheduled near their deadlines in the resulting schedule.
Task arrivals with small laxities need to be scheduled close to the current time in
order to meet their deadlines — this implies that the worst case execution time
of the scheduler can influence the schedulability of the smaller tasks, because the
placement of the cutoff_line imposes constraints on how close to the current time a
task can be guaranteed in a schedule. We have observed from the simulation outputs
for the experiments shown in Figures 6.13 and 6.14 that the number of tasks prior
to the cutoff-line is on the average smaller when using the Early Start reclaiming
algorithm than when guaranteeing with the actual execution time. This is because,
in using resource reclaiming, the scheduler needs to schedule tasks with respect
to their worst case execution times. When the larger tasks finish earlier than their
worst case execution time, they in effect free up portions of time that are close to the
current time in the feasible schedule. This makes it possible for many of the newly
arrived small tasks to be guaranteed, thus increasing the guarantee ratio. Since the
small tasks finish executions very fast, by the time the next scheduler invocation
occurs, the small tasks have already been completed, thus not contributing to the
calculation of the cutoff_-line. This phenomenon causes the performance ‘anomaly’

shown in Figure 6.14.

Reclaiming with Early Start mitigates the effects of the variance in the
scheduler’s worst case execution time estimation

We saw that resource reclaiming can overcome the potential performance degra-
dation due to the use of worst case execution times for scheduling. The same applies
to worst case estimation of the scheduler’s costs to compute the cutoff -lhine. As
we have described in Chapter 5, at each invocation of the scheduler, the worst
case execution time of the scheduler must be calculated and is used to determine

the cutoff-line. Most of the time, the scheduler does not execute up to its worst

127

case execution time, and finishes the scheduling activity earlier than the cutoff line
indicates. Without a resource reclaiming scheme, the time interval between the
actual completion of the scheduler and the cutoff-line can be idle due to early
completions of application tasks. When a resource reclaiming algorithm is in use,
as soon as the scheduler completes execution, dispatching and resource reclaiming

can take effect.

6.5 Summary

In summary, the simulation results show that the resource reclaiming algorithms
proposed are very effective with respect to a wide range of system and task param-

eters. In particular, the following can be observed:
e Good local optimization can be very effective in a dynamic real-time system.

¢ In a real-time system, it is important to employ run time algorithms with bounded
time complexity. The complexity of the algorithm should be independent of the

number of tasks.

o Beside having bounded time complexity, it is essential for a resource reclaiming
algorithm to be inezpensive in terms of overhead cost. Our simulation results
indicated that it only pays to do resource reclaiming if one can ensure that the
overhead cost of the resource reclaiming algorithm is below 10% of tasks’ worst case

execution times.

o Resource reclaiming is very useful for real-time systems that have to guarantee
tasks with respect to their worst case execution times. For a large range of accuracy
of the worst case execution time estimation (from 30% to 100%) that we have
experimented with, Reclaiming with Early Start performs very close to that of an

ideal scheduling scenario — guarantee with actual exzecution time.

e Even though Reclaiming with Early Start has a higher run time cost than that
of Basic Reclaiming, it performs much better than Basic Reclaiming in most of the

task and system parameter settings.

128

e However, there are two situations in which the performance of the resource
reclaiming algorithms falls much below that of scheduling with ACET. The first is
when the task laxities are small (below 2 to 3 times that of tasks’ average WCET)
as shown in Figure 6.9, and the second is when the worst case execution time is
much larger than the actual execution time (with greater than 70% inaccuracy) as
shown in Figure 6.12. In the next chapter, we show how these can be dealt with by
using early notification of a reduction in a task’s worst case execution time during
(rather than at the end of) the execution of the task.

e Simple resource reclaiming algorithms are needed most when the system is heavily
loaded and the invocation of the scheduling algorithm is expensive compared with
the resource reclaiming algorithms.

e When the load of the system is extremely low, e.g., L,; < 0.3, resource reclaiming
i1s not necessary.

Most importantly, the simulation results show that, for independent tasks with
resource constraints, resource reclaiming can greatly compensate for the performance
loss due to the inaccuracies of the estimation of the worst case execution times of

real-time tasks for a wide range of system parameter values.

CHAPTER 7

RESOURCE RECLAIMING: NOT JUST AT
TASK COMPLETION

So far in this dissertation, we have assumed that the worst case execution time
of a task in a schedule does not change throughout the execution of a task, i.e., no
information during the execution of a task is used to reduce the worst case execution
time of the task. The resource reclaiming algorithms presented in Chapter 4 are
designed to recognize and utilize the time left after a task completes execution. One
is prompted to ask here that “Can we do better?’. In this chapter, we present

extensions to the resource reclaiming problem that show that we can.

7.1 The Task Execution Time Life Cycle

In a dynamic real-time system, the execution time of a task goes through a lfe

cycle as Figure 7.1 shows:

o WCETT — Theoretical worst case execution time, which can be analyzed
and derived during task compilation and decomposition (based on assumptions

about the underlying system).

o WCET® — Effective worst case execution time, which can be calculated after

the placement/allocation of tasks and resources is known.

o WCET! — Invocation worst case execution time, which can be calculated at
the task invocation/scheduling time when the resource requirements and other

information pertinent to a particular invocation of the task are available.

130

e WCETE — Runtime worst case execution time. This may be updated from
time to time during a task’s execution depending on the evaluations of branch-

ing conditions and loop control variables in a program.

o ACET — Actual execution time, which is only known at task completion time.

ACET

Resource Reclaiming
& Dispatching

Runtime WCET
Runtime Update

Invocation WCET

Task & Resource
Scheduling

Effective WCET
Task & Resource

Allocation

Theoretical WCET
Task Decomposition

Figure 7.1 The life-cycle of the execution time of a task.

So clearly,
WCETT > WCETE > WCET! > WCETE > ACET.

Dynamically, there are two different points in time when the system can be no-

tified of a change in a task’s execution time from its invocation worst case execution

time WC ETY:

e case 1: At the task completion time — the actual execution time (ACET) of

a task cannot be known until a task completes its execution.

131

e case 2: At the end of the evaluation of some branching condition in a task’s
program — the branch of computation a task is going to take may reduce the
worst case execution time of the task from WC ET? task to WC ET?® (runtime

worst case execution time), which is smaller than the WC ET!.

Thus, in case 2, even after partial execution of a task, it is possible to reduce the
invocation WCET. By recognizing when reductions of WCET! are possible, we
can further alleviate the negative effects due to worst case execution assumptions on
the system performance. Note here that even though the WC ETT may be reduced
at this point, the actual execution time (ACET) at the task completion may still
be different from the WCETZ®. In the rest of this chapter, we extend resource

reclaiming to deal with case 2.

7.2 Early Notification of Reduction in WCETZ®

The value of reclaimed_§ (recall that the value of reclaimed_time is maintained
by the resource reclaiming algorithms and contains the value of the amount of time
the system has reclaimed up to now on all the processors and resources with respect
to the current feasible schedule) can be updated only at each task completion. In
case 2 above, the change in the value of WC ETE does not affect the existing schedule
and the value of reclaimed_§ immediately, i.e., the reduced execution time cannot be
reclaimed immediately. If there is no new task arrival until the completion of the task
execution, then the function and performance of the resource reclaiming algorithms
are the same as before — the early completion of the task will be recognized by the
resource reclaiming algorithms. However, if a new task arrival occurs, the amount

of time reduced can be potentially used by the scheduling process immediately.

This early notification of a reduction in the worst case execution time of a task

during its execution can be facilitated as follows:

(1) For each task T;:

132

— After each test and branch statement for a conditional (i.e., an if-then-
else), if the shorter execution path of the two branches is to be taken, the
program can be annotated by inserting a statement indicating the amount

of reduction in the worst case execution time.

— Before each loop control statement, once the value of the number of loop
iterations is known, the program can be annotated by inserting a statement

indicating the amount of reduction in the worst case execution time.

(2) If the value of reduction is greater than some threshold (this threshold should be
determined statically with respect to the cost of the following described system
call), a system call can be made to record this reduction in a new ezpected finish
time of task 7; in the schedule (recall that we do not remove a task from the
PL until it completes execution). The execution time of this system call can
be bounded and inexpensive since (1) only one ezpected finish time needs to
be modified, and (2) the PL does not need to be locked because one single
write-operation is atomic. Thus, in the worst case, the scheduler would simply
miss the update of this new ezpected finish time, and the feasible schedule up

to the cutoff_line is still correct.

It should be pointed out here that some of the values of conditionals and loop
control variables can be determined at task invocation time, and thus are already
reflected in the value of WC ET!. However, it is not feasible to extract the values
of all possible occurrences of conditionals and loop control variables in a task at
invocation time since this would essentially require the exploration of an exponential

number of paths. Thus run time reduction of WCET? is the only choice.

133

7.3 Integrating Early Notification with the Reclaiming-
with-Early-Start Algorithm

Since the simulation studies have shown that the resource reclaiming with partial
passing, i.e., the Reclaiming-with-Early-Start algorithm, outperforms the Basic-
Reclaiming algorithm most of the time, in the following we discuss the issues in
integrating early notification and Reclaiming-with-Early-Start.

To support Reclaiming-with-Early-Start, the new ezpected finish time of task
T; should be recorded in an attribute eft; of T;, but the original ft; of T; cannot
be modified. This is because the original ft¢; contains local information of both
possible resource conflicts and permissible parallelism between 7; and its neigh-
boring tasks in the feasible schedule. This information is used by the resource
reclaiming/dispatching process to make the correct decision on whether a task can
be dispatched earlier than its original scheduled start time. If the original ft; were
modified, the crucial information about permissible parallelism among tasks in the
schedule would have been altered. This is because the scheduled start times and
scheduled finish times assigned by the scheduler are guaranteed to satisfy tasks
resource constraints’. This in turn would severely limit the performance of the
Reclaiming-with-Early-Start algorithm which allows partial passing.

Therefore, when combining early notification and Reclaiming-with-Early-Start,
each task T; in the schedule has a ft; (scheduled finish time) and an eft; (expected
finish time) associated with it. With these two attributes, the following modifica-

tions need to be incorporated into the integrated scheduling and dispatching system:
o Initially, eft; = ft;.

o During T;’s execution, eft; may be reduced.

!However, the resource conflict information will not be affected even if the original ft; is
modified, because eft; must be less than or equal to ft;, i.e., for some task T}, if st; > fi;,
then st; > eft;.

134

cutoff-line max(cutoff_line,e ft;)
e]ihl/ ff1

P, T\ !«—reclaimable —~ T, T, T,
P] Tis | T6 F[k TS Ti«) |
500 510 520 530 540 550 560 570 580 590 600

Figure 7.2 Example of Early Notification

o Whenever the scheduler is invoked during the execution of 7}, the scheduler uses

the eft; to calculate the cutoff-line and the earliest available times of resources.

o When T; completes execution, the resource reclaiming and dispatching decisions

are still based on ft;.

Let us suppose the task in question is 7; with an original scheduled finish time
ft;. Now let us suppose that at a branching statement, we know that in the worst
case T; will complete by eft; where eft; < ft;. (eft; can be thought of as a new
ezpected finish time of task 7;.) If, after eft; is known, a new task arrives and the
scheduler is to be invoked, as long as the cutoff_line is less than ft;, the time interval
T = [maz(cutof f line, eft;), ft;] can be used by the scheduler in constructing the
new schedule, i.e., 7 is reclaimed such that the earliest available time of the processor
and resources T; uses can be set to maz(cutof f_line, eft;) in the earliest available
time vectors for the scheduling algorithm. For example, in Figure 7.2, at time 500
the evaluation of a conditional branch in task 7; reduces its scheduled finish time
ft1 = 540 to eft; = 512. Suppose a scheduler invocation occurs at this point and
the cutoff_line is placed at time 516. Then 7 = [maz(cutof f line,efty), fti] =
[cutoff_line, ft;] = 24 is reclaimable on processor P, and the resources needed by

task 77, and can be used by the scheduler in the scheduling process.

135
7.4 Performance Implications

The simulation studies of the resource reclaiming algorithms presented in the
previous chapter show that Reclaiming-with-Early-Start performs very well com-
pared to scheduling with ACET under most of the system parameter settings.
However, there are two situations in which its performance falls much below that of
scheduling with ACET. The first is when the task laxities are small (below 2 to 3
times that of tasks’ average WCET) as shown in Figure 6.9, and the second is when
the worst case execution time is much larger than the actual execution time (with
greater than 70% inaccuracy) as shown in Figure 6.12.

In designing a system for a real-time application, a desirable property is to have
very low run time cost for the scheduler, i.e., the ratio between the scheduler’s
execution cost and the average task execution time should be very small. In a
nonpreemptive scheduling environment, this means that we would like the scheduler
to complete execution before the currently executing application task(s) finish exe-
cution. Thus, in our case it is desirable that the cutoff_line can be drawn at the end
of the tasks still in execution on the multiprocessor (i.e., only the tasks in execution
are not being considered in rescheduling together with the new task arrival(s)). In
our simulation studies, the ratio of the average WCET of tasks and the scheduler’s
cost is such that this property is true. In such a system, early notification could
alleviate some of the performance degradations under the two situations mentioned

above:

o With very small task laxities, if a task can be guaranteed at all, it must have
been scheduled fairly close to the current time. So tasks need to be placed in
the front portion of a schedule to meet their deadlines. With early notification,
when a new task arrives, there can be more available time that is close to the

current time for the task to be guaranteed. In this case, the early notification

136

of a reduction in the WCET of the tasks in execution should improve the

guarantee ratio.

o With very large variance between the worst case and the actual case execu-
tion time of tasks, the cutoff-line could have been drawn at a much later
time than needed by the worst case execution time of the scheduler due to
nonpreemption of the tasks in execution. This would obviously decrease the
guarantee ratio. The early notification of a reduction in the WCET of the
tasks in execution will cause the actual cutoff_line to be drawn at a time before
the tasks’ original scheduled finish time (i.e., we can reclaim the time interval
T = [maz(cutof f line,eft;), ft;]). Again, there is more time reclaimed for
task arrivals during scheduling. This can potentially remedy the performance

degradation.

7.5 Early Notifications of WCET% Reduction for More Than
One Task

The solution described above achieves early notifications of a WCET?E for a
single task. However, it is conceivable that the evaluation of a branching condition
during one task’s execution may result in the reduction of the WC ET® of more
than one task (e.g., a set of tasks that belong to the same task graph), or may even
result in the deletion of some tasks already guaranteed in the schedule. This may
occur when some of the computation paths in a program are very long, and multiple
tasks with multiple scheduling points can be derived at task decomposition time.
This implies that the W C ETE values of more than one task in the feasible schedule
can depend upon the evaluation of the same branching condition.

Suppose a program P contains an if-then-else conditional statement whose
evaluation may result in one of the two alternative execution paths A and B to

be taken at run time. Figure 7.3 illustrates three possible task representations of P.

137

if
tth else WCETT(AB) = mam(WCE'TA, WCETB)
A B
if
then else WCETT(Al,Bl) =WCET,, =WCETg,
A
5 ®\ WCET, =WCET,,
A
2
if
h
then,” Nglse WCETy, , , = mas(WCET4, WCETg,)
- ‘
A]|3 WCETy, ,., =maz(WCETa,, WCET5,)
o2 o2
. " WCETy, =WCET,,,
Ak By WCETr, =WCETy,
A

Figure 7.3 Three possible task decompositions of program P.

Let T(4,) be the task containing both computation paths, and where each of A and
B is to be decomposed into multiple schedulable portions. Let T{4; ;) be the task
containing the i** portions of computation paths A and B. Also let WC ETy be the
theoretical worst case execution time (we omit the superscript here) of U where U
is either a task or a portion of a computation path. Depending on the semantics
and nature of the computation of A and B, the task decomposition process (such
as the one proposed in [63]) may produce any one of three task combinations and

their corresponding WC ET for program P as shown in Figure 7.3:

138

(1) P can be represented as one task with its worst case execution time equal to the
maximum of A and B, i.e., T(4,5) such that WCETy,, ., = maz(WCET,, WCETg).

This is the simplest case and is what we have assumed up to now.

(2) In the case when the execution path A is much longer than B, and the first
schedulable portion of A has exactly the same worst case execution time as
that of execution path B, P can be decomposed into two tasks T(4, p,), and
T4,, where T(4, B,) has WCETT(AI,BI) = WCET,, = WCETg,, and Ty, has
WCETr,, = WCET4,.

(3) Execution path A is equal to or longer than B. In the most general case,
we cannot make the assumption that A and B can be always decomposed
into respective portions of computations such that the i** portion of A has
the same worst case execution time as the ** portion of B. The ezact match
in the worst case execution times between portions of two different execution
paths is very unlikely due to resource requirements in the computation. There-
fore, in the most general case, P can be decomposed into two sets of tasks
{T(a,,By)s - Tap,Bryy and {Ta,, ..., Ta,}, For 1 < i < k, WCETr, ., =
maz(WCET4,, WCETg,), and for k+ 1 < j <n, WCE'TTA]_ = WCETy,.

Then the question is: Can we accomplish the modification of more than one eft
predictably at run time? The answer is yes. Since at task decomposition, the number
of tasks per execution branch is known, the maximum number of modifications of e ft
1s also known. So the cost X of the multiple e ft modifications can be incorporated
into the WC ET of the task containing the branch condition. The multiple updates
of eft values in the schedule should be constructed within a critical section, otherwise
race conditions can occur between this updating action and the scheduler’s setting

of the cutoff_line right before scheduling a newly arrived task. When the cutoff_line

139

is set, the tasks being rescheduled are severed from the dispatching queues. Without
using a critical section, the e ft updating process can be accessing invalid task entries.
Suppose task T; contains a branching condition whose evaluation at run time

can potentially reduce the W C ETE of k; tasks, including that of task T} itself. Then

the cost X; of updating the eft of the k; tasks includes the following components:

(A) The cost z of the system call that updates one WC ET?E, as described in section

7.2.
(B) The cost of a critical section to access the schedule:

B.1) the amount of time 7, .y for P() and V() operations, and
P()7 ()

(B.2) the amount of time for updating k; WC ET®’s.

So the total cost is X; = k; x + mp() () for task T;. The value of X; can be used
to determine the threshold to control whether a multiple W C ET® updating action
should be carried out. In many situations, the threshold can be checked statically
since at each conditional branch, the number of potential WC ET® reductions is
known, thereby avoiding run time checking cost.

When reducing the WC ET? of a task T; that will be dispatched at some future
point in time, we need to modify not only the eft; of the task, but also the value of
T;’s current WCET?. When a task arrival occurs, the reduced value of T;’s WC ET!
can be used by the scheduler in the scheduling process, thereby in effect reclaiming
the reduced portion of the invocation worst case execution time. If the evaluation
of a conditional branch results in the removal of a task from the schedule, the value
of the task’s WCET! can be simply set to zero. From a performance point of view,
the resource reclaimed due to the reduction in WCET?! values of tasks and the
deletion of tasks in the existing feasible schedule can be very beneficial and even

crucial for the guarantee of incoming new tasks, since the number of tasks and/or

140

the amount of computation/resource requirements have been reduced for the tasks

already guaranteed.
7.6 Summary

We have described a mechanism for the early notification of reductions in a
task’s worst case execution time during the execution of the task. The possible
impact on the performance of resource reclaiming has been identified. Besides the
worst case execution time reduction of a single task, we have also considered the
reduction of the worst case execution times of multiple tasks due to the evaluation
of the same conditional branch. We demonstrated that this multiple modification

can be accomplished with bounded cost.

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Dissertation Summary

In this dissertation, we have taken an integrated approach to attack the problems
of algorithm design for dynamic multiprocessor real-time systems that require the
properties of being time conscious, time conscientious, and time conserving. Real-
time scheduling algorithms require the use of worst case execution times of tasks.
However, the worst case execution time is an upper bound, and the actual execution
time of a task at run time varies between some minimum value and this upper
bound. The variance in task execution time can be caused by both the computer
architecture and the software features. The problem of on-line resource reclaiming in
a multiprocessor real-time system has not been addressed previously. The research
presented in this dissertation represents an initiative effort in characterizing and
solving this dynamic resource reclaiming problem.

We have presented a predictable integration of scheduling, dispatching and
resource reclamation for guarantee-oriented distributed memory real-time multipro-
cessor systems. We have demonstrated that, for a dynamic real-time system, it
is not sufficient to simply analyze and prove the static properties of an on-line
algorithm in isolation of the rest of the system components. The sharing and
contention of resources, such as memory, shared system bus, and more importantly
time, mandates the algorithm designer to take an integrated view of the system

as a whole, considering the interrelationships of all the system components (be it

142

software, or hardware) that have an effect on the dynamic timing properties of the
algorithm at hand. In the following, we briefly summarize the specific contributions
and results of this dissertation.

In particular:

e We have analyzed the worst case run time anomalies that can occur in a
multiprocessor schedule where real-time tasks have both resource and processor
constraints, and the necessary conditions under which timing anomalies can
occur in a resource constrained multiprocessor schedule if a work-conserving
scheme i1s used. We have also studied the complexity and optimality issues of

multiprocessor resource reclaiming.

o We have developed two resource reclaiming algorithms, Basic Reclaiming and
Reclaiming with Early Start. While these two algorithms both have low and
bounded execution time, they vary in complexity. These two algorithms employ
strategies that are a form of on-line local optimization on a feasible multipro-
cessor schedule. We also analyzed the correctness and complexity of these

algorithms.

e Simulation studies of the resource reclaiming algorithms for a five processor
multiprocessor system have been carried out. We tested a wide range of
task parameters and compared the performance of the resource reclaiming
algorithms to that of three other baseline schemes. The simulation results

show that

— (1) resource reclaiming is very useful for real-time systems that have to

guarantee tasks with respect to their worst case execution times,

— (2) algorithm Reclaiming with Early Start outperforms Basic Reclaiming,

and,

143

— (3) for a large range of accuracies of the worst case execution time esti-
mations (from 30% to 100%) that we have experimented with, Reclaiming

with Early Start performs very close to that of an ideal scheduling scenario.

e Solutions that extend resource reclamation to not only at a task’s completion,

but also during its execution have also been proposed.

o Predictable integration of multiple functional components is a challenge unique
to real-time systems, and is required to support the time conscientious and
time conserving properties of a real-time system. This challenge is exacerbated
by the difficulties brought about by the concurrent and asynchronous nature

of multiprocessor systems.

— We have presented a concurrent, on-line, bounded-time construction of the
scheduler and dispatchers for a distributed memory multiprocessor real-

time system.

— The feasibility of on-line resource reclaiming is demonstrated via an in-
tegration with the scheduler and dispatcher processes implemented on a
prototype (Motorola 68020, VME based) multiprocessor real-time kernel

— the Spring Kernel.
8.2 Future Work

In a multiprocessor environment, synchronized clocks are easily supported. The
integrated scheduling-dispatching-resource-reclaiming approach presented in this dis-
sertation assumes the availability of such a synchronized clock on each multiproces-
sor node. In a distributed environment, synchronizing the scheduling and dispatch-
ing operations of the entire system will result in a very inflexible implementation,
if possible at all. The on-line resource reclaiming problem for distributed real-time

systems need further research efforts.

144

8.2.1 Resource Reclaiming for Tasks with Communication Constraints

In the resource reclaiming algorithms presented in this dissertation, tasks will be
started earlier than their scheduled start time if possible. The correctness criterion
only applies to tasks that do not have synchronization/communication constraints.

Now, suppose two tasks in two different feasible schedules, i.e., tasks resident
on different multiprocessor nodes in a distributed system, have communication
constraints — one task ends with a SEND and another task starts with a RECEIVE
instruction. If the two tasks are on the same node, then the resource reclaiming
algorithms presented can still be used as they are. However, if the two tasks are
scheduled on different nodes in a network, the resource reclaiming algorithms may
start a receiving task before its corresponding sender task. One possible extension is
to set up synchronization barriers between the sender and the receiver, such that the
resource reclaiming process will not start the receiver task earlier on one node than
the sending task on the other node. With synchronization barriers, the performance
of resource reclaiming can be limited without allowing total passing. Thus, in a
dynamic distributed system where tasks have communication constraints, in order
to overcome the performance problem due to worst case execution assumptions,
a better choice may be to design scheduling schemes with an smplicit schedule

construction.

8.2.2 Distributed Resource Reclaiming with Fault Tolerance Con-
straints

Multiple copies of tasks may reside on different multiprocessor nodes in a dis-
tributed system. Replications of tasks may be used for two types of fault tolerant
task structures — (1) voting, and (2) alternative versions. In voting, all the replicas
of a task must be executed, and their outputs voted on. In the alternative scheme,

only one copy of the task needs to be executed. Once one copy of a task successfully

145

completes execution, the other copies (or alternative versions) can be removed from
the current schedules on the other nodes.

The removal of copies of a task brings new issues to the resource reclaiming
problem — we must be able to ensure that (1) only one copy is executed, and (2)
we must be able to remove the other copies from the schedules on other nodes. The
unique problem here is that resource reclamation can proceed as long as none of
the copies of the task has been dispatched. However, as soon as one copy starts
execution, the execution or removal of the other copies is contingent upon whether
the started copy can complete successfully. How to accomplish resource reclaiming in
this scenario is an open question. An alternative is to take an at-least-once semantics
of the executions of the alternative versions of a task, thus resource reclaiming can

be carried out as it is.

BIBLIOGRAPHY

[1] Agne, R. Global Cyclic Scheduling: A Method to Guarantee the Timing
Behavior of Distributed Real-Time Systems. The Journal of Real-Time
Systems, Kluwer Academic Publishers, 3(1), March 1991.

[2] Anderson, T. E., Lazowska, E. D., and Levy, H. M. The Performance Impli-
cations of Thread Management Alternatives for Shared-Memory Multipro-

cessors. Technical Report 88-09-04, University of Washington, September
1988.

[3] Baker, T. P. Stack Based Scheduling of Realtime Processes. The Journal of
Real-Time Systems, Kluwer Academic Publishers, 3(1), March 1991.

[4] Baker, T. P. and Shaw, A. The Cyclic Executive Model and Ada. The Journal
of Real-Time Systems, Kluwer Academic Publishers, 1(1), 1989.

[6] Baruah, S., G. Koren, D. M., Mishra, B., Raghunathan, A., Rosier, L.,
Shasha, D., and Wang, F. On the Competitiveness of On-Line Real-Time
Task Scheduling. The Journal of Real-Time Systems, Kluwer Academic
Publishers, 4(2), June 1992.

[6] Bettati, R. and Liu, J. W. S. Algorithms for Flow-Shop Scheduling to Meet
Deadlines. the Eighth IEEE Workshop on Real-Time Operating Systems
and Software, May 1991.

[7] Blake, B. A. and Schwan, K. Experimental Evaluation of a Real-Time Scheduler
for a Multiprocessor System. IEEE Transactions on Software Engineering,

17(1), January 1991.

[8] Blazewicz, J. Deadline Scheduling of Tasks With Ready Times and Resource
Constraints. Information Processing Letters, 8(2), February 1979.

[9] Blazewicz, J. Solving the Resource Constrained Deadline Scheduling Problem
via Reduction to the Network Flow Problem . European Journal of Opera-
tional Research, 6, 1981.

[10] Blazewicz, J., Drabowski, M., and Weglarz, J. Scheduling Multiprocessor Tasks
to Minimize Schedule Length. IFEE Transactions on Computers, 35(5),
May 1986.

147

[11] Blazewicz, J., Lenstra, J., and Kan, A. R. Scheduling subject to resource
constraints: Classification and complexity. Discrete Appled Mathematics,

5:11-24, 1983.

[12] Burns, J. E. Mutual Exclusion with Linear Waiting using Binary Shared
Variables. SIGACT News, 10(2), Summer 1978.

[13] Carlow, G. D. Architecture of the Space Shuttle Primary Avionics Software
System. Communications of the ACM, 27(9), September 1984.

[14] Cheng, S.-C., Stankovic, J. A., and Ramamritham, K. Hard Real-Time Sys-
tems, chapter 5.1 Scheduling, pages 150-173. Computer Society Press of
the TEEE, 1988.

[15] Chetto, H. and Chetto, M. Some Results of the Earliest Deadline Scheduling
Algorithm. IEEFE Transaction on Software Engineering, 15(10), Oct. 1989.

[16] Coffman, Jr., E. G. Computer and Job-Shop Scheduling Theory. J. Wiley &
Sons, 1976.

[17] Cristian, F., Dancey, B., and Dehn, J. Fault-Tolerance in the Advanced
Automation System . In 20th Annual International Symposium on Fault-
Tolerant Computing, June 1990.

[18] Dertouzos, M. L. and Mok, A. K.-L. Multiprocessor On-Line Scheduling
of Hard-Real-Time Tasks . IEEE Transactions on Software Engineering,
15(12), Dec. 1989.

[19] Desrochers, A. A., editor. Modeling and Control of Automated Manufacturing
Systems . IEEE Computer Society Press, 1990.

[20] Dinning, A. A Survey of Synchronization Methods for Parallel Computers.
Computer, 22(7), July 1989.

[21] Du, J. and Leung, J. Y.-T. Scheduling Tree-Structured Tasks With Restricted
Execution Times. Information Processing Letter, 28, July 1988.

[22] EcElvany, M. C. Guaranteed Deadlines in MAFT. In Proceedings of IEEE
Real-Tvme Systems Symposium, December 1988.

[23] Garey, M. R. and Graham, R. L. Bounds for Multiprocessor Scheduling with
Resource Constraints . SIAM Journal on Computing, 4(2):200-187, June
1975.

[24] Garey, M. R. and Johnson, D. S. Complexity Results for Multiprocessor
Scheduling under Resource Constraints. SIAM Journal on Computing, 4(4),
Dec. 1975.

[25] Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

148

[26] Gillies, D. W. and Liu, J. W. Greed in Resource Scheduling . In Proceedings
of the 10th IEEE Real-Time System Symposium, 1989.

[27] Goli, P., Kurose, J., and Towsley, D. Approximate Minimum Laxity Scheduling
Algorithms for Real-Time Systems. Technical Report 90-88, University of
Massachusetts, 1990.

[28] Gottlieb, A., Grishman, R., Kruskal, C., McAuliffe, K., Rudolph, L., and Snir,
M. The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel
Computer. IEEE Transactions on Computers, c-32(2), February 1983.

[29] Govindan, R. and Anderson, D. P. Scheduling and IPC Mechanisms for
Continuous Media. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, Oct. 1991.

[30] Graham, R. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl
Math., 17(2), March 1969.

[31] Graham, R. Bounds on the Performance of Scheduling Algorithms. In Coffman,
Jr., E. G., editor, Computer and Job-Shop Scheduling Theory, chapter 5. J.
Wiley & Sons, 1976.

[32] Gunterberg, H. Case Study on Rapid Software Prototyping and Automated
Software Generation: An Inertial Navigation System. Master’s thesis, Naval

Postgraduate School, 1989.

[33] Han, C.-C. and Lin, K.-J. Scheduling Parallelizable Jobs on Multiprocessors.
In Proceedings of IEEE Real-Tvme Systems Symposium, Dec. 1989.

[34] Hennessy, J. L. and Patterson, D. A. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., 1990.

[35] Holmes, V. P. and Harris, D. L. A Designer’s Perspective of the Hawk
Multiprocessor Operating System Kernal. ACM Operating System Review,
23(3), July 1989.

[36] Hong, J., Tan, X., and Towsley. A performance analysis of minimum laxity and
earliest deadline scheduling in a real-time system. IEEFE Transactions on

Computers, 38(12), December 1989.

[37] Hong, K. S. and Leung, J. Y.-T. On-Line Scheduling of Real-Time Tasks. In
Proceedings of IEEE Real-Time Systems Symposium, Dec 1988.

[38] Hugue, M. M. and Stotts, P. D. Guaranteed Task Deadlines for Fault-Tolerant
Workloads with Conditional Branches. The Journal of Real-Tvme Systems,
Kluwer Academic Publishers, 3(3), September 1991.

[39] Hunter & Ready, Inc. VRTX/68020. Hunter & Ready, Inc., 1986.

149

[40] Jeffay, K., Stone, D. L., and Smith, F. D. Kernel Support for Live Digital
Audio and Video. In Proceedings of the Second International Workshop on

Network and Operating System Support for Digital Audio and Video, Nov.
91.

[41] Jensen, E. D., Locke, C. D., and Tokuda, H. A Time-Driven Scheduling Model
for Real-Time Operating Systems. Proceedings of IEEE Real-Time Systems
Symposium, dec 1985.

[42] Kawaguchi, T. and Kyan, S. Deterministic Scheduling in Computer Systems:
A Survey. Journal of the Operations Research Society of Japan, 31(2), June
1988.

[43] Klingerman, E. and Stoyenko, A. D. Real-Time Euclid: A Language for
Reliable Real-Time Systems. IEEE Transactions on Software Engineering,
Sept 1986.

[44] Komoda, N., Kera, K., and Kubo, T. An Autonomous, Decentralized Control
System for Factory Automation. IEEE Computer, December 1984.

[45] Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., and
Zainlinger, R. Distributed Fault-Tolerant Real-Time Systems: the MARS
Approach. IEEE Muicro, Feb. 1989.

[46] Kurose, J. F. and Chipalkatti, R. Load Sharing in Soft Real-Time Distributed
Computer Systems. IEEE Transactions on Computers, c-36(8), Aug 1987.

[47] Lawler, E. L. and Martel, C. U. Scheduling periodically Occurring Tasks on
Multiple Processors . Information Processing Letters, 12(1), Feb. 1981.

[48] Lehoczky, J. P., Sha, L., and Strosnider, J. K. Enhanced Aperiodic Respon-
siveness in Hard Real-Time Environments. Proceedings of IEEE Real-Time
Systems Symposium, December 1987.

[49] Leinbaugh, D. W. Guaranteed Response Times in a Hard-Real-Time Envi-
ronment. [EEE Transactions on Software Engineering, SE-6(1), January
1980.

[60] Leung, J. Y.-T. Bounds on List Scheduling of UET Tasks with Restricted

Resource Constraints. Information Processing Letters, 9(4), Nov. 1979.

[61] Leung, J. Y.-T. and Merrill, M. L. A Note on preemptive Scheduling of Periodic,
Real-Time Tasks . Information Processing Letters, 11(3), Nov. 1980.

[62] Levi, S.-T., Tripathi, S. K., Carson, S. D., and Agrawala, A. K. The MARUTI
Hard Real-Time Operating System. ACM Operating System Review, 23(3),
July 1989.

150

[63] Liu, C. L. and Layland, J. W. Scheduling Algorithms for multiprogramming in
a Hard-Real-Time Environment. Journal of ACM, 20(1), 1973.

[64] Liu, J. W. S., Lin, K.-J., and Natarajan, S. Scheduling Real-Time, Periodic
Jobs Using Imprecise Results. In Proceedings of IEEE Real-Time Systems
Symposium, 1987.

[65] Locke, C. D. Software Architecture for Hard Real-Time Applications: Cyclic
Executives vs. Fixed Priority Executives. The Journal of Real-Time Sys-

tems, Kluwer Academic Publishers, 4(1), March 1992.
[66] Locke, D. C. Best-Effort Decision Making for Real-Time Scheduling. PhD

thesis, Computer Science Department, Carnegie-Mellon University, 1986.

[67] Manacher, G. K. Production and stabilization of real-time task schedules.
Journal of the ACM, 14(3), July 1967.

[68] Mehrotra, R. and Varanasi, M. R., editors. Multirobot Systems. IEEE Com-
puter Society Robot Technology Series. IEEE Computer Society Press, 1990.

[69] Menga, G., Bruno, G., Conterno, R., and Dato, M. A. Modeling FMS by Closed
Queuing Network Analysis Methods. IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, CHMT-7(3), September 1984.

[60] Molesky, L. D., Shen, C., and Zlokapa, G. Predictable Synchronization Mech-
anisms for Multiprocessor Real-Time Systems . The Journal of Real-Time
Systems, Kluwer Academic Publishers, 2(3):163-180, Sept. 1990. (Also
published as COINS Tech. Report 90-30).

[61] Motorola Inc. MVME135, MVME135-1, MVME135A, MVME1386, and
MVME136A 32-Bit Microcomputers User’s Manual. Motorola Inc., 1989.

[62] Nain, P. and Towsley, D. Properties of the ML(n) Policy for Scheduling Jobs
with Real-Time Constraints. In in the Proceedings of 29-th IEEE Control

and Deciston Conference, December 1990.

[63] Niehaus, D. Program Representation and Translation for Predictable Real-
Time Systems. In IEEE Real-Time Systems Symposium, Dec. 1991.

[64] Nirkhe, V. and Pugh, W. A Partial Evaluator for the Maruti Hard Real-Time
System. In IEEE Real-Time Systems Symposium, Dec. 1991.

[65] Norbis, M. Heuristics for the Resource Constrained Scheduling Problem. PhD
thesis, University of Massachusetts, 1987.

[66] Park, C. and Shaw, A. C. Experiments With A Program Timing Tool Based
On Source-Level Timing Schema. In IEEE Real-Time Systems Symposium,
Dec. 1990.

151

[67] Peterson, J. L. and Silberschatz, A. Operating System Concepts. Addison-
Wesley, Reading, Massachusetts, 1985.

[68] Peterson, J. L. and Silberschatz, A. Operating System Concepts. Addison-
Wesley Publishing Company, Inc., 1987.

[69] Puschner, P. and Koza, C. Calculating the maximum execution time of real-
time programs. Real-Tvme Systems, The International Journal of Time-
Critical Computing Systems, 1(2), Sept. 1989.

[70] Rajkumar, R., Sha, L., and Lehoczky, J. P. Real-Time Synchronization
Protocols for Multiprocessors. In Proceedings of IEEE Real-Time Systems
Symposium, Dec 1988.

[71] Ramamritham, K. Allocation and Scheduling of Complex Periodic Tasks. 10th
International Conference on Distributed Computing Systems, June 1990.

[72] Ramamritham, K., Stankovic, J. A., and Shiah, P.-F. Efficient Scheduling
Algorithms for Real-Time Multiprocessor Systems. IEEE Transactions on
Parallel and Distributed Systems, 1(2), April 1990.

[73] Ramaritham, K. and Stankovic, J. A. Dynamic Task Scheduling in Distributed
Hard Real-Time Systems. IEEE Software, 1(3), July 1984.

[74] Rangan, P. V. and Vin, H. M. Designing File Systems for Digital Video and
Audio. In Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, October 1991.

[75] Ready, J. F. VRTX: A Real-Time Operating System for Embedded Micropro-
cessor Applications. IEEE MICRO, August 1986.

[76] Richards, P. Parallel Programming. Technical Report TD-B60-27, Technical
Operations Inc., 1960.

[77] Sarkar, V. Partitioning and Scheduling Parallel Programs for Multiprocessors.
PhD thesis, Stanford University, 1989.

[78] Schwan, K., Bihari, T., Weide, B. W., and Taulbee, G. High-Performance
Operating System Primitives for Robotics and Real-Time Control Systems.
ACM Transactions on Computer Systems, 5(3), August 1987.

[79] Sequent Computer Systems Inc. Sequent Symmetry Technical Summary. Se-
quent Computer Systems, Inc., 1988.

[80] Sha, L., Rajkumar, R., and Lehoczky, J. P. Priority Inheritance Protocols—An
Approach to Real-Time Synchronization. IEEE Transactions on Comput-
ers, 39(9), September 1990.

152

[81] Sha, L., Rajkumar, R., Lehoczky, J. P., and Ramamritham, K. Mode Change
Protocols for Priority-Drive Preemptive Scheduling . Real-Time Systems,

The International Journal of Time-Critical Computing Systems, 1(3), Dec.
1989.

[82] Shaw, A. C. Reasoning about time in higher-lever language software. IEEE
Transactions on Software Engineering, 15(7), July 1989.

[83] Shen, C., Ramamritham, K., and Stankovic, J. A. Resource Reclaiming in
Multiprocessor Real-Time Systems . to appear in Transactions on Parallel
and Distributed Systems, 1992.

[84] Shih, W.-K., Liu, J. W. S., and Chung, J.-Y. Fast Algorithms for Scheduling
Imprecise Computation. In Proceedings of the IEEE Real-Tvme Systems
Symposium, 1989.

[85] Shin, K. G. and Epstein, M. E. Intertask Communications in an Integrated
Multirobot System. IEEE Journal of Robotics and Automation, RA-3(2),
April 1987.

[86] Sprunt, B., Sha, L., and Lehoczky, J. Aperiodic task scheduling for hard-
real-time systems. Real-Time Systems, The International Journal of Tivme-
Critical Computing Systems, 1(1), June 1989.

[87] Stankovic, J. A. Misconceptions About Real-Time Computing: A Serious
Problem for Next-Generation Systems. IEEE Computer, Oct 1988.

[88] Stankovic, J. A., Ramamritham, K., and Cheng, S. C. Evaluation of a Flexible
Task Scheduling Algorithm for Distributed Hard Real-Time Systems. IEEE
Transaction on Computers, 34(12), Dec 1985.

[89] Stankovic, J. A. and Ramamrithm, K. The Spring Kernel: A New Paradigm
for Real-Time Systems. IEFE Software, 8(3), May 1991.

[90] Stewart, D. B. and Khosla, P. K. Real-Time Scheduling of Sensor-Based
Control Systems. the FEighth I[EEE Workshop on Real-Time Operating
Systems and Software, May 1991.

[91] Tarjan, R. E. Decomposition by clique separators. Discrete Matchematics, 55,
1985.

[92] Xu, J. and Parnas, D. L. Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations. IEEE Transactions on Software

FEngineering, 16(3), March 1990.
[93] Zhao, W. A Heuristic Approach to Scheduling Hard Real-Time Tasks with

Resource Requirements in Distributed Systems. PhD thesis, University of
Massachusetts, Amherst, 1986.

153

[94] Zhao, W. and Ramamritham, K. Simple and Integrated Heuristic Algorithms
for Scheduling Tasks with Time and Resource Constraints. Journal of

Systems and Software, 1987.

[95] Zhao, W., Ramamritham, K., and Stankovic, J. A. Preemptive Scheduling
under Time and Resource Constraints. IEEE Transaction on Computers,

36(8), August 1987.
[96] Zhao, W., Ramamritham, K., and Stankovic, J. A. Scheduling Tasks with

Resource Requirements in Hard Real-Time Systems. [EEE Transactions
on Software Engineering, SE-12, May 1987.

[97] Zhao, W. and Stankovic, J. A. Performance Analysis of FCFS and Improved
FCFS Scheduling Algorithms for Dynamic Real-Time Computer Systems.

In in the proceedings of IEEE Real-Tvme Systems Symposium, December
1989.

[98] Zhou, H. and Schwan, K. Dynamic Scheduling for Hard Real-Time Systems
Toward Real-Time Threads. the Eighth IEEE Workshop on Real-Time
Operating Systems and Software, May 1991.

